2016年初等数论第四次作业答案
《初等数论》试卷及参考答案(与闵嗣鹤第三版配套)
《初等数论》试卷一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( )A.00,,0,1,2,;abx x t y y t t d d =-=+=±± B.00,,0,1,2,;abx x t y y t t d d =+=-=±± C.00,,0,1,2,;bax x t y y t t d d =+=-=±± D.00,,0,1,2,;bax x t y y t t dd =-=-=±±4.下列各组数中不构成勾股数的是( )A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡⇒+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡⇒≡ C.()()111212mod mod ;a b m a a b a m ≡⇒≡ D.()()112211mod mod .a b m a b m ≡⇒≡ 6.模10的一个简化剩余系是( ) A.0,1,2,,9; B.1,2,3,,10;C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9. 7.()mod a b m ≡的充分必要条件是( ) A.;m a b - B.;a b m - C.;m a b + D..a b m +8.设()43289f x x x x =+++,同余式()()0mod5f x ≡的所有解为( ) A.1x =或1;- B.1x =或4; C.1x ≡或()1mod5;- D.无解. 9、设f(x)=10n n a x a x a +++其中()0,mod i a x x p ≡是奇数若为f(x)()0mod p ≡的一个解,则:( )A .()()mod ()0mod ,1p f x p χχ∂≡≡∂>一定为的一个解 B .()()0mod ,1,()0mod p f x p χχ∂∂≡∂>≡一定为的一个解C .()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中 D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有 10.()10(),,0mod ,,n n i n f x a x a x a a a p n p =+++≡>/设其中为奇数则同余式()()0mod f x p ≡的解数:( ) A .有时大于p 但不大于n; B .可超过pC .等于pD .等于n11.若2为模p 的平方剩余,则p 只能为下列质数中的 :( )A .3B .11C .13D .23 12.若雅可比符号1a m ⎛⎫=⎪⎝⎭,则 ( ) A .()2mod ,x a m ≡同余式一定有解B .()()2,1,mod a m x a p =≡当时同余式有解;C .()2(,mod m p x a p =≡当奇数)时同余式有解;D .()2(),mod a p x a p =≡当奇数时同余式有解.13.()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于( )A . 4B .3C . 2D . 1 14. 模12的所有可能的指数为;( )A .1,2,4B .1,2,4,6,12C .1,2,3,4,6,12D .无法确定 15. 若模m 的单根存在,下列数中,m 可能等于: ( ) A . 2 B .3 C . 4 D . 12 16.对于模5,下列式子成立的是: ( )A .322ind =B .323ind =C .350ind =D .3331025ind ind ind =+ 17.下列函数中不是可乘函数的是: ( ) A .茂陛鸟斯(mobius)函数w(a) ; B . 欧拉函数()a φ;C .不超过x 的质数的个数()x π;D .除数函数()a τ;18. 若x 对模m 的指数是ab ,a >0,ab >0,则x α对模m 的指数是( ) A .a B .b C .ab D .无法确定 19.()f a ,()g a 均为可乘函数,则( ) A .()()f a g a 为可乘函数; B .()()f ag a 为可乘函数 C .()()f a g a +为可乘函数; D .()()f a g a -为可乘函数 20.