北航信号实验信号分析实验报告

合集下载

北航传导干扰检测实验报告

北航传导干扰检测实验报告

北航传导干扰检测实验报告
摘要:
本实验旨在探究北航传导干扰检测方法的有效性。

通过搭建实验平台,利用传导干扰检测设备对不同频率的信号进行检测和分析。

实验结果表明,该方法可以有效地检测和定位传导干扰源,并为干扰排查提供了一种可行的解决方案。

引言:
传导干扰是无线通信中常见的问题,对通信质量产生负面影响。

因此,对传导干扰进行检测和定位具有重要意义。

本实验使用北航传导干扰检测设备,通过实验验证其在传导干扰检测方面的效果。

实验方法:
1.搭建实验平台:在实验室中搭建实验平台,包括传导干扰检测设备、信号发生器以及示波器。

2.设置实验参数:根据实验要求,设置信号发生器的频率、幅度等参数。

3.进行实验:依次选择不同频率的信号,通过传导干扰检测设备进行检测,并记录检测结果。

4.数据分析:对实验结果进行分析,并绘制相应的图表和曲线。

实验结果:
根据实验数据分析,我们观察到在不同频率下,传导干扰检测设
备能够准确地检测到干扰信号的存在,并能够提供信号的强度和相对位置。

实验结果显示,该传导干扰检测设备具有较高的灵敏度和准确性。

讨论与结论:
本实验通过使用北航传导干扰检测设备,成功地验证了其在传导干扰检测方面的有效性。

该设备可以帮助工程师迅速定位传导干扰源,并采取相应的干扰排查措施。

然而,该实验还存在一些局限性,例如对于复杂多径传播环境下的检测效果尚需进一步研究。

北航信号实验报告一

北航信号实验报告一

信号与测试技术实验报告实验一、基本信号分析13151090俞亮一、实验目的研究分析信号的时域特征(如持续时间、幅值等)和信号的频域特征(如是否有周期性信号、频率带宽等)二、实验仪器Matlab软件三、实验内容及步骤(1)产生不同的周期信号,包括正弦信号、方波信号、锯齿波,在时域分析这些波形特征(幅值、频率(周期))。

(2)在Matlab中产生不同的非周期信号,包括随机噪声、阶跃信号(选作)、矩形脉冲(选作)。

(3)对产生的信号进行Fourier 变换,从频率域分析信号的特征,并说明方波信号和锯齿波信号的信号带宽;进行傅里叶变换时注意采样频率。

(4)产生复合信号:由 3 个不同频率、幅值的正弦信号叠加的信号,从图形上判断信号的特征;产生由正弦信号和随机信号叠加的混合信号,从图形上判断信号的特征;产生由正弦信号和方波叠加的信号,从图形上判断信号的特征。

(5)对(4)中的 3 种复合信号进行FFT计算,从图上判断信号的特征。

(6)产生一个基波信号,显示图形;按照方波的傅里叶级数展开的规律再叠加一个二次谐波,显示图形;再叠加一个三次谐波,显示图形;......。

观察信号的变化。

验证周期方波信号的有限项傅里叶级数逼近。

(7)产生一个周期信号,进行自相关运算,说明周期信号进行自相关运算后的信号与原信号相比的特点。

(8)对白噪声信号进行自相关运算,观察运算后信号特征,并叙述产生这种现象的原因。

(9)对(7)中产生的周期信号叠加白噪声,进行自相关运算,观察信号特征。

(10)产生两个同频率的周期信号,进行互相关运算,观察运算后的信号。

(11)产生两个不同频率的周期信号,进行互相关运算,观察运算后的信号。

四、实验结果及分析(1)产生正弦信号、方波信号、锯齿波,随机噪声分析:根据图像可以判断出正弦信号,方波信号,锯齿波信号幅值都为2,并且周期是0.5(2)对产生的信号进行Fourier级数展开、Fourier 变换,从频率域分析信号的特征,并说明方波信号和锯齿波信号的信号带宽。

北航ARM9实验报告:实验3uCOS-II实验

北航ARM9实验报告:实验3uCOS-II实验

北航ARM9实验报告:实验3uCOS-II实验北航 ARM9 实验报告:实验 3uCOSII 实验一、实验目的本次实验的主要目的是深入了解和掌握 uCOSII 实时操作系统在ARM9 平台上的移植和应用。

通过实际操作,熟悉 uCOSII 的任务管理、内存管理、中断处理等核心机制,提高对实时操作系统的理解和应用能力,为后续的嵌入式系统开发打下坚实的基础。

二、实验环境1、硬件环境:ARM9 开发板、PC 机。

2、软件环境:Keil MDK 集成开发环境、uCOSII 源代码。

三、实验原理uCOSII 是一个可裁剪、可剥夺型的多任务实时内核,具有执行效率高、占用空间小、实时性能优良和可扩展性强等特点。

其基本原理包括任务管理、任务调度、时间管理、内存管理和中断管理等。

任务管理:uCOSII 中的任务是一个独立的执行流,每个任务都有自己的堆栈空间和任务控制块(TCB)。

任务可以处于就绪、运行、等待、挂起等状态。

任务调度:采用基于优先级的抢占式调度算法,始终让优先级最高的就绪任务运行。

时间管理:通过系统时钟节拍来实现任务的延时和定时功能。

内存管理:提供了简单的内存分区管理和内存块管理机制。

中断管理:支持中断嵌套,在中断服务程序中可以进行任务切换。

四、实验步骤1、建立工程在 Keil MDK 中创建一个新的工程,选择对应的 ARM9 芯片型号,并配置相关的编译选项。

2、导入 uCOSII 源代码将 uCOSII 的源代码导入到工程中,并对相关的文件进行配置,如设置任务堆栈大小、系统时钟节拍频率等。

3、编写任务函数根据实验要求,编写多个任务函数,每个任务实现不同的功能。

4、创建任务在主函数中使用 uCOSII 提供的 API 函数创建任务,并设置任务的优先级。

5、启动操作系统调用 uCOSII 的启动函数,使操作系统开始运行,进行任务调度。

6、调试与测试通过单步调试、查看变量值和输出信息等方式,对系统的运行情况进行调试和测试,确保任务的执行符合预期。

北航信号与系统上机实验报告

北航信号与系统上机实验报告

信号与系统上机实验报告我是 buaa 快乐的小2B目录实验一、连续时间系统卷积的数值计算 (3)一、实验目的 (3)二、实验原理 (3)三、实验程序源代码、流图实验程序源代码 (4)4.1源代码与程序框图: (4)4.2数据与结果 (5)4.3数据图形 (6)实验二、信号的矩形脉冲抽样与恢复 (7)一、实验目的: (7)二、实验原理: (7)三、实验内容 (9)四、实验程序流程图和相关图像 (9)4.1、画出f(t)的频谱图即F(W)的图像 (9)4.2、对此频域信号进行傅里叶逆变换,得到相应的时域信号,画出此信号的时域波形f(t) (11)4.3、三种不同频率的抽样 (14)4.4、将恢复信号的频谱图与原信号的频谱图进行比较 (17)实验五、离散时间系统特性分析 (21)一、实验目的: (21)二、实验原理: (21)三、实验内容 (21)四、程序流程图和代码 (22)五、实验数据: (23)5.1单位样值响应 (23)5.2幅频特性 (24)六、幅频特性和相频特性曲线并对系统进行分析。

