2013年高考数学总复习资料
2013高考数学必备复习资料高三
高中数学常用公式及结论(绝对全)1 元素与集合的关系:U x A x CA ∈⇔∉,U x CA x A ∈⇔∉.A A ∅⇔≠∅Ø2 集合12{,,,}n a a a 的子集个数共有2n个;真子集有21n -个;非空子集有21n -个;非空的真子集有22n -个. 3 二次函数的解析式的三种形式:(1) 一般式2()(0)f x a x b x c a =++≠; (2) 顶点式2()()(0)h f x a a k x =-+≠;(当已知抛物线的顶点坐标(,)h k 时,设为此式)(3) 零点式12()()()(0)fx a x x x a x =--≠;(当已知抛物线与x 轴的交点坐标为12(,0),(,0)x x 时,设为此式)(4)切线式:02()()(()),0x k xd fx a x a =-+≠+。
(当已知抛物线与直线y kx d =+相切且切点的横坐标为x 时,设为此式)4 真值表: 同真且真,同假或假5 常见结论的否定形式; 原结论 反设词原结论 反设词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于 不大于 至少有n 个至多有(1n -)个 小于不小于至多有n 个 至少有(1n +)个 对所有x ,成立 存在某x ,不成立 p 或qp ⌝且q ⌝对任何x ,不成立 存在某x ,成立 p 且qp ⌝或q ⌝6 四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)原命题 互逆 逆命题若p则q 若q则p 互 互互 为 为 互 否 否逆 逆 否 否否命题 逆否命题 若非p则非q 互逆 若非q则非p充要条件: (1)、p q ⇒,则P 是q 的充分条件,反之,q 是p 的必要条件;(2)、p q ⇒,且q ≠> p ,则P 是q 的充分不必要条件; (3)、p ≠> p ,且q p ⇒,则P 是q 的必要不充分条件;4、p ≠> p ,且q ≠> p ,则P 是q 的既不充分又不必要条件。
2013届高考数学考点回归总复习《第三十二讲 一元二次不等式及其解法》课件
[反思感悟]
解含参数的一元二次丌等式,要把握好分类
讨论的层次,一般按下面次序进行讨论:首先根据二次项系 数的符号进行分类,其次根据根是否存在,即Δ 的符号进行 分类,最后在根存在时,根据根的大小进行分类.
类型三
一元二次丌等式恒成立问题
解题准备:1.丌等式ax2+bx+c>0的解是全体实数(或恒成立) 的条件是当a=0时,b=0,c>0;当a≠0时, a 0, 0. 2+bx+c<0的解是全体实数(或恒成立)的条件是当 2.丌等式ax a 0, a=0时,b=0,c<0;当a≠0时, 0. 3.f(x)≤a恒成立f(x)max≤a;f(x)≥a恒成立f(x)min≥a. 4.讨论形如ax2+bx+c>0的丌等式恒成立问题,必须对a=0或 a≠0分类讨论,避免产生漏解.
2 (10 x) 10 x 2 3 , 3当y x时, z 3 100 要使每月售货总金额有所增加,即z 1, 2 应有(10 x)o 10 x 100,即x( x 5) 0, 3 所以0 x 5, 所以所求x的范围是 0,5 .
[剖析] [正解]
本题忽略对判别式的讨论是导致错误的主因. 因为Δ =a2-16,
(1)当Δ <0,即-4<a<4时,解集为R; (2)Δ =0,即a=±4. ①a=4时,解集为{x|x≠-2}, ②a=-4时,解集为{x|x≠2}.
3当 0,即a 4或a 4时,
a a 2 16 a a 2 16 解集为 x | x 或x . 2 2
[反思感悟]
2013年高考数学总复习 11-2 复数的概念与运算课件 新人教B版
|- |=2+i,则 z 等于( z 3 A.- +i 4 3 C. +i 4
解析: z=2-|-|+i 知 z 的虚部为 1, z=a+i(a 由 z 设 3 ∈R),则由条件知 a=2- a +1,∴a= ,故选 C. 4
2
答案:C
若复数 z 在复平面内的对应点在第二象限,|z|=5, -对应点在直线 y=4x 上,则 z=________. z 3
解析:由(a+i)i=b+i,得 ai-1=b+i, 所以 a=1,b=-1.
答案:C
(理)(2011· 安徽宣城调研)已知 i 是虚数单位,复数 z i 满足 =2-i,则 z=( z+i 1 3 A.- - i 5 5 1 3 C. - i 5 5 ) 1 3 B.- + i 5 5 1 3 D. + i 5 5
a+3i (文)(2010· 广东佛山)若复数 (a∈R, 为虚数单 i 1+2i 位)是纯虚数,则实数 a 的值为( A.-2 C.-6 B.4 D.6 )
a+3i a+3i1-2i a+6+3-2ai 解析:∵ = = 为纯 5 1+2i 1+2i1-2i
a+6=0 虚数,∴ 3-2a≠0
B.第二象限 D.第四象限
2-i 2-i2 4-4i-1 3 4 解析:∵z= = = = - i. 5 5 5 5 2+i 3 4 ∴z 在复平面内对应的点为 ( ,- ),故选 D. 5 5
答案:D
复数的模
[例 6] (2010· 山东临沂质检)设复数 z 满足关系式 z+ ) 3 B. -i 4 3 D.- -i 4
A.x=-1,y=1 C.x=1,y=1
分析:按复数的乘法运算展开后,由复数相等的条件 列方程组求解.
解析:由(x+i)(1-i)=y 得(x+1)-(x-1)i=y
2013走向高考,贾凤山,高中总复习,数学1-8
A
版
分析:由 f(x)为一次函数可设出其解析式,利用其单 调性及定义域和值域都是[1,2]可列出方程组求系数.
第1章
第八节
高考数学总复习
解析:设 f(x)=kx+b(k≠0),由 f(x)的单调性及条件
k+b=1 知, 2k+b=2 k=1 ∴ b=0 k+b=2 或 2k+b=1
第八节
高考数学总复习
Δ=b2-4ac 分类 a>0
Δ>0 a<0
Δ=0 a>0 a<0 {x|x∈ a>0
Δ<0 a<0
人 教
二次不等式解集 ax +bx+c<0
2
{x|x<x {x|x1< x<x2}
1
R且 ∅ x≠- b } 2a ∅ R
或
A
版
x>x2}
第1章
第八节
高考数学总复习
四、实系数一元二次方程 ax2+bx+c=0(a≠0)的实 根的符号与系数之间的关系 1.方程有两个不相等的正实数根⇔ Δ=b2-4ac>0, x +x =-b>0, 2 1 a c x1·2= >0; x a
图 象
A
版
第1章
第八节
高考数学总复习
Δ=b2-4ac 分类 y> 0 二次函数 y=ax2+bx+c
Δ>0 a>0 x<x1 或 x>x2 x1<x <x2 a<0
Δ=0 a>0 x≠ a<0 x的
Δ<0 a>0 a<0 x的
人 教
b 值不 x∈R 值不 - 2a 存在 存在 x≠ x的
2013届高考数学考点回归总复习《第二十八讲 等差数列》课件
(2)a1+a2+a3+a4=124,an+an-1+an-2+an-3=156,Sn=210,
求项数n; (3)S4=1,S8=4,求a17+a18+a19+a20的值.
(a1 a19 ) 19 ( a3 a17 ) 19 10 19 [解] 1 S19 95. 2 2 2 2 a1 a 2 a 3 a 4 a n a n 1 a n 2 a n 3 a1 a n a 2 a n 1 a 3 a n 2 a 4 a n 3 4 a1 a n 280 a1 a n 70. (a1 an )n 而 Sn 210 n 6. 2
类型三
等差数列的性质及应用
解题准备:若m+n=p+q(m,n,p,q∈N*),则
am+an=ap+aq,Sk,S2k-Sk,S3k-S2k,…构成的是公差为k2d
的等差数列,从中我们可以体会运用性质解决问题的方便 不简捷,应注意运用.
【典例3】在等差数列中,Sn表示{an}的前n项和, (1)a3+a17=10,求S19的值;
第二十八讲等差数列
回归课本
1.等差数列的定义及等差中项 (1)如果一个数列从第2项起,每一项不前一项的差都等亍同一
个常数,那么这个数列就叫做等差数列,这个常数叫等差数
列的公差,通常用字母d表示.定义的表达式为an+1an=d(n∈N*).
(2)对亍正整数m、n、p、q,若m+n=p+q,则等差数列中 am、an、ap、aq的关系为am+an=ap+aq;如果a,A,b成等
2013届高考数学知识点扫描复习10.doc
九、排列、组合、二项式、概率:一、分类计数原理和分步计数原理:分类计数原理:如果完成某事有几种不同的方法,这些方法间是彼此独立的,任选其中一种方法都能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的和。
分步计数原理:如果完成某事,必须分成几个步骤,每个步骤都有不同的方法,而—个步骤中的任何一种方法与下一步骤中的每一个方法都可以连接,只有依次完成所有各步,才能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的积。
区别:如果任何一类办法中的任何一种方法都能完成这件事,则选用分类计数原理,即类与类之间是相互独立的,即“分类完成”;如果只有当n 个步骤都做完,这件事才能完成,则选用分步计数原理,即步与步之间是相互依存的,连续的,即“分步完成”。
二、排列与组合:(1)排列与组合的区别和联系:都是研究从一些不同的元素中取出n 个元素的问题; 区别:前者有顺序,后者无顺序。
(2)排列数、组合数: 排列数的公式:)()!(!)1()2)(1(n m m n n m n n n n A m n ≤-=+---= 注意:①全排列:!n A n n =; ②记住下列几个阶乘数,1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;排列数的性质:①1-=m m nA A (将从n 个不同的元素中取出)(n m m ≤个元素,分两步完成:第一步从n 个元素中选出1个排在指定的一个位置上;第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置上)②m m m A mA A 1-+=(将从n 个不同的元素中取出)(n m m ≤个元素,分两类完成:第一类:m 个元素中含有a ,分两步完成:第一步将a 排在某一位置上,有m 不同的方法。
第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置上)即有11--m n mA 种不同的方法。
第二类:m 个元素中不含有a ,从1-n 个元素中取出m 个元素排在m 个位置上,有m n A 1-种方法。
2013年高考数学总复习资料
2013年高考数学总复习资料D当⎪⎩⎪⎨⎧-><120a a ,即a<-2时,不等式解为]2,1[a -.当⎪⎩⎪⎨⎧-=<120aa ,即a=-2时,不等式解为x=-1.综上:a=0时,x ∈(-∞,-1).a>0时,x ∈),2[]1,(+∞--∞a .-2<a<0时,x ∈]1,2[-a . a<-2时,x ∈]2,1[a -.a=-2时,x ∈{x|x=-1}.评述:通过上面三个例题的分析与解答,可以概括出分类讨论问题的基本原则为:10:能不分则不分; 20:若不分则无法确定任何一个结果; 30:若分的话,则按谁碍事就分谁.例4.已知函数f(x)=cos 2x+asinx-a 2+2a+5.有最大值2,求实数a 的取值.解:f(x)=1-sin 2x+asinx-a 2+2a+5.6243)2(sin 22++---=a a a x 令sinx=t, t ∈[-1,1].则6243)2()(22++---=a a a t t f (t ∈[-1,1]). (1)当12>a即a>2时,t=1,2533max=++-=a a y解方程得:22132213-=+=a a 或(舍). (2)当121≤≤-a 时,即-2≤a ≤2时,2a t =,262432max=++-=a a y,解方程为:34-=a 或a=4(舍). (3)当12-<a即a<-2时, t=-1时,y max =-a 2+a+5=2即 a 2-a-3=0 ∴ 2131±=a , ∵ a<-2, ∴ 2131±-=a 全都舍去.综上,当342213-=+=a a 或时,能使函数f(x)的最大值为2.例5.设{a n }是由正数组成的等比数列,S n是其前n 项和,证明:15.025.05.0log 2log log ++>+n n n S S S .证明:(1)当q=1时,S n =na 1从而 0)1()2(2121211212<-=+-+⋅=-⋅++a a n a n na S S S n n n(2)当q ≠1时,qq a S nn--=1)1(1, 从而.0)1()1()1)(1(2122121221212<-=-----=-⋅++++nn n n n n n q a q q a q q a S S S由(1)(2)得:212++<⋅n n nS S S .∵ 函数xy 5.0log =为单调递减函数.∴ 15.025.05.0log 2log log ++>+n n n S SS . 例6.设一双曲线的两条渐近线方程为2x-y+1=0, 2x+y-5=0,求此双曲线的离心率.分析:由双曲线的渐近线方程,不能确定其焦点位置,所以应分两种情况求解.