横截面上切应力分布规律

合集下载

横截面上切应力分布规律

横截面上切应力分布规律

F Fsmax 2
F
max

3 2
Fs A

32 2 bh
3 F 4 bh
h
Mmax

FL 4
FL
b
max

M max WZ

4 1 bh
2
6
max max
d z
t
b
工字形截面梁由腹板和翼缘组成(中间的矩形部分称 为腹板;上下两矩形称为翼缘)。翼缘和腹板上均存在 着竖向切应力,而翼缘上还存在着与翼缘长边平行的 水平切应力。 经理论分析和计算表明:横截面上剪力的(95~97) %由腹板分担,而翼缘仅承担了剪力的(3~5)%, 并且翼缘上的切应力情况又比较复杂。为了满足实际 工程计算和设计的需要,仅分析腹板上的切应力。
Iz1 Iz a2A
例1 长为l的矩形截面悬臂梁,在自由端作用一集中力F,已知
b=120mm,h=180mm、l=2m,F=1.6kN,试求B截面上a、b
、c各点的正应力。
A
F
h6
a
B
z
C
b
h
l2
l2
h2
FL
c
b
a

M B ya IZ

1 FL h
2 bh
3
3
1.65MP(a拉 )
b 0
简易的矩形竹结构桥
钢管混凝土拱桥中的混凝土小横梁
建筑阳台挑梁受力分析与破坏问题
1.挑梁属于悬臂结构。 2.挑梁工作环境:常常处于室外,面对雨水、二氧化碳等的 直接侵蚀,荷载存在不确定性。 3. 破坏形式:出现裂缝后极有可能进一步扩大,严重的将危 及建筑物的安全。
建筑阳台挑梁受力分析与破坏问题

工程力学梁横截面上的切应力及梁的切应力强度条件

工程力学梁横截面上的切应力及梁的切应力强度条件

三、T字型截面梁的切应力
T字型截面可以看成是由两个矩形组成,下面的 狭长矩形与工字形截面的腹板相似,该部分上的切 应力仍用下式计算:
τ

FS
S
* z
I zb1
最大切应力仍然发生在截面的中性轴上。
四、圆形及环形截面梁的切应力 圆形及薄壁环形截面其最大竖向切应力也都发生在
中性轴上,并沿中性轴均匀分布,计算公式分别为
M+dM
FS dx
σ
现假设用一水平截面将微段梁截 开,并保留下部脱离体,由于脱离 体侧面上存在竖向切应力τ ,根据 切应力互等定理可知,在脱离体的
顶面上一定存在切应力τ ',且 τ '=τ ,如图所示。
dx τ
z y τ' τ
y dx
以FN1、FN2分别代表作用在脱离体左侧面、右侧 面上法向内力的总和,dFS代表水平截面上切应力的 总和,如图所示。
翼缘上的水平切应力可认为沿翼缘厚度是均匀 分布的,其计算公式仍与矩形截面的切应力的形式 相同,即
τ

FS
S
* z
Izδ
式中FS为横截面上的剪力;Sz*为欲求应力点到翼 缘边缘间的面积对中性轴的静矩;Iz横截面对中性轴的 惯性矩;δ为翼缘的厚度。
水平切应力的大小沿水平方向的分布如图所示。实 践和理论推导已经证明,在整个工字型截面上切应力 的方向可用图c表示。从图中表示切应力方向的许多小 箭头来看,它们好象是两股沿截面流动的水流,从上 (或下)翼缘的两端开始,共同朝向中间流动,到腹 板处汇合成一股,沿着腹板向下(或上)到下(或上) 翼缘处再分为两股向两侧流动。对所有的薄壁杆,其 横截面上切应力的方向,都有这个特点。这种现象称 为切应力流。掌握了切应力流的特性,则不难由剪力 的方向确定薄壁杆横截面上切应力的方向。

杆件横截面上的应力

杆件横截面上的应力
* N1
* Sz dM τy = I zb dx
F = ∫ * σ2dA= ∫ *
* N2 A
A
(M + dM) y1 dA
Iz
Fs S τ = I zb
* z
FS S z τ= I zb
上式中符号意义: 式中符号意义: 截面上距中性轴y处的剪应力 τ:截面上距中性轴 处的剪应力 c
S :y以外面积对中性轴的静矩 以外面积对中性轴的静矩 I z :整个截面对中性轴的惯性矩
②正应力: 正应力:
p α
F
α
α
Fα N
σ α = pα cos α = σ cos 2 α
③切应力: 切应力:
α
σα α pα τα
τ α = pα sin α =
σ0
2
sin 2α
1) α=00时, σmax=σ ) 2)α=450时, τmax=σ/2 ) =
例题
试计算图示杆件1-1、2-2、和3-3截面上正 应力.已知横截面面积A=2×103mm2
2.计算截面惯性矩 .
0.12 × (0.02)3 2 I1 z = + (0.12 × 0.02 )(0.045 0.01) = 3.02 ×10 6 m 4 12 0.02 × (0.12) 3 2 I2z = + (0.02 × 0.12)(0.08 0.045) = 5.82 × 10 6 m 4 12
其中:拉应变为正, 其中:拉应变为正, 为正 压应变为负 为负。 压应变为负。
'
d1 d d = 横向应变: 横向应变: ε = d d
O
z
研究一点的线应变: 研究一点的线应变:
x
x