(25)6.1幅频特性曲线 (25)6.2相频特性曲线 (26)实验一、连续时间系统卷积的数值计算一、实验目的1 加深对卷积概念及原理的理解;2 掌握借助计算机计算任意信号卷积的方法。

二、实验原理1 卷积的定义卷积积分可以表示为2 卷积计算的几何算法卷积积分的计算从几何上可以分为四个步骤:翻转→平移→相乘→叠加。

3 卷积积分的应用卷积积分是信号与系统时域分析的基本手段,主要用于求系统零状态响应,它避开了经典分析方法中求解微分方程时需要求系统初始值的问题。

设一个线性零状态系统,已知系统的单位冲激响应为h(t),当系统的激励信号为e(t)时,系统的零状态响应为由于计算机技术的发展,通过编程的方法来计算卷积积分已经不再是冗繁的工作,并可以获得足够的精度。

因此,信号的时域卷积分析法在系统分析中得到了广泛的应用。

卷积积分的数值运算实际上可以用信号的分段求和来实现,即:如果我们只求当t )时r(t)的值,则由上式可以得到:1 1 2t = nΔt (n为正整数, nΔt 记为当 1 Δt 足够小时,( ) 2 r t 就是e(t)和h(t)卷积积分的数值近似,由上面的公式可以得到卷积数值计算的方法如下:1、将信号取值离散化,即以Ts 为周期,对信号取值,得到一系列宽度间隔为Ts 的矩形脉冲原信号的离散取值点,用所得离散取值点矩形脉冲来表示原来的连续时间信号;2、将进行卷积的两个信号序列之一反转,与另一信号相乘,并求积分,所得为t=0 时的卷积积分的值。

北航信号与系统第一次实验报告超级详细版【范本模板】

北航信号与系统第一次实验报告超级详细版【范本模板】

信号与系统实验一连续时间系统卷积的数值计算实验目的1 加深对卷积概念及原理的理解;2 掌握借助计算机计算任意信号卷积的方法.实验原理()()()tototftoftf d21⎰∞∞--=卷积实验流程图源程序#include 〈stdio。

h〉float u(float t){while(t〉=0)return(1);while(t<0)return(0);}float f1(float t){return(u(t+2)—u(t-2));}float f2(float t){return(t*(u(t)-u(t-2))+(4-t)*(u(t-2)—u(t-4)));}main(){float t,i,j,result=0;for(i=—2;i<=6;i=i+0.1){result=0;for(j=0;j<=4;j=j+0.1)result+=f2(j)*f1(i—j)*0。

1;printf("%.1f\t%.2f\t",i,result);}printf ("\n”);}实验数据—2。

0 0。

00 —1.9 0.01 —1.8 0。

03 —1。

7 0.06 -1。

6 0.10—1。

5 0.15 -1。

4 0。

21 —1.3 0。

28 -1。

2 0。

36 —1.1 0。

45-1.0 0.55 -0.9 0.66 -0。

8 0。

78 -0.7 0。

91 -0。

6 1。

05-0.5 1.20 -0.4 1。

36 -0.3 1.53 -0。

2 1.71 —0。

1 1.90 0.0 2.10 0。

1 2。

29 0。

2 2.47 0。

3 2。

64 0。

4 2。

800。

5 2。

95 0。

6 3.09 0.7 3.22 0。

8 3。

34 0.9 3。

451。

0 3。

55 1。

1 3。

64 1.2 3。

72 1.3 3.79 1。

4 3.85 1。

5 3。

90 1.6 3.94 1.7 3。

DTMF信号辨识实验报告(北航电子信息工程学院dsp实验)(精)

DTMF信号辨识实验报告(北航电子信息工程学院dsp实验)(精)

DTMF 信号辨识实验报告班级:xxxxxxxx 学号:11111111姓名:xx一、实验目的熟悉双音频信号的产生、分析与检测原理熟悉MATLAB 工具箱的使用二、实验原理及要求双音多频(DTMF是按键电话通信的德国名称,它等效于贝尔系统中所用的接触音频系统。

在DTMF 通信系统中,高频音与低频音的一个组合表示表示一个特定的数字或者字符(*和#。

8个频率按以下矩阵图提供给16个字符或数字。

其中12个(数字和*、#)分配如图示,其他4个保留备用。

拿起电话听筒放在耳边会听到拔号音,若按下重拔(Redial键,则电话机会自动重拔上次所拔电话号码,对双音多频电话机,此时会在耳边听到代表不同数字的声音,每个数字都由二个不同频率的信号组成。

从.wav 文件中提取频谱的方法:你可以用matlab 函数wavread(具体用法请参阅matlab help 把数据从.wav 文件中读出来(这些数据是时域上的的采样数据,采样率可以从wavread 函数的返回值中获得),并采用一定手段设定一个阈值,当数据的幅值大于这个阈值时就确定此时为数字按键声音数据的开始,然后从此向后取一定数量的采样数据(如512点),并对它进行fft 变换,得到这些数据对应的频谱,从而确定该声音文件对应的数字键。

该实验中已经提供给你一些录好的加有背景噪音的电话数字按键的声音文件(.wav文件,这些文件中包括了一些电话号码(如82317216,013671367249,它们的位数不一定相同)。

请你应用上面提供的方法,识别出这些电话号码。

你所编写的处理程序要能达到如此程度:以一个包含拔号信号的数据文件为输入,其输出就是电话号码,处理过程中不需要人工干预(可以采用display 函数显示这些数字键)。