解:(1)当双曲线的焦点在直线y=3时,双曲线的方程可改为1)3()1(222=---by a x ,一条渐近线的斜率为2=ab , ∴ b=2.∴555222==+==a aa b a c e .(2)当双曲线的焦点在直线x=1时,仿(1)知双曲线的一条渐近线的斜率为2=b a,此时25=e .综上(1)(2)可知,双曲线的离心率等于255或.评述:例5,例6,的分类讨论是由公式的限制条件与图形的不确定性所引起的,而例1-4是对于含有参数的问题而对参数的允许值进行的全面讨论.例7.解关于x 的不等式 1512)1(<+--x x a . 解:原不等式 012)1(55<⇔+--x x a 0)]2()1)[(2(022)1(012)1(<----⇔<--+-⇔<+--⇔a x a x x a x a x x a⎪⎩⎪⎨⎧>----<-⎪⎩⎪⎨⎧<---->-⎩⎨⎧<--=-⇔0)12)(2(01)3(0)12)(2(01)2(0)21)(2(01)1(a ax x a a a x x a x a 或或由(1) a=1时,x-2>0, 即 x ∈(2,+∞). 由(2)a<1时,012>--a a,下面分为三种情况.①⎩⎨⎧<<⇒⎪⎩⎪⎨⎧>--<012121a a aa a 即a<1时,解为)12,2(aa--.②0012121=⇒⎩⎨⎧=<⇒⎪⎩⎪⎨⎧=--<a a a aa a 时,解为∅.③ ⎪⎩⎪⎨⎧<--<2121a aa ⇒ ⎩⎨⎧><01a a 即0<a<1时,原不等式解为:)2,12(aa --.由(3)a>1时,aa --12的符号不确定,也分为3种情况.①⎩⎨⎧≤>⇒⎪⎩⎪⎨⎧≥-->012121a a a aa ⇒ a 不存在. ② ⇒⎩⎨⎧>>⇒⎪⎩⎪⎨⎧<-->012121a a a a a 当a>1时,原不等式的解为:),2()12,(+∞---∞ aa .综上:a=1时,x ∈(2,+∞).a<1时,x ∈)12,2(a a-- a=0时,x ∈∅.0<a<1时,x ∈)2,12(aa-- a>1时,x ∈),2()12,(+∞---∞ aa . 评述:对于分类讨论的解题程序可大致分为以下几个步骤:10:明确讨论的对象,确定对象的全体; 20:确定分类标准,正确分类,不重不漏; 30:逐步进行讨论,获得结段性结记; 40:归纳总结,综合结记. 课后练习:1.解不等式2)385(log 2>+-x x x2.解不等式1|)3(log ||log |3121≤-+x x3.已知关于x 的不等式052<--ax ax 的解集为M. (1)当a=4时,求集合M:(2)若3∈M ,求实数a 的取值范围.4.在x0y 平面上给定曲线y 2=2x, 设点A 坐标为(a,0), a ∈R ,求曲线上点到点A 距离的最小值d ,并写成d=f(a)的函数表达式.参考答案:1. ),(),(∞+235321 2.]4943[, 3. (1) M 为),(),(2452 ∞- (2)),9()35,(+∞-∞∈ a 4. ⎪⎩⎪⎨⎧<≥-==时当时当1||112)(a a a a a f d .2006年高三数学第三轮总复习函数押题针对训练复习重点:函数问题专题,主要帮助学生整理函数基本知识,解决函数问题的基本方法体系,函数问题中的易错点,并提高学生灵活解决综合函数问题的能力。
2013年新课标江苏高考数学复习资料(含答案)
2013年高考数学第一轮复习资料第一章集合第一节集合的含义、表示及基本关系A组1.已知A={1,2},B={x|x∈A},则集合A与B的关系为________.解析:由集合B={x|x∈A}知,B={1,2}.答案:A=B2.若∅{x|x2≤a,a∈R},则实数a的取值范围是________.解析:由题意知,x2≤a有解,故a≥0.答案:a≥03.已知集合A={y|y=x2-2x-1,x∈R},集合B={x|-2≤x<8},则集合A与B的关系是________.解析:y=x2-2x-1=(x-1)2-2≥-2,∴A={y|y≥-2},∴B A.答案:B A4.(2012年高考广东卷改编)已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩(V enn)图是________.解析:由N={x|x2+x=0},得N={-1,0},则N M.答案:②5.(2011年苏、锡、常、镇四市调查)已知集合A={x|x>5},集合B={x|x>a},若命题“x∈A”是命题“x∈B”的充分不必要条件,则实数a的取值范围是________.解析:命题“x∈A”是命题“x∈B”的充分不必要条件,∴A B,∴a<5.答案:a<56.(原创题)已知m∈A,n∈B,且集合A={x|x=2a,a∈Z},B={x|x=2a+1,a∈Z},又C={x|x=4a +1,a∈Z},判断m+n属于哪一个集合?解:∵m∈A,∴设m=2a1,a1∈Z,又∵n∈B,∴设n=2a2+1,a2∈Z,∴m+n=2(a1+a2)+1,而a1+a2∈Z,∴m+n∈B.B组1.设a,b都是非零实数,y=a|a|+b|b|+ab|ab|可能取的值组成的集合是________.解析:分四种情况:(1)a>0且b>0;(2)a>0且b<0;(3)a<0且b>0;(4)a<0且b<0,讨论得y=3或y=-1.答案:{3,-1}2.已知集合A={-1,3,2m-1},集合B={3,m2}.若B⊆A,则实数m=________.解析:∵B⊆A,显然m2≠-1且m2≠3,故m2=2m-1,即(m-1)2=0,∴m=1.答案:13.设P,Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的个数是________个.解析:依次分别取a=0,2,5;b=1,2,6,并分别求和,注意到集合元素的互异性,∴P+Q={1,2,6,3,4,8,7,11}.答案:84.已知集合M={x|x2=1},集合N={x|ax=1},若N M,那么a的值是________.解析:M ={x |x =1或x =-1},N M ,所以N =∅时,a =0;当a ≠0时,x =1a=1或-1,∴a =1或-1.答案:0,1,-15.满足{1}A ⊆{1,2,3}的集合A 的个数是________个.解析:A 中一定有元素1,所以A 有{1,2},{1,3},{1,2,3}.答案:36.已知集合A ={x |x =a +16,a ∈Z },B ={x |x =b 2-13,b ∈Z },C ={x |x =c 2+16,c ∈Z },则A 、B 、C 之间的关系是________.解析:用列举法寻找规律.答案:A B =C7.集合A ={x ||x |≤4,x ∈R },B ={x |x <a },则“A ⊆B ”是“a >5”的________.解析:结合数轴若A ⊆B ⇔a ≥4,故“A ⊆B ”是“a >5”的必要但不充分条件.答案:必要不充分条件8.(2011年江苏启东模拟)设集合M ={m |m =2n ,n ∈N ,且m <500},则M 中所有元素的和为________.解析:∵2n <500,∴n =0,1,2,3,4,5,6,7,8.∴M 中所有元素的和S =1+2+22+…+28=511.答案:511 9.(2012年高考北京卷)设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,且k +1∉A ,那么称k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.解析:依题可知,由S 的3个元素构成的所有集合中,不含“孤立元”,这三个元素一定是相连的三个数.故这样的集合共有6个.答案:610.已知A ={x ,xy ,lg(xy )},B ={0,|x |,y },且A =B ,试求x ,y 的值.解:由lg(xy )知,xy >0,故x ≠0,xy ≠0,于是由A =B 得lg(xy )=0,xy =1.∴A ={x,1,0},B ={0,|x |,1x}.于是必有|x |=1,1x=x ≠1,故x =-1,从而y =-1.11.已知集合A ={x |x 2-3x -10≤0},(1)若B ⊆A ,B ={x |m +1≤x ≤2m -1},求实数m 的取值范围; (2)若A ⊆B ,B ={x |m -6≤x ≤2m -1},求实数m 的取值范围; (3)若A =B ,B ={x |m -6≤x ≤2m -1},求实数m 的取值范围. 解:由A ={x |x 2-3x -10≤0},得A ={x |-2≤x ≤5},(1)∵B ⊆A ,∴①若B =∅,则m +1>2m -1,即m <2,此时满足B ⊆A .②若B ≠∅,则⎩⎪⎨⎪⎧m +1≤2m -1,-2≤m +1,2m -1≤5.解得2≤m ≤3.由①②得,m 的取值范围是(-∞,3]. (2)若A ⊆B ,则依题意应有⎩⎪⎨⎪⎧2m -1>m -6,m -6≤-2,2m -1≥5.解得⎩⎪⎨⎪⎧m >-5,m ≤4,m ≥3.故3≤m ≤4,∴m 的取值范围是[3,4].(3)若A =B ,则必有⎩⎪⎨⎪⎧m -6=-2,2m -1=5,解得m ∈∅.,即不存在m 值使得A =B .12.已知集合A ={x |x 2-3x +2≤0},B ={x |x 2-(a +1)x +a ≤0}.(1)若A 是B 的真子集,求a 的取值范围;(2)若B是A的子集,求a的取值范围;(3)若A=B,求a的取值范围.解:由x2-3x+2≤0,即(x-1)(x-2)≤0,得1≤x≤2,故A={x|1≤x≤2},而集合B={x|(x-1)(x-a)≤0},(1)若A是B的真子集,即A B,则此时B={x|1≤x≤a},故a>2.(2)若B是A的子集,即B⊆A,由数轴可知1≤a≤2.(3)若A=B,则必有a=2第二节集合的基本运算A组1.(2011年高考浙江卷改编)设U=R,A={x|x>0},B={x|x>1},则A∩∁U B=____.解析:∁U B={x|x≤1},∴A∩∁U B={x|0<x≤1}.答案:{x|0<x≤1}2.(2012年高考全国卷Ⅰ改编)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有________个.解析:A∩B={4,7,9},A∪B={3,4,5,7,8,9},∁U(A∩B)={3,5,8}.答案:33.已知集合M={0,1,2},N={x|x=2a,a∈M},则集合M∩N=________.解析:由题意知,N={0,2,4},故M∩N={0,2}.答案:{0,2}4.(原创题)设A,B是非空集合,定义AⓐB={x|x∈A∪B且x∉A∩B},已知A={x|0≤x≤2},B={y|y≥0},则AⓐB=________.解析:A∪B=[0,+∞),A∩B=[0,2],所以AⓐB=(2,+∞).答案:(2,+∞)5.(2012年高考湖南卷)某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.解析:设两项运动都喜欢的人数为x,画出韦恩图得到方程15-x+x+10-x+8=30x=3,∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12(人).答案:126.(2010年浙江嘉兴质检)已知集合A={x|x>1},集合B={x|m≤x≤m+3}.(1)当m=-1时,求A∩B,A∪B;(2)若B⊆A,求m的取值范围.解:(1)当m=-1时,B={x|-1≤x≤2},∴A∩B={x|1<x≤2},A∪B={x|x≥-1}.(2)若B⊆A,则m>1,即m的取值范围为(1,+∞)B组1.若集合M={x∈R|-3<x<1},N={x∈Z|-1≤x≤2},则M∩N=________.解析:因为集合N={-1,0,1,2},所以M∩N={-1,0}.答案:{-1,0}2.已知全集U={-1,0,1,2},集合A={-1,2},B={0,2},则(∁U A)∩B=________.解析:∁U A={0,1},故(∁U A)∩B={0}.答案:{0}3.(2010年济南市高三模拟)若全集U=R,集合M={x|-2≤x≤2},N={x|x2-3x≤0},则M∩(∁U N)=________.解析:根据已知得M∩(∁U N)={x|-2≤x≤2}∩{x|x<0或x>3}={x|-2≤x<0}.答案:{x|-2≤x<0} 4.集合A={3,log2a},B={a,b},若A∩B={2},则A∪B=________.解析:由A∩B={2}得log2a=2,∴a=4,从而b=2,∴A∪B={2,3,4}.答案:{2,3,4}5.(2009年高考江西卷改编)已知全集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为________.解析:U =A ∪B 中有m 个元素,∵(∁U A )∪(∁U B )=∁U (A ∩B )中有n 个元素,∴A ∩B 中有m -n 个元素.答案:m -n6.(2009年高考重庆卷)设U ={n |n 是小于9的正整数},A ={n ∈U |n 是奇数},B ={n ∈U |n 是3的倍数},则∁U (A ∪B )=________.解析:U ={1,2,3,4,5,6,7,8},A ={1,3,5,7},B ={3,6},∴A ∪B ={1,3,5,6,7}, 得∁U (A ∪B )={2,4,8}.答案:{2,4,8}7.