梁横截面上的切应力

梁横截面上的切应力
力学
弯曲应力\梁横截面上的切应力
梁横截面上的切应力
在横力弯曲时,梁的横截面上有剪力FS,相应地在横截面上存
在切应力。本节以矩形截面梁为例,对切应力计算公式进行推导,
并对其他几种常用截面梁的切应力计算作简要介绍。
1.1 矩形截面梁横截面上的切应力
1. 横截面上切应力的计算公式
图a所示的简 支梁是一个矩形
目录
弯曲应力\梁横截面上的切应力 工字形截面上的最大切应力可按下式计算:
max
FS Af
式中:FS—横截面上的剪力; Af —腹板的面积。
目录
弯曲应力\梁横截面上的切应力
2.圆形截面梁和薄壁圆环形截面梁 圆形截面和薄壁圆环形截面分别如图a、b所示。可以证明,梁 横截面上的最大切应力均发生在中性轴上各点处,并沿中性轴均匀 分布,其值分别为
1.2 其他形状截面梁横截面上的切应力
1. 工字形截面梁
工字形截面由上下翼缘和中 间腹板组成 (图a)。腹板是狭 长矩形,所以腹板上的切应力可 按矩形截面的切应力计算公式进 行计算,最大切应力仍然发生在 中性轴上各点处,并沿中性轴均 匀分布。在腹板与翼缘交接处, 由于翼缘面积对中性轴的静矩仍 然有一定值,所以切应力较大。 腹板上的切应力接近于均匀分布, 如图 b所示。翼缘上的切应力的 数值比腹板上切应力的数值小许 多,一般忽略不计。
A*
Iz
Iz
A*
ydA
M
FSdx Iz
S
* z
F3 bdx bdx
将F1、 F2和F3代入平衡方程,得
M
FSdx Iz
S
* z
M Iz
S
* z
bdx
目录
弯曲应力\梁横截面上的切应力

梁横截面上的应力

梁横截面上的应力

2)计算C截面上的最大拉应力和最大压应力。
C截面上的最大拉应力和最大压应力为
tC
M C y2 I
2.5103 N m 8.810-2 m 7.6410-6 m4
Z
28.8106 P a 28.8MP a
cC
M
B
y 1
Iz
2.5 103 N m 5.2 10-2 m 7.6410-6 m 4
17.0 106 P a 17.0MP a
3)计算B截面上的最大拉应力和最大压应力。
B截面上的最大拉应力和最大压应力为
tB
M
B
y 1
Iz
4 103 N m 5.2 10-2 m 7.6410-6 m 4
27.2 106 P a 27.2MP a
cB
M B y2 Iz
4 103 N m 8.810-2 m 7.6410-6 m4
【例4.17】 求图(a,b)所示T形截面梁的最大拉 应力和最大压应力。已知T形截面对中性轴的惯性矩 Iz=7.64106 mm4,且y1=52 mm。
【解】 1)绘制梁的弯矩图。
梁的弯矩图如图(c)所示。 由图可知,梁的最大正弯矩发 生在截面C上,MC=2.5kNm; 最 大负弯矩发生在截面B上,MB= -4kNm。
入,求得的大小,再根据弯曲变形判断应力的正(拉)
或负(压)。即以中性层为界,梁的凸出边的应力为拉 应力,凹入边的应力为压应力。
(2)横截面上正应力的分布规律和最大正应力 在同一横截面上,弯矩M 和惯性矩Iz 为定值,因此
由公式可以看出,梁横截面上某点处的正应力σ与该点到 中性轴的距离y成正比,当y=0时,σ=0,中性轴上各点处 的正应力为零。中性轴两侧,一侧受拉,另一侧受压。离 中性轴最远的上、下边缘y=ymax处正应力最大,一边为最 大拉应力σtmax,另一边为最大压应力σcmax。

扭转—扭转轴的应力及强度计算(建筑力学)

扭转—扭转轴的应力及强度计算(建筑力学)
1.5 10 6


MPa 51.4MPa
4
WP
2.92 10
扭转
(2) 求空心轴的内径
因为要求实心轴和空心轴的扭转强度相同,故两轴的最
大切应力相等,即
'max max 51.4MPa

max
Tmax
Tmax


WP
D23 1 4 16


6
16Tmax
16
变形的能力。单位GPa,其数值可由试验测得。
切应变的其单位是 弧度(rad)
扭转
二、圆轴扭转时横截面上的应力
从几何关系、物理关系和静力学关系这三个方面来分析圆
轴受扭时横截面上的应力。
1. 几何变形方面
取一圆轴进行扭转试验
试验现象表明,圆轴表面上各点的变形与薄壁圆筒扭转
时的变形一样。
扭转
由观察到的现象,对圆轴内部的变形可做如下假设:扭转
截面(危险截面) 边缘点处。因此,强度条件也可写成 maxFra bibliotekTmax