三、实验内容及结果:以所给定的第一个双音频信号(1.mat )为例。

1、读取双音频信号文件:fh = [1209 1336 1477 1633]; fl = [697 770 852 841];K=[31,34,38,42,18,20,22,24];M = 20; z1=input('信号='; plot(z1生成双音频信号波形如下图所示:2、加滑动平均窗,对信号采样实现该功能的程序如下: L = length(z1; for j = 1:Lz2(1,j = z1(1,j^2; endfor r = 1:L-My(1,r=sum( [z2(r:r+M]/M; end figure; plot(y(1,:;经滑窗处理后的波形如下图所示:0200040006000800010000120000200040006000800010000120003、提取部分信号进行频率变换实现该功能代码如下:ami=max(y/2; thup=1.05; flag=0;d=1;for f=1:size(z1,2if flag==0 && (y(1,f/ami>thup e(d=f;flag=1; endif flag==1 && (y(1,f/ami<0.3 d=d+1;flag=0; end if d>8 break; end end figure; forg=1:8 for l = 1:205h=e(g; z3(1,l = z1(1,l+h-1; endsubplot(2,4,g; plot(z3; N=205; fori=1:8 v(1=z3(1;v(2=2*cos(2*pi*K(i/N*v(1+z3(2; for n=3:205v(n=2*cos(2*pi*K(i/N*v(n-1-v(n-2+z3(n; endtemp=v(N^2+v(N-1^2-2*cos(2*pi*K(i/N*v(N*v(N-1; w(i = sqrt(temp; w1(g,i = w(i; end频谱变换前的信号波形:频谱变换后的离散频谱分布:4、根据频谱判断输入的号码实现该功能的代码如下: limit=15; for t=5:8 ifw(t>limit break; end endfor s=1:4 if w(s>limit02004000200400020040002004000200400020040002004000200400510 051015202551005101520250510152025510152025DTMF 信号辨识实验报告 break; end end if t==5 Numout=s; elseif t==6 Numout=s+3; elseif t==7 Numout=t-1+s; else Numout=0; end result(g=Numout; end figure; forplotnumber = 1:8 subplot(2,4,plotnumber; stem(w1(plotnumber,:; end disp('检测到的电话号码是'; disp(result; 第一个双音频文件的运行结果如下: 2012 年 12 月根据 1.mat 检测出所拨的电话号码为:64593718. 同理,将其余 5 个.mat 文件进行同样的操作,可得如下电话号码: 2.mat 检测到电话号码为:6 3.mat 检测到电话号码为:8 4.mat 检测到电话号码为:8 5.mat 检测到电话号码为:8 6.mat 检测到电话号码为:6 4 2 2 2 4 5 3 3 3 5 9 1 1 1 9 3 7 7 7 3 7 2 2 2 7 1 4 4 4 1 8 3 3 3 8 四、实验感想通过本次实验,将离散时间进好处理的理论用于实践,我们真正感觉到了离散时间信号处理技术的魅力,将拨电话号码的声音,通过对其频率的检测,从而得出所拨打的电话号码,正如老师上课开玩笑所说,学会了这项技术,我们拥有了当特工的最基本的能力。

实验2_北航研究生计算机网络实验

实验2_北航研究生计算机网络实验

实验2_北航研究生计算机网络实验引言:计算机网络实验是计算机网络课程中非常重要的一部分。

通过实验,可以加深对计算机网络原理和协议的理解,并且提高实践能力。

在北航研究生计算机网络实验中,实验2是一个关于网络通信的实验,本文将对该实验进行详细描述和分析。

一、实验目的1.通过实验深入了解网络通信原理和实现;2.熟悉并掌握网络通信调试工具的使用方法;3.通过实验提高网络故障排查和修复的能力。

二、实验内容本次实验的内容是使用网络通信技术完成一个具体任务。

实验使用的工具是Wireshark,这是一款常用的网络抓包分析软件。

学生需要在虚拟机上模拟网络环境,并且使用Wireshark工具对网络通信进行抓包和分析。

实验的具体步骤如下:1.准备实验环境:使用虚拟机软件搭建网络环境,一般使用VMware Workstation或VirtualBox软件;2.配置网络参数:为虚拟机配置IP地址、网关地址、子网掩码等网络参数;3.设置Wireshark:在虚拟机上安装Wireshark软件,并进行基础的配置;4.抓包分析:使用Wireshark对网络通信进行抓包,并对抓包结果进行分析;5.故障排查和修复:根据抓包结果分析,定位网络故障的原因,并进行相应的修复。

三、实验结果与分析进行实验后,我们得到了一份Wireshark的抓包结果。

通过对抓包结果的分析,我们可以得到以下结论:1.网络通信存在问题,通信过程中有大量的丢包和重传;2.网络延迟较高,造成通信速度较慢;3.一些数据包在传输过程中被篡改。

根据以上结论,我们可以推断网络通信存在以下问题:1.网络链路质量差,导致数据包丢失和重传;2.网络带宽不足,导致通信速度较慢;3.网络安全问题,导致数据包被篡改。

为了解决以上问题,我们可以尝试以下解决方案:1.改善网络链路质量,可以通过替换网线、调整网络设备位置等方式改善网络信号质量;2.增加网络带宽,可以通过升级网络设备或增加网络带宽来提高通信速度;3.加强网络安全防护,可以使用防火墙软件、数据包加密等方式来防止数据包被篡改。

北航3系自控原理实验五-采样系统研究

北航3系自控原理实验五-采样系统研究

自动控制原理实验报告班级:学号:姓名:实验五 采样系统研究一、实验目的1. 了解信号的采样与恢复的原理及其过程,并验证香农定理。

2. 掌握采样系统的瞬态响应与极点分布的对应关系。

3. 掌握最少拍采样系统的设计步骤。

二、实验原理1. 采样:把连续信号转换成离散信号的过程叫采样。

2. 香农定理:如果选择的采样角频率s ω,满足max 2ωω≥s 条件(max ω为连续信号频谱的上限频率),那么经采样所获得的脉冲序列可以通过理想的低通滤波器无失真地恢复原连续信号。

3. 信号的复现:零阶保持器是将采样信号转换成连续信号的元件,是一个低通滤波器。

其传递函数:s e Ts--14. 采样系统的极点分布对瞬态响应的影响:Z 平面内的极点分布在单位圆的不同位置,其对应的瞬态分量是不同的。

5. 最小拍无差系统: 通常称一个采样周期为一拍,系统过渡过程结束的快慢常采用采样周期来表示,若系统能在最少的采样周期内达到对输入的完全跟踪,则称为最少拍误差系统。

对最小拍系统时间响应的要求是:对于某种典型输入,在各采样时刻上无稳态误差;瞬态响应最快,即过渡过程尽量早结束,其调整时间为有限个采样周期。

从上面的准则出发,确定一个数字控制器,使其满足最小拍无差系统。

三、实验内容1. 通过改变采频率s s s T 5.0,2.0,01.0=,观察在阶跃信号作用下的过渡过程。

被控对象模拟电路及系统结构分别如下图所示:图中,1)(/)()(==z E z U z D ,系统被控对象脉冲传递函数为:系统开环脉冲传递函数为:系统闭环脉冲传递函数为:)(1)()(z G z G z w w +=Φ在Z 平面内讨论,当采样周期T 变化时对系统稳定性的影响。