定义A ⊗B ={z |z =xy +xy,x ∈A ,y ∈B }.设集合A ={0,2},B ={1,2},C ={1},则集合(A ⊗B )⊗C 的所有元素之和为________.解析:由题意可求(A ⊗B )中所含的元素有0,4,5,则(A ⊗B )⊗C 中所含的元素有0,8,10,故所有元素之和为18.答案:188.若集合{(x ,y )|x +y -2=0且x -2y +4=x ,y )|y =3x +b },则b =________.解析:由⎩⎪⎨⎪⎧ x +y -2=0,x -2y +4=0.⇒⎩⎪⎨⎪⎧x =0,y =2.点(0,2)在y =3x +b 上,∴b =2.9.设全集I ={2,3,a 2+2a -3},A ={2,|a +1|},∁I A ={5},M ={x |x =log 2|a |},则集合M 的所有子集是________.解析:∵A ∪(∁I A )=I ,∴{2,3,a 2+2a -3}={2,5,|a +1|},∴|a +1|=3,且a 2+2a -3=5,解得a =-4或a =2,∴M ={log 22,log 2|-4|}={1,2}.答案:∅,{1},{2},{1,2}10.设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +(a 2-5)=0}.(1)若A ∩B ={2},求实数a 的值;(2)若A ∪B =A ,求实数a 的取值范围.解:由x 2-3x +2=0得x =1或x =2,故集合A ={1,2}.(1)∵A ∩B ={2},∴2∈B ,代入B 中的方程,得a 2+4a +3=0⇒a =-1或a =-3;当a =-1时,B ={x |x 2-4=0}={-2,2},满足条件;当a =-3时,B ={x |x 2-4x +4=0}={2},满足条件;综上,a 的值为-1或-3.(2)对于集合B ,Δ=4(a +1)2-4(a 2-5)=8(a +3).∵A ∪B =A ,∴B ⊆A ,①当Δ<0,即a <-3时,B =∅满足条件;②当Δ=0,即a =-3时,B ={2}满足条件;③当Δ>0,即a >-3时,B =A ={1,2}才能满足条件,则由根与系数的关系得⎩⎪⎨⎪⎧1+2=-2(a +1)1×2=a 2-5⇒⎩⎪⎨⎪⎧a =-52,a 2=7,矛盾.综上,a 的取值范围是a ≤-3. 11.已知函数f (x )=6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B . (1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值. 解:A ={x |-1<x ≤5}.(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3}, ∴A ∩(∁R B )={x |3≤x ≤5}.(2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},∴有-42+2×4+m =0,解得m =8,此时B ={x |-2<x <4},符合题意. 12.已知集合A ={x ∈R |ax 2-3x +2=0}.(1)若A =∅,求实数a 的取值范围;(2)若A 是单元素集,求a 的值及集合A ; (3)求集合M ={a ∈R |A ≠∅}.解:(1)A 是空集,即方程ax 2-3x +2=0无解.若a =0,方程有一解x =23,不合题意.若a ≠0,要方程ax 2-3x +2=0无解,则Δ=9-8a <0,则a >98.综上可知,若A =∅,则a 的取值范围应为a >98.(2)当a =0时,方程ax 2-3x +2=0只有一根x =23,A ={23}符合题意.当a ≠0时,则Δ=9-8a =0,即a =98时,方程有两个相等的实数根x =43,则A ={43}.综上可知,当a =0时,A ={23};当a =98时,A ={43}.(3)当a =0时,A ={23}≠∅.当a ≠0时,要使方程有实数根,则Δ=9-8a ≥0,即a ≤98.综上可知,a 的取值范围是a ≤98,即M ={a ∈R |A ≠∅}={a |a ≤98}第二章 函数第一节 对函数的进一步认识A 组1.(2009年高考江西卷改编)函数y =-x 2-3x +4x的定义域为________.解析:⎩⎪⎨⎪⎧-x 2-3x +4≥0,x ≠0,⇒x ∈[-4,0)∪(0,1]答案:[-4,0)∪(0,1]2.(2010年绍兴第一次质检)如图,函数f (x )的图象是曲线段OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (1f (3))的值等于________.解析:由图象知f (3)=1,f (1f (3))=f (1)=2.答案:23.(2009年高考北京卷)已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1,-x ,x >1.若f (x )=2,则x =________.解析:依题意得x ≤1时,3x =2,∴x =log 32;当x >1时,-x =2,x =-2(舍去).故x =log 32.答案:log 32 4.(2010年黄冈市高三质检)函数f :{1,2}→{1,2}满足f [f (x )]>1的这样的函数个数有________个.解析:如图.答案:15.(原创题)由等式x 3+a 1x 2+a 2x +a 3=(x +1)3+b 1(x +1)2+b 2(x +1)+b 3定义一个映射f (a 1,a 2,a 3)=(b 1,b 2,b 3),则f (2,1,-1)=________.解析:由题意知x 3+2x 2+x -1=(x +1)3+b 1(x +1)2+b 2(x +1)+b 3, 令x =-1得:-1=b 3;再令x =0与x =1得⎩⎪⎨⎪⎧-1=1+b 1+b 2+b 33=8+4b 1+2b 2+b 3,解得b 1=-1,b 2=0. 答案:(-1,0,-1)6.已知函数f (x )=⎩⎪⎨⎪⎧1+1x (x >1),x 2+1 (-1≤x ≤1),2x +3 (x <-1).(1)求f (1-12-1),f {f [f (-2)]}的值;(2)求f (3x -1);(3)若f (a )=32, 求a .解:f (x )为分段函数,应分段求解.(1)∵1-12-1=1-(2+1)=-2<-1,∴f (-2)=-22+3,又∵f (-2)=-1,f [f (-2)]=f (-1)=2,∴f {f [f (-2)]}=1+12=32.(2)若3x -1>1,即x >23,f (3x -1)=1+13x -1=3x3x -1;若-1≤3x -1≤1,即0≤x ≤32,f (3x -1)=(3x -1)2+1=9x 2-6x +2;若3x -1<-1,即x <0,f (3x -1)=2(3x -1)+3=6x +1.∴f (3x -1)=⎩⎨⎧3x 3x -1(x >23),9x 2-6x +2 (0≤x ≤23),6x +1 (x <0).(3)∵f (a )=32,∴a >1或-1≤a ≤1.当a >1时,有1+1a =32,∴a =2;当-1≤a ≤1时,a 2+1=32,∴a =±22.∴a =2或±22.B 组1.(2010年广东江门质检)函数y =13x -2+lg(2x -1)的定义域是________. 解析:由3x -2>0,2x -1>0,得x >23.答案:{x |x >23}2.(2010年山东枣庄模拟)函数f (x )=⎩⎪⎨⎪⎧-2x +1,(x <-1),-3,(-1≤x ≤2),2x -1,(x >2),则f (f (f (32)+5))=_.解析:∵-1≤32≤2,∴f (32)+5=-3+5=2,∵-1≤2≤2,∴f (2)=-3,∴f (-3)=(-2)×(-3)+1=7.答案:73.定义在区间(-1,1)上的函数f (x )满足2f (x )-f (-x )=lg(x +1),则f (x )的解析式为________.解析:∵对任意的x ∈(-1,1),有-x ∈(-1,1), 由2f (x )-f (-x )=lg(x +1),① 由2f (-x )-f (x )=lg(-x +1),②①×2+②消去f (-x ),得3f (x )=2lg(x +1)+lg(-x +1),∴f (x )=23lg(x +1)+13lg(1-x ),(-1<x <1).答案:f (x )=23lg(x +1)+13lg(1-x ),(-1<x <1)4.设函数y =f (x )满足f (x +1)=f (x )+1,则函数y =f (x )与y =x 图象交点的个数可能是________个.解析:由f (x +1)=f (x )+1可得f (1)=f (0)+1,f (2)=f (0)+2,f (3)=f (0)+3,…本题中如果f (0)=0,那么y =f (x )和y =x 有无数个交点;若f (0)≠0,则y =f (x )和y =x 有零个交点.答案:0或无数5.设函数f (x )=⎩⎪⎨⎪⎧2 (x >0)x 2+bx +c (x ≤0),若f (-4)=f (0),f (-2)=-2,则f (x )的解析式为f (x )=________,关于x 的方程f (x )=x 的解的个数为________个.解析:由题意得⎩⎪⎨⎪⎧16-4b +c =c 4-2b +c =-2 ⎩⎪⎨⎪⎧b =4c =2,∴f (x )=⎩⎪⎨⎪⎧2 (x >0)x 2+4x +2 (x ≤0).由数形结合得f (x )=x 的解的个数有3个.答案:⎩⎪⎨⎪⎧2 (x >0)x 2+4x +2 (x ≤0) 36.设函数f (x )=log a x (a >0,a ≠1),函数g (x )=-x 2+bx +c ,若f (2+2)-f (2+1)=12,g (x )的图象过点A (4,-5)及B (-2,-5),则a =__________,函数f [g (x )]的定义域为__________.答案:2 (-1,3)7.(2009年高考天津卷改编)设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0x +6,x <0,则不等式f (x )>f (1)的解集是________.解析:由已知,函数先增后减再增,当x ≥0,f (x )>f (1)=3时,令f (x )=3, 解得x =1,x =3.故f (x )>f (1)的解集为0≤x <1或x >3.当x <0,x +6=3时,x =-3,故f (x )>f (1)=3,解得-3<x <0或x >3. 综上,f (x )>f (1)的解集为{x |-3<x <1或x >3}.答案:{x |-3<x <1或x >3}8.(2009年高考山东卷)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(4-x ), x ≤0,f (x -1)-f (x -2), x >0,则f (3)的值为________.解析:∵f (3)=f (2)-f (1),又f (2)=f (1)-f (0),∴f (3)=-f (0),∵f (0)=log 24=2,∴f (3)=-2.答案:-29.有一个有进水管和出水管的容器,每单位时间进水量是一定的,设从某时刻开始,5分钟内只进水,不出水,在随后的15分钟内既进水,又出水,得到时间x 与容器中的水量y 之间关系如图.再随后,只放水不进水,水放完为止,则这段时间内(即x ≥20),y 与x 之间函数的函数关系是________.解析:设进水速度为a 1升/分钟,出水速度为a 2升/分钟,则由题意得⎩⎪⎨⎪⎧5a 1=205a 1+15(a 1-a 2)=35,得⎩⎪⎨⎪⎧a 1=4a 2=3,则y =35-3(x -20),得y =-3x +95,又因为水放完为止,所以时间为x ≤953,又知x ≥20,故解析式为y =-3x +95(20≤x ≤953).答案:y =-3x +95(20≤x ≤953)10.函数f (x )=(1-a 2)x 2+3(1-a )x +6.(1)若f (x )的定义域为R ,求实数a 的取值范围; (2)若f (x )的定义域为[-2,1],求实数a 的值. 解:(1)①若1-a 2=0,即a =±1,由题意知g (x )≥0对x ∈R 恒成立,∴⎩⎪⎨⎪⎧ 1-a 2>0,Δ≤0,∴⎩⎪⎨⎪⎧-1<a <1,(a -1)(11a +5)≤0, ∴-511≤a <1.由①②可得-511≤a ≤1.(2)由题意知,不等式(1-a 2)x 2+3(1-a )x +6≥0的解集为[-2,1],显然1-a 2≠0且-2,1是方程(1-a 2)x 2+3(1-a )x +6=0的两个根.∴⎩⎪⎨⎪⎧ 1-a 2<0,-2+1=3(1-a )a 2-1,-2=61-a2,Δ=[3(1-a )]2-24(1-a 2)>0∴⎩⎪⎨⎪⎧a <-1或a >1,a =2,a =±2.a <-511或a >1∴a =2.11.已知f (x +2)=f (x )(x ∈R ),并且当x ∈[-1,1]时,f (x )=-x 2+1,求当x ∈[2k -1,2k +1](k ∈Z )时、f (x )的解析式.解:由f (x +2)=f (x ),可推知f (x )是以2为周期的周期函数.当x ∈[2k -1,2k +1]时,2k -1≤x ≤2k +1,-1≤x -2k ≤1.