设()a μ为茂陛乌斯函数,则有( )不成立A .()11μ=B .()11μ-=C .()21μ=-D .()90μ= 二.填空题:(每小题1分,共10分)21. 3在45!中的最高次n = ____________________; 22. 多元一次不定方程:1122n n a x a x a x N +++=,其中1a ,2a ,…,n a ,N 均为整数,2n ≥,有整数解的充分必要条件是___________________;23.有理数ab,0a b <<,)(,1a b =,能表成纯循环小数的充分必要条件是_______________________;24. 设()0mod x x m ≡为一次同余式()mod ax b m ≡,a ≡()0mod m 的一个解,则它的所有解为_________________________;25. 威尔生(wilson )定理:________________________________________; 26. 勒让德符号5031013⎛⎫⎪⎝⎭=________________________________________; 27. 若)(,1a p =,则a 是模p 的平方剩余的充分必要条件是_____________(欧拉判别条件); 28. 在模m 的简化剩余系中,原根的个数是_______________________; 29. 设1α≥,g 为模p α的一个原根,则模2p α的一个原根为_____________; 30.()48ϕ=_________________________________。
初等数论闵嗣鹤第四版答案
初等数论闵嗣鹤第四版答案介绍《初等数论闵嗣鹤第四版答案》是对闵嗣鹤所著《初等数论》第四版的习题答案进行了整理和解析。
《初等数论》是普通高校数学系本科生的一门基础课程,有助于培养学生的数学思维和推理能力。
通过学习该答案,学生可以更好地理解和掌握《初等数论》中的知识点,并提高解题能力。
目录1.第一章素数2.第二章同余3.第三章数论函数4.第四章域上的多项式5.第五章幂的剩余与解方程6.第六章整数的几何性质第一章素数1.1 什么是素数?简要解答:素数指的是只能被1和自身整除的正整数。
详细解答:一个大于1的正整数如果只能被1和它本身整除,则称之为素数,也叫质数。
反之,如果大于1的正整数可以被其他正整数整除,则称之为合数。
最小的素数是2。
1.2 素数的性质简要解答:素数有无限多个,并且一个数是否是素数可以通过试除法判断。
详细解答:欧几里得证明了素数有无限多个的结论。
对于给定的一个正整数n,如果在2到√n之间找不到小于n的因数,那么n就是素数。
这就是试除法。
试除法是素数判断的基础,但它的效率不高,因为需要逐个试除所有小于n的数。
1.3 素数的应用简要解答:素数在密码学和随机数生成中经常被使用。
详细解答:由于素数具有唯一分解性质,使得许多密码学算法中的关键操作依赖于素数。
比如RSA算法中,公钥和私钥的生成需要使用两个大素数。
此外,素数还在随机数生成和随机性检验中发挥重要作用。
第二章同余2.1 什么是同余?简要解答:同余是数论中的一种等价关系。
详细解答:a和b对模m同余,记作a≡b(mod m),当且仅当a和b的差是m的倍数。
同余关系具有三个基本性质:反身性、对称性和传递性。
同余关系的性质使得其在数论中有广泛的应用。
2.2 同余定理简要解答:同余定理是一类用来计算同余的定理,包括欧拉定理、费马小定理等。
详细解答:欧拉定理是指当a和m互质时,a的φ(m)次方与1同余模m,其中φ(m)表示不大于m且与m互质的正整数的个数。
初等数论 课后答案【khdaw_lxywyl】
设 d 为 n 的任一个正因数,由 dn 知对每一个 pi,d 的标准分解式中 pi 的指数都
k 1 2 1 (0 i i, 不超过 n 的标准分解式中 pi 的指数,即 d 必可表示成 p1 p2 pk
i k)的形式; (ⅱ) 类似于(ⅰ)可证得。
k k 1 1 2. (ⅰ) 显然对于i = min{i, i},1 i k, p1 pk | a,p1 pk |b , 而
案
网
第一章
中的最小正整数, 显然有 Y0 = |m|y0; (ⅲ) 代替 a1, a2, , ak 即可。 3. (ⅰ) = b 可得; (ⅲ)
| a,则(p, a) = 1,从而由 pab 推出 pb; (ⅱ) 若p
(a, b1b2bn) = (a, b2bn) = = (a, bn) = 1。
课后答案网,用心为你服务!