2. 当采样周期1T s =时, ,设计D (z ),使该系统分别在单位阶跃信号作用下和单位斜坡信号作用下为最小拍无差系统,观察并记录理论与实际系统输出波形。

四、实验设备1. HHMN-1型电子模拟机一台。

北航专业综合实验报告

北航专业综合实验报告

实验名称:网络安全综合实验实验时间: 2023年11月15日实验地点:北京航空航天大学计算机学院实验室实验人员: [姓名]一、实验目的1. 深入理解网络安全的基本概念和原理。

2. 掌握网络安全设备的配置与调试方法。

3. 熟悉网络安全攻防技术,提高安全意识。

4. 培养动手实践能力和团队合作精神。

二、实验内容本次实验主要包括以下内容:1. 路由器配置实验:学习路由器的基本配置,包括IP地址、子网掩码、默认网关等,并实现网络的互连互通。

2. APP欺骗攻击与防御实验:学习APP欺骗攻击的原理,并尝试防御此类攻击。

3. 源IP地址欺骗攻击防御实验:学习源IP地址欺骗攻击的原理,并尝试防御此类攻击。

4. DHCP欺骗攻击与防御实验:学习DHCP欺骗攻击的原理,并尝试防御此类攻击。

5. 密码实验:学习密码学的基本原理,并尝试破解简单的密码。

6. MD5编程实验:学习MD5算法的原理,并实现MD5加密程序。

7. 数字签名综合实验:学习数字签名的原理,并尝试实现数字签名程序。

8. RIP路由项欺骗攻击实验:学习RIP路由项欺骗攻击的原理,并尝试防御此类攻击。

9. 流量管制实验:学习流量管制的原理,并尝试实现流量控制。

10. 网络地址转换实验:学习网络地址转换的原理,并尝试实现NAT功能。

11. 防火墙实验:学习防火墙的配置与调试方法,并尝试设置防火墙规则。

12. 入侵检测实验:学习入侵检测的原理,并尝试实现入侵检测系统。

13. WEP配置实验:学习WEP加密协议的配置方法,并尝试破解WEP加密。

14. 点对点IP隧道实验:学习点对点IP隧道的配置方法,并尝试实现VPN功能。

三、实验步骤1. 路由器配置实验:- 搭建实验环境,连接路由器。

- 配置路由器的IP地址、子网掩码、默认网关等。

- 通过ping命令测试网络连通性。

2. APP欺骗攻击与防御实验:- 利用欺骗软件模拟APP欺骗攻击。

- 分析欺骗攻击的原理,并尝试防御此类攻击。

北航电子实习模拟部分实验报告3

北航电子实习模拟部分实验报告3

实验三:差动放大器分析与设计一、实验目的(1)通过使用Multisim来仿真电路,测试差分放大电路的静态工作点、差模电压放大倍数、输入电阻、输出电阻;(2)加深对差分放大电路工作原理的理解;(3)通过仿真,体会差分放大电路对温漂的抑制作用二、实验步骤(1)请对该电路进行直流工作点分析,进而判断电路的工作状态。

(2)请利用软件提供的电流表测出电流源提供给差放的静态工作电流。

(3)请利用软件提供的各种测量仪表测出该电路的输入、输出电阻。

(4)请利用软件提供的各种测量仪表测出该电路的单端出差模放大倍数。

(5)请利用软件提供的各种测量仪表测出该电路的幅频、相频特性曲线。

(6)请利用交流分析功能给出该电路的幅频、相频特性曲线。

(7)请利用温度扫描功能给出工作温度从0℃变化到100℃时,输出波形的变化。

*(8)根据前面得到的静态工作点,请设计一单管共射电路,使其工作点和图3电路的静态工作点一样。

利用温度扫描功能,给出单管共射电路工作温度从0℃变化到100℃时,输出波形的变化,比较单管共射电路与共射差分电路的区别。

三、实验问题(1)根据直流工作点分析的结果,说明该电路的工作状态。

(2)请画出测量电流源提供给差放的静态工作电流时,电流表在电路中的接法,并说明电流表的各项参数设置。

(3)详细说明测量输入、输出电阻的方法(操作步骤),并给出其值。

(4)详细说明测量差模放大倍数的方法(操作步骤),并给出其值。

(5)详细说明两种测量幅频、相频特性曲线的方法(操作步骤),并分别画出幅频、相频特性曲线。

*(6)对比实验步骤(7)和(8)的结果,你有何结论?(7)对比实验步骤(4)和(9)的结果,你有何结论?(8)请分析并总结仿真结论与体会。

四、实验结果0)实验电路图根据实验要求,画出实验电路图如下所示1)直流静态工作点分析其中,V(2)=-2.11726mV,V(3)=11.63205V,V(4)=-585.02429mV。

北航实验报告封面(共8篇)

北航实验报告封面(共8篇)

北航实验报告封面(共8篇)北航惯性导航综合实验一实验报告实验一陀螺仪关键参数测试与分析实验加速度计关键参数测试与分析实验二零一三年五月十二日实验一陀螺仪关键参数测试与分析实验一、实验目的通过在速率转台上的测试实验,增强动手能力和对惯性测试设备的感性认识;通过对陀螺仪测试数据的分析,对陀螺漂移等参数的物理意义有清晰的认识,同时为在实际工程中应用陀螺仪和对陀螺仪进行误差建模与补偿奠定基础。

二、实验内容利用单轴速率转台,进行陀螺仪标度因数测试、零偏测试、零偏重复性测试、零漂测试实验和陀螺仪标度因数与零偏建模、误差补偿实验。

三、实验系统组成单轴速率转台、MEMS 陀螺仪(或光纤陀螺仪)、稳压电源、数据采集系统与分析系统。

四、实验原理1. 陀螺仪原理陀螺仪是角速率传感器,用来测量载体相对惯性空间的角速度,通常输出与角速率对应的电压信号。

也有的陀螺输出频率信号(如激光陀螺)和数字信号(把模拟电压数字化)。

以电压表示的陀螺输出信号可表示为:UGUG?0??kG??kGfG(a)?kG?G(1-1)式中fG(a)是与比力有关的陀螺输出误差项,反映了陀螺输出受比力的影响,本实验不考虑此项误差。

因此,式(1-1)简化为 UGUG?0??kG??kG?G(1-2)由(1-2)式得陀螺输出值所对应的角速度测量值:测量?UG?UG(0)(1-3) ??GkG对于数字输出的陀螺仪,传感器内部已经利用标度因数对陀螺仪模拟输出进行了量化,直接输出角速度值,即:测量??0??真值??G(1-4)?0是是陀螺仪的零偏,物理意义是输入角速度为零时,陀螺仪输出值所对应的角速度。