[ ]
W
圆轴强度条件可以解决圆轴扭转时的三类强度问题,即
进行扭转强度校核、圆轴截面尺寸设计及确定许用荷载。
扭转
例9-6 一实心圆轴,承受的最大扭矩Tmax=1.5kN•m,轴
的直径d1=53mm。求:(1)该轴横截面上的最大切应力。
扭转
第四节 圆轴扭转的强度计算
一、圆轴的扭转破坏试验与极限应力
圆轴的扭转试件可分别用Q35钢、铸铁等材料做成,扭
转破坏试验是在扭转试验机上进行。试件在两端外力偶Me
作用下,发生扭转变形,直至破坏。
Q35钢
铸铁

梁的切应力及其强度条件

梁的切应力及其强度条件

100
240
q 6.1kN/m
100
3)抗剪强度
20 S z ,max 180 20 (100 ) 2 100 45 100 2 2 846103 mm3
y
45 45
t max
FS, maxS z ,max bIz
2q 103 846103 [t ] 1.1MPa 4 901473610
D D
0.4m 0.6m
140
B
FB
C
10
FA
y
10
解 1)求内力 FA 66kN D截面的剪力
FB 44kN FS 66kN
t max
FS S z ,max dIz
103 47
A
F=110 kN
10
220
10
220 a
10
C y 10
2)求最大切应力 103 * 2 S z ,max 10310 2 1061 102 mm3

t1max tmax O
tmax
2 h FS 2 t max b h d y 2I z d 2
FS t1 h 2I z
tmin
切应力流
y
最大剪应力一般发生在中性轴上
10 320 10 50kN 50kN 50kN
100
9.5
F1
F2
C B A 1.5 m 1.5 m 1.5 m 1.5 m FA FB
y
解 1)求内力
FA 75kN
FB 75kN
10 320 10
50kN 50kN 50kN

一、横截面上的切应力

一、横截面上的切应力

一、横截面上的切应力实心圆截面杆和非薄壁的空心圆截面杆受扭转时,我们没有理由认为它们在横截面上的切应力象薄壁圆筒中那样沿半径均匀分布导出这类杆件横截面上切应力计算公式,关键就在于确定切应力在横截面上的变化规律。

即横截面上距圆心τp任意一点处的切应力p与p的关系为了解决这个问题,首先观察圆截面杆受扭时表面的变形情况,据此做出内部变形假设,推断出杆件内任意半径p处圆柱表面上的切应变γp,即γp与p的几何关系利用切应力与切应变之间的物理关系,再利用静力学关系求出横截面上任一点处切应力τp的计算公式实验表明:等直圆杆受扭时原来画在表面上的圆周线只是绕杆的轴线转动,其大小和形状均不变,而且在小变形情况下,圆周线之间的纵向距离也不变图8-56扭转时的平面假设:等直圆杆受扭时它的横截面如同刚性圆盘那样绕杆轴线转动显然这就意味着:等直圆杆受扭时,其截面上任一根沿半径的直线仍保持为直线,只是绕圆心旋转了一个角度φ图8-57现从等直圆杆中取出长为dx的一个微段,从几何、物理、静力学三个方面来具体分析圆杆受扭时的横截面上的应力图8-581.几何方面小变形条件下dφ为dx长度内半径的转角,γ为单元体的角应变图8-59或因为dφ和dx是一定的,故越靠近截面中心即半径R越小,角应变γ也越小且γ与R成正比例(或线性关系)由平面假设:对同一截面上各点θ表示扭转角沿轴长的变化率,称为单位扭转角,在同一截面上其为常数所以截面上任一点的切应力与该点到轴心的距离p成正比p为圆截面上任一点到轴心距离,R为圆轴半径图8-60上式为切应力的变化规律2.物理方面(材料在线性弹性范围内工作)由剪切胡克定律由于G和为常数,所以上式表明受扭等直圆杆在线性弹性范围内工作时,横截面上的切应力在同一半径p 的圆周上各点处大小相同,但它们随p做线性变化同一横截面上的最大切应力在横截面的边缘处。

这些切应力的方向均垂直于各自所对应的半径,指向与扭矩对应3.静力学方面前面已找出了受扭等直圆杆横截面上的切应力τp随p变化的规律,但还没有把与扭矩T联系起来。

材料力学之四大基本变形

材料力学之四大基本变形

WZ

IZ ymax
一、变形几何关系
( y)d d y
d
d
y
z
y
dx
y
CL8TU3-2
bh3
bh2
I Z 12 , WZ 6
d4
I Z 64
d3
, WZ 32
IZ

(D4 d 4)
64

D4
64
(1 4 )
WZ

D3
32
(1 4 )
(1)求支座反力
M A 0, M 0 RBl 0 M B 0, RAl M 0 0
(2)列剪力方程和弯矩方程
RB


M0 l
RA

M0 l
AC段 :
Q1

RA

M0 l
M1

RA x

M0 l
x
(0 x a)
CB段 :
Q2
返回
例3-1: 传动轴如图所示,转速 n = 500转/分钟,主动轮B输入功率NB= 10KW,A、 C为从动轮,输出功率分别为 NA= 4KW , NC= 6KW,试计算该轴的扭矩。
先计算外力偶矩
A
B
C x
mA