∴f (x -2k )=-(x -2k )2+1.又f (x )=f (x -2)=f (x -4)=…=f (x -2k ),∴f (x )=-(x -2k )2+1,x ∈[2k -1,2k +1],k ∈Z .12.在2008年11月4日珠海航展上,中国自主研制的ARJ 21支线客机备受关注,接到了包括美国在内的多国订单.某工厂有216名工人接受了生产1000件该支线客机某零部件的总任务,已知每件零件由4个C 型装置和3个H 型装置配套组成,每个工人每小时能加工6个C 型装置或3个H 型装置.现将工人分成两组同时开始加工,每组分别加工一种装置,设加工C 型装置的工人有x 位,他们加工完C 型装置所需时间为g (x ),其余工人加工完H 型装置所需时间为h (x ).(单位:h ,时间可不为整数)(1)写出g (x ),h (x )的解析式;(2)写出这216名工人完成总任务的时间f (x )的解析式; (3)应怎样分组,才能使完成总任务的时间最少?解:(1)g (x )=20003x (0<x <216,x ∈N *),h (x )=1000216-x(0<x <216,x ∈N *).(2)f (x )=⎩⎨⎧20003x (0<x ≤86,x ∈N *).1000216-x (87≤x <216,x ∈N *).(3)分别为86、130或87、129.第二节 函数的单调性A 组1.(2009年高考福建卷改编)下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是________.①f (x )=1x ②f (x )=(x -1)2 ③f (x )=e x ④f (x )=ln(x +1)解析:∵对任意的x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2),∴f (x )在(0,+∞)上为减函数.答案:①2.函数f (x )(x ∈R )的图象如右图所示,则函数g (x )=f (log a x )(0<a <1)的单调减区间是________.12]时,g (x )为减函数. 解析:∵0<a <1,y =log a x 为减函数,∴log a x ∈[0,由0≤log a x ≤12a ≤x ≤1.答案:[a ,1](或(a ,1))3.函数y =x -4+15-3x 的值域是________.解析:令x =4+sin 2α,α∈[0,π2],y =sin α+3cos α=2sin(α+π3),∴1≤y ≤2.答案:[1,2]4.已知函数f (x )=|e x +aex |(a ∈R )在区间[0,1]上单调递增,则实数a 的取值范围__.解析:当a <0,且e x +a e x ≥0时,只需满足e 0+ae 0≥0即可,则-1≤a <0;当a =0时,f (x )=|e x |=e x符合题意;当a >0时,f (x )=e x +a e x ,则满足f ′(x )=e x -ae x ≥0在x ∈[0,1]上恒成立.只需满足a ≤(e 2x )min成立即可,故a ≤1,综上-1≤a ≤1.答案:-1≤a ≤15.(原创题)如果对于函数f (x )定义域内任意的x ,都有f (x )≥M (M 为常数),称M 为f (x )的下界,下界M 中的最大值叫做f (x )的下确界,下列函数中,有下确界的所有函数是________.①f (x )=sin x ;②f (x )=lg x ;③f (x )=e x ;④f (x )=⎩⎪⎨⎪⎧1 (x >0)0 (x =0)-1 (x <-1)解析:∵sin x ≥-1,∴f (x )=sin x 的下确界为-1,即f (x )=sin x 是有下确界的函数;∵f (x )=lg x 的值域为(-∞,+∞),∴f (x )=lg x 没有下确界;∴f (x )=e x 的值域为(0,+∞),∴f (x )=e x 的下确界为0,即f (x )=e x 是有下确界的函数;∵f (x )=⎩⎪⎨⎪⎧ 1 (x >0)0 (x =0)-1 (x <-1)的下确界为-1.∴f (x )=⎩⎪⎨⎪⎧1 (x >0)0 (x =0)-1 (x <-1)是有下确界的函数.答案:①③④6.已知函数f (x )=x 2,g (x )=x -1. (1)若存在x ∈R 使f (x )<b ·g (x ),求实数b 的取值范围;(2)设F (x )=f (x )-mg (x )+1-m -m 2,且|F (x )|在[0,1]上单调递增,求实数m 的取值范围. 解:(1)x ∈R ,f (x )<b ·g (x x ∈R ,x 2-bx +b =(-b )2-4b b <0或b >4.(2)F (x )=x 2-mx +1-m 2,Δ=m 2-4(1-m 2)=5m 2-4,①当Δ≤0即-255≤m ≤255时,则必需⎩⎨⎧m2≤0-255≤m ≤255-255≤m ≤0.②当Δ>0即m <-255或m >255时,设方程F (x )=0的根为x 1,x 2(x 1<x 2),若m2≥1,则x 1≤0.⎩⎪⎨⎪⎧ m 2≥1F (0)=1-m 2≤0m ≥2.若m2≤0,则x 2≤0, ⎩⎪⎨⎪⎧m 2≤0F (0)=1-m 2≥0-1≤m <-255.综上所述:-1≤m ≤0或m ≥2.B 组1.(2010年山东东营模拟)下列函数中,单调增区间是(-∞,0]的是________.①y =-1x②y =-(x -1) ③y =x 2-2 ④y =-|x |解析:由函数y =-|x |的图象可知其增区间为(-∞,0].答案:④2.若函数f (x )=log 2(x 2-ax +3a )在区间[2,+∞)上是增函数,则实数a 的取值范围是________.解析:令g (x )=x 2-ax +3a ,由题知g (x )在[2,+∞)上是增函数,且g (2)>0.∴⎩⎪⎨⎪⎧a 2≤2,4-2a +3a >0,∴-4<a ≤4.答案:-4<a ≤4 3.若函数f (x )=x +a x (a >0)在(34,+∞)上是单调增函数,则实数a 的取值范围__.解析:∵f (x )=x +a x (a >0)在(a ,+∞)上为增函数,∴a ≤34,0<a ≤916.答案:(0,916]4.(2009年高考陕西卷改编)定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则下列结论正确的是________.①f (3)<f (-2)<f (1) ②f (1)<f (-2)<f (3) ③f (-2)<f (1)<f (3) ④f (3)<f (1)<f (-2)解析:由已知f (x 2)-f (x 1)x 2-x 1<0,得f (x )在x ∈[0,+∞)上单调递减,由偶函数性质得f (2)=f (-2),即f (3)<f (-2)<f (1).答案:①5.(2010年陕西西安模拟)已知函数f (x )=⎩⎪⎨⎪⎧a x (x <0),(a -3)x +4a (x ≥0)满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则a 的取值范围是________.解析:由题意知,f (x )为减函数,所以⎩⎪⎨⎪⎧0<a <1,a -3<0,a 0≥(a -3)×0+4a ,解得0<a ≤14.6.(2010年宁夏石嘴山模拟)函数f (x )的图象是如下图所示的折线段OAB ,点A 的坐标为(1,2),点B 的坐标为(3,0),定义函数g (x )=f (x )·(x -1),则函数g (x )的最大值为________.解析:g (x )=⎩⎪⎨⎪⎧2x (x -1) (0≤x <1),(-x +3)(x -1) (1≤x ≤3),当0≤x <1时,最大值为0;当1≤x ≤3时,在x =2取得最大值1.答案:17.(2010年安徽合肥模拟)已知定义域在[-1,1]上的函数y =f (x )的值域为[-2,0],则函数y =f (cos x )的值域是________.解析:∵cos x ∈[-1,1],函数y =f (x )的值域为[-2,0],∴y =f (cos x )的值域为[-2,0].答案:[-2,0]8.已知f (x )=log 3x +2,x ∈[1,9],则函数y =[f (x )]2+f (x 2)的最大值是________.解析:∵函数y =[f (x )]2+f (x 2)的定义域为⎩⎪⎨⎪⎧1≤x ≤9,1≤x 2≤9,∴x ∈[1,3],令log 3x =t ,t ∈[0,1], ∴y =(t +2)2+2t +2=(t +3)2-3,∴当t =1时,y max =13.答案:139.若函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间(0,12)内恒有f (x )>0,则f (x )的单调递增区间为__________.解析:令μ=2x 2+x ,当x ∈(0,12)时,μ∈(0,1),而此时f (x )>0恒成立,∴0<a <1.μ=2(x +14)2-18,则减区间为(-∞,-14).而必然有2x 2+x >0,即x >0或x <-12.∴f (x )的单调递增区间为(-∞,-12).答案:(-∞,-12)10.试讨论函数y =2(log 12x )2-2log 12x +1的单调性.解:易知函数的定义域为(0,+∞).如果令u =g (x )=log 12x ,y =f (u )=2u 2-2u +1,那么原函数y=f [g (x )]是由g (x )与f (u )复合而成的复合函数,而u =log 12x 在x ∈(0,+∞)内是减函数,y =2u 2-2u +1=2(u -12)2+12在u ∈(-∞,12)上是减函数,在u ∈(12,+∞)上是增函数.又u ≤12,即log 12x ≤12,得x ≥22;u >12,得0<x <22.由此,从下表讨论复合函数y =f [g (x )]的单调性:故函数y =2(log 12x )2-2log 12x +1在区间(0,22)上单调递减,在区间(22,+∞)上单调递增.11.(2010年广西河池模拟)已知定义在区间(0,+∞)上的函数f (x )满足f (x 1x 2)=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)判断f (x )的单调性;(3)若f (3)=-1,解不等式f (|x |)<-2. 解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0,所以f (x 1x 2)<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数.(3)由f (x 1x 2)=f (x 1)-f (x 2)得f (93)=f (9)-f (3),而f (3)=-1,所以f (9)=-2.由于函数f (x )在区间(0,+∞)上是单调递减函数,由f (|x |)<f (9),得|x |>9,∴x >9或x <-9.因此不等式的解集为{x |x >9或x <-9}.12.已知:f (x )=log 3x 2+ax +bx ,x ∈(0,+∞),是否存在实数a ,b ,使f (x )同时满足下列三个条件:(1)在(0,1]上是减函数,(2)在[1,+∞)上是增函数,(3)f (x )的最小值是1.若存在,求出a 、b ;若不存在,说明理由.解:∵f (x )在(0,1]上是减函数,[1,+∞)上是增函数,∴x =1时,f (x )最小,log 31+a +b1=1.即a +b =2.设0<x 1<x 2≤1,则f (x 1)>f (x 2).即x 12+ax 1+b x 1>x 22+ax 2+bx 2恒成立.由此得(x 1-x 2)(x 1x 2-b )x 1x 2>0恒成立.又∵x 1-x 2<0,x 1x 2>0,∴x 1x 2-b <0恒成立,∴b ≥1.设1≤x 3<x 4,则f (x 3)<f (x 4)恒成立.∴(x 3-x 4)(x 3x 4-b )x 3x 4<0恒成立.∵x 3-x 4<0,x 3x 4>0,∴x 3x 4>b 恒成立.∴b ≤1.由b ≥1且b ≤1可知b =1,∴a =1.∴存在a 、b ,使f (x )同时满足三个条件.第三节 函数的性质A 组1.设偶函数f (x )=log a |x -b |在(-∞,0)上单调递增,则f (a +1)与f (b +2)的大小关系为________.解析:由f (x )为偶函数,知b =0,∴f (x )=log a |x |,又f (x )在(-∞,0)上单调递增,所以0<a <1,1<a +1<2,则f (x )在(0,+∞)上单调递减,所以f (a +1)>f (b +2).答案:f (a +1)>f (b +2)2.(2010年广东三校模拟)定义在R 上的函数f (x )既是奇函数又是以2为周期的周期函数,则f (1)+f (4)+f (7)等于________.解析:f (x )为奇函数,且x ∈R ,所以f (0)=0,由周期为2可知,f (4)=0,f (7)=f (1),又由f (x +2)=f (x ),令x =-1得f (1)=f (-1)=-f (1)⇒f (1)=0,所以f (1)+f (4)+f (7)=0.答案:03.(2009年高考山东卷改编)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则f (-25)、f (11)、f (80)的大小关系为________.