且UG(0)?kG?0 (1-5)?测量精度受陀螺仪标度因数kG、随机漂移?G、陀螺输出信号UG的检测精度和UG(0)的影响。

通常kG和UG(0)表现为有规律性,可通过建模与补偿方法消除,?G表现为随机特性,可通过信号滤波方法抵制。

因此,准确标定kG和UG(0)是实现角速度准确测量的基础。

北航实验报告实验实验

北航实验报告实验实验

实验三UC-OS移植实验一、实验目的在内核移植了uCOS-II 的处理器上创建任务。

二、实验内容1.运行实验十,在超级终端上观察四个任务的切换。

2. 任务1~3,每个控制“红”、“绿”、“蓝”一种颜色的显示,适当增加OSTimeDly()的时间,且优先级高的任务延时时间加长,以便看清三种颜色。

3.引入一个全局变量 BOOLEAN ac_key,解决完整刷屏问题。

4. #define rUTRSTAT0 (*(volatile unsigned *)0x)#define RdURXH0()(*(volatile unsigned char *)0x)当键盘有输入时在超级终端上显示相应的字符。

三、实验设备硬件:ARM嵌入式开发平台、用于ARM920T的JTAG仿真器、PC机Pentium100以上。

软件:PC机操作系统Win2000或WinXP、ARM 集成开发环境、仿真器驱动程序、超级终端通讯程序。

四、实验原理所谓移植,指的是一个操作系统可以在某个微处理器或者微控制器上运行。

虽然uCOS-II的大部分源代码是用C语言写成的,仍需要用C语言和汇编语言完成一些与处理器相关的代码。

比如:uCOS-II在读写处理器、寄存器时只能通过汇编语言来实现。

因为uCOS-II在设计的时候就己经充分考虑了可移植性,所以,uCOS-II的移植还是比较容易的。

要使uCOS一工工可以正常工作,处理器必须满足以下要求:1)处理器的C编译器能产生可重入代码。

2)在程序中可以打开或者关闭中断。

3)处理器支持中断,并A能产生定时中断(通常在10Hz}1000Hz之间)。

4)处理器支持能够容纳一定量数据的硬件堆栈。

5)处理器有将堆栈指针和其它CPU寄存器存储和读出到堆栈(或者内存)的指令。

uCOS-II进行任务调度的时候,会把当前任务的CPU寄存器存放到此任务的堆栈中,然后,再从另一个任务的堆栈中恢复原来的工作寄存器,继续运行另一个任务。

北航数字信号处理实验报告

北航数字信号处理实验报告

实验名称幅度调制和解调实验科目数字信号与处理院系名称专业名称学号学生姓名年月日实验三:幅度调制和解调一、实验目的了解几种基本的调制解调原理,掌握用数字信号处理的方法实现模拟电路中信号的调制与解调的方法。

通过理论推导得出相应结论,再利用Matlab作为编程工具进行计算机验证实现,从而加深理解,建立概念。

二、实验内容1.利用Matlab实现信号的调制,过调制,欠调制等状态。

2.用高频正弦信号分别实现对(1)低频周期方波信号,(2)低频正弦信号(3)低频周期三角波信号的调制,观察调制后频率分布状态,实现抑制载波的幅度调制。

3.设计实验,实现含有载波的幅度调制。

观察调制和解调的结果,与抑制载波的幅度调制有何不同。

4.设计实验,观察待调制波信号幅度变化对调幅系数的影响。

5.模拟峰值检测(包络检波)电路中的二极管的功能。

6.了解峰值检波(包络检波)的原理,并编程实现。

7.了解同步检波的原理,并编程实现。

三、实验原理1.幅度调制用一个信号(称为调制信号)去控制另一个信号(称为载波信号),让后者的某一特征参数如幅值、频率、相位,按前者变化的过程,就叫调制。

调制的作用是把消息置入消息载体,便于传输或处理。

调制是各种通信系统的重要基础,也广泛用于广播、电视、雷达、测量仪等电子设备。

在通信系统中为了适应不同的信道情况(如数字信道或模拟信道、单路信道或多路信道等),常常要在发信端对原始信号进行调制,得到便于信道传输的信号,然后在收信端完成调制的逆过程──解调,还原出原始信号。

用来传送消息的信号叫作载波或受调信号,代表所欲传送消息的信号叫作调制信号,调制后的信号叫作已调信号。

用调制信号控制载波的某些参数,使之随调制信号而变化,就可实现调制。

受调信号可以是正弦波或脉冲波,所欲传送的消息可以是话音、图像或其他物理量,也可以是数据、电报和编码等信号。

前者是模拟信号,后者是数字信号。

调制是一种非线性过程。

载波被调制后产生新的频率分量,通常它们分布在载频f C的两边,占有一定的频带,分别叫做上边带和下边带。

北航通信原理实验报告

北航通信原理实验报告

竭诚为您提供优质文档/双击可除北航通信原理实验报告篇一:通信原理实验报告实验3:基带传输系统实验一.实验目的1.了解nyquist基带传输设计准则2.熟悉升余弦基带传输信号的特点3.掌握眼图信号的观察方法4.学习评价眼图信号的基本方法二.实验内容1、?=0升余弦滤波成形信号观察(1)准备工作(2)以发送时钟(Tpm01)作同步,观测发送信号(Tpi03)的波形。

观察过零点抖动与眼皮厚度(3)用Kg02输入不同的测试数据,观察Tpi03的信号。

0/1码时Tpi03的信号11101010时Tpi03的信号2、?=1、?=0.4、?=.4开根号升余弦滤波的眼图观察(1)准备工作:除Kg04外,其余同步骤1。

Kg?04设置成=1、?=0.4、?=.4开根号升余弦滤波状态(2)以发送时钟作同步,观测发送信号(Tpi03)的波形。

观察过零点抖动与眼皮厚度,记录Tpm02、Tpm03波形?=1时发送信号(Tpi03)的波形?=0.4时发送信号(Tpi03)的波形?=0.4开根号时发送信号(Tpi03)的波形?=1时Tpm02的波形?=0.4时Tpm02的波形?=0.4开根号Tpm02的波形?=1时Tpm03的波形?=0.4时Tpm03的波形?=0.4开根号时Tpm03的波形2(3)用Kg02输入不同的测试数据,观察Tpi03的信号。

记录Tpm02、Tpm03的波形?=111101010时Tpi03的信号?=10/1时Tpi03的信号?=0.411101010时Tpi03的信号?=0.40/1时Tpi03的信号?=0.4开根号11101010时Tpi03的信号?=0.4开根号0/1时Tpi03的信号Tmp03的波形三.实验结果与分析1、写出眼图正确的观察方法答:(1)最佳抽样时刻是“眼睛”张开最大的时刻。

(2)定时误差灵敏度是眼图斜边的斜率。

斜率越大,对位定时误差越敏感。

(3)图的阴影区的垂直高度表示抽样时刻上信号受噪声干扰的畸变程度。

北航_网络实验报告

北航_网络实验报告

一、实验目的本次实验旨在让学生掌握网络安全的基本知识和技能,了解网络攻击与防御方法,提高网络安全防护能力。

通过实验,使学生能够:1. 理解网络攻击与防御的基本原理;2. 掌握常用网络安全工具的使用方法;3. 学会分析网络安全事件,提出相应的防御策略;4. 提高网络安全意识,增强自我保护能力。