9550
NA n

9550 4 500
76.4Nm
mB
9550 NB n
9550 10 500
四大基本变形复习
1.轴向拉伸与压缩 2.剪切 3.扭转 4.弯曲
1.轴向拉压
受力特征:受一对等值、反向的纵向力,力的作用线与杆轴线 重合。 变形特征:沿轴线方向伸长或缩短,横截面沿轴线平行移动

材料力学(第五版)扭转切应力

材料力学(第五版)扭转切应力

(
)
d 2 = 0.8D2=43 mm π 2 d1 A1 452 4 = = =1.95 2 2 A2 π D2 1 α2 53.7 1 0.8 2 4
(
)
(
)
空心圆轴能比实心圆轴更充分的使用材料。 空心圆轴能比实心圆轴更充分的使用材料。
理由? 理由?
空心圆轴能比实心圆轴更充分的使用材料的原因: 空心圆轴能比实心圆轴更充分的使用材料的原因:
(
)
五、圆轴扭转时的强度条件 圆轴扭转时的最大切应力不能超过 材料的许用切应力
τmax
T ax m = ≤ [τ] W p
例题 d2
A
B
C
d1 mA mB mC
已知: 已知:阶梯轴尺寸如图 mA = 22 kN m, mB = 36 kN m, mC =14 kN m
[τ]= 80 MPa
d1 =120 m , d2 =100m m m
对于钢材: 对于钢材:
200 G= = 80GPa 2(1+ 0.25)
§3-4 圆轴扭转时的应力
一、变形几何条件 1、变形观察: 变形观察:
圆周线不变(大小、 圆周线不变(大小、 间距都不变) 间距都不变) 纵向线倾斜, 纵向线倾斜, 倾斜角相同 表面矩形变成 平行四边形
薄壁圆筒由于壁很薄, 薄壁圆筒由于壁很薄,表 面变形即为内部变形。 面变形即为内部变形。
圆轴内部任意一点的切应力 圆轴内部任意一点的切应力 τ ρ 与该点到圆心的距离ρ 与该点到圆心的距离ρ成正比
d τ ρ = Gρ dx
(c)
ρ =0
τρ = 0
ρ=R
τ ρ =τ max
d = GR dx
三、静力关系

第18讲梁横力弯曲时横截面上的切应力

第18讲梁横力弯曲时横截面上的切应力

第18讲教学方案——弯曲切应力、弯曲强度条件§7-3 弯曲切应力梁受横弯曲时,虽然横截面上既有正应力σ,又有剪应力 τ。

但一般情况下,剪应力对梁的强度和变形的影响属于次要因素,因此对由剪力引起的剪应力,不再用变形、物理和静力关系进行推导,而是在承认正应力公式(6-2)仍然适用的基础上,假定剪应力在横截面上的分布规律,然后根据平衡条件导出剪应力的计算公式。

1.矩形截面梁对于图6-5所示的矩形截面梁,横截面上作用剪力Q 。

现分析距中性轴z 为y 的横线1aa 上的剪应力分布情况。

根据剪应力成对定理,横线1aa 两端的剪应力必与截面两侧边相切,即与剪力Q 的方向一致。

由于对称的关系,横线1aa 中点处的剪应力也必与Q 的方向相同。

根据这三点剪应力的方向,可以设想1aa 线上各点剪应力的方向皆平行于剪力Q 。

又因截面高度h 大于宽度b ,剪应力的数值沿横线1aa 不可能有太大变化,可以认为是均匀分布的。

基于上述分析,可作如下假设:1)横截面上任一点处的剪应力方向均平行于剪力 Q 。

2)剪应力沿截面宽度均匀分布。

基于上述假定得到的解,与精确解相比有足够的精确度。

从图6-6a 的横弯梁中截出dx 微段,其左右截面上的内力如图6-6b 所示。

梁的横截面尺寸如图6-6c 所示,现欲求距中性轴z 为y 的横线1aa 处的剪应力 τ。

过1aa 用平行于中性层的纵截面11cc aa 自dx 微段中截出一微块(图6-6d )。

根据剪应力成对定理,微块的纵截面上存在均匀分布的剪应力 τ'。

微块左右侧面上正应力的合力分别为1N 和2N ,其中*1I 1**z zAzA S I M dA I My dA N ===⎰⎰σ (a ) *1II 2)()(**z z Az A S I dM M dA I y dM M dA N +=+==⎰⎰σ (b)式中,*A 为微块的侧面面积,)(II I σσ为面积*A 中距中性轴为 1y 处的正应力,⎰=*1*A z dA y S 。

