仪器分析知识点整理1
(完整版)仪器分析知识点整理..
(完整版)仪器分析知识点整理..教学内容绪论分子光谱法:UV-VIS、IR、F原子光谱法:AAS电化学分析法:电位分析法、电位滴定色谱分析法:GC、HPLC质谱分析法:MS、NRS第一章绪论⒈经典分析方法与仪器分析方法有何不同?经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。
仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。
化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。
⒉仪器的主要性能指标的定义1、精密度(重现性):数次平行测定结果的相互一致性的程度,一般用相对标准偏差表示(RSD%),精密度表征测定过程中随机误差的大小。
2、灵敏度:仪器在稳定条件下对被测量物微小变化的响应,也即仪器的输出量与输入量之比。
3、检出限(检出下限):在适当置信概率下仪器能检测出的被检测组分的最小量或最低浓度。
4、线性范围:仪器的检测信号与被测物质浓度或质量成线性关系的范围。
5、选择性:对单组分分析仪器而言,指仪器区分待测组分与非待测组分的能力。
⒊简述三种定量分析方法的特点和应用要求一、工作曲线法(标准曲线法、外标法)特点:直观、准确、可部分扣除偶然误差。
需要标准对照和扣空白应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。
二、标准加入法(添加法、增量法)特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况三、内标法特点:可扣除样品处理过程中的误差应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰第2章光谱分析法引论习题1、吸收光谱和发射光谱的电子能动级跃迁的关系吸收光谱:当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足ΔE=hv的关系时,将产生吸收光谱。
仪器分析知识点总结期末
仪器分析知识点总结期末引言仪器分析是一门应用化学和物理学原理的科学,涉及仪器、仪表、光学和电子学等多个学科,用于测定和分析物质样品的成分和性质。
仪器分析在各个领域都有广泛的应用,包括环境监测、制药、食品安全、医学诊断和天文学等。
本篇文章将对仪器分析的基本概念、常见的分析仪器和技术、质量控制以及未来发展方向等进行总结和分析。
一、仪器分析基础知识1. 仪器分析的基本原理仪器分析是利用物理、化学或生物学原理构建各种仪器和设备,用于检测和测定样品中的成分、结构和性质。
基本原理包括光谱学、电化学、分子光度法、色谱法、质谱法、X射线衍射法等。
在实际应用中,可以根据需要选择不同的分析原理和仪器进行样品分析。
2. 仪器分析的步骤仪器分析一般包括取样、制备、分析和数据处理等步骤。
取样是从样品中获取代表性的部分;制备是指针对样品的物理或化学处理,以适应分析仪器的要求;分析是使用仪器进行测定,获取样品的性质和组分信息;数据处理是指对分析结果进行统计分析、质量控制和报告撰写等。
3. 仪器分析的应用领域仪器分析在环境监测、医学诊断、食品安全、农业生产、材料检测、制药和化工等领域都有重要应用。
例如,质谱法在药物研发和医学诊断中有重要应用;光谱学在化学分析和环境监测中起到关键作用;色谱法在食品安全和环境保护中发挥作用。
二、常见的分析仪器和技术1. 分光光度计分光光度计是一种用于测定物质浓度的仪器,利用物质吸收或发射光的特性进行分析。
分光光度计包括紫外可见分光光度计、红外分光光度计和荧光光度计等,广泛应用于化学分析、生物医药和环境监测等领域。
2. 质谱仪质谱仪是一种高灵敏度、高分辨率的分析仪器,用于测定物质的分子结构和质量。
质谱仪主要有气相质谱仪和液相质谱仪两大类,可用于药物分析、环境监测和食品安全等领域。
3. 色谱仪色谱仪是一种用于分离和测定混合物中组分的仪器。
常见的色谱仪包括气相色谱仪和液相色谱仪,广泛应用于环境检测、食品安全和医学诊断等领域。
仪器分析期末知识点总结
仪器分析期末知识点总结仪器分析是现代化学分析的重要手段之一,它利用各种仪器设备来检测和分析物质的成分、结构、性质等信息。
仪器分析技术具有灵敏、准确、高效等优点,已经广泛应用于化学、环境、医药、食品等领域。
本文将从基本仪器分析原理、常用仪器、质谱、光谱分析、色谱分析等方面进行知识点总结,以便于同学们在期末复习时进行复习。
一、基本仪器分析原理1. 仪器分析的基本原理仪器分析是通过测量样品的物理性质,如质量、电子结构、核磁共振等,间接或直接地确定样品中的化学成分或结构。
一般包括以下几个基本原理:(1)光学原理:利用物质与光的相互作用,通过测量光的吸收、散射或发射等来分析物质的成分、性质。
(2)电化学原理:通过测量电流、电势、电荷量等来分析物质。
(3)质谱原理:利用质子、中子、电子等粒子与物质相互作用的规律,测定物质的成分、结构。
(4)色谱原理:利用物质在固、液、气相中的分配系数差异,通过色谱柱分离、检测来分析物质。
2. 仪器分析的基本步骤仪器分析一般包括样品的前处理、仪器的操作和测量、数据的处理与分析等步骤。
具体可以分为以下几个步骤:(1)样品的前处理:首先需要对样品进行前处理,包括样品的取样、样品的溶解、稀释、萃取等,以便于后续的仪器操作。
(2)仪器的操作和测量:根据仪器的不同,进行样品的操作和测量,包括光谱分析、质谱分析、色谱分析等。
(3)数据的处理与分析:对测得的数据进行处理、分析,得出结论和结果。
二、常用仪器1. 紫外可见分光光度计紫外可见分光光度计是一种广泛应用的光学仪器,可用于测量物质的吸收、散射等光学性质,对分析有机物、无机物、生物分子等具有重要意义。
其原理是利用物质对特定波长光的吸收程度来分析物质的成分、浓度等信息。
2. 红外光谱仪红外光谱仪是一种通过测量物质对红外辐射的吸收、散射来分析物质的结构、功能团、成分等信息的仪器。
其原理是利用物质分子在红外光波段的振动、转动运动,吸收特定频率的红外辐射,从而得到物质的光谱信息。
仪器分析知识点总结pdf
仪器分析知识点总结pdf一、概述仪器分析是一门研究各种仪器和方法在化学和生物分析中的应用的学科。
它包括仪器的原理、结构、工作原理、应用范围和使用方法等内容。
仪器分析是化学和生物分析的基础,是现代化学和生物技术的重要支撑和工具。
本文将从仪器分析的基本原理、常见仪器的应用和发展趋势等方面进行总结。
二、仪器分析的基本原理1. 仪器分析的基本原理是什么?仪器分析是利用现代仪器设备对物质的成分、结构、性质和含量等进行定量或定性分析的方法。