二、实验内容1. 路由器配置实验(1)认识路由器和交换机,学习路由器配置的基本指令;(2)正确配置路由器,确保网络正常运作;(3)查看路由表,实现网络的互连互通。

2. APP欺骗攻击与防御实验(1)了解APP欺骗攻击的基本原理;(2)学习防御APP欺骗攻击的方法;(3)实际操作,模拟APP欺骗攻击,验证防御效果。

3. 源IP地址欺骗攻击防御实验(1)了解源IP地址欺骗攻击的基本原理;(2)学习防御源IP地址欺骗攻击的方法;(3)实际操作,模拟源IP地址欺骗攻击,验证防御效果。

4. DHCP欺骗攻击与防御实验(1)了解DHCP欺骗攻击的基本原理;(2)学习防御DHCP欺骗攻击的方法;(3)实际操作,模拟DHCP欺骗攻击,验证防御效果。

5. 密码实验(1)了解密码设置的基本原则;(2)学习密码破解工具的使用方法;(3)实际操作,破解弱密码,提高密码设置意识。

6. MD5编程实验(1)了解MD5算法的基本原理;(2)学习使用MD5算法进行数据加密和解密;(3)实际操作,实现MD5加密和解密功能。

7. 数字签名综合实验(1)了解数字签名的基本原理;(2)学习数字签名工具的使用方法;(3)实际操作,生成和验证数字签名。

8. RIP路由项欺骗攻击实验(1)了解RIP路由项欺骗攻击的基本原理;(2)学习防御RIP路由项欺骗攻击的方法;(3)实际操作,模拟RIP路由项欺骗攻击,验证防御效果。

9. 流量管制实验(1)了解流量管制的基本原理;(2)学习流量管制工具的使用方法;(3)实际操作,设置流量管制策略,实现网络流量控制。

10. 网络地址转换实验(1)了解网络地址转换(NAT)的基本原理;(2)学习NAT设备的使用方法;(3)实际操作,配置NAT设备,实现内外网互通。

北航电路实验报告

北航电路实验报告

北航电路实验报告北航电路实验报告引言北航电路实验是电子信息工程专业学生必修的一门实践课程,旨在帮助学生理解和掌握电路的基本原理和实验技巧。

本文将对北航电路实验进行详细的报告和分析,以便更好地总结和应用所学知识。

实验一:电路基础实验电路基础实验是北航电路实验的第一次实践活动,通过搭建简单的电路并测量电流和电压,学生可以对电路的基本概念和特性有一个初步的了解。

首先,我们使用面包板搭建了一个简单的电路,包括电源、电阻和电流表。

然后,我们通过改变电阻的大小,测量了电路中的电流和电压。

实验结果表明,电流与电压成正比,而电阻则影响电流的大小。

实验二:交流电路实验交流电路实验是北航电路实验的第二个实践环节,通过使用交流电源和各种电路元件,学生可以研究交流电路的特性和行为。

我们首先搭建了一个简单的交流电路,包括交流电源、电感和电容。

然后,我们测量了电路中的电流和电压,并绘制了电流和电压随时间变化的波形图。

实验结果表明,电感和电容对交流电路的行为有重要影响,可以产生滤波、延时等效果。

实验三:放大电路实验放大电路实验是北航电路实验的第三个实践环节,通过使用放大器和各种电路元件,学生可以研究电路的放大效果和信号处理。

我们首先搭建了一个简单的放大电路,包括放大器、电阻和信号源。

然后,我们输入不同幅度和频率的信号,并测量输出信号的幅度和频率。

实验结果表明,放大器可以放大输入信号的幅度,同时也会对信号的频率产生一定的影响。

实验四:滤波电路实验滤波电路实验是北航电路实验的第四个实践环节,通过使用滤波器和各种电路元件,学生可以研究电路的滤波效果和频率响应。

我们首先搭建了一个简单的滤波电路,包括滤波器、电容和电阻。

然后,我们输入不同频率的信号,并测量输出信号的幅度和相位。

实验结果表明,滤波器可以对输入信号进行频率选择,滤除不需要的频率成分。

实验五:数字电路实验数字电路实验是北航电路实验的最后一个实践环节,通过使用数字电路元件和逻辑门,学生可以研究电路的逻辑运算和数字信号处理。

北航惯性导航综合实验五实验报告

北航惯性导航综合实验五实验报告

惯性导航技术综合实验实验五惯性基组合导航及应用技术实验惯性/卫星组合导航系统车载实验一、实验目的①掌握捷联惯导/GPS组合导航系统的构成和基本工作原理;②掌握采用卡尔曼滤波方法进行捷联惯导/GPS组合的基本原理;③掌握捷联惯导 /GPS组合导航系统静态性能;④掌握动态情况下捷联惯导 /GPS组合导航系统的性能。

二、实验内容①复习卡尔曼滤波的基本原理(参考《卡尔曼滤波与组合导航原理》第二、五章);②复习捷联惯导/GPS组合导航系统的基本工作原理(参考以光衢编著的《惯性导航原理》第七章);三、实验系统组成①捷联惯导/GPS组合导航实验系统一套;②监控计算机一台。

③差分GPS接收机一套;④实验车一辆;⑤车载大理石平台;⑥车载电源系统。

四、实验内容1)实验准备①将IMU紧固在车载大理石减振平台上,确认IMU的安装基准面紧靠实验平台;② 将IMU 与导航计算机、导航计算机与车载电源、导航计算机与监控计算机、GPS 接收机与导航计算机、GPS 天线与GPS 接收机、GPS 接收机与GPS 电池之间的连接线正确连接;③ 打开GPS 接收机电源,确认可以接收到4颗以上卫星; ④ 打开电源,启动实验系统。

2) 捷联惯导/GPS 组合导航实验① 进入捷联惯导初始对准状态,记录IMU 的原始输出,注意5分钟内严禁移动实验车和IMU ;② 实验系统经过5分钟初始对准之后,进入导航状态; ③ 移动实验车,按设计实验路线行驶;④ 利用监控计算机中的导航软件进行导航解算,并显示导航结果。