名师讲义【赵堔】工程力学第9章扭转强度与刚度

名师讲义【赵堔】工程力学第9章扭转强度与刚度

d MTn x dx
GI p
AB 截面相对扭转角为:
l
d
l
MTn x dx
GI p
# 图示为变截面圆杆,A、B 两端直径分别为 d1、d2 。
从中取 dx 段,该段相邻两截 面的扭转角为:
d T dx
GI P (x)
AB 截面相对扭转角为:
d
T dx
L
L GI P ( x)
三、 扭转杆的刚度计算
圆管强度。
解:1. 计算扭矩作扭矩图
2. 强度校核
危险截面:截面 A 与 B
A
TA
2πR02d1
ml
2πR02d1
44.6
MPa [
]
ml
B
TB
2π 2
27.9
MPa [
]
圆管强度足够
例 图示阶梯状圆轴,AB段直径 d1=120mm,BC段直径
d2=100mm 。扭转力偶矩 MA=22 kN•m, MB=36 kN•m,
d
5、切应力的计算公式:
dA 对圆心的矩 → dAr0
T
AdA.r0
2 0
r0
2td
r02t2
T
2r0 2t
薄壁圆筒扭转时 横截面上的切应力计算式
二、关于切应力的若干重要性质
1、剪切虎克定律
为扭转角 r0 l
l
r0 即
l
做薄壁圆筒的扭转试验可得 T
纵轴 T——
T
2r02t
核轴的刚度 解:1. 内力、变形分析
T1 MA 180 N m
AB
T1l GIp
1.5010-2
rad
T2 MC 140 N m

材料力学(土木类)第四章 弯曲应力(4)

材料力学(土木类)第四章 弯曲应力(4)
dM * Sz −F = Iz
* N1
′ d FS = F
* FS S z τ 1′ = I zδ
FS h δ FS τ 1 = τ 1′ = × δη − = × η (h − δ ) I z δ 2 2 2 I z
δ
τ1max τmax O
τmax
FS τ1 = × η (h − δ ) 2I z
* FS S z FS τ= = I zb 2I z
h2 2 −y 4
τmax
O
(1) τ沿截面高度按二次抛物 线规律变化; 线规律变化; (2) 同一横截面上的最大切应 在中性轴处( 力τmax在中性轴处 y=0 ); ; (3)上下边缘处(y=±h/2), 上下边缘处( ± 上下边缘处 , 切应力为零。 切应力为零。
σ max ≤ [σ ]
G
τ τ
σ σ
H
梁上任意点G 平面应力状态, 梁上任意点 和H →平面应力状态, 平面应力状态 若这种应力状态的点需校核强度时不 能分别按正应力和切应力进行, 能分别按正应力和切应力进行,而必 须考虑两者的共同作用(强度理论)。 须考虑两者的共同作用(强度理论)。
ql2/8
横力弯曲梁的强度条件: 横力弯曲梁的强度条件:
Ⅱ、梁的切应力强度条件 发生在F 所在截面的中性轴处, 一般τmax发生在 S ,max所在截面的中性轴处,该位置 σ=0。不计挤压,则τmax所在点处于纯剪切应力状态。 所在点处于纯剪切应力 纯剪切应力状态 。不计挤压,
q E m G mH l/2 C D l F E
τmax
F
τmax
梁的切应力强度条件为
τ
y b
FS1 = ∫ τ d A ≥ 0.9 FS

工程力学 第9章 杆件横截面上的切应力分析

工程力学 第9章 杆件横截面上的切应力分析

第 9 章 弹性杆件横截面上的切应力分析
对于实心截面杆件以及某些薄壁截面杆件,当其横截面上仅有 扭矩(Mx)或剪力(FQy 或 FQz)时,与这些内力分量相对应的分布 内力,其作用面与横截面重合。这时分布内力在一点处的集度,即为 切应力。 分析与扭矩和剪力对应的切应力方法不完全相同。对于扭矩存 在的情形,依然借助于平衡、变形协调与物性关系,其过程与正应力 分析相似。对于剪力存在的情形,在一定的前提下,则仅借助于平衡 方程。 本章重点介绍圆截面杆在扭矩作用下其横截面切应力以及薄壁 杆件的弯曲切应力分析。
§ 9-1 圆轴扭转时横截面上的切应力
9-1-1 圆轴扭转变形特征 -反对称性论证圆轴扭转时横截面保持平面 9-1-2 变形协调方程 9-1-3 物性关系-剪切胡克定律 9-1-4 静力学方程 9-1-5 圆轴扭转时横截面上的切应力表达式
§ 9-2 非圆截面杆扭转时的切应力
图 9-8 例 9-2 图
解: 1.各轴所承受的扭矩 各轴所传递的功率分别为 P1 =14 kw , P 2 = P3 =P 1 /2=7 kw 转速分别为 n1 = 120 r/min
n 3=n1 ×
据此,算得各轴承受的扭矩:
z1 36 =120 × r/min =360r/min z3 12
14 M x1 = M e1 = 9549 × N ⋅ m = 1114 N ⋅ m 120 7 M x2 = M e2 = 9549 × N ⋅ m = 557 N ⋅ m 120 7 M x2 = M e2 = 9549 × N ⋅ m = 185 .7 N ⋅ m 360
2.计算最大切应力 E 、H、C 轴横截面上的最大切应力分别为