解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3),又因为f (x )在R 上是奇函数,f (0)=0,得f (80)=f (0)=0,f (-25)=f (-1)=-f (1),而由f (x -4)=-f (x )得f (11)=f (3)=-f (-3)=-f (1-4)=f (1),又因为f (x )在区间[0,2]上是增函数,所以f (1)>f (0)=0,所以-f (1)<0,即f (-25)<f (80)<f (11).答案:f (-25)<f (80)<f (11)4.(2009年高考辽宁卷改编)已知偶函数f (x )在区间[0,+∞)上单调增加,则满足f (2x -1)<f (13)的x 取值范围是________.解析:由于f (x )是偶函数,故f (x )=f (|x |),由f (|2x -1|)<f (13),再根据f (x )的单调性得|2x -1|<13,解得13<x <23.答案:(13,23) 5.(原创题)已知定义在R 上的函数f (x )是偶函数,对x ∈R ,f (2+x )=f (2-x ),当f (-3)=-2时,f (2011)的值为________.解析:因为定义在R 上的函数f (x )是偶函数,所以f (2+x )=f (2-x )=f (x -2),故函数f (x )是以4为周期的函数,所以f (2011)=f (3+502×4)=f (3)=f (-3)=-2.答案:-26.已知函数y =f (x )是定义在R 上的周期函数,周期T =5,函数y =f (x )(-1≤x ≤1)是奇函数,又知y =f (x )在[0,1]上是一次函数,在[1,4]上是二次函数,且在x =2时函数取得最小值-5.(1)证明:f (1)+f (4)=0;(2)求y =f (x ),x ∈[1,4]的解析式;(3)求y =f (x )在[4,9]上的解析式.解:(1)证明:∵f (x )是以5为周期的周期函数,∴f (4)=f (4-5)=f (-1), 又∵y =f (x )(-1≤x ≤1)是奇函数,∴f (1)=-f (-1)=-f (4),∴f (1)+f (4)=0.(2)当x ∈[1,4]时,由题意可设f (x )=a (x -2)2-5(a >0),由f (1)+f (4)=0,得a (1-2)2-5+a (4-2)2-5=0,∴a =2,∴f (x )=2(x -2)2-5(1≤x ≤4).(3)∵y =f (x )(-1≤x ≤1)是奇函数,∴f (0)=0,又知y =f (x )在[0,1]上是一次函数,∴可设f (x )=kx (0≤x ≤1),而f (1)=2(1-2)2-5=-3,∴k =-3,∴当0≤x ≤1时,f (x )=-3x ,从而当-1≤x <0时,f (x )=-f (-x )=-3x ,故-1≤x ≤1时,f (x )=-3x .∴当4≤x ≤6时,有-1≤x -5≤1,∴f (x )=f (x -5)=-3(x -5)=-3x +15.当6<x ≤9时,1<x -5≤4,∴f (x )=f (x -5)=2[(x -5)-2]2-5=2(x -7)2-5.∴f (x )=⎩⎪⎨⎪⎧-3x +15, 4≤x ≤62(x -7)2-5, 6<x ≤9. B 组1.(2009年高考全国卷Ⅰ改编)函数f (x )的定义域为R ,若f (x +1)与f (x -1)都是奇函数,则下列结论正确的是________.①f (x )是偶函数 ②f (x )是奇函数 ③f (x )=f (x +2) ④f (x +3)是奇函数解析:∵f (x +1)与f (x -1)都是奇函数,∴f (-x +1)=-f (x +1),f (-x -1)=-f (x -1),∴函数f (x )关于点(1,0),及点(-1,0)对称,函数f (x )是周期T =2[1-(-1)]=4的周期函数.∴f (-x -1+4)=-f (x -1+4),f (-x +3)=-f (x +3),即f (x +3)是奇函数.答案:④2.已知定义在R 上的函数f (x )满足f (x )=-f (x +32),且f (-2)=f (-1)=-1,f (0)=2,f (1)+f (2)+…+f (2009)+f (2010)=________.解析:f (x )=-f (x +32)⇒f (x +3)=f (x ),即周期为3,由f (-2)=f (-1)=-1,f (0)=2,所以f (1)=-1,f (2)=-1,f (3)=2,所以f (1)+f (2)+…+f (2009)+f (2010)=f (2008)+f (2009)+f (2010)=f (1)+f (2)+f (3)=0.答案:03.(2010年浙江台州模拟)已知f (x )是定义在R 上的奇函数,且f (1)=1,若将f (x )的图象向右平移一个单位后,得到一个偶函数的图象,则f (1)+f (2)+f (3)+…+f (2010)=________.解析:f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ),将f (x )的图象向右平移一个单位后,得到一个偶函数的图象,则满足f (-2+x )=-f (x ),即f (x +2)=-f (x ),所以周期为4,f (1)=1,f (2)=f (0)=0,f (3)=-f (1)=-1,f (4)=0,所以f (1)+f (2)+f (3)+f (4)=0,则f (1)+f (2)+f (3)+…+f (2010)=f (4)×502+f (2)=0.答案:04.(2010年湖南郴州质检)已知函数f (x )是R 上的偶函数,且在(0,+∞)上有f ′(x )>0,若f (-1)=0,那么关于x 的不等式xf (x )<0的解集是________.解析:在(0,+∞)上有f ′(x )>0,则在(0,+∞)上f (x )是增函数,在(-∞,0)上是减函数,又f (x )在R 上是偶函数,且f (-1)=0,∴f (1)=0.从而可知x ∈(-∞,-1)时,f (x )>0;x ∈(-1,0)时,f (x )<0;x ∈(0,1)时,f (x )<0;x ∈(1,+∞)时,f (x )>0.∴不等式的解集为(-∞,-1)∪(0,1)答案:(-∞,-1)∪(0,1). 5.(2009年高考江西卷改编)已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2009)+f (2010)的值为________.解析:∵f (x )是偶函数,∴f (-2009)=f (2009).∵f (x )在x ≥0时f (x +2)=f (x ),∴f (x )周期为2.∴f (-2009)+f (2010)=f (2009)+f (2010)=f (1)+f (0)=log 22+log 21=0+1=1.答案:16.(2010年江苏苏州模拟)已知函数f (x )是偶函数,并且对于定义域内任意的x ,满足f (x +2)=-1f (x ),若当2<x <3时,f (x )=x ,则f (2009.5)=________.解析:由f (x +2)=-1f (x ),可得f (x +4)=f (x ),f (2009.5)=f (502×4+1.5)=f (1.5)=f (-2.5)∵f (x )是偶函数,∴f (2009.5)=f (2.5)=52.答案:527.(2010年安徽黄山质检)定义在R 上的函数f (x )在(-∞,a ]上是增函数,函数y =f (x +a )是偶函数,当x 1<a ,x 2>a ,且|x 1-a |<|x 2-a |时,则f (2a -x 1)与f (x 2)的大小关系为________.解析:∵y =f (x +a )为偶函数,∴y =f (x +a )的图象关于y 轴对称,∴y =f (x )的图象关于x =a 对称.又∵f (x )在(-∞,a ]上是增函数,∴f (x )在[a ,+∞)上是减函数.当x 1<a ,x 2>a ,且|x 1-a |<|x 2-a |时,有a -x 1<x 2-a ,即a <2a -x 1<x 2,∴f (2a -x 1)>f (x 2).答案:f (2a -x 1)>f (x 2)8.已知函数f (x )为R 上的奇函数,当x ≥0时,f (x )=x (x +1).若f (a )=-2,则实数a =________.解析:当x ≥0时,f (x )=x (x +1)>0,由f (x )为奇函数知x <0时,f (x )<0,∴a <0,f (-a )=2,∴-a (-a +1)=2,∴a =2(舍)或a =-1.答案:-1 9.(2009年高考山东卷)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数.若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________.解析:因为定义在R 上的奇函数,满足f (x -4)=-f (x ),所以f (4-x )=f (x ),因此,函数图象关于直线x =2对称且f (0)=0.由f (x -4)=-f (x )知f (x -8)=f (x ),所以函数是以8为周期的周期函数.又因为f (x )在区间[0,2]上是增函数,所以f (x )在区间[-2,0]上也是增函数,如图所示,那么方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,不妨设x 1<x 2<x 3<x 4.由对称性知x 1+x 2=-12,x 3+x 4=4,所以x 1+x 2+x 3+x 4=-12+4=-8. 答案:-810.已知f (x )是R 上的奇函数,且当x ∈(-∞,0)时,f (x )=-x lg(2-x ),求f (x )的解析式.解:∵f (x )是奇函数,可得f (0)=-f (0),∴f (0)=0.当x >0时,-x <0,由已知f (-x )=x lg(2+x ),∴-f (x )=x lg(2+x ),即f (x )=-x lg(2+x ) (x >0).∴f (x )=⎩⎪⎨⎪⎧-x lg(2-x ) (x <0),-x lg(2+x ) (x ≥0).即f (x )=-x lg(2+|x |)(x ∈R ).11.已知函数f (x ),当x ,y ∈R 时,恒有f (x +y )=f (x )+f (y ).(1)求证:f (x )是奇函数;(2)如果x ∈R +,f (x )<0,并且f (1)=-12,试求f (x )在区间[-2,6]上的最值.解:(1)证明:∴函数定义域为R ,其定义域关于原点对称. ∵f (x +y )=f (x )+f (y ),令y =-x ,∴f (0)=f (x )+f (-x ).令x =y =0,∴f (0)=f (0)+f (0),得f (0)=0.∴f (x )+f (-x )=0,得f (-x )=-f (x ),∴f (x )为奇函数.(2)法一:设x ,y ∈R +,∵f (x +y )=f (x )+f (y ),∴f (x +y )-f (x )=f (y ).∵x ∈R +,f (x )<0,∴f (x +y )-f (x )<0,∴f (x +y )<f (x ).∵x +y >x ,∴f (x )在(0,+∞)上是减函数.又∵f (x )为奇函数,f (0)=0,∴f (x )在(-∞,+∞)上是减函数.∴f (-2)为最大值,f (6)为最小值.∵f (1)=-12,∴f (-2)=-f (2)=-2f (1)=1,f (6)=2f (3)=2[f (1)+f (2)]=-3.∴所求f (x )在区间[-2,6]上的最大值为1,最小值为-3.法二:设x 1<x 2,且x 1,x 2∈R .则f (x 2-x 1)=f [x 2+(-x 1)]=f (x 2)+f (-x 1)=f (x 2)-f (x 1).∵x 2-x 1>0,∴f (x 2-x 1)<0.∴f (x 2)-f (x 1)<0.即f (x )在R 上单调递减.∴f (-2)为最大值,f (6)为最小值.∵f (1)=-12,∴f (-2)=-f (2)=-2f (1)=1,f (6)=2f (3)=2[f (1)+f (2)]=-3.∴所求f (x )在区间[-2,6]上的最大值为1,最小值为-3.12.已知函数f (x )的定义域为R ,且满足f (x +2)=-f (x ).(1)求证:f (x )是周期函数;(2)若f (x )为奇函数,且当0≤x ≤1时,f (x )=12x ,求使f (x )=-12在[0,2010]上的所有x 的个数.解:(1)证明:∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ),∴f (x )是以4为周期的周期函数.(2)当0≤x ≤1时,f (x )=12x ,设-1≤x ≤0,则0≤-x ≤1,∴f (-x )=12(-x )=-12x .∵f (x )是奇函数,∴f (-x )=-f (x ),∴-f (x )=-12x ,即f (x )=12x .故f (x )=12x (-1≤x ≤1)又设1<x <3,则-1<x -2<1,∴f (x -2)=12(x -2),又∵f (x -2)=-f (2-x )=-f [(-x )+2]=-[-f (-x )]=-f (x ),∴-f (x )=12(x -2),∴f (x )=-12(x -2)(1<x <3).