大学答案 --- 中学答案 --- 考研答案 --- 考试答案 最全最多的课后习题参考答案,尽在课后答案网()! Khdaw团队一直秉承用心为大家服务的宗旨,以关注学生的学习生活为出发点, 旨在为广大学生朋友的自主学习提供一个分享和交流的平台。 爱校园() 课后答案网() 淘答案()
i 1
k
Hale Waihona Puke 后然; (ⅳ) 设(p, a) = d,则 dp,da,由 dp 得 d = 1 或 d = p,前者推出(p, a) = 1,后者推出 pa。 2. (ⅰ) 由 dai 推出 dy0 = (a1, a2, , ak); (ⅱ) 分别以 y0 和 Y0 表示集合
k
答
|a2|, ,|ak| 的公约数的集合相同,所以它们的最大公约数相等;
aw .c o
网
《初等数论》历年考试解答
《初等数论》习题集第1章第 1 节1. 证明定理1.2. 证明:若m-p∣mn+pq,则m-p∣mq+np.3.证明:任意给定地连续39个自然数,其中至少存在一个自然数,使得这个自然数地数字和能被11整除.4. 设p是n地最小素约数,n=pn1,n1>1,证明:若p>,则n1是素数.5. 证明:存在无穷多个自然数n,使得n不能表示为a2+p(a > 0是整数,p为素数)地形式.第 2 节1.证明:12∣n4+2n3+11n2+10n,n∈Z.2. 设3∣a2+b2,证明:3∣a且3∣b.3.设n,k是正整数,证明:n k与n k + 4地个位数字相同.4.证明:对于任何整数n,m,等式n2+ (n+1)2 =m2+ 2不可能成立.5. 设a是自然数,问a4- 3a2+ 9是素数还是合数?6.证明:对于任意给定地n个整数,必可以从中找出若干个作和,使得这个和能被n整除.第 3 节1.证明定理1中地结论(ⅰ)—(ⅳ).2.证明定理2地推论1,推论2和推论3.3.证明定理4地推论1和推论3.4.设x,y∈Z,17∣2x+3y,证明:17∣9x+5y.5. 设a,b,c∈N,c无平方因子,a2∣b2c,证明:a∣b.6.设n是正整数,求地最大公约数.第 4 节1. 证明定理1.2.证明定理3地推论.3. 设a,b是正整数,证明:(a+b)[a, b] = a[b, a+b].4. 求正整数a,b,使得a+b = 120,(a, b) = 24,[a, b] = 144.5.设a,b,c是正整数,证明:.6. 设k是正奇数,证明:1 + 2 + + 9∣1k+ 2k+ + 9k.第 5 节1.说明例1证明中所用到地四个事实地依据.2.用辗转相除法求整数x,y,使得1387x-162y = (1387,162).3.计算:(27090,21672, 11352).4. 使用引理1中地记号,证明:(F n+ 1, F n) = 1.5. 若四个整数2836,4582,5164,6522被同一个大于1地整数除所得地余数相同,且不等于零,求除数和余数各是多少?6.记M n=2n- 1,证明:对于正整数a,b,有(M a, M b)= M(a, b).第 6 节1.证明定理1地推论1.2.证明定理1地推论2.3.写出22345680地标准分解式.4. 证明:在1, 2, , 2n中任取n+ 1数,其中至少有一个能被另一个整除.5.证明:(n≥2)不是整数.6.设a,b是正整数,证明:存在a1,a2,b1,b2,使得a = a1a2,b = b1b2,(a2,b2) = 1,并且[a,b] = a2b2.第7 节1.证明定理1.2.求使12347!被35k整除地最大地k值.3. 设n是正整数,x是实数,证明:= n.4.设n是正整数,求方程x2-[x2] = (x-[x])2在[1,n]中地解地个数.5.证明:方程f(x) = [x] + [2x] + [22x] + [23x] + [24x] + [25x] = 12345没有实数解.6. 证明:在n!地标准分解式中,2地指数h = n-k,其中k是n地二进制表示地位数码之和.第8 节1. 证明:若2n+ 1是素数,则n是2地乘幂.2.证明:若2n- 1是素数,则n是素数.3.证明:形如6n+ 5地素数有无限多个.4.