其基本原理是利用各种仪器的物理、化学或生物特性对目标物质进行分析,从而获得分析结果。
2. 仪器分析的分类根据分析原理和方法的不同,仪器分析可分为物理分析仪器、化学分析仪器和生物分析仪器三大类。
物理分析仪器包括光谱仪、色谱仪、质谱仪等;化学分析仪器包括滴定仪、离子色谱仪、气相色谱仪等;生物分析仪器包括酶标仪、PCR仪等。
三、常见仪器的应用1. 光谱仪光谱仪是仪器分析中常用的一种仪器,主要用于对物质的吸收、发射、散射光谱特性进行分析。
光谱仪可以分为紫外-可见-近红外光谱仪、红外光谱仪、拉曼光谱仪等。
其应用范围涉及分子结构分析、化合物鉴定、药物含量测定、环境监测等领域。
2. 色谱仪色谱仪是一种分离和分析化合物的仪器,常用于样品的分离和检测。
色谱仪主要分为气相色谱仪、液相色谱仪、超临界流体色谱仪等。
其应用范围包括化学品分析、环境监测、食品安全等方面。
3. 质谱仪质谱仪是一种对样品中分子进行碎裂和检测的仪器,常用于物质的质量、结构分析。
质谱仪主要包括飞行时间质谱仪、四级杆质谱仪、离子阱质谱仪等。
其应用范围主要涉及化合物鉴定、蛋白质序列分析、环境监测等。
4. 滴定仪滴定仪是一种常用于酸碱中和、沉淀析出、氧化还原等反应的仪器,可用于测定物质的含量和浓度。
其应用范围包括酸碱滴定、络合滴定、氧化还原滴定等。
5. 离子色谱仪离子色谱仪是一种用于分离和检测离子化合物的仪器,主要用于水样中离子含量的测定。
仪器分析 知识点总结
仪器分析知识点总结一、基本原理1. 仪器分析的基本原理仪器分析是通过利用物理、化学、生物等现代科学技术的原理,将样品中所含的各种化学成分,或隐性特征转化为测定结果的工作过程。
其基本原理是将样品与仪器设备相结合,通过检测样品的光学、电学、热学、声学等性质,从而分析出样品中所含的成分、结构和性质。
2. 仪器分析的应用范围仪器分析广泛应用于生产、科研、医疗、环保、食品安全等领域。
在食品安全领域,通过仪器分析可以检测食品中的化学污染物、毒素、添加剂等,确保食品安全。
在医疗领域,可以使用仪器分析对生物样品进行分析,诊断疾病。
在环保领域,可以利用仪器分析监测环境中的污染物含量,保护环境。
二、常见的仪器设备1. 红外光谱仪红外光谱仪是一种分析化学仪器,主要用于分析样品的结构和成分。
其原理是通过测量样品对红外辐射的吸收情况,从而对样品进行分析。
红外光谱仪可以用于有机物、无机物、生物大分子等样品的分析,广泛应用于化学、医学、生物等领域。
2. 质谱仪质谱仪是一种高灵敏度、高分辨率的分析仪器,可以用于分析样品中的各种化合物和元素。
其原理是通过对样品离子化、分子裂解和质谱分析,从而获得样品的成分和结构信息。
质谱仪广泛应用于化学、生物、环境等领域,可以用于检测样品中的有机物、无机物、生物大分子等。
3. 气相色谱仪气相色谱仪是一种用于分离和分析样品中化合物的仪器设备。
其原理是通过气相色谱柱对样品中的化合物进行分离,再通过检测器对分离后的化合物进行检测。
气相色谱仪可以用于分析样品中的有机物、小分子有机化合物、环境中的污染物等,是化学、环境等领域中常用的仪器设备。
4. 离子色谱仪离子色谱仪是一种用于离子分析的仪器设备,主要用于分析水样中的离子成分和浓度。
其原理是通过离子交换柱对水样中的离子进行分离,再通过检测器对分离后的离子进行检测。
离子色谱仪广泛应用于环境、食品安全、医疗等领域,可以对水样中的无机离子、有机离子进行分析。
三、样品处理技术1. 样品前处理样品前处理是仪器分析中一个重要的环节,其目的是提高仪器分析的准确度和可靠性。
仪器分析考试知识点总结
仪器分析考试知识点总结一、仪器分析的基本概念1. 仪器分析的定义和概念仪器分析是利用各种物理、化学、光学、电子等原理和方法,用各种仪器和设备对化学物质进行检测和分析的过程,以发现物质的性质、结构、组成和含量等信息。
2. 仪器分析的分类仪器分析可以分为物理分析、化学分析和光谱分析等不同的类别,不同的分析方法适用于不同类型的化学物质。
3. 仪器分析的原理仪器分析的原理主要包括化学反应原理、光学原理、电子学原理、物理原理等,不同的仪器在分析过程中会运用不同的原理。
二、基本仪器原理和基本技术1. 常用电子仪器的原理和技术常见的电子仪器如电子天平、电位计、电解质浓度计、电导率计等都是基于电子原理和技术进行工作的。
学习者需要了解这些仪器的原理和操作方法。
2. 常用光学仪器的原理和技术常见的光学仪器如分光光度计、荧光光度计、紫外-可见分光光度计等都是基于光学原理和技术进行工作的。
学习者需要了解这些仪器的原理和操作方法。
3. 常用物理仪器的原理和技术常见的物理仪器如质谱仪、核磁共振仪、X射线衍射仪等都是基于物理原理和技术进行工作的。
学习者需要了解这些仪器的原理和操作方法。
三、仪器分析的基本操作1. 样品的准备样品的准备是仪器分析的第一步,学习者需要学会如何准备不同类型的样品,包括液体样品、固体样品和气体样品等。
2. 仪器的调试仪器的调试是仪器分析的关键步骤,学习者需要学会如何合理地调试仪器,以保证分析的准确性和可靠性。
3. 数据的处理仪器分析得到的数据需要进行合理的处理和分析,学习者需要学会如何处理数据和制作数据报告。
四、仪器分析的常见问题和解决方法1. 仪器的故障和维修仪器在使用过程中可能会出现各种故障,学习者需要学会如何及时发现和解决这些故障。
2. 数据的异常和处理方法在数据分析过程中,可能会出现异常数据,学习者需要学会如何判断异常数据并进行合理的处理。
五、仪器分析的应用1. 仪器分析在化学、医药、环境和食品等领域的应用仪器分析可广泛应用于各种领域,包括化学、医药、环境和食品等。
仪器分析重点知识点整理
仪器分析重点知识点整理一,名词解释。