薄壁圆筒横截面上切应力的计算公式

薄壁圆筒横截面上切应力的计算公式

径之比a = 0.5 。已知材料的许用切应力[t ] = 40 MPa,切
变模量G= 80 GPa。轴的横截面上扭矩的最大者为Tmax =
(2) 该圆筒两个端面之间绕圆筒轴线相对转动了j 角,这种
角位移称为相对扭转角。
(3) 在认为切应力沿壁厚均匀分布的情况下,切应变也是
不沿壁厚变化的,故有 g
均半径。
jr0
,此处r0为薄壁圆筒的平 l
扭转
Me
g
AD BC
Me
j
薄壁圆筒的扭转实验表明:当横截面上切应力t 不超过 材料的剪切比例极限tp时,外力偶矩Me(数值上等于扭矩T ) 与相对扭转角j 成线性正比例关系,从而可知t 与g 亦成线
其中 A 2 d A称为横截面的极惯性矩Ip,
它是横截面的几何性质。
以Ip
2 d A 代入上式得:
A
dj T
d x GI p
从而得等直圆杆在线弹性范围内扭转时,横截面上任一点
处切应力计算公式


G

T GIp


T
Ip
T
t max
d T
t max
D
扭转
t max
t

T
Ip
横截面周边上各点处( r)的最大
切应力为
t max
d
t max

Tr Ip


T Ip r


T Wp
式中Wp称为扭转截面系数,其单 位为 m3。
扭转
圆截面的极惯性矩 Ip 和扭转截面系数 Wp
实心圆截面:
d
Ip
2 d A
A

梁横截面上的切应力

梁横截面上的切应力

是多少?
F1
F2
q
80
B
B
A
B
C
3m 34 3m
6m
22
4
300
D
z
14
50
ab
148.5
200
12 36
最大拉应力发生在B截面上

14

最36大压1 0应31力6.发355M生0P在a1F4s=8.05的截10面3上
391850M0P1a04
ab线上最大切应力发生在BC段
h2
工字形梁腹板上的切应力分布
讨论
4、当B=10b, H=20b, t=2b时
max /min=1.18, 大致均匀
分布
Hh
t b
z
5、腹板上能承担多少剪力?
积分 得 ——
B
总剪力的95%~97%
y
近似计算公式: Fs
bh
工字形梁翼板上的切应力分布
沿剪力Fs 方向的 切应力分量
z
沿翼板宽度方向
切应力分量
z

FsS z Izt
z
翼板上两种方向的切应力与腹板上 切应力相比较小,工程上一般不考虑
圆形梁截面上的切应力分布
z
max
实心圆截面:
最大切应力在中性轴上
max

4 Fs 3A
空心圆环:
最大切应力在中性轴上
max
2 Fs A
工字形截面梁的切应力
d z


Fs
(y)

Fs Izb

B 8
(H
2
h2)
b h2 (
24

材料力学应力应变部分

材料力学应力应变部分

材料力学(应力应变部分)→规定载荷作用下,强度要求,就是指构件应有足够的抵抗破坏的能力。

刚度要求,就是指构件应有足够的抵抗变形的能力。

→变形的基本假设:连续性假设,均匀性假设,各向同性假设。

→沿不同方向力学性能不同的材料,称为各向异性材料,如木材、胶合板和某些人工合成材料。

→ 分布力 表面力集中力(火车轮对钢轨压力,滚珠轴承对轴的反作用力) 体积力是连续分布于物体内各点的力,例如物体的自重和惯性力等。

→动载荷,静载荷→应力p 应分解为正应力σ ,切应力τ 。

→应力单位pa ,1pa=1N/m 2;常用Mpa ,1Mpa=106pa 。

第二章 拉伸、压缩与剪切2.2 轴向拉伸或压缩时横截面上的内力和应力→习惯上,把拉伸的轴力规定为正,压缩时的轴力规定为负。

→用横截面上的应力来度量杆件的受力程度。

→F N =σA ;σ(x)=F N (x)/A(x)2.3 直杆轴向拉伸或压缩时斜截面上的内力和应力 α轴向拉伸(压缩)时,在杆件的横截面上,正应力为最大值;在与杆件轴线成45°的斜截面上,切应力为最大值。

最大切应力在数值上等于最大正应力的二分之一。

此外,α=90°时,σα=τα=0 ,这表示在平行于杆件轴线的纵向截面上无任何应力。

(应力,p=F/A ,45°斜截面上,力→√22,面积→√22。

) 2.7 安全因数许用应力和安全因数的数值,可以在有关部门的一些规范中查到。

目前一般机械制造中,在静载的情况下,对塑性材料可取n s =1.2~2.5。

脆性材料均匀性较差,且断裂突然发生,有更大的危险性,所以取n b =2~3.5,甚至取到3~9。

2.8 轴向拉伸或压缩时的变形→胡克定律,当应力不超过材料的比例极限时,应力与应变成正比。

σ=Eε ,弹性模量E 的值随材料而不同。

∆l l=ε=σE =F AE ;∆l =FLAE即,对长度相同,受力相等的杆件,有EA 越大则变形Δl越小,所以称EA 为杆件的抗拉/压刚度。

材料力学(第五版)扭转切应力 PPT课件

材料力学(第五版)扭转切应力 PPT课件
得:
pq
da
Me
cb
pq
pq
d’ a’
Me
c’
b’
pq
切应力互等定理
切应力互等定理


d
a
d
a
c
b
c
b
在相互垂直的两个截面上,切应力 必然成对出现,且大小相等,方向为共 同指向或共同背离两个截面的交线。
二、剪切胡克定律
d
a
Me
c
b
d’
γ
a’
pq
da
Me
cb
pq pq
T3 158.7 N m
Wp1