设d是正整数,6d,证明:在以d为公差地等差数列中,连续三项都是素数地情况最多发生一次.5.证明:对于任意给定地正整数n,必存在连续地n个自然数,使得它们都是合数.6. 证明:级数发散,此处使用了定理1注2中地记号.第2章第 1 节1.证明定理1和定理2.2.证明定理4.3.证明定理5中地结论(ⅰ)—(ⅳ).4.求81234被13除地余数.5. 设f(x)是整系数多项式,并且f(1), f(2), ,f(m)都不能被m整除,则f(x) = 0没有整数解.6.已知99∣,求α与β.第 2 节1.证明定理1.2.证明:若2p+ 1是奇素数,则(p!)2+ (-1)p≡ 0(mod 2p+ 1).3.证明:若p是奇素数,N = 1 + 2 + + ( p- 1),则(p- 1)! ≡p- 1(mod N).4.证明Wilson定理地逆定理:若n>1,并且(n- 1)! ≡-1(mod n),则n是素数.5.设m是整数,4∣m,{a1, a2, , a m}与{b1, b2, , b m}是模m地两个完全剩余系,证明:{a1b1,a2b2, , a m b m}不是模m地完全剩余系.6.设m1,m2, ,m n是两两互素地正整数,δi(1≤i≤n)是整数,并且δi≡1 (mod m i),1≤i≤n,δi≡0 (mod m j),i≠j,1≤i, j≤n.证明:当b i通过模m i(1≤i≤n)地完全剩余系时,b1δ1+b2δ2+ +b nδn通过模m =m1m2 m n地完全剩余系.第 3 节1.证明定理1.2.设m1, m2, , m n是两两互素地正整数,x i分别通过模m i地简化剩余系(1 ≤i≤n),m = m1m2 m n,M i =,则M1x1+M2x2+ + M n x n通过模m地简化剩余系.3.设m>1,(a, m) = 1,x1, x2, ⋯, xϕ(m)是模m地简化剩余系,证明:.其中{x}表示x地小数部分.4.设m与n是正整数,证明:ϕ(mn)ϕ((m, n)) = (m, n)ϕ(m)ϕ(n).5.设a,b是任意给定地正整数,证明:存在无穷多对正整数m与n,使得aϕ(m) = bϕ(n).6.设n是正整数,证明:(ⅰ) ϕ(n) >;(ⅱ) 若n是合数,则ϕ(n)≤n-.第 4 节1. 证明:1978103- 19783能被103整除.2.求313159被7除地余数.3.证明:对于任意地整数a,(a, 561) = 1,都有a560≡ 1 (mod 561),但561是合数.4. 设p,q是两个不同地素数,证明:p q- 1+q p- 1≡ 1 (mod pq).5.将612- 1分解成素因数之积.6.设n∈N,b∈N,对于b n+1地素因数,你有甚麽与例6相似地结论?第 5 节1.证明例2中地结论.2.证明定理2.3.求.4.设f(n)是积性函数,证明:(ⅰ)(ⅱ).5.求ϕ(n)地Mobius变换.第3章第 1 节1.证明定理3.2.写出789地二进制表示和五进制表示.3.求地小数地循环节.4.证明:七进制表示地整数是偶数地充要条件是它地各位数字之和为偶数.5.证明:既约正分数地b进制小数(0.a-1a-2a-3 )b为有限小数地充要条件是n地每个素因数都是b地素因数.第 2 节1.设连分数〈α1, α2, ,αn, 〉地第k个渐近分数为,证明:,2.设连分数〈α1, α2, ,αn, 〉地第k个渐近分数为,证明:,k≥ 2.3.求连分数〈 1, 2, 3, 4, 5, 〉地前三个渐近分数.4.求连分数〈 2, 3, 2, 3, 〉地值.5.解不定方程:7x- 9y = 4.第 3 节1.证明定理4.2.求地连分数.3.求地误差≤ 10- 5地有理逼近.4.求sin18︒地误差≤ 10- 5地有理逼近.5.已知圆周率π = 〈 3, 7, 15, 1, 292, 1, 1, 1, 21, 〉,求π地误差≤ 10- 6地有理逼近.6.证明:连分数展开地第k个渐近分数为.此处{F n}是Fibonacci数列.第 4 节1.将方程3x2+ 2x- 2 = 0地正根写成连分数.2.求α = 〈〉之值.3.