1.吸收光谱:指物质对相应辐射能的选择性吸收而产生的光谱2.吸光度(A):是指光线通过溶液或某一物质前的入射光强度与该光线通过溶液或物质后的透射光强度比值的以10为底的对数 A=abc =lg(I0/I t)3.透光率(T):透射光强度与入射光强度之比 T=I0/I t4.摩尔吸光系数(ε):物质对某波长的光的吸收能力的量度,(如浓度c以摩尔浓度(mol/L)表示则A=εbc)物理意义:溶液浓度为1mol/L,液层厚度为1cm时的吸光度5.百分吸光系数(E1cm1%):物质对某波长的光的吸收能力的量度,(如浓度c以质量百分浓度(g/100ml),则A=E1cm1%bc)物理意义:溶液浓度为1g/100ml,液层厚度为1cm时的吸光度6.发色团:有机化合物分子结构中含有π→π*或n→π*跃迁的基团,能在紫外可见光范围内产生吸收7.助色团:含有非键电子的杂原子饱和基团,本身不能吸收波长大于200nm的辐射,但与发色团或饱和烃相连时,能使该发色团或饱和烃的吸收峰向长波移动,并使吸收强度增加的基团8.红移(长移):由取代基或溶剂效应等引起的吸收峰向长波长方向移动的现象9.蓝移(短移):由取代基或溶剂效应等引起的吸收峰向短波长方向移动的现象10.浓色效应(增色效应):使化合物吸收强度增加的效应11.淡色效应(减色效应):使化合物吸收强度减弱的效应12.吸收带:紫外-可见光谱为带状光谱,故将紫外-可见光谱中吸收峰称为吸收带13.R带:Radikal(基团) ,是由 n →π*跃迁引起的吸收带14.K带:Konjugation(共轭作用),是由共轭双键中π→π*跃迁引起的吸收带15.B带:benzenoid(苯的),是由苯等芳香族化合物的骨架伸缩振动与苯环状共轭系统叠加的π→π*跃迁引起的吸收带,芳香族化合物特征吸收带16.E带:也是芳香族化合物特征吸收带,分为E1、E217.紫外吸收曲线(紫外吸收光谱):18.最大吸收波长λmax:吸收曲线上的吸收峰所对应的波长19.最小吸收波长λmin:吸收曲线上的吸收谷所对应的波长20.末端吸收:吸收曲线上短波端只呈现强吸收而不成峰形的部分21.试剂空白:指在相同条件下只是不加入试样溶液,而依次加入各种试剂和溶液所得到的空白溶液22.试样空白:指在与显色相同条件下取相同量试样溶液,只是不加显色剂所制备的空白溶液23.溶剂空白;指在测定入射波长下,溶液中只有被测组分对光有吸收,而显色剂或其他组分对光没有吸收或有少许吸收,但所引起的测定误差在允许范围内,此时可用溶剂作为空白溶液24.荧光:物质分子吸收光子能量而被激发,然后从激发态的最低振动能级返回到基态时所发射出的光25.分子荧光:?26.荧光效率:激发态分子发射荧光的光子数与基态分子吸收激发光的光子数之比27.多普勒变宽:由于原子的无规则热运动而引起的谱线变宽,用ΔνD表示28.谱线轮廓:原子光谱理论上产生线性光谱,吸收线应是很尖锐的,但由于种种原因造成谱线具有一定的宽度,一定的形状,即谱线轮廓29.半宽度(Δν):是指峰高一半(K0/2)时所对应的频率范围30.峰值吸收系数:吸收线中心频率所对应的峰值吸收系数?31.共振吸收线:原子的最外层电子从基态跃到第一激发态所产生的吸收谱线,最灵敏的谱线32.内标法:选择样品中不含有的纯物质作为对照物质(内标)加入待测样品溶液中,以待测组分和内标物的响应信号对比,测定待测组分含量的方法33.外标法:用待测组分的纯品作标准品,在相同条件下以标准品和样品中待测组分的响应信号相比较进行定量的方法34.背景干扰:主要是原子化过程中所产生的连续光谱干扰,前面光谱干扰中已详细介绍,它主要包括分子吸收、光的散射及折射等,是光谱干扰的主要原因35.物理干扰:指试样在转移、蒸发和原子化过程中,由于试样任何物理特性(如密度、粘度、表面张力)的变化而引起的原子吸收强度下降的效应36.光谱干扰:由于分析元素的吸收线与其他吸收线或辐射不能完全分离所引起的干扰37.原子吸收光谱:?38.保护剂:作用于与被测元素生成更稳定的配合物,防止被测元素与干扰组分反应39.释放剂:作用于与干扰组分形成更稳定或更难发挥的化合物,以使被测元素释放出来40.红外线:波长为0.76-500um的电磁波41.红外光谱:又称分子振动转动光谱,属分子吸收光谱。
仪器分析第知识点总结
仪器分析第知识点总结1. 仪器分析的原理仪器分析是利用各种科学仪器对物质进行测试分析,从而确定物质的成分和性质。
仪器分析的原理是基于物质的特定性质和相应的测试方法。
常见的仪器分析原理包括光谱分析、色谱分析、质谱分析、电化学分析等。
2. 仪器分析的分类仪器分析可以按照分析方法、使用仪器、测定目的等多种方式进行分类。
根据不同的分类方式,仪器分析可以分为以下几类:(1)按分析方法分类:包括光谱分析、色谱分析、电化学分析、质谱分析、热分析等。
(2)按使用仪器分类:包括光谱仪、色谱仪、质谱仪、电化学仪器等。
(3)按测定目的分类:包括定性分析和定量分析。
3. 仪器分析的常用技术(1)光谱分析:是利用物质吸收、发射、散射等光谱特性进行定性和定量分析的方法,包括紫外-可见吸收光谱、红外光谱等。
(2)色谱分析:是一种以物质在固定相和流动相中分配系数不同而分离出组分的方法,包括气相色谱、液相色谱等。
(3)质谱分析:是利用物质在质谱仪中被离子化并在电场作用下产生碎片进行分析的方法,包括质子、电子和质子化电子撞击等。
(4)电化学分析:是利用电化学方法进行分析的技术,包括电导率法、电动势法、极谱法等。
4. 仪器分析的应用仪器分析技术已广泛应用于化学、生物、环境、药物等领域,为各行各业的科研和生产提供了重要支持。
例如,在环境保护领域,仪器分析可用于检测大气、水体和土壤中的污染物;在药物研发领域,仪器分析可用于药物的成分分析和质量控制。
综上所述,仪器分析作为一种重要的化学分析手段,具有广泛的应用前景。
通过对仪器分析的原理、分类、常用技术和应用进行系统总结,有助于加深对仪器分析技术的理解,对于提高仪器分析的能力和水平具有积极的意义。
仪器分析知识点总结
仪器分析知识点总结一、仪器分析的基本原理1.1 光谱学光谱学是仪器分析中的一种常用分析方法,主要包括紫外-可见吸收光谱、红外光谱、荧光光谱、原子吸收光谱等。
它通过物质在特定波长的光线下产生的吸收、发射、散射等现象来分析物质的成分或性质。
在实际应用中,紫外-可见吸收光谱常用于药物、食品、环境样品的分析;红外光谱常用于有机物的鉴定;荧光光谱常用于生物分子的定量分析;原子吸收光谱常用于金属离子的测定等。
1.2 色谱法色谱法是利用物质在固定相和移动相之间的分配行为,通过在固定相上的运动速度差异分离物质的一种分析方法。
包括气相色谱、液相色谱、超高效液相色谱等。
这些方法在化学、食品、生物等领域广泛应用,如气相色谱常用于有机物的分析;液相色谱常用于生物样品的分离等。
1.3 电化学分析电化学分析是利用电化学原理进行分析的一种方法,主要包括电位法、伏安法、极谱法等。
它通过观察物质在电场中的行为来分析物质的成分或性质。
在实际应用中,电化学分析常用于金属腐蚀、电解制备等领域。
1.4 质谱法质谱法是利用物质在电场中的运动轨迹差异来对物质进行分析的一种方法,主要包括质谱仪、质子共振仪等。
在实际应用中,质谱法常用于有机物的结构鉴定、药物代谢产物的分析等。
1.5 分光光度法分光光度法是利用物质对光的吸收、散射、发射等现象来分析物质的成分或性质的一种方法。
它广泛应用于药物浓度测定、气体成分分析、紫外-可见吸收光谱仪、荧光光谱仪、原子吸收光谱仪等。
1.6 元素分析元素分析是对物质中元素成分进行定量或半定量分析的一种方法。
它主要包括原子吸收光谱、荧光光谱、质谱等。