五、 实验结果及分析(一) 理论推导捷联惯导短时段(1分钟)位置误差,并用1分钟惯导实验数据验证。

1、一分钟惯导位置误差理论推导:短时段内(t<5min ),忽略地球自转0ie ω=,运动轨迹近似为平面1/0R =,此时的位置误差分析可简化为:(1) 加速度计零偏∇引起的位置误差:210.88022t x δ∇==m (2) 失准角0φ引起的误差:202 0.92182g t x φδ==m (3) 陀螺漂移ε引起的误差:330.01376g t x εδ==m 可得1min 后的位置误差值123 1.8157m x x x x δδδδ=++= 2、一分钟惯导实验数据验证结果:(1)纯惯导解算1min 的位置及位置误差图:lat0.01s 度lon0.01s度北向位移误差0.01sm 东向位移误差0.01sm(2)纯惯导解算1min 的速度及速度误差图:-100-50050Vx0.01s m /s020406080Vy0.01sm /s100020003000400050006000-0.4-0.3-0.2-0.10Vx 误差0.01s m /s100020003000400050006000-0.1-0.0500.050.1Vy 误差0.01sm /s实验结果分析:纯惯导解算短时间内精度很高,1min 的惯导解算的北向最大位移误差-2.668m ,东向最大位移误差-8.231m ,可见实验数据所得位置误差与理论推导的位置误差在同一数量级,结果不完全相同是因为理论推导时做了大量简化,而且实验时视GPS 为真实值也会带来误差;另外,可见1min 内纯惯导解算的东向速度最大误差-0.2754m/s ,北向速度最大误差-0.08027m/s 。

北航信号实验报告

北航信号实验报告

北航信号实验报告1. 引言本报告旨在介绍北航信号实验的目的、实验过程和实验结果。

通过本次实验,我们将学习到信号的基本概念、信号的特性以及信号处理的方法。

2. 实验目的本次实验的主要目的有以下几点:•了解信号的基本概念和特性;•掌握信号的采样和重建方法;•学习信号的时频分析方法;•熟悉信号滤波器的设计和应用。

3. 实验装置本次实验所需的实验装置包括:•信号发生器:用于产生各种类型的信号;•示波器:用于观察和分析信号;•计算机:用于信号处理和数据分析。

4. 实验过程4.1 信号的采样和重建1.将信号发生器的输出连接到示波器的输入端;2.设置信号发生器的输出频率为1000Hz,并调节示波器的采样率使信号能够完整显示在示波器屏幕上;3.将示波器上的信号保存到计算机中,并用计算机对信号进行重建。

4.2 信号的时频分析1.将信号发生器的输出连接到示波器的输入端;2.设置信号发生器的输出频率为500Hz,并调节示波器的触发模式和触发电平,观察信号的时域波形;3.使用计算机对信号进行傅里叶变换,并观察信号的频域特性。

4.3 信号滤波器的设计和应用1.使用计算机设计一个低通滤波器,并将该滤波器应用到信号发生器产生的信号上;2.观察滤波器输出的信号,分析滤波器的效果;3.比较不同滤波器参数对信号滤波效果的影响。

5. 实验结果5.1 信号的采样和重建在进行信号的采样和重建实验时,我们观察到信号能够准确地在示波器屏幕上显示,并且通过计算机重建的信号与原始信号非常接近,说明采样和重建过程没有引入明显的失真。

5.2 信号的时频分析通过进行信号的时频分析实验,我们发现信号的时域波形与信号的频域特性之间存在着密切的关系,通过傅里叶变换可以将信号在时域和频域之间进行转化。

5.3 信号滤波器的设计和应用实验中我们设计了一个低通滤波器,并将其应用到信号上。

观察到滤波器输出的信号相比原始信号进行了一定程度的平滑处理,滤波器的参数对滤波效果有明显的影响。

北航_仪器光电综合实验报告_水平对准及陀螺测角实验

北航_仪器光电综合实验报告_水平对准及陀螺测角实验

[键入公司名称][键入文档标题]2012/4/20水平对准实验实验时间:2012年4月20日星期五实验地点:新主楼B628(一)实验目的利用加速度计进行水平对准,掌握加速度计输出信号的内涵,水平对准的基本原理及方法。

(二)实验原理加速度计测角原理加速度计是惯性导航与惯性制导系统的重要敏感元件。

其输出的是比力信号,比力信号中包括运动加速度和引力加速度两部分,其数值为运动加速度与引力加速度之差。

其中运动加速度反映了物体运动状态(速度)变化,而引力加速度是物体在万有引力作用下产生的加速度(如近地物体受到重力加速度)。

导航定位时是利用加速度计输出信号中的运动加速度进行积分计算速度与位置,引力加速度做为有害加速度补偿掉。

在用加速度进行水平对准时,则把运动加速度做为有害加速度,而利用引力加速度与重力加速度的比值还计算水平姿态角。

通常加速度计输出对应一定的电压,表示为:U A(f) U A(0) af f A(g)A(1)式中U A( f )是载体加速度f对应的加速度计输出电压,U A (0)是f为零时的加速度计输出电压,K A是加速度计标度因数, f A(g)是与加速度有关的误差项,A是加速度计的随机误差。

f A(g)表示与比力有关的加速度计输出误差函数,包括与比力的一次方或多次方的关系,反映了加速度计输出与比力的关系。

本书不研究此项误差。

因此,(1)式简化为:U A(f)U A(0)K A f A(2)由式(2)得比力:U A U A(0)f A A A(3)K A对于数子输出的加速度计,传感器内部已经利用标度因数对加速度计模拟输出进行了量化,直接输出比力值。

f测量=f O f真值+ A (4)f o是加速度计的常值偏置,物理意义是比力真值为零时,加速度主的输出。

其值与U A(0)对应,且U A(O)=K A f o(5)加速度计输出的比力中包含了运动加速度和引力加速度两部分:与水平面有角度 时,有那么水平姿态角可表示为:在为小角度时,式(8)可近似为:利用加速度计敏感地球重力加速度分量,计算水平姿态角,实现水平对准。

电波传播实验报告北航

电波传播实验报告北航

电波传播实验报告北航一、实验目的本实验旨在通过实际测量和分析电波传播的特性,了解电波在不同环境下的传播规律,加深对电磁波传播的理解。

二、实验原理电磁波是由电场和磁场交替变化而形成的波动现象。

电波传播的特性与频率、波长、传播介质等因素相关。

本实验中,我们选择了北航校园内不同位置进行实验测量,以研究电波在不同环境下的传播情况。

我们使用了一台发射机产生电波信号,并在不同位置处设置接收器,通过接收器接收信号强度的变化,来对电波传播的特性进行分析。

三、实验装置和步骤1. 实验装置- 信号发射器:用于产生电波信号;- 接收器:用于接收电波信号,并测量信号强度;- 移动设备:用于记录实验数据。

2. 实验步骤1. 在北航校园内选择不同位置设置接收器,在不同距离处测量信号强度;2. 将发射器与接收器连接,设定合适的频率和功率;3. 逐个测量不同位置的信号强度,并记录数据;4. 根据测量数据分析电波在不同环境下的传播特点。