设a是正整数,求地连分数.4.设无理数= 〈a1, a2, ,a n, 〉地第k个渐近分数为,证明:地充要条件是p n = a1q n+q n-1,dq n = a1p n+p n-1.5.设无理数= 〈a1, a2, ,a n, 〉地第k个渐近分数为,且正整数n使得p n = a1q n+q n-1,dq n = a1p n+p n-1,证明:(ⅰ) 当n为偶数时,p n,q n是不定方程x2-dy2 = 1地解;(ⅱ) 当n为奇数时,p2n,q2n是不定方程x2-dy2 = 1地解.第4章第 1 节1.将写成三个既约分数之和,它们地分母分别是3,5和7.2.求方程x1+ 2x2+ 3x3 = 41地所有正整数解.3.求解不定方程组:.4.甲班有学生7人,乙班有学生11人,现有100支铅笔分给这两个班,要使甲班地学生分到相同数量地铅笔,乙班学生也分到相同数量地铅笔,问应怎样分法?5. 证明:二元一次不定方程ax+by = n,a > 0,b > 0,(a, b) = 1地非负整数解地个数为+ 1.6.设a与b是正整数,(a, b) = 1,证明:1, 2, , ab-a-b中恰有个整数可以表示成ax+by(x≥ 0,y≥ 0)地形式.第 2 节1.证明定理2推论.2.设x,y,z是勾股数,x是素数,证明:2z-1,2(x+y +1)都是平方数.3.求整数x,y,z,x > y > z,使x-y,x-z,y-z都是平方数.4.解不定方程:x2+3y2 = z2,x > 0,y > 0,z > 0,(x, y ) = 1.5.证明下面地不定方程没有满足xyz ≠0地整数解.(ⅰ)x2+y2+z2 = x2y2;(ⅱ) x2+y2+z2 = 2xyz.6.求方程x2+y2 = z4地满足(x, y ) = 1,2∣x地正整数解.第 3 节1. 求方程x2+xy -6 = 0地整数解.2. 求方程组地整数解.3. 求方程2x-3y = 1地正整数解.4.求方程地正整数解.5.设p是素数,求方程地整数解.6. 设2n+ 1个有理数a1, a2, , a2n+ 1满足条件P:其中任意2n个数可以分成两组,每组n个数,两组数地和相等,证明:a1 = a1 = = a2n+ 1.第5章第 1 节1.证明定理1.2.解同余方程:(ⅰ) 31x≡ 5 (mod 17);(ⅱ) 3215x≡ 160 (mod 235).3.解同余方程组:.4.设p是素数,0<a<p,证明:(mod p).是同余方程ax≡b (mod p)地解.5.证明:同余方程a1x1+a2x2+ +a n x n≡b (mod m)有解地充要条件是(a1, a2, , a n, m) = d∣b.若有解,则恰有d⋅m n-1个解,mod m.6.解同余方程:2x+ 7y≡ 5 (mod 12).第 2 节1. 解同余方程组:2.解同余方程组:3.有一队士兵,若三人一组,则余1人;若五人一组,则缺2人;若十一人一组,则余3人.已知这队士兵不超过170人,问这队士兵有几人?4. 求一个最小地自然数n,使得它地是一个平方数,它地是一个立方数,它地是一个5次方数.5. 证明:对于任意给定地n个不同地素数p1, p2, …, p n,必存在连续n个整数,使得它们中地第k个数能被p k整除.6.解同余方程:3x2+ 11x - 20≡0 (mod 105).第 3 节1.证明定理地推论.2.将例2中略去地部分补足.3.将例4中略去地部分补足.4.解同余方程x2≡-1 (mod 54).5.解同余方程f(x) = 3x2+ 4x-15 ≡ 0 (mod 75).6.证明:对于任意给定地正整数n,必存在m,使得同余方程x2≡1 (mod m)地解数T > n.第 4 节1.解同余方程:(ⅰ)3x11+2x8+ 5x4-1 ≡0 (mod 7);(ⅱ)4x20+3x12+ 2x7+ 3x-2 ≡0 (mod 5).2.判定(ⅰ) 2x3-x2+ 3x-1 ≡0 (mod 5)是否有三个解;(ⅱ) x6+2x5- 4x2+ 3 ≡0 (mod 5)是否有六个解?3.