在实际应用中,元素分析常用于环境、食品、医药等领域的元素含量分析。
1.7 样品前处理技术样品前处理技术是仪器分析中的一种重要过程,它通过溶解、萃取、浓缩、净化等手段对样品进行处理,使之适合于仪器分析。
在实际应用中,样品前处理技术广泛应用于环境样品、生物样品、食品样品等的准备。
仪器分析教程知识点总结
仪器分析教程知识点总结一、光谱分析1. 原子吸收光谱法原子吸收光谱法是一种常用的分析技术,主要用于测定金属元素的含量。
其原理是通过测量金属元素的特征吸收线强度来定量分析样品中金属元素的含量。
在进行原子吸收光谱法实验时,需要掌握标准曲线法、内标法等定量分析方法,以及样品的预处理和稀释方法。
2. 紫外-可见吸收光谱法紫外-可见吸收光谱法是用于测定有机化合物和无机化合物的含量和结构的方法。
通过测量样品在紫外-可见光区域的吸收强度,可以获得样品的吸收光谱图,从而分析样品的成分和结构。
在进行紫外-可见吸收光谱法实验时,需要掌握分光光度计的操作方法、样品的制备和处理方法,以及吸收峰的解释和定量分析方法。
3. 红外光谱法红外光谱法是用于测定有机化合物和无机化合物的结构和功能基团的方法。
通过测量样品在红外光区域的吸收强度,可以获得样品的红外光谱图,从而分析样品的结构和功能基团。
在进行红外光谱法实验时,需要掌握红外光谱仪的操作方法、样品的制备和处理方法,以及吸收峰的解释和定量分析方法。
二、色谱分析1. 气相色谱法气相色谱法是用于分离和检测样品中有机化合物的方法。
通过样品分子在固定相和流动相之间的分配行为,可以实现样品分离和检测。
在进行气相色谱法实验时,需要掌握气相色谱仪的操作方法、固定相和流动相的选择和配制方法,以及色谱柱的使用和维护方法。
2. 液相色谱法液相色谱法是用于分离和检测样品中有机化合物和无机化合物的方法。
通过样品分子在固定相和流动相之间的分配行为,可以实现样品分离和检测。
在进行液相色谱法实验时,需要掌握液相色谱仪的操作方法、固定相和流动相的选择和配制方法,以及色谱柱的使用和维护方法。
三、质谱分析质谱分析是用于确定样品中有机分子和核素的相对分子质量和结构的方法。
通过测量样品离子的质荷比,可以获得样品的质谱图,从而确认样品的分子质量和结构。
在进行质谱分析实验时,需要掌握质谱仪的操作方法、样品的离子化和碎裂方法,以及质谱图的解释和质谱定性分析方法。
仪器分析知识点复习汇总
仪器分析知识点复习汇总仪器分析是化学分析中的一个重要分支,主要研究利用各种仪器设备进行样品分析和检测的方法和技术。
下面是仪器分析的一些知识点复习汇总:1.基本概念:仪器分析是利用仪器设备对样品进行分析和检测的方法。
仪器分析可以分为定性分析和定量分析两个方面。
2.仪器分类:仪器主要分为电化学仪器、光谱仪器、质谱仪器、色谱仪器、微量元素分析仪器等几个大类。
3.电化学仪器:电化学仪器包括电解池、电渗析仪、电导仪、计时电位计等,主要用于电化学分析和电化学过程研究。
4.光谱仪器:光谱仪器包括分光光度计、紫外可见分光光度计、荧光光谱仪、红外光谱仪等,主要用于分析和检测样品的光谱特性。
5.质谱仪器:质谱仪器包括质谱仪和气相色谱-质谱联用仪,可用于分析样品中的有机化合物的结构和组成。
6.色谱仪器:色谱仪器包括气相色谱仪、液相色谱仪、离子色谱仪等,主要用于分离和定性分析样品中的化合物。
7.微量元素分析仪器:微量元素分析仪器包括火焰原子吸收光谱仪、电感耦合等离子体发射光谱仪、电感耦合等离子体质谱仪等,主要用于测定样品中的微量元素含量。
8.仪器分析的步骤:仪器分析通常包括样品的制备、测量条件的选择与优化、光谱或电位的测量、数据处理与结果分析等几个步骤。
9.仪器分析中的常见问题:仪器分析中常见的问题包括仪器的灵敏度、选择性、准确度和重现性等。
灵敏度指的是仪器检测样品中目标物质的能力,选择性指的是仪器只检测样品中的目标物质而不受其他物质的干扰,准确度指的是仪器检测结果与真实值之间的偏差,重现性指的是多次测量同一样品的结果之间的一致性。
10.仪器分析的应用:仪器分析广泛应用于环境监测、食品质量安全检测、医药检验等领域。
在环境监测中,仪器分析可以检测大气中的污染物、水中的有机污染物和无机污染物等。
在食品质量安全检测中,仪器分析可以检测食品中的农药残留、重金属含量等。
在医药检验中,仪器分析可以分析药物的纯度、含量等。
以上是仪器分析的一些基本知识点复习汇总。
仪器分析重点知识点整理
仪器分析重点知识点整理仪器分析是一门研究利用仪器设备进行物质化学成分和性质分析的学科。
在这门学科中,有一些重要的知识点需要掌握。
以下是仪器分析的重点知识点整理:1.仪器分析的基本原理和分类:-仪器分析的基本原理包括荧光原理、吸收光谱原理、质谱原理等。
-仪器分析可以分为光谱仪器、电离仪器、色谱仪器、电化学仪器等几个主要分类。
2.光谱仪器:-光谱仪器主要包括紫外可见分光光度计、红外光谱仪、核磁共振仪等。
-紫外可见分光光度计主要用于分析物质的吸收光谱特性,可以用于测量溶液的浓度。
-红外光谱仪用于分析物质的分子结构,可以鉴定有机物中的官能团。
-核磁共振仪用于分析物质的分子结构和分子运动,可以鉴定有机物中的官能团以及分析样品的纯度。
3.电离仪器:-电离仪器主要包括质谱仪、扫描电镜、电子显微镜等。
-质谱仪主要用于分析物质的分子结构和分子量,可以鉴定有机物的结构以及分析样品的纯度。
-扫描电镜和电子显微镜用于观察物质的形貌和微观结构,可以分析材料的成分和表面形态。
4.色谱仪器:-色谱仪器主要包括气相色谱仪、液相色谱仪等。
-气相色谱仪用于分析气体和挥发性液体中的成分,可以鉴定有机物中的化合物。
-液相色谱仪用于分析溶液和非挥发性样品中的成分,可以鉴定有机物中的化合物。
5.电化学仪器:-电化学仪器主要包括电位计、电导仪、极谱仪等。
-电位计用于测量电解质溶液中的电位,可以鉴定物质的氧化还原性质。
-电导仪用于测量电解质溶液的电导率,可以鉴定物质的导电性。
-极谱仪用于测量极微少量物质的浓度,可以鉴定有机物中的金属元素。
6.仪器分析中的质量控制:-仪器分析中需要进行质量控制,以保证分析结果的准确性和可靠性。
-质量控制包括标准品的制备与使用、内标法、质量控制图等方法。
-标准品的制备和使用是仪器分析的重要环节,可以通过标准曲线进行定量分析。
7.仪器分析的应用:-仪器分析广泛应用于科学研究、环境监测、药物检验、食品安全等领域。
-通过仪器分析可以分析物质的成分和性质,为科学研究和生产提供可靠的数据和依据。
仪器分析知识点整理
仪器分析知识点整理仪器分析是一门研究物质样品组成和性质的科学,是现代分析化学的重要分支。
仪器分析通过采集、分离、检测和测量样品中的化学成分和物理性质来进行,因此需要借助各种仪器设备来完成分析过程。