∴f (x )=⎩⎨⎧12x (-1≤x ≤1)-12(x -2) (1<x <3)由f (x )=-12,解得x =-1.∵f (x )是以4为周期的周期函数.故f (x )=-12的所有x =4n -1(n ∈Z ).令0≤4n -1≤2010,则14≤n ≤50234,又∵n ∈Z ,∴1≤n ≤502(n ∈Z ),∴在[0,2010]上共有502个x 使f (x )=-12.第三章 指数函数和对数函数第一节 指数函数A 组1.(2010年黑龙江哈尔滨模拟)若a >1,b <0,且a b +a -b =22,则a b -a -b 的值等于________.解析:∵a >1,b <0,∴0<a b <1,a -b >1.又∵(a b +a -b )2=a 2b +a -2b +2=8,∴a 2b +a -2b =6,∴(a b -a -b )2=a 2b +a -2b -2=4,∴a b -a -b =-2.答案:-22.已知f (x )=a x +b 的图象如图所示,则f (3)=________.解析:由图象知f (0)=1+b =-2,∴b =-3.又f (2)=a 2-3=0,∴a =3,则f (3)=(3)3-3=33-3. 答案:33-33.函数y =(12)2x -x 2的值域是________.解析:∵2x -x 2=-(x -1)2+1≤1, ∴(12)2x -x 2≥12.答案:[12,+∞) 4.(2009年高考山东卷)若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________.解析:函数f (x )的零点的个数就是函数y =a x 与函数y =x +a 交点的个数,由函数的图象可知a >1时两函数图象有两个交点,0<a <1时两函数图象有惟一交点,故a >1. 答案:(1,+∞)5.(原创题)若函数f (x )=a x-1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a 等于________.解析:由题意知⎩⎪⎨⎪⎧ 0<a <1a 2-1=0a 0-1=2无解或⎩⎪⎨⎪⎧a >1a 0-1=0a 2-1=2⇒a = 3.答案: 3 6.已知定义域为R 的函数f (x )=-2x +b2x +1+a是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.解:(1)因为f (x )是R 上的奇函数,所以f (0)=0,即-1+b2+a=0,解得b =1.从而有f (x )=-2x+12x +1+a .又由f (1)=-f (-1)知-2+14+a =--12+11+a,解得a =2.(2)法一:由(1)知f (x )=-2x +12x +1+2=-12+12x +1,由上式易知f (x )在R 上为减函数,又因f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0⇔f (t 2-2t )<-f (2t 2-k )=f (-2t 2+k ).因f (x )是R 上的减函数,由上式推得t 2-2t >-2t 2+k .即对一切t ∈R 有3t 2-2t -k >0,从而Δ=4+12k <0,解得k <-13.法二:由(1)知f (x )=-2x +12x +1+2,又由题设条件得-2t 2-2t +12t 2-2t +1+2+-22t 2-k +122t 2-k +1+2<0即(22t 2-k +1+2)(-2t 2-2t +1)+(2t 2-2t +1+2)(-22t 2-k +1)<0整理得23t 2-2t -k >1,因底数2>1,故3t 2-2t -k >0上式对一切t ∈R 均成立,从而判别式Δ=4+12k <0,解得k <-13.B 组1.如果函数f (x )=a x +b -1(a >0且a ≠1)的图象经过第一、二、四象限,不经过第三象限,那么一定有________.①0<a <1且b >0 ②0<a <1且0<b <1 ③a >1且b <0 ④a >1且b >0解析:当0<a <1时,把指数函数f (x )=a x 的图象向下平移,观察可知-1<b -1<0,即0<b <1.答案:②2.(2010年保定模拟)若f (x )=-x 2+2ax 与g (x )=(a +1)1-x 在区间[1,2]上都是减函数,则a 的取值范围是________.解析:f (x )=-x 2+2ax =-(x -a )2+a 2,所以f (x )在[a ,+∞)上为减函数,又f (x ),g (x )都在[1,2]上为减函数,所以需⎩⎪⎨⎪⎧a ≤1a +1>1⇒0<a ≤1.答案:(0,1]3.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件①f (x )=a x ·g (x )(a >0,a ≠1);②g (x )≠0;若f (1)g (1)+f (-1)g (-1)=52,则a 等于________. 解析:由f (x )=a x ·g (x )得f (x )g (x )=a x ,所以f (1)g (1)+f (-1)g (-1)=52⇒a +a -1=52,解得a =2或12.答案:2或124.(2010年北京朝阳模拟)已知函数f (x )=a x (a >0且a ≠1),其反函数为f -1(x ).若f (2)=9,则f -1(13)+f (1)的值是________.解析:因为f (2)=a 2=9,且a >0,∴a =3,则f (x )=3x =13,∴x =-1,故f -1(13)=-1.又f (1)=3,所以f -1(13)+f (1)=2.答案:25.(2010年山东青岛质检)已知f (x )=(13)x ,若f (x )的图象关于直线x =1对称的图象对应的函数为g (x ),则g (x )的表达式为________.解析:设y =g (x )上任意一点P (x ,y ),P (x ,y )关于x =1的对称点P ′(2-x ,y )在f (x )=(13)x 上,∴y=(13)2-x =3x -2.答案:y =3x -2(x ∈R ) 6.(2009年高考山东卷改编)函数y =e x +e -xe x -e-x 的图象大致为________.解析:∵f (-x )=e -x+e x e -x -e x =-e x+e-xe x -e -x =-f (x ),∴f (x )为奇函数,排除④.又∵y =e x +e -x e x -e -x =e 2x +1e 2x -1=e 2x -1+2e 2x -1=1+2e 2x -1在(-∞,0)、(0,+∞)上都是减函数,排除②、③.答案:①7.(2009年高考辽宁卷改编)已知函数f (x )满足:当x ≥4时,f (x )=(12)x ;当x <4时,f (x )=f (x +1),则f (2+log 23)=________.解析:∵2<3<4=22,∴1<log 23<2.∴3<2+log 23<4,∴f (2+log 23)=f (3+log 23)=f (log 224)=(12)log 224=2-log 224=2log 2124=124.答案:1248.(2009年高考湖南卷改编)设函数y =f (x )在(-∞,+∞)内有定义,对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K , f (x )>K .取函数f (x )=2-|x |,当K =12时,函数f K (x )的单调递增区间为________.解析:由f (x )=2-|x |≤12得x ≥1或x ≤-1,∴f K (x )=⎩⎪⎨⎪⎧2-|x |,x ≥1或x ≤-1,12,-1<x <1.则单调增区间为(-∞,-1].答案:(-∞,-1]。
2013年高考数学知识大梳理(知识精粹版)《黄冈中学》资深老师强势总结
.........识大梳理(.....知知识识精精粹粹版版)) 《黄冈中学》资深老师强势总结,为................201...3.年学子...倾情打造....高一数学必修1知识网络集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A B x x A x B A A A A A A B B A A B A A B B A B A C ard A B C ard A C ard B C ard A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩函数,,,A B A x B y f B A B x y x f y y x y →映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义 按照某个对应关系都有唯一确定的值和它对应。
2013高考数学复习资料----数列(教师版)
2013高考数学复习资料----数列(教师版)1、数列的有关概念、性质、通项公式、求和公式。
(1)已知*2()156n na n N n =∈+,则在数列{}n a 的最大项为__ ; (2)数列}{n a 的通项为1+=bn ana n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为___;(3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围;(4)一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是 ( )A B C D2.等差数列的有关概念:(1)等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。
设{}n a 是等差数列,求证:以b n =na a a n+++ 21 *n N ∈为通项公式的数列{}n b 为等差数列。
(2)等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。
(1)等差数列{}n a 中,1030a =,2050a =,则通项n a = ;(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______ ;(3)等差数列的前n 和:1()2n n n a a S +=,1(1)2n n n S na d -=+。
(1)数列 {}n a 中,*11(2,)2n n a a n n N -=+≥∈,32n a =,前n 项和152n S =-,则1a =_,n = ;(2)已知数列 {}n a 的前n 项和212n S n n =-,求数列{||}n a 的前n 项和n T .(4)等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2a bA +=。
2013走向高考,贾凤山,高中总复习,数学9-8
A
版
答案:D
第9章 第八节
高考数学总复习
线面角
[例 2] (2010· 湖南理)如下图所示,在正方体 ABCD -A1B1C1D1 中,E 是棱 DD1 的中点. (1)求直线 BE 和平面 ABB1A1 所成的角的正弦值; (2)在棱 C1D1 上是否存在一点 F,使 B1F∥平面 A1BE?证明你的结论.
※二、用向量法求空间距离 1.求点到平面的距离 如下图所示,已知点 B(x0,y0,z0),平面 α 内一点 A(x1,y1,z1),平面 α 的一个法向量 n,直线 AB 与平面 → → α 所成的角为 φ,θ=〈n,AB〉 ,则 sinφ=|cos〈n,AB〉 → → |=|cosθ|.由数量积的定义知,n· =|n||AB|cosθ,∴点 B AB → |n· | AB → → 到平面 α 的距离 d=|AB|· sinφ=|AB|· |cosθ|= . |n|
第9章 第八节
人 教
A
版
高考数学总复习
人 教
A
版
第9章
第八节
高考数学总复习
2.求异面直线间的距离 如下图,若 CD 是异面直线 a、b 的公垂线,A、B 分别 为 a、b 上的任意两点,令向量 n⊥a,n⊥b,则 n∥CD. → → → → → → → → 则由AB=AC+CD+DB得,AB· n=AC· n+CD· n+DB· n,
人 教
A
版
第9章
第八节
高考数学总复习
2.求直线与平面所成的角
人 教
A
版
如图,设 l 为平面 α 的斜线,l∩α=A,a 为 l 的方向 向量, 为平面 α 的法向量, 为 l 与 α 所成的角, sinφ n φ 则 |a· n| =|cos〈a,n〉|= . |a||n|
2013走向高考,贾凤山,高中总复习,数学1-9
A
版
第1章
第九节
高考数学总复习
100 20 P(12)= ≈1.19,Q(13)= ≈1.18. 84 17 即 F(12)>F(13). 所以用 13 名工人制作课桌, 名工人制作椅子完成 17 任务最快.
人 教
A
版
第1章
第九节
高考数学总复习
二次函数模型
[例 4] 某市现有从事第二产业人员 100 万人,平均
高考数学总复习
解析:由题意知,f(3)=ln3-1>0,f(4)=ln4-2<0, 所以该函数在区间(3,4)内有零点,所以 k=3.