设(a, m) = 1,k与m是正整数,又设x0k≡a (mod m),证明同余方程x k≡a(mod m)地一切解x都可以表示成x≡yx0(mod m),其中y满足同余方程y k≡1 (mod m).4.设n是正整数,p是素数,(n, p-1) = k,证明同余方程x n≡ 1 (mod p)有k个解.5.设p是素数,证明:(ⅰ) 对于一切整数x,x p- 1-1 ≡ (x-1) (x-2) (x-p+ 1) (mod p);(ⅱ) (p-1)! ≡-1 (mod p).6.设p≥ 3是素数,证明:(x-1)(x-2) (x-p+ 1)地展开式中除首项及常数项外,所有地系数都是p地倍数.第 5 节1.同余方程x2≡ 3 (mod 13)有多少个解?2.求出模23地所有地二次剩余和二次非剩余.3.设p是奇素数,证明:模p地两个二次剩余地乘积是二次剩余;两个二次非剩余地乘积是二次剩余;一个二次剩余和一个二次非剩余地乘积是二次非剩余.4.设素数p≡ 3 (mod 4),= 1,证明x≡±(mod p)是同余方程x2≡n (mod p)地解.5.设p是奇素数,(n, p) = 1,α是正整数,证明同余方程x2≡n (mod pα)有解地充要条件是= 1.6.设p是奇素数,证明:模p地所有二次剩余地乘积与对模p同余.第 6 节1.已知769与1013是素数,判定方程(ⅰ) x2≡ 1742 (mod 769);(ⅱ) x2≡ 1503 (mod 1013).是否有解.2.求所有地素数p,使得下面地方程有解:x2≡ 11 (mod p).3.求所有地素数p,使得-2∈QR(p),-3∈QR(p).4.设(x, y) = 1,试求x2- 3y2地奇素数因数地一般形式.5.证明:形如8k+ 5(k∈Z)地素数无穷多个.6.证明:对于任意地奇素数p,总存在整数n,使得p∣(n2+ 1)(n2+ 2)(n2- 2).第7 节1.证明定理地结论(ⅱ),(ⅲ),(ⅳ).2.已知3019是素数,判定方程x2≡ 374 (mod 3019)是否有解.3.设奇素数为p = 4n+ 1型,且d∣n,证明:= 1.4.设p,q是两个不同地奇素数,且p = q+ 4a,证明:.5.设a > 0,b > 0,b为奇数,证明:6.设a,b,c是正整数,(a, b) = 1,2b,b<4ac,求地关系.第6章第 1 节1.设n是正整数,证明:不定方程x2+y2 = z n总有正整数解x,y,z.2.设p是奇素数,(k, p) = 1,则,此处是Legender符号.3.设素数p≡ 1(mod 4),(k, p) = 1,记,则2∣S(k),并且,对于任何整数t,有,此处是Legender符号.4.设p是奇素数,,则构成模p地一个简化剩余系.5.在第3题地条件下,并沿用第2题地记号,有.即上式给出了形如4k+ 1地素数地二平方和表示地具体方法.6.利用题5地结论,试将p = 13写成二平方和.第 2 节1.若(x, y, z) = 1,则不存在整数n,使得x2+y2+ z2 = 4n2.2.设k是非负整数,证明2k不能表示三个正整数平方之和.3.证明:每一个正整数n必可以表示为5个立方数地代数和.4.证明:16k+ 15型地整数至少需要15个四次方数地和表之.5.证明:16k⋅31不能表示为15个四次方数地和.第7章第 1 节2.求模14地全部原根.3.设m> 1,模m有原根,d是ϕ(m)地任一个正因数,证明:在模m 地简化剩余系中,恰有ϕ(d)个指数为d地整数,并由此推出模m地简化剩余系中恰有ϕ(ϕ(m))个原根.4.设m≥ 3,g是模m地原根,x1, x2, , xϕ(m)是模m地简化剩余系,证明:(ⅰ) ≡-1 (mod m);(ⅱ) x1x2 xϕ(m)≡-1 (mod m).5.设p = 2n+ 1是一个奇素数,证明:模p地全部二次非剩余就是模p 地全部原根.6.证明:(ⅰ) 设p奇素数,则M p = 2p- 1地素因数必为2pk+ 1型;(ⅱ) 设n≥ 0,则F n =+ 1地素因数必为2n+ 1k+ 1型.第 2 节1.求模29地最小正原根.2. 分别求模293和模2⋅293地原根.3.解同余方程:x12≡ 16 (mod 17).4.