以下是一些常见的仪器分析知识点整理。
1.按仪器原理分类仪器分析可以根据仪器的工作原理进行分类。
例如,光谱仪是利用样品对光的吸收、发射、散射等现象进行分析的仪器。
常见的光谱仪有紫外-可见分光光度计、红外光谱仪、核磁共振光谱仪等。
质谱仪则是利用质量谱仪的工作原理对样品进行分析,可以得到样品的质荷比信息,常见的有气相色谱质谱联用仪、液相色谱质谱联用仪等。
2.仪器分析方法仪器分析有多种方法,根据分析的需要和要求选择合适的方法进行分析。
常见的方法有光谱分析、色谱分析、电化学分析等。
光谱分析可以根据样品对光的现象来确定样品的成分和性质,如紫外-可见光谱可以用于测定样品的吸收、发射等特性。
色谱分析则是利用样品在固定相和流动相之间进行分配来分离和确定样品成分,如气相色谱可以用于分离混合物中的组分。
电化学分析则是利用样品在电极表面的电化学反应来进行分析,如电位滴定可以用于测定溶液中的电离物质浓度。
3.仪器的选择与应用在进行仪器分析时,需要根据具体的样品和分析要求选择合适的仪器。
首先要考虑的是仪器的灵敏度和分析范围,以确保所选仪器可以满足分析需求。
其次要考虑的是仪器的分辨率和准确度,以保证结果的可靠性。
最后还要考虑仪器的使用成本和维护难易程度,以确保分析的经济性和实用性。
4.仪器分析中的常用操作技术在进行仪器分析时,还需要掌握一些常用的操作技术。
例如,样品的制备技术,包括样品的预处理、溶解、稀释等。
另外,还需要了解样品的采集和处理方法,如采样技术、提取技术等。
此外,仪器的使用和操作也是重要的技术之一,包括如何正确操作仪器、设置仪器的参数等。
同时,还需要掌握仪器的维护和日常保养知识,以确保仪器的正常使用和延长仪器的寿命。
5.仪器分析的应用领域仪器分析在许多领域都有广泛的应用。
仪器分析必考知识点总结
仪器分析必考知识点总结一、仪器分析的基本原理1. 分析化学的基本概念分析化学是研究样品中微量和痕量成分的定性和定量分析方法的一门科学,它是化学的一个重要分支。
在分析化学中,需要使用各种仪器和方法对样品进行分析,以确定其中各种成分的含量和性质。
2. 仪器分析的基本原理仪器分析是指利用各种仪器设备进行样品分析的过程。
它主要包括对样品进行前处理、采集数据、数据处理和结果判定等步骤。
仪器分析的基本原理是根据样品的性质选择适当的仪器和方法,进行定性和定量分析。
3. 仪器分析的应用范围仪器分析主要应用于化学、生物、环境等领域,用于对材料成分、结构、性质等进行分析。
它在科学研究、工程技术和产品质量控制等方面具有广泛的应用。
二、仪器分析的常用方法和技术1. 光谱分析技术光谱分析技术是一种利用物质与电磁辐射的相互作用来分析物质的技术。
主要包括紫外可见吸收光谱、红外光谱、拉曼光谱、荧光光谱等。
2. 色谱分析技术色谱分析技术是一种利用物质在固定相和流动相中的相互作用来分离和分析物质的技术。
主要包括气相色谱、液相色谱、超高效液相色谱等。
3. 质谱分析技术质谱分析技术是一种利用物质的质荷比对物质进行分析的技术。
主要包括质谱仪、飞行时间质谱仪、离子阱质谱仪等。
4. 电化学分析技术电化学分析技术是一种利用物质与电化学电极的相互作用来分析物质的技术。
主要包括电化学电位法、极谱法、循环伏安法等。
5. 热分析技术热分析技术是一种利用物质的热学性质来分析物质的技术。
主要包括热重分析、差示扫描量热分析、热膨胀分析等。
6. 激光分析技术激光分析技术是一种利用激光与物质相互作用来分析物质的技术。
主要包括激光诱导击穿光谱、激光诱导荧光光谱等。
三、仪器分析的操作流程和注意事项1. 样品的准备样品的准备是仪器分析的第一步,它包括样品采集、处理和预处理等。
在进行样品准备时,需要注意避免样品的污染和损坏,保证样品的代表性和可比性。
2. 仪器的选择根据样品的性质和分析的要求,选择适当的仪器和分析方法进行分析。
仪器分析专科知识点总结
仪器分析专科知识点总结一、基础仪器分析知识点:1. 仪器分析的概念:仪器分析是利用各种仪器设备来对化学样品进行分析的一种方法,它包括定性分析、定量分析和结构分析等内容。
2. 仪器分析的原理:仪器分析主要依靠物理、化学、光学、电磁等原理进行样品的测定和分析。
3. 仪器分析的分类:仪器分析根据原理和功能的不同可分为光谱仪器、色谱仪器、质谱仪器、电化学仪器、分子光谱仪器等。
4. 仪器分析的应用:仪器分析在化学研究、环境监测、生命科学、材料科学等领域都有广泛的应用,在药物研发、食品安全、环境保护等方面有着重要的作用。
二、光谱仪器分析知识点:1. 紫外-可见光分光光度计:紫外-可见光分光光度计是通过测定样品对紫外、可见光的吸收和透射来确定样品的组成和浓度的一种仪器。
2. 红外光谱仪:红外光谱仪是利用样品对红外光的吸收和散射来确定样品的结构和组成的一种仪器。
3. 核磁共振仪:核磁共振仪是通过测定样品在外加磁场下的核磁共振频率来确定样品的结构和组成的一种仪器。
4. 质谱仪:质谱仪是通过测定样品中离子的质量-电荷比来确定样品的组成和结构的一种仪器。
5. 光谱仪器的应用:光谱仪器在化学分析、药物研发、材料科学等领域都有着广泛的应用,在确定样品组分、结构、浓度、纯度等方面都有重要的作用。
三、色谱仪器分析知识点:1. 气相色谱仪:气相色谱仪是通过样品在气相载气流动相中的分离来确定样品的组分和浓度的一种仪器。
2. 液相色谱仪:液相色谱仪是通过样品在液相载液流动相中的分离来确定样品的组分和浓度的一种仪器。
3. 色谱质谱联用仪:色谱质谱联用仪是通过将色谱和质谱仪器联合使用来确定样品的组分和结构的一种仪器。
4. 色谱仪器的应用:色谱仪器在食品安全、环境监测、药物研发等领域都有着广泛的应用,在分离和分析样品中的组分、杂质、残留物等方面有重要的作用。
四、电化学仪器分析知识点:1. pH计:pH计是通过测定样品的pH值来确定样品的酸碱性质的一种仪器。
仪器分析章节知识点总结
仪器分析章节知识点总结一、仪器分析的基本原理仪器分析是利用物理化学性质以及仪器设备进行样品的检测和分析。
它的基本原理包括样品的前处理、仪器的分析原理和数据处理等。
1. 样品的前处理样品的前处理是仪器分析的第一步,它包括样品的采集、预处理、前处理和标定等。
样品的采集包括样品的收集、保存、取样和保存等。
样品的预处理主要是对样品进行处理,使其适合于仪器分析。
前处理主要是对样品进行分离、富集和纯化等。
样品的标定主要是对仪器进行标定,使其保持准确的分析结果。
2. 仪器的分析原理仪器的分析原理是仪器分析的核心内容,它主要包括原子吸收光谱、荧光光谱、质谱、色谱、电化学分析等各种仪器的分析原理。
这些原理主要是根据样品的化学性质、光学性质、电化学性质等来进行分析,从而获得样品的基本信息。