d13 16

703 109 16
67.34 106 m3
Wp 2

d32 16

503 109 16
24.54 106 m3
Wp3

d33 16

353 109 16
8.418106 m3
(max )E

D4 d 4 32
D
I p

πD4
1 α4 32
d
O
式中: d
D
D
圆轴扭转最大切应力
max

|R

TR IP
令:
Wp

IP R
抗扭截面系数
圆轴扭转最大切应力为:
max

T Wp
实心圆轴的抗扭截面系数为:
D3 Wp 16
空心圆轴的抗扭截面系数为:
Wp
A1
4
d12
A2
4

材料力学知识点总结

材料力学知识点总结

材料力学知识点总结材料力学是一门研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科,它是工程力学的重要组成部分,对于机械、土木、航空航天等工程领域都有着至关重要的作用。

以下是对材料力学主要知识点的总结。

一、拉伸与压缩拉伸和压缩是材料力学中最基本的受力形式。

在拉伸或压缩时,杆件横截面上的内力称为轴力。

轴力的正负规定为:拉伸时轴力为正,压缩时轴力为负。

通过实验可以得到材料在拉伸和压缩时的应力应变曲线。

低碳钢的拉伸应力应变曲线具有明显的四个阶段:弹性阶段、屈服阶段、强化阶段和局部变形阶段。

弹性阶段内应力与应变成正比,遵循胡克定律;屈服阶段材料出现明显的塑性变形;强化阶段材料抵抗变形的能力增强;局部变形阶段试件在某一局部区域产生显著的收缩,直至断裂。

对于拉伸和压缩杆件,其横截面上的正应力计算公式为:$\sigma =\frac{N}{A}$,其中$N$为轴力,$A$为横截面面积。

而纵向变形量$\Delta L$可以通过公式$\Delta L =\frac{NL}{EA}$计算,其中$E$为材料的弹性模量,$L$为杆件长度。

二、剪切与挤压剪切是指在一对相距很近、大小相等、方向相反的横向外力作用下,杆件的横截面沿外力作用方向发生相对错动的变形。

在剪切面上的内力称为剪力。

剪切面上的平均切应力计算公式为:$\tau =\frac{Q}{A}$,其中$Q$为剪力,$A$为剪切面面积。

挤压是在连接件与被连接件之间,在接触面上相互压紧而产生的局部受压现象。

挤压面上的应力称为挤压应力,其计算公式为:$\sigma_{jy} =\frac{F_{jy}}{A_{jy}}$,其中$F_{jy}$为挤压力,$A_{jy}$为挤压面面积。

三、扭转扭转是指杆件受到一对大小相等、方向相反且作用面垂直于杆件轴线的力偶作用时,杆件的横截面将绕轴线产生相对转动。

圆轴扭转时,横截面上的内力是扭矩。

扭矩的正负规定:右手螺旋法则,拇指指向截面外法线方向为正,反之为负。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

建筑阳台挑梁受力分析与破坏问题
• 挑梁的受力特征及破坏形态
1.受力特征:挑梁悬臂部分为负弯矩,梁的上侧受拉, 在设计时,纵向受力钢筋应布置在梁的上侧。 2.破坏形式:挑梁倾覆破坏;挑梁下砌体局部受压破坏。
拉压杆 连接件
轴 梁
回顾与比较
内力
应力
轴力
FN
A
F
F
剪力
=FQ/A
扭矩 剪力和弯矩
15.12MPa
(选学)例3 试计算图示简支矩形截面木梁平放与
竖放时的最大正应力,并加以比较。
q 2kN m
200
100
I y1 I y b2 A
Iz1 Iz a2 A
例1 长为l的矩形截面悬臂梁,在自由端作用一集中力F,已知
b=120mm,h=180mm、l=2m,F=1.6kN,试求B截面上a、b、
c各点的正应力。
A
F
h6
a
B
z
C
b
h
l2
l2
h2
FL
c
b
a

M B ya IZ
1 FL h

2 bh3
T
IP

一、梁横截面上的正应力分布规律
变形后梁的轴线所在平面与外力作用面重合的弯曲称为平面弯曲
(工程中最常见、最简单的弯曲形式) 纯弯曲
为了研究方便起见,将平面弯曲分为
F
F
剪切弯曲(横力弯曲)
a
a
A
B
F
F Fa
F
纯弯曲:梁受力弯曲后,
如其横截面上只有弯矩而无剪力, 这种弯曲称为纯弯曲。
纤维是天然或人工合成的细丝状物质
矩最大截面上的最大拉应力和最大压应力。
F
y
A
l 2
B
l 2
150
50
96.4
z
200
C
M max