人 教
答案:3
A
版
第1章
第九节
高考数学总复习
(理)已知三个函数 f(x)=2x+x,g(x)=x-2,h(x)= log2x+x 的零点依次为 a,b,c,则( A.a<b<c C.b<a<c B.a<c<b D.c<a<b )
h(x)的零点 c
人 教
A
版
答案:B
第1章
第九节
高考数学总复习
二分法
[例 2] 下图是函数 f(x)的图象, 它与 x 轴有 4 个不同 的公共点. 给出下列 4 个区间, 不能用二分法求出函数 f(x) 的零点的区间是( )
人 教
A
版
第1章
第九节
高考数学总复习
人 教
A
版
A.[-2.1,-1] C.[4.1,5]
人 教
A
版
第1章
第九节
高考数学总复习
人 教
A
版
第1章
第九节
高考数学总复习
2013高考数学复习资料
1.分类讨论的常见情形(1)由数学概念引起的分类讨论:主要是指有的概念本身是分类的,在不同条件下有不同结论,则必须进行分类讨论求解,如绝对值、直线斜率、指数函数、对数函数等.(2)由性质、定理、公式引起的分类讨论:有的数学定理、公式、性质是分类给出的,在不同条件下结论不一致,如二次函数y=ax2+bx+c(a≠0),由a的正负而导致开口方向不确定,等比数列前n项和公式因公比q是否为1而导致公式的表达式不确定等.(3)由某些数学式子变形引起的分类讨论:有的数学式子本身是分类给出的,如ax2+bx+c >0,a=0,a<0,a>0解法是不同的.(4)由图形引起的分类讨论:有的图形的类型、位置也要分类,如角的终边所在象限,点、线、面的位置关系等.(5)由实际意义引起的讨论:此类问题在应用题中常见.(6)由参数变化引起的讨论:所解问题含有参数时,必须对参数的不同取值进行分类讨论;含有参数的数学问题中,参变量的不同取值,使得变形受限导致不同的结果.2.分类的原则(1)每次分类的对象是确定的,标准是同一的;分类讨论问题的难点在于什么时候开始讨论,即认识为什么要分类讨论,又从几方面开始讨论,只有明确了讨论原因,才能准确、恰当地进行分类与讨论.这就要求我们准确掌握所用的概念、定理、定义,考虑问题要全面.函数问题中的定义域,方程问题中根之间的大小,直线与二次曲线位置关系中的判别式等等,常常是分类讨论划分的依据.(2)每次分类的对象不遗漏、不重复、分层次、不越级讨论.当问题中出现多个不确定因素时,要以起主导作用的因素进行划分,做到不重不漏,然后对划分的每一类分别求解,再整合后得到一个完整的答案.数形结合是简化分类讨论的重要方法.3.分类讨论的一般步骤第一,明确讨论对象,确定对象的范围;第二,确定分类标准,进行合理分类,做到不重不漏;第三,逐类讨论,获得阶段性结果;第四,归纳总结,得出结论.4.分类讨论应注意的问题第一,按主元分类的结果应求并集.第二,按参数分类的结果要分类给出.第三,分类讨论是一种重要的解题策略,但这种分类讨论的方法有时比较繁杂,若有可能,应尽量避免分类.类型一:不等式中的字母讨论1、解关于的不等式:.思路点拨:依据式子的特点,此题应先按对最高次项的系数是否为0来分类,然后对式子分解因式,并按两个根之间的大小关系来分类讨论.而对于与时,先写简单好作的.解析:(1)当时,原不等式化为一次不等式:,∴;(2)当时,原不等式变为:,①若,则原不等式化为∵,∴,∴不等式解为或,②若,则原不等式化为,(ⅰ)当时,,不等式解为,(ⅱ)当时,,不等式解为;(ⅲ)当时,,不等式解为,综上所述,原不等式的解集为:当时,解集为;当时,解集为{x|x>1};当时,解集为;当时,解集为;当时,解集为.总结升华:1. 对于分类讨论的解题程序可大致分为以下几个步骤:(1)明确讨论的对象,确定对象的全体,确定分类标准,正确分类,不重不漏;(2)逐步进行讨论,获得结段性结论;(3)归纳总结,综合结论.2.一般分类讨论问题的原则为: 按谁碍事就分谁.不等式中的字母讨论标准有:最高次项的系数能否为0,不等式对应的根的大小关系,有没有根(判别式)等.3.字母讨论一般按从易到难,从等到不等的顺序进行.举一反三:【变式1】解关于的不等式:().解析:原不等式可分解因式为: ,(下面按两个根与的大小关系分类)(1)当,即或时,不等式为或,不等式的解集为:;(2)当,即时,不等式的解集为:;(3)当,即或时,不等式的解集为:;综上所述,原不等式的解集为:当或时,;当时,;当或时,.【变式2】解关于的不等式:.解析:(1)当时,不等式为, 解集为;(2)当时,需要对方程的根的情况进行讨论:①即时,方程有两根.则原不等式的解为.②即时,方程没有实根,此时为开口向上的抛物线,故原不等式的解为.③即时,方程有两相等实根为,则原不等式的解为.(3)当时,恒成立,即时,方程有两根.此时,为开口向下的抛物线,故原不等式的解集为.综上所述,原不等式的解集为:当时,解集为;当时,解集为;当时,解集为;当时,解集为.类型二:函数中的分类讨论2、设为实数,记函数的最大值为,(Ⅰ)设,求的取值范围,并把表示为的函数;(Ⅱ)求;(Ⅲ)试求满足的所有实数.解析:(I)∵,∴要使有意义,必须且,即∵,且……①∴的取值范围是,由①得:,∴,,(II)由题意知即为函数,的最大值,∵时,直线是抛物线的对称轴,∴可分以下几种情况进行讨论:(1)当时,函数,的图象是开口向上的抛物线的一段,由知在上单调递增,故;(2)当时,,,有=2;(3)当时,,函数,的图象是开口向下的抛物线的一段,若即时,,若即时,,若即时,,综上所述,有=(III)当时,;当时,,,∴,∴,故当时,;当时,,由知:,故;当时,,故或,从而有或,要使,必须有,,即,此时,,综上所述,满足的所有实数为:或.举一反三:【变式1】函数的图象经过点(-1,3),且f(x)在(-1,+∞)上恒有f(x)<3,求函数f(x).解析:f(x)图象经过点(-1,3),则,整理得:,解得或(1)当时,则,此时x∈(-1,+∞)时,f(x)>3,不满足题意;(2)当,则,此时,x∈(-1,+∞)时,即f(x)<3,满足题意为所求.综上,.【变式2】已知函数有最大值2,求实数的取值.解析:令,则().(1)当即时,,解得:或(舍);(2)当即时,,解得:或(舍);(3)当即时,,解得(全都舍去).综上,当或时,能使函数的最大值为2.3、已知函数().(1)讨论的单调性;(2)求在区间上的最小值.解析:(1)函数的定义域为(0,+∞)对求导数,得解不等式,得0<x<e解不等式,得x>e故在(0,e)上单调递增,在(e,+∞)上单调递减(2)①当2a≤e时,即时,由(1)知在(0,e)上单调递增,所以②当a≥e时,由(1)知在(e,+∞)上单调递减,所以③当时,需比较与的大小因为所以,若,则,此时若2<a<e,则,此时综上,当0<a≤2时,;当a>2时总结升华:对于函数问题,定义域要首先考虑,而(2)中③比较大小时,作差应该是非常有效的方法.举一反三:【变式1】设,(1)利用函数单调性的意义,判断f(x)在(0,+∞)上的单调性;(2)记f(x)在0<x≤1上的最小值为g(a),求y=g(a)的解析式.解析:(1)设0<x1<x2<+∞则f(x2)-f(x1)=由题设x2-x1>0,ax1²x2>0∴当0<x1<x2≤时,,∴f(x2)-f(x1)<0,即f(x2)<f(x1),则f(x)在区间[0,]单调递减,当<x1<x2<+∞时,,∴f(x2)-f(x1)>0,即f(x2)>f(x1),则f(x)在区间(,+∞)单调递增.(2)因为0<x≤1,由(1)的结论,当0<≤1即a≥1时,g(a)=f()=2-;当>1,即0<a<1时,g(a)=f(1)=a综上,所求的函数y=g(a)=.【变式2】求函数在上的值域.解析:令,则(1)当0<a≤1时,∵0≤x≤a,∴f′(x)≥0(只有a=1且x=1时f′(x)=0)∴f(x)在[0,a]上单增,从而,值域为;(2)当a>1时,∵0≤x≤a,∴f(x)在单增,在上单减,并且,∴,值域为;(3)当-1≤a<0时,∵0≤x≤|a|,∴f(x)在[0,|a|]上递减从而即,值域为(4)当a<-1时,∵0≤x≤|a|,∴f(x)在单减,在上单增,∴,又,∴,值域为.类型三:数列4、数列{a n}的前n项和为S n,已知{S n}是各项均为正数的等比数列,试比较与的大小,并证明你的结论.解析:设等比数列{S n}的公比为q,则q>0①q=1时,S n=S1=a1当n=1时,,a2=0,∴,即当n≥2时,a n=S n-S n-1=a1-a1=0,,即②q≠1时,S n=S1²q n-1=a1²q n-1当n=1时,∴,即.当n≥2时,a n=S n-S n-1=a1²q n-1-a1²q n-2=a1²q n-2(q-1)此时∴q>1时,,0<q<1时,.总结升华:等比数列前n项和公式分q=1或q≠1两种情况进行讨论.举一反三:【变式1】求数列:1,a+a2,a2+a3+a4,a3+a4+a5+a6,……(其中a≠0)的前n项和S n. 解析:数列的通项a n=a n-1+a n+…+a2n-2讨论:(1)当a=1时,a n=n,S n=1+2+…+n=(2)当a=-1时,,∴,(3)当a≠±1且a≠0时,,∴.【变式2】设{a n}是由正数组成的等比数列,S n是其前n项和,证明:.解析:(1)当q=1时,S n=na1,从而,(2)当q≠1时,,从而由(1)(2)得:.∵函数为单调递减函数.∴∴.【变式3】已知{a n}是公比为q的等比数列,且a1,a3,a2成等差数列.(Ⅰ)求q的值;(Ⅱ)设{b n}是以2为首项,q为公差的等差数列,其前n项和为S n,当n≥2时,比较S n与b n的大小,并说明理由.解析:(Ⅰ)由题设2a3=a1+a2,即2a1q2=a1+a1q,∵a1≠0,∴2q2-q-1=0,∴或,(Ⅱ)若q=1,则当n≥2时,若当n≥2时,故对于n∈N+,当2≤n≤9时,S n>b n;当n=10时,S n=b n;当n≥11时,S n<b n.【变式4】对于数列,规定数列为数列的一阶差分数列,其中;一般地,规定为的k阶差分数列,其中且k∈N*,k≥2。
2013走向高考,贾凤山,高中总复习,数学3-6
高考数学总复习
(5)△ABC 的面积公式有: 1 ①S= a· 表示 a 边上的高); h(h 2 1 1 1 abc ②S= absinC= acsinB= bcsinA= ; 2 2 2 4R 1 ③S= r(a+b+c)(r 为内切圆半径). 2 1 ④S= PP-aP-bP-c,其中 P= (a+b+c). 2 (6)在△ABC 中,A>B⇔a>b⇔sinA>sinB.
2 2 2 2 2 4 2 2 4
人 教
A
版
第3章
第六节
高考数学总复习
sinA sinB sinC (2)由正弦定理得 = = cosA cosB cosC 即 tanA=tanB=tanC, ∵A、B、C∈(0,π),∴A=B=C, ∴△ABC 为等边三角形. 答案:(1)等腰或直角三角形 (2)等边三角形
A为钝角
或直角
a>b 一解 a≤b 无解
人 教
A
版
第3章
第六节
高考数学总复习
误区警示 1.在利用正弦定理解决已知三角形的两边和其中一 边的对角解三角形问题时, 可能出现一解、 两解或无解情 况, 应结合图形并根据“三角形中大边对大角”来判断解 的情况,作出正确取舍.
人 教
A
版
第3章
第六节
高考数学总复习
人 教
A
版
第3章
第六节
高考数学总复习
解析: 由题意得 b2=ac, c=2a, 又 由余弦定理得 cosB a2+c2-b2 a2+4a2-a×2a 3 = = = ,故选 B. 2ac 4 2a×2a 答案:B
人 教
A
版
第3章
第六节
2013走向高考,贾凤山,高中总复习,数学1-6
答案:C
A
版
第1章
第六节
高考数学总复习
(理)(1)lg25+lg2· lg50+(lg2)2; (2)(log32+log92)· 43+log83). (log
人 教
A
版
第1章
第六节
高考数学总复习
解析:(1)原式=(lg2)2+(1+lg5)lg2+lg52=(lg2+lg5 +1)lg2+2lg5=(1+1)lg2+2lg5=2(lg2+lg5)=2.
人 教
A
版
第1章
第六节
高考数学总复习
A.0<a-1<b<1 C.0<b-1<a<1
x
B.0<b<a-1<1 D.0<a-1<b- 1<1
人 教
解析: ∵t=2 +b-1 单调增, f(x)单调增, ∴a>1. 由图知-1<f(0)<0,∴-1<logab<0, ∴a 1<b<1,故选 A.
-
A
版
答案:A
lg2 lg2 lg3 lg3 (2)原式= + · + lg3 lg9 lg4 lg8 lg2 lg2 lg3 lg3 3lg2 5lg3 5 · = = + + · = . lg3 2lg3 2lg2 3lg2 2lg3 6lg2 4
第1章
第六节
高考数学总复习
对数函数的单调性
[例 3] 若 0<x<y<1,则( A.3 <3
y x
)
人 教
B.logx3<logy3
1 1 D. x< y 4 4
2013届高考数学考点回归总复习《第二十九讲等比数列》课件
【典例2】设数列{an}为等比数列,且a1>0,它的前n项和 为80,且其中数值最大的项为54,前2n项的和为6560.求 此数列的通项公式.
[解]设数列的公比为q,由Sn 80,S2n 6560, 得q 1, 否则S2n 2Sn . a1 (1 q n ) 80, 1 q a1 (1 q 2 n ) 6560. 1 q ① 得q n 81. ② ① ②
(1)数列{
Sn n
}是等比数列;
(2)Sn+1=4an.
n2 [证明] 1 a n 1 Sn 1 Sn , a n 1 Sn . n n 2 Sn n Sn 1 Sn .整理得nSn 1 2 n 1 Sn , 所以 S n 1 2 S n . n 1 n Sn 故 是以2为公比的等比数列. n
a1 q 1
=kqn-k(k=
是常数,且q≠0,q≠1)⇔{an}是等比数列.