3. 数据处理数据处理是仪器分析的最后一步,它主要包括数据采集、数据处理和数据解释等。
数据采集主要是对样品的分析数据进行采集,数据处理主要是对数据进行处理,数据解释主要是对数据的结论进行解释。
二、常用仪器设备的原理和应用仪器分析包括各种仪器设备的应用,主要包括原子吸收光谱仪、质谱仪、色谱仪、荧光光谱仪、拉曼光谱仪、红外光谱仪等。
1. 原子吸收光谱仪原子吸收光谱仪是一种用于检测金属元素含量的仪器设备,它主要是通过吸收光谱的方式来检测样品中的金属元素含量。
原子吸收光谱仪主要包括火焰原子吸收光谱仪、电感耦合等离子体发射光谱仪、原子荧光光谱仪等。
2. 质谱仪质谱仪是一种用于检测样品中有机物质含量的仪器设备,它主要是通过样品的质谱图谱来进行分析。
质谱仪主要包括质子共振质谱仪、气相质谱仪、液相质谱仪等。
3. 色谱仪色谱仪是一种用于检测样品中化合物含量的仪器设备,它主要是通过样品的色谱图谱来进行分析。
色谱仪主要包括气相色谱仪、液相色谱仪等。
4. 荧光光谱仪荧光光谱仪是一种用于检测样品中发光物质含量的仪器设备,它主要是通过样品的荧光光谱图谱来进行分析。
仪器分析课程知识点总结
仪器分析课程知识点总结一、仪器分析的基本原理1. 仪器分析的概念和分类仪器分析是指利用各种仪器设备对化学物质进行分析的方法。
其主要分类包括光谱分析、色谱分析、电化学分析、质谱分析、热分析等。
2. 仪器分析的基本原理仪器分析的基本原理包括光谱原理、色谱原理、电化学原理、质谱原理、热分析原理等。
其中,光谱原理是利用物质与光的相互作用来进行分析,色谱原理是利用色谱柱对化合物进行分离和检测,电化学原理是利用电化学方法进行分析,质谱原理是利用质谱仪对化合物进行分析,热分析原理是利用热量变化对样品进行分析。
3. 仪器分析的基本步骤仪器分析的基本步骤包括样品的前处理、仪器的选择和使用、数据的处理和结果的解释。
其中,样品的前处理包括样品的制备、提取和预处理,仪器的选择和使用包括仪器的操作和参数的设置,数据的处理包括数据的采集和处理,结果的解释包括对分析结果的解释和判断。
二、光谱分析1. 紫外-可见光谱分析紫外-可见光谱分析是利用化合物对紫外和可见光的吸收特性进行分析的方法。
其原理是根据分子的电子跃迁能级差异来对化合物进行定性和定量分析。
2. 荧光光谱分析荧光光谱分析是利用化合物发射荧光信号的特性进行分析的方法。
其原理是激发分子到高能级态后发射特定波长的光信号,利用这一特性对化合物进行分析。
3. 红外光谱分析红外光谱分析是利用化合物对红外光的吸收特性进行分析的方法。
其原理是根据分子的振动和转动引起的电偶极矩变化来对化合物进行定性和定量分析。
4. 核磁共振光谱分析核磁共振光谱分析是利用化合物对核磁共振信号的特性进行分析的方法。
其原理是根据核磁共振现象来对化合物进行定性和定量分析。
5. 质谱分析质谱分析是利用化合物对质谱仪的质荷比进行分析的方法。
其原理是根据化合物在质谱仪中的质荷比特性来对化合物进行定性和定量分析。
6. X射线光谱分析X射线光谱分析是利用化合物对X射线的衍射特性进行分析的方法。
其原理是根据化合物对X射线的衍射角度和强度来对化合物进行定性和定量分析。
仪器分析重要知识点总结
仪器分析重要知识点总结一、基本原理1. 仪器分析的基本原理是什么?仪器分析的基本原理是通过分析仪器对样品进行一系列物理化学性质的测定,然后通过数据处理和分析得出样品的成分或性质。
根据所测定的物理化学性质不同,仪器分析可以分为光谱分析、色谱分析、电化学分析、质谱分析、热分析等。
2. 仪器分析的特点是什么?仪器分析具有高灵敏度、高精度、高选择性、高分辨率等特点。
而且,仪器分析方法还可以实现自动化、高通量和在线分析,大大提高了分析的效率和准确性。
3. 仪器分析的应用领域有哪些?仪器分析的应用领域非常广泛,主要包括环境监测、食品安全检测、药物质量分析、生物医学研究、地质勘探、材料分析等。
4. 仪器分析的分类有哪些?仪器分析根据测定的物理化学性质不同,可以分为光谱分析、色谱分析、电化学分析、质谱分析、热分析等。
二、常见的分析仪器1. 分光光度计分光光度计是一种常用的光谱分析仪器,它可以测定物质在不同波长光照射下的吸光度或透射率,进而测定样品中所含的物质的浓度。
分光光度计的应用非常广泛,包括药物分析、环境监测、食品安全检测等领域。
2. 气相色谱仪气相色谱仪是一种色谱分析仪器,它通过气相色谱柱对气体混合物进行分离和检测,并且可以对分离后的物质进行定性和定量分析。
气相色谱仪在食品安全检测、环境监测、医药行业等领域得到广泛应用。
3. 液相色谱仪液相色谱仪是一种色谱分析仪器,它通过液相色谱柱对溶液混合物进行分离和检测,并且可以对分离后的物质进行定性和定量分析。
液相色谱仪在食品安全检测、环境监测、药物分析等方面有着重要的应用价值。
4. 质谱仪质谱仪是一种质谱分析仪器,它通过将分子在电离后的质荷比进行分析,可以对样品中的化合物进行定性和定量分析。
质谱仪在生物医学研究、环境监测、化学合成等方面有着广泛的应用。
5. 电化学分析仪电化学分析仪是一种电化学分析仪器,它通过测定电流、电压等电化学参数来分析样品的化学性质。
电化学分析仪在化学合成、药物质量分析、环境监测等方面得到广泛应用。
仪器分析学知识点总结
仪器分析学知识点总结仪器分析学是研究和应用分析仪器的原理、方法、技术和设备的学科。
在化学、生物、药学、环境科学、材料科学等领域中,仪器分析学起着不可替代的作用,其研究和应用对于提高实验分析的准确性、灵敏度和快速性具有重要意义。
仪器分析学的主要内容包括:仪器分析学的基本原理、仪器分析学的基本方法、现代仪器分析学技术、仪器分析学的应用等方面的内容。
下面就仪器分析学的相关知识点做一些总结:一、仪器分析学基本原理1. 仪器分析学的基本原理仪器分析学的基本原理是指仪器分析学所依据的一些基本理论或规律。
这些基本原理是仪器分析学的基础和起点,它包括了电化学原理、理论光谱学、质谱学基本原理、核磁共振原理等等。
这些原理是仪器分析学研究和应用的基础。
2. 电化学原理电化学原理是仪器分析学的重要基础之一,它主要包括电解质溶液的电导性、电解质在电场中的迁移速度、电解过程的动力学过程和电化学动力学过程等内容。
电化学原理在仪器分析学中有广泛的应用。
3. 理论光谱学理论光谱学是仪器分析学中的重要内容之一,它主要包括了光谱学的基础知识、光的吸收、发射和散射等。
理论光谱学是仪器分析学研究和应用的基础。
4. 质谱学基本原理质谱学基本原理包括了质谱仪的结构、工作原理、质谱仪的分辨能力和精确度等内容。
质谱学是一种非常重要的仪器分析学方法,广泛应用于各种领域。