FL 4
16kNm
ym ax 200 50 - 96.4 153.6mm
ym- ax 96.4mm
50
max

Mym ax IZ
24.09MPa
max

Mym- ax IZ
高速公路上常见的钢筋混凝土T梁桥
高速公路上常见的钢筋混凝土箱梁桥
简易的矩形竹结构桥
钢管混凝土拱桥中的混凝土小横梁
建筑阳台挑梁受力分析与破坏问题
1.挑梁属于悬臂结构。 2.挑梁工作环境:常常处于室外,面对雨水、二氧化碳等的 直接侵蚀,荷载存在不确定性。 3. 破坏形式:出现裂缝后极有可能进一步扩大,严重的将危 及建筑物的安全。
t
max

M y1 IZ

c
max

M y2 IZ
当中性轴是横截面的对称轴时:
若:y1 y2 ymax

t
max c
m a x
max
max
M ymax IZ
M WZ
Wz

Iz y max
Wz 称为抗弯截面系数 与截面形状和尺寸有关
M3 ,mm3
3、公式适用范围(了解)
南充职业技术学院土木工程系建筑力学多媒体课件
任课 教师
课 题
教学 方法
教学 目的
陈德先
授课 班级
12建筑班
梁的弯曲正应力
授课 时间
2013/
课型
学 时
2
面授
讲练结合
掌握梁弯曲时横截面正应力分布规律;掌握正应力的计 算方法。
教学 正应力分布规律;正应力的计算。 重点
教学 横截面上正应力的公式的推导 难点 解决办法:理论推导→定性分析
各纵向纤维之间互不挤压。纵向纤维均处于单向受拉或受压的状态 。
( 每根纤维相当于一根拉杆或一根压杆) 3)、各纵向纤维的变形与它在梁横截面宽度上的位置无关,即在梁 横截面上处于同一高度处的纵向纤维变形都相同。
中性层
Z
中性轴
y
梁在弯曲变形时,上面部分纵向纤维缩短,下面部分纵向纤维伸长,必 有一层纵向纤维既不伸长也不缩短,保持原来的长度,这一纵向纤维层称为 中性层。
3
1.65MPa
(拉

b 0
12
c

M B yc IZ

1 FL h 22 bh3
2.47MPa
(压)
MB

1 2
FL
IZ

bh3 12
例2 图示T形截面简支梁在中点承受集中力F=32kN,梁的长度l=
2m。yc=96.4mm,横截面对于z轴的惯性矩Iz=1.02×108mm4。求弯
中性层与横截面的交线称为中性轴,中性轴通过截面形心,是一条 形心轴。且与截面纵向对称轴y垂直,将截面分为受拉区及受压区。梁弯 曲变形时,各横截面绕中性轴转动。
3、横截面上正应力分布规律 1)、梁横截面上只有正应力σ而无切应力τ; 2)、受拉区 : 拉应力,受压区 : 压应力;中性轴上应力为零; 3)、沿截面高度线性分布,沿截面宽度均匀分布; 4)、最大正应力发生在距中性轴最远处,即截面边缘处。
M>0时:下侧受拉,中性轴以下σ>0,以上σ<0 M<0时:上侧受拉,中性轴以下σ<0,以上σ>0
4、惯性距的确定 (1)简单图形(熟练掌握)
惯性矩
IZ

bh3 12
Iy

hb3 12
d 4
IZ IY 64
弯曲截 面系数
Wz

bh2 6
Wy

hb2 6
Wz
Wy

d 3
32
Iz

Iy
①正应力小于比例极限σp;
②精确适用于纯弯曲梁;
③横力弯曲时,截面上有切应力,平面假设不严格成
立,但当梁跨度 l 与高度 h 之比大于5(即为细长梁)
时上述公式近似成立。
④公式虽然是由矩形截面梁推导出来的,但它也适用 于所有横截面有竖向对称轴的梁。例如圆形、工字形、 T形、圆环形等。
使用此公式注意:公式中的M、y都用绝对值,σ的正负 由M的正负判断
F
FmnBiblioteka 1、实验现象1)、变形前互相平行的纵向直线 变形后变成弧线,且凹边纤维缩 短、凸边纤维伸长。
mn
2)、变形前垂直于纵向线的横向 线,变形后仍为直线,且仍与弯曲 了的纵向线正交,但两条横向线 间相对转动了一个角度。
2、假设
1)、平面假设:变形前杆 件的横截面变形后仍为平面。
2.)、单向受力假设:

(D4 64
-d4)
D4 (1- 4 ) 64
Wz
Wy

D3 32
(1- 4 )
式中: d D
(2)型钢------查型钢表(掌握)
(3)组合图形(了解)
整个图形对某一轴的惯性矩(等于各个分图形对同一轴的惯性 矩之和。
m
Iz Izi , i1
m
I yi i1
注:若截面对称于中性轴,则最大拉应力等于最大压应力

σ-max
M
M
M
σmax

max
M
空间分布图
中性轴
max
平面分布图
二、正应力的计算公式(推导略)
1、横截面上任意点正应力计算
My
IZ
M为横截面的弯矩 y为计算点到中性轴的距离 Iz截面对Z轴的惯性矩,与 截面形状和尺寸有关 m4 ,
2、横截面m上m4的最大正应力
相关文档
最新文档