四、实验结果和分析我们选择了北航校园内的草坪、教学楼和图书馆作为实验场地,并在不同距离处测量了信号强度。

根据实验结果,我们得出以下结论:1. 电波信号在空旷的草坪上传播时,信号强度衰减较小,传播距离较远。

2. 电波信号在教学楼附近传播时,由于建筑物的阻挡,信号强度明显下降,传播距离变短。

3. 电波信号在图书馆附近传播时,受到建筑物和电气设备的干扰,信号强度进一步减弱,传播距离变得更短。

通过实验结果的分析,我们可以得出结论:电波传播受到环境的影响较大,建筑物、地形和其他电磁设备等因素都会影响电波传播的距离和强度。

在实际应用中,我们需要根据具体环境条件来选择合适的传输设备和方法,以保证信号传递的稳定和可靠性。

五、实验总结通过本次实验,我们深入了解了电波传播的特性和影响因素。

电波传播是电磁波的一种重要应用,广泛应用于无线通信、广播电视等领域。

了解电波传播的规律对我们合理设计和优化通信系统具有重要意义。

在今后的学习和工作中,我们将进一步学习电波传播的理论知识,掌握更多的实验技巧,为电磁波的应用和发展做出贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号与测试实验一
一实验目的
1.掌握基本信号的时域和频域分析方法。

2.掌握信号的自相关和互相关分析,了解其应用。

二实验原理
相关MATLAB函数
(1)信号产生函数
正弦:y=A*sin(2*pi*f*t)
方波:y=A*square(2*pi*f*t)
锯齿:y=A*sawtooth(2*pi*f*t)
随机噪声:y=A*randn(size(t))
(2)傅里叶变换及反变换
Y=fft(x,N) x为信号,N为点数,是2的幂次。

(3)相关运算
c=xcorr(x,'unbiased') 求信号x的自相关,'unbiased'为无偏估计c=xcorr(x,y,'unbiased') 信号x、y的互相关
(4)波形显示
plot(x,y) x为横坐标,y为纵坐标
添加标注xlabel(‘text’) 将text添加到x轴下方
ylabel(‘text’) 将text添加到y轴下方
title(‘text’) 将text添加到图形上方
三实验步骤及内容
1 产生不同的周期信号,包括正弦信号、方波信号、锯齿波信号,在时域分析这些波形特征(幅值、频率(周期))。

对产生的信号进行Fourier变换,在频域分析信号的特征,并说明方波信号和锯齿波信号的信号带宽(进行傅里叶变换时注意采样频率)。

(1)正弦信号
(2)方波信号
(3)锯齿波信号
时域
频域
正弦信号频谱离散,仅在f=10Hz时幅值最大;
方波信号频谱离散,在5Hz的奇数倍频有振幅值,且随着频率增大,振幅值减小,其他频率点振幅值为零,信号带宽50Hz;
锯齿波信号频谱离散,在5Hz的倍数频率处有振幅值,且随着频率增大,振幅值减小,其他频率点振幅值为零,信号带宽50HZ。

2 在Matlab中产生随机噪声、阶跃信号(选作)、矩形脉冲(选作)。

对产生的信号进行Fourier变换,在频域分析信号的特征(进行傅里叶变换时注意采样频率)。

(1)随机噪声
随机噪声的频谱为连续频谱,分布与幅值均随机。

3 产生复合信号:
由3个不同频率、幅值的正弦信号叠加的信号,从图形上判断信号的特征;
产生由正弦信号和随机信号叠加的混合信号,从图形上判断信号的特征;
产生由正弦信号和方波叠加的信号,从图形上判断信号的特征。

对中的3种复合信号进行FFT计算,从图上判断信号的特征。

(1)3个正弦信号叠加
3个正弦信号叠加仍为周期信号,频谱离散,在10Hz,20Hz,50Hz处有振幅,且50Hz 信号振幅为两倍。

(2)正弦叠加噪声信号
正弦信号与噪声信号叠加大致为正弦信号,但信号不光滑,其频谱离散,是正弦与噪声各自频谱的叠加,其中10Hz处幅值最大,其余部分幅值很小且随机。

(3)正弦信号叠加方波信号
正弦信号与方波叠加仍为周期信号,频谱离散,在10Hz和20Hz的整数倍处有振幅,是正弦与方波各自频谱的叠加,在10Hz处振幅最大。

4产生一个基波信号,显示图形;按照方波的傅里叶级数展开的规律再叠加一个三次谐波,显示图形;再叠加一个五次谐波,显示图形,观察信号的变化。

将以上图形显示在同一张图的不同部分。

随着高次谐波的叠加,信号越来越接近方波,验证了其傅里叶展开。

5产生一个周期信号,进行自相关运算,说明周期信号进行自相关运算后的信号与原信号相比的特点。

对于
,自相关运算后为,保留了振幅和频率的信
息,丢失了相角信息。

图中可以看出,自相关运算信号幅值为原信号一半,频率不变。

6对白噪声信号进行自相关运算,观察运算后信号特征,并叙述产生这种现象的原因。

sin()y A t ω=2
()cos()2
xx A R τωτ=
自相关函数为偶函数,在处幅值最大,其他频率处振幅值几乎为零,随机信号在τ不等于0时没有相关性。

7 对5中产生的周期信号叠加白噪声,进行自相关运算,观察信号特征。

0τ=
自相关函数仍是周期信号,相关分析后获得的波形去除了噪声影响,大致能看出原信号的频率和幅值等,因此,自相关分析可以用于带噪声信号的处理。

8产生两个同频率的周期信号,进行互相关运算,观察运算后的信号。

两个同频率周期信号互相关函数仍是周期函数,频率不变,幅值为原信号幅值乘积的一半,互相关函数能表明两个信号的相位差与相关性信息。

9产生两个不同频率的周期信号,进行互相关运算,观察运算后的信号。

两个不同频率周期性信号互相关运算后幅值几乎为0,相关性较差。

四实验意义
1.傅里叶变换
傅里叶变换将信号的时域描述和频域描述建立起彼此一一对应的关系,其性质有助于我们理解信号的特征、运算和变化,为复杂问题的分析和简化提供帮助。

因而傅里叶变换在工程实践与科学研究中有着重要的意义。

2 自相关和互相关函数
自相关函数表达了同一过程不同时刻的相互依赖关系,是信号与自身的延迟信号的乘积进行积分运算,对结果进行频谱分析可以获得原信号的周期幅值等信息,能从复合信号中分离出周期信号的信息。

自相关函数常常应用于检测信号回声,检测淹没在随机噪声中的周期信号以及不同类型信号的辨识。

互相关函数表示不同过程的某一时刻的相互依赖关系,是信号与延迟后的另一信号的乘积进行积分运算,其结果保留了两个信号的同频分量的频率、幅值和相位差的信息。

互相关函数常常应用于测速和测距,检测淹没在外来噪声中的信号以及系统脉冲响应的测定。

相关文档
最新文档