5. 核磁共振原理核磁共振原理是指核磁共振现象的基本原理,它包括了核磁共振谱仪的结构、核磁共振现象的基本原理、核磁共振实验的原理等内容。
核磁共振原理是现代高分辨率核磁共振方法的基础。
二、仪器分析学基本方法1. 仪器分析学的基本方法仪器分析学的基本方法是指仪器分析学中常用的一些分析方法。
这些方法包括电化学法、分光光度法、火焰原子吸收光谱法、色谱法、质谱法、核磁共振法等。
这些方法在仪器分析学中有着广泛的应用。
2. 电化学法电化学法是指利用电化学原理对物质进行分析的一种方法。
常用的电化学方法包括电解法、极谱法、电化学发光法等。
仪器分析知识点总结大全
仪器分析知识点总结大全仪器分析是化学分析领域中重要的分支,它借助各种仪器设备对物质进行定性、定量和结构分析。
以下是对仪器分析中一些关键知识点的详细总结。
一、光学分析法(一)原子吸收光谱法(AAS)原子吸收光谱法是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量的方法。
关键知识点:1、锐线光源:通常使用空心阴极灯,能发射出半宽度很窄的特征谱线。
2、原子化器:常见的有火焰原子化器和石墨炉原子化器。
火焰原子化器操作简便、重现性好;石墨炉原子化器灵敏度高,但精密度稍差。
3、定量分析方法:常用的有标准曲线法和标准加入法。
(二)原子发射光谱法(AES)原子发射光谱法是通过测量原子由激发态回到基态时发射的特征谱线来定性和定量分析元素的方法。
重点内容:1、激发源:如电弧、火花和电感耦合等离子体(ICP)等。
ICP 具有温度高、稳定性好、自吸效应小等优点。
2、定性分析:依据元素的特征谱线进行。
3、定量分析:内标法是常用的定量方法,选择合适的内标元素很关键。
(三)紫外可见分光光度法(UVVis)这是基于物质分子对紫外可见光区的电磁辐射的吸收特性而建立的分析方法。
知识点包括:1、吸收光谱:物质对不同波长光的吸收程度不同,形成吸收光谱。
2、朗伯比尔定律:A =εbc,其中 A 为吸光度,ε 为摩尔吸光系数,b 为光程,c 为物质浓度。
3、显色反应:为了提高测定的灵敏度和选择性,常需要进行显色反应。
二、电化学分析法(一)电位分析法通过测量电池电动势来确定溶液中被测物质浓度的方法。
要点如下:1、指示电极和参比电极:指示电极的电位随被测离子浓度变化而变化,参比电极的电位恒定。
2、 pH 玻璃电极:对氢离子有选择性响应。
3、离子选择性电极:选择性地响应特定离子。
(二)电解与库仑分析法电解分析法是通过电解使被测物质在电极上析出,然后称重求得其含量。
库仑分析法是依据电解过程中消耗的电量来进行定量分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
仪器分析知识点整理(2013-01-09 15:34:17)转载▼分类:zhuanye标签:教育分子光谱法:UV-VIS、IR、F原子光谱法:AAS电化学分析法:电位分析法、电位滴定色谱分析法:GC、HPLC质谱分析法:MS、NRS⒈经典分析方法与仪器分析方法有何不同?经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。
仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。
化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。
⒊简述三种定量分析方法的特点和应用要求一、工作曲线法(标准曲线法、外标法)特点:直观、准确、可部分扣除偶然误差。
需要标准对照和扣空白应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。
二、标准加入法(添加法、增量法)特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况三、内标法特点:可扣除样品处理过程中的误差应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰1、吸收光谱和发射光谱的电子能动级跃迁的关系吸收光谱:当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足ΔE=hv的关系时,将产生吸收光谱。
M+hv→M*2、带光谱和线光谱带光谱:是分子光谱法的表现形式。
分子光谱法是由分子中电子能级、振动和转动能级的变化产生。
线光谱:是原子光谱法的表现形式。
原子光谱法是由原子外层或内层电子能级的变化产生的。
2、原子吸收定量原理:频率为ν的光通过原子蒸汽,其中一部分光被吸收,使透射光强度减弱。
3、谱线变宽的因素(P-131):⑴多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。
故又称热变宽。
Doppler宽度随温度升高和相对原子质量减小而变宽。
⑵压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起外界压力愈大,浓度越高,谱线愈宽。
⒈引起谱线变宽的主要因素有哪些?⑴自然变宽:无外界因素影响时谱线具有的宽度⑵多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。
故又称热变宽。
⑶. 压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起⑷自吸变宽:光源空心阴极灯发射的共振线被灯内同种基态原子所吸收产生自吸现象。
⑸场致变宽(field broadening):包括Stark变宽(电场)和Zeeman 变宽(磁场)⒉火焰原子化法的燃气、助燃气比例及火焰高度对被测元素有何影响?①化学计量火焰:由于燃气与助燃气之比与化学计量反应关系相近,又称为中性火焰,这类火焰, 温度高、稳定、干扰小背景低,适合于许多元素的测定。
②贫燃火焰:指助燃气大于化学计量的火焰,它的温度较低,有较强的氧化性,有利于测定易解离,易电离元素,如碱金属。
③富燃火焰:指燃气大于化学元素计量的火焰。
其特点是燃烧不完全,温度略低于化学火焰,具有还原性,适合于易形成难解离氧化物的元素测定;干扰较多,背景高。
④火焰高度:火焰高度不同,其温度也不同;每一种火焰都有其自身的温度分布;一种元素在一种火焰中的不同火焰高度其吸光度值也不同;因此在火焰原子化法测定时要选择适合被测元素的火焰高度。
⒊原子吸收光谱法中的干扰有哪些?如何消除这些干扰?一.物理干扰:指试样在转移、蒸发和原子化过程中,由于其物理特性的变化而引起吸光度下降的效应,是非选择性干扰。
消除方法:①稀释试样;②配制与被测试样组成相近的标准溶液;③采用标准化加入法。