考点陪练
1.已知数列的前n项和为Sn=an-2(a是不为0的实数),那么 数列{an}( )
A.是等比数列
B.当a≠1时是等比数列 C.从第二项起成等比数列 D.从第二项起成等比数列或成等差数列
解析:由数列中an与Sn的关系,当n=1时,a1=S1=a-2;当 n≥2时,an=Sn-Sn-1=(a-1)an-1,经验证n=1时,通项公
解析 : 设 a n 公比为q, 1 1 a 2 2, a 5 a 2 q , q . 4 2
3
1 b n a n a n 1 ,b n 是首项为8, 公比为 的等比数列. 4 1 8[1 ] 4 32 1 4 n . Sn 1 3 1 4
2013走向高考,贾凤山,高中总复习,数学8-2
A
版
第8章
第二节
高考数学总复习
解析:设圆心坐标为(a,0),则有:(a-5)2+12=(a- 1)2+32 解得:a=2 半径 r= 2-5 +1 = 10
2 2
人 教
故圆的方程为(x-2) +y =10.
答案:(x-2)2+y2=10
2
2
A
版
第8章
第二节
高考数学总复习
点与圆的位置关系
人 教
A
版
第8章
第二节
高考数学总复习
④圆与直线 l 相切,则(一)d=r;(二)Δ=0.应特别注 意圆与直线 l 相切于点 P 的含义. ⑤圆 C 截直线 l 得弦 AB, 则半弦 +弦心距 =半径
2 2 2
人 教
A
.版Βιβλιοθήκη 第8章第二节高考数学总复习
(2011· 辽宁文,13)已知圆 C 经过 A(5,1),B(1,3)两 点,圆心在 x 轴上,则 C 的方程为________.
第8章 第二节
高考数学总复习
误区警示 1.解决有关轨迹问题时,要注意所求得轨迹方程表 示的曲线上的点是否都是满足题设要求的轨迹上的点. 2.与圆有关的最值问题,要特别注意是整个圆周上 的点,还是一段圆弧上的点. 3.确定圆的方程必须有三个独立条件,解题时要注 意通过分析找足条件,列出相应的方程.
人 教
高考数学总复习
解析: 设圆上任一点为 Q(x0, 0), 的中点为 M(x, y PQ x=4+x0 2 y),则 -2+y0 y= 2
x =2x-4 0 ,解得 y0=2y+2
,因为点 Q 在
人 教
A
版
圆 x2+y2=4 上,所以 x2+y2=4,即(2x-4)2+(2y+2)2 0 0 =4,即(x-2)2+(y+1)2=1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年数学总复习资料高三数学第三轮总复习分类讨论押题针对训练复习目标:1.掌握分类讨论必须遵循的原则 2.能够合理,正确地求解有关问题 命题分析:分类讨论是一种重要的逻辑方法,也是一种常用的数学方法,这可以培养学生思维的条理性和概括性,以及认识问题的全面性和深刻性,提高学生分析问题,解决问题的能力.因此分类讨论是历年数学高考的重点与热点.而且也是高考的一个难点.这次的一模考试中,尤其是西城与海淀都设置了解答题来考察学生对分类讨论问题的掌握情况.重点题型分析: 例1.解关于x 的不等式:)()(232R a x a a a x ∈+<+解:原不等式可分解因式为:(x-a)(x-a 2)<0 (下面按两个根的大小关系分类)(1)当a>a 2⇒a 2-a<0即 0<a<1时,不等式的解为 x ∈(a 2, a).(2)当a<a 2⇒a 2-a>0即a<0或a>1时,不等式的解为:x ∈(a, a 2)(3)当a=a 2⇒a 2-a=0 即 a=0或 a=1时,不等式为x 2<0或(x-1)2<0 不等式的解为 x ∈∅.综上,当 0<a<1时,x ∈(a 2, a)当a<0或a>1时,x ∈(a,a 2) 当a=0或a=1时,x ∈∅.评述:抓住分类的转折点,此题分解因式后,之所以不能马上写出解集,主要是不知两根谁大谁小,那么就按两个根之间的大小关系来分类.例2.解关于x 的不等式 ax 2+2ax+1>0(a ∈R) 解:此题应按a 是否为0来分类.(1)当a=0时,不等式为1>0, 解集为R. (2)a ≠0时分为a>0 与a<0两类①10)1(00440002>⇒⎩⎨⎧>->⇒⎪⎩⎪⎨⎧>->⇒⎩⎨⎧>>a a a a a a a a ∆时,方程ax 2+2ax+1=0有两根aa a a aa a a a a a x )1(12442222,1-±-=-±-=-±-=.则原不等式的解为),)1(1())1(1,(+∞-+-----∞aa a a a a . ②101000440002<<⇒⎩⎨⎧<<>⇒⎪⎩⎪⎨⎧<->⇒⎩⎨⎧<>a a a a a a a ∆时, 方程ax 2+2ax+1=0没有实根,此时为开口向上的抛物线,则不等式的解为(-∞,+∞).③ 11000440002=⇒⎩⎨⎧==>⇒⎪⎩⎪⎨⎧=->⇒⎩⎨⎧=>a a a a a a a a 或∆时, 方程ax 2+2ax+1=0只有一根为x=-1,则原不等式的解为(-∞,-1)∪(-1,+∞).④01000440002<⇒⎩⎨⎧><<⇒⎪⎩⎪⎨⎧>-<⇒⎩⎨⎧><a a a a a a a a 或∆时,方程ax 2+2ax+1=0有两根,aa a a a a a x )1(12)1(22,1-±-=-±-=此时,抛物线的开口向下的抛物线,故原不等式的解为:))1(1,)1(1(aa a a a a ----+-. ⑤φ∈⇒⎩⎨⎧≤≤<⇒⎪⎩⎪⎨⎧≤-<⇒⎩⎨⎧≤<a a a a a a a 1000440002∆ 综上:当0≤a<1时,解集为(-∞,+∞). 当a>1时,解集为),)1(1())1(1,(+∞-+-----∞aa a a a a . 当a=1时,解集为(-∞,-1)∪(-1,+∞). 当a<0时,解集为))1(1,)1(1(aa a a a a ----+-. 例3.解关于x 的不等式ax 2-2≥2x-ax(a ∈R)(西城2003’一模 理科)解:原不等式可化为⇔ ax 2+(a-2)x-2≥0, (1)a=0时,x ≤-1,即x ∈(-∞,-1]. (2)a ≠0时,不等式即为(ax-2)(x+1)≥0. ① a>0时, 不等式化为0)1)(2(≥+-x ax , 当⎪⎩⎪⎨⎧->>120a a ,即a>0时,不等式解为),2[]1,(+∞--∞a .当⎪⎩⎪⎨⎧-≤>120aa ,此时a 不存在.② a<0时,不等式化为0)1)(2(≤+-x ax ,当⎪⎩⎪⎨⎧-<<120a a ,即-2<a<0时,不等式解为]1,2[-a当⎪⎩⎪⎨⎧-><120a a ,即a<-2时,不等式解为]2,1[a -.当⎪⎩⎪⎨⎧-=<120aa ,即a=-2时,不等式解为x=-1.综上:a=0时,x ∈(-∞,-1).a>0时,x ∈),2[]1,(+∞--∞a.-2<a<0时,x ∈]1,2[-a .a<-2时,x ∈]2,1[a-.a=-2时,x ∈{x|x=-1}.评述:通过上面三个例题的分析与解答,可以概括出分类讨论问题的基本原则为: 10:能不分则不分; 20:若不分则无法确定任何一个结果; 30:若分的话,则按谁碍事就分谁.例4.已知函数f(x)=cos 2x+asinx-a 2+2a+5.有最大值2,求实数a 的取值. 解:f(x)=1-sin 2x+asinx-a 2+2a+5.6243)2(sin 22++---=a a a x 令sinx=t, t ∈[-1,1]. 则6243)2()(22++---=a a at t f (t ∈[-1,1]). (1)当12>a即a>2时,t=1,2533m ax =++-=a a y 解方程得:22132213-=+=a a 或(舍). (2)当121≤≤-a 时,即-2≤a ≤2时,2a t =,262432m ax =++-=a a y ,解方程为:34-=a 或a=4(舍).(3)当12-<a 即a<-2时, t=-1时,y max =-a 2+a+5=2即 a 2-a-3=0 ∴ 2131±=a , ∵ a<-2, ∴ 2131±-=a 全都舍去.综上,当342213-=+=a a 或时,能使函数f(x)的最大值为2. 例5.设{a n }是由正数组成的等比数列,S n 是其前n 项和,证明:15.025.05.0log 2log log ++>+n n n S S S .证明:(1)当q=1时,S n =na 1从而0)1()2(2121211212<-=+-+⋅=-⋅++a a n a n na S S S n n n(2)当q ≠1时,qq a S n n --=1)1(1, 从而.0)1()1()1)(1(2122121221212<-=-----=-⋅++++nn n n n n n q a q q a q q a S S S由(1)(2)得:212++<⋅n n n S S S . ∵ 函数xy 5.0log =为单调递减函数.∴15.025.05.0log 2log log ++>+n n n S S S .例6.设一双曲线的两条渐近线方程为2x-y+1=0, 2x+y-5=0,求此双曲线的离心率. 分析:由双曲线的渐近线方程,不能确定其焦点位置,所以应分两种情况求解.解:(1)当双曲线的焦点在直线y=3时,双曲线的方程可改为1)3()1(222=---b y a x ,一条渐近线的斜率为2=ab, ∴ b=2.∴ 555222==+==a a a b a c e . (2)当双曲线的焦点在直线x=1时,仿(1)知双曲线的一条渐近线的斜率为2=ba,此时25=e . 综上(1)(2)可知,双曲线的离心率等于255或. 评述:例5,例6,的分类讨论是由公式的限制条件与图形的不确定性所引起的,而例1-4是对于含有参数的问题而对参数的允许值进行的全面讨论.例7.解关于x 的不等式 1512)1(<+--x x a .解:原不等式 012)1(55<⇔+--x x a0)]2()1)[(2(022)1(012)1(<----⇔<--+-⇔<+--⇔a x a x x a x a x x a⎪⎩⎪⎨⎧>----<-⎪⎩⎪⎨⎧<---->-⎩⎨⎧<--=-⇔0)12)(2(01)3(0)12)(2(01)2(0)21)(2(01)1(a ax x a a a x x a x a 或或 由(1) a=1时,x-2>0, 即 x ∈(2,+∞). 由(2)a<1时,012>--aa,下面分为三种情况. ①⎩⎨⎧<<⇒⎪⎩⎪⎨⎧>--<012121a a aa a 即a<1时,解为)12,2(a a --.②0012121=⇒⎩⎨⎧=<⇒⎪⎩⎪⎨⎧=--<a a a a aa 时,解为∅. ③ ⎪⎩⎪⎨⎧<--<2121aa a ⇒ ⎩⎨⎧><01a a 即0<a<1时,原不等式解为:)2,12(a a --.由(3)a>1时,aa--12的符号不确定,也分为3种情况.①⎩⎨⎧≤>⇒⎪⎩⎪⎨⎧≥-->012121a a aa a ⇒ a 不存在.② ⇒⎩⎨⎧>>⇒⎪⎩⎪⎨⎧<-->012121a a aa a 当a>1时,原不等式的解为:),2()12,(+∞---∞ a a .综上:a=1时,x ∈(2,+∞). a<1时,x ∈)12,2(aa-- a=0时,x ∈∅.0<a<1时,x ∈)2,12(a a-- a>1时,x ∈),2()12,(+∞---∞ aa.评述:对于分类讨论的解题程序可大致分为以下几个步骤: 10:明确讨论的对象,确定对象的全体; 20:确定分类标准,正确分类,不重不漏; 30:逐步进行讨论,获得结段性结记; 40:归纳总结,综合结记. 课后练习:1.解不等式2)385(log 2>+-x x x 2.解不等式1|)3(log ||log |3121≤-+x x3.已知关于x 的不等式052<--ax ax 的解集为M. (1)当a=4时,求集合M:(2)若3∈M ,求实数a 的取值范围.4.在x0y 平面上给定曲线y 2=2x, 设点A 坐标为(a,0), a ∈R ,求曲线上点到点A 距离的最小值d ,并写成d=f(a)的函数表达式.参考答案:1. ),(),(∞+235321 2.]4943[,3. (1) M 为),(),(2452 ∞- (2)),9()35,(+∞-∞∈ a 4. ⎪⎩⎪⎨⎧<≥-==时当时当1||112)(a a a a a f d .2006年高三数学第三轮总复习函数押题针对训练复习重点:函数问题专题,主要帮助学生整理函数基本知识,解决函数问题的基本方法体系,函数问题中的易错点,并提高学生灵活解决综合函数问题的能力。