二.化学干扰:化学干扰是指被测元原子与共存组分发生化学反应生成稳定的化合物,影响被测元素原子化,是选择性干扰,一般造成A下降。
消除方法:(1)选择合适的原子化方法:提高原子化温度,化学干扰会减小,在高温火焰中P043-不干扰钙的测定。
(2)加入释放剂(广泛应用)(3)加入保护剂:EDTA、8—羟基喹啉等,即有强的络合作用,又易于被破坏掉。
(4)加基体改进剂(5)分离法三. 电离干扰:在高温下原子会电离使基态原子数减少, 吸收下降, 称电离干扰,造成A减少。
负误差消除方法:加入过量消电离剂。
(所谓的消电离剂, 是电离电位较低的元素。
加入时, 产生大量电子, 抑制被测元素电离。
)四. 光谱干扰:吸收线重叠:①非共振线干扰:多谱线元素--减小狭缝宽度或另选谱线②谱线重叠干扰--选其它分析线五.背景干扰:背景干扰也是光谱干扰,主要指分子吸与光散射造成光谱背景。
(分子吸收是指在原子化过程中生成的分子对辐射吸收,分子吸收是带光谱。
光散射是指原子化过程中产生的微小的固体颗粒使光产生散射,造成透过光减小,吸收值增加。
背景干扰,一般使吸收值增加。
产生正误差。
)消除方法:⑴用邻近非共振线校正背景⑵连续光源校正背景(氘灯扣背景)⑶Zeaman 效应校正背景⑷自吸效应校正背景第3章紫外-可见分光光度法(P21)3.1.5 影响紫外-可见光谱的因素:溶剂的影响极性:水>甲醇>乙醇>丙酮>正丁醇>乙酸乙酯>乙醚>氯仿>二氯甲烷>苯>四氯化碳>己烷>石油醚3.2 光的吸收定律Lambert-Beer 定律:A =k c l = -lgT = lgI0 / Il—cm,c--mol/L,k 值称为摩尔吸光系数—ε(L·mol-1·cm-1)A =εlc3.4 分析条件的选择单光束分光光度计特点:只有一条光束单波长双光束分光光度计特点:在同一台仪器中使用两个完全相同的光束。
双波长分光光度计:不需要参比溶液透光率读数的影响:1、分子光谱是如何产生的?它与原子光谱的主要区别是什么?分子光谱是由分子中电子能级、振动和转动能级的变化产生的,表现形式为带光谱它与原子光谱的主要区别在于表现形式为带光谱。
(原子光谱是由原子外层或内层电子能级的变化产生的,它的表现形式为线光谱。
)2、试说明有机化合物紫外光谱产生的原因。
机化合物紫外光谱的电子跃迁有哪几种类型?吸收带有哪几种类型?有机化合物分子的价电子在吸收辐射并跃迁到高能级后所产生的吸收光谱。
机化合物紫外光谱电子跃迁常见的4种类型:σ→σ*,n→σ* ,π→π*,n→π*①饱和有机化合物:σ→σ* 跃迁,n→σ*跃迁②不饱和脂肪族化合物:π→π*,n→π*③芳香族化合物:E1和E2带,B带3、在分光光度法测定中,为什么尽可能选择最大吸收波长为测量波长?因为选择最大吸收波长为测量波长,能保证测量有较高的灵敏度,且此处的曲线较为平坦,吸光系数变化不大,对beer定律的偏离较小。
4、在分光光度测量中,引起对Lambrt-Beer定律偏离的主要因素有哪些?如何克服这些因素对测量的影响?偏离Lambert-Beer Law 的因素主要与样品和仪器有关。
(1)与测定样品溶液有关的因素浓度:当l不变,c > 0.01M 时, Beer定律会发生偏离。
溶剂:当待测物与溶剂发生缔合、离解及溶剂化反应时,产生的生成物与待测物具有不同的吸收光谱,出现化学偏离。
光散射:当试样是胶体或有悬浮物时,入射光通过溶液后,有一部分光因散射而损失,使吸光度增大,Beer定律产生正偏差。
(2)与仪器有关的因素单色光:Beer定律只适用于单色光,非绝对的单色光,有可能造成Beer定律偏离。
谱带宽度:当用一束吸光度随波长变化不大的复合光作为入射光进行测定时,吸光物质的吸光系数变化不大,对吸收定律所造成的偏离较小。
对应克服方法:①c ≤ 0.01M②避免使用会与待测物发生反应的溶剂③避免试样是胶体或有悬浮物④在保证一定光强的前提下,用尽可能窄的有效带宽宽度。
⑤选择吸光物质的最大吸收波长作为分析波长5、极性溶剂为什么会使π→π*跃迁的吸收峰长移,却使n→π*跃迁的吸收峰短移?溶剂极性不同会引起某些化合物吸收光谱的红移或蓝移,称溶剂效应。
在π→π*跃迁中,激发态极性大于基态,当使用极性溶剂时,由于溶剂与溶质相互作用,激发态π*比基态π能量下降更多,因而使基态与激发态间能量差减小,导致吸收峰红移。
在n→π*跃迁中,基态n电子与极性溶剂形成氢键,降低了基态能量,使激发态与基态间能量差增大,导致吸收峰蓝移。
第五章分子发光分析法(P88)1.荧光和磷光的产生:具有不饱和基团的基态分子受光照后,价电子跃迁产生荧光和磷光。
2.激发光谱和发射光谱:激发光谱:将激发光的光源用单色器分光,测定不同波长照射下所发射的荧光强度(F),以F做纵坐标,激发光波长λ做横坐标作图。
激发光谱反映了激发光波长与荧光强度之间的关系。
发射光谱:固定激发光波长,让物质发射的荧光通过单色器,测定不同波长的荧光强度,以荧光强度F做纵坐标,荧光波长λ做横坐标作图。
荧光光谱反映了发射的荧光波长与荧光强度的关系。
3.荧光和分子结构的关系发射荧光的物质应同时具备以下两个条件:物质分子必须具有能够吸收紫外或可见光的结构,并且能产生π→π* 或n→π* 跃迁。
荧光物质必须有较大的荧光量子产率。
(1)跃迁类型:π→π*较n→π*跃迁的荧光效率高。
(2)共轭结构:凡是能提高π电子共轭度的结构,都会增大荧光强度,并使荧光光谱长移。
(3)刚性平面:分子的刚性及共平面性越大,荧光量子产率就越大。
(4)取代基效应:在芳香化合物的芳香环上,给电子基团增强荧光,吸电子基团减弱荧光。
荧光分析法的特点优点:灵敏度高(提高激发光强度,可提高荧光强度),达ng/ml;选择性强(比较容易排除其它物质的干扰),重现性好;取样少。
缺点:许多物质本身不能发射荧光,因此,应用不够广泛。
荧光分析法与UV-Vis法的比较相同点:都需要吸收紫外-可见光,产生电子能级跃迁。
不同点:荧光法测定的是物质经紫外-可见光照射后发射出的荧光的强度(F);UV-Vis法测定的是物质对紫外-可见光的吸收程度(A) ;荧光法定量测定的灵敏度比UV-Vis法高。
1、名词解释:单重态:当基态分子的电子都配对时,S = 0,多重性M=1,这样的电子能态称为单重态。
单重电子激发态:当基态分子的成对电子吸收光能之后,被激发到某一激发态上。
如果它的自旋方向不变,S=0,M=1,这时的激发态叫单重电子激发态。
三重态:若通过分子内部的一些能量转移,或能阶间的跨越,成对电子中的一个电子自旋方向倒转,使两个电子自旋方向相同而不配对,这时S=1,M=3,这种电子激发态称三重电子激发态(三重态)系间跨越:指的是不同多重度状态间的一种无辐射跃迁过程。