设p和q = 4p+ 1都是素数,证明:2是模q地一个原根.5.设m≥ 3,g1和g2都是模m地原根,则g = g1g2不是模m地原根.6.设p是奇素数,证明:当且仅当p- 1n时,有1n+ 2n+ + (p- 1)n≡0 (mod p).第8章第 1 节1.补足定理1地证明.2.证明定理2.3.证明:有理数为代数整数地充要条件是这个有理数为整数.第 2 节1.证明例中地结论.2.证明连分数是超越数.3.设ξ是一个超越数,α是一个非零地代数数,证明:ξ+α,ξα,都是超越数.第 3 节1.证明引理1.2.证明定理3中地F+F(0)是整数.第9章第 1 节1.问:1948年2月14日是星期几?2.问:1999年10月1日是星期几?第 2 节1.编一个有十个球队进行循环赛地程序表.2.编一个有九个球队进行循环赛地程序表.第 3 节1.利用例1中地加密方法,将“ICOMETODAY”加密.2. 已知字母a,b, ,y,z,它们分别与整数00,01, ,24,25对应,又已知明文h与p分别与密文e与g对应,试求出密解公式:P≡a'E+b' (mod 26),并破译下面地密文:“IRQXREFRXLGXEPQVEP”.第 4 节1.设一RSA地公开加密钥为n = 943,e = 9,试将明文P = 100加密成密文E.2. 设RSA(n A, e A) = RSA(33, 3),RSA(n B, e B) = RSA(35, 5),A地签证信息为M = 3,试说明A向B发送签证M地传送和认证过程.第 5 节1.设某数据库由四个文件组成:F1 = 4,F2 = 6,F3 = 10,F4 = 13.试设计一个对该数据库加密地方法,但要能取出个别地F i(1≤i≤4),同时不影响其他文件地保密.2.利用本节中地秘密共享方案,设计一个由三方共管文件M = 3地方法,要求:只要有两方提供他们所掌握地数据,就可以求出文件M,但是,仅由任何一方地数据,不能求出文件M.(提示:取p = 5,m1 = 8,m2 = 9,m3 = 11)第 6 节1.设明文P地二进制表示是P= (p1p2p3p4p5p6p7p8)2,与P对应地密文是E是E =a1p1+a2p2+ +a8p8,如果这里地超增背包向量(a1, a2, a3, a4, a5, a6, a7, a8) = (5, 17, 43, 71, 144, 293, 626, 1280),并且已知密文E = 1999,求明文P.2.给定超增背包向量(2, 3, 7, 13, 29, 59),试设计一个背包型加密方法,将明文P = 51加密.(提示:取M = 118,k =77).版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.fjnFL。
2016年湖北省武汉市XX中学中考数学四模试卷含答案解析
2016年湖北省武汉XX中学中考数学四模试卷一、选择题(共10小题,每小题3分,共30分)1.无理数的值最接近()A.1 B.2 C.3 D.42.若分式有意义,则x的取值范围是()A.x≠5 B.x≠﹣5 C.x>5 D.x>﹣53.下列运算正确的是()A.(a﹣b)2=a2﹣b2B.(1+a)(a﹣1)=a2﹣1C.a2+ab+b2=(a+b)2D.(x+3)2=x2+3x+94.下列事件中是必然事件的是()A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上5.下面计算正确的是()A.a4•a2=a8B.b3+b3=b6C.x6÷x2=x3D.(y2)4=y86.如图,已知正方形ABCD的边长为2,如果将线段BD绕着点B旋转后,点D落在CB的延长线上的D′处,那么tan∠BAD′等于()A.1 B.C.D.27.用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A.B.C.D.8.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分)35 39 42 44 45 48 50人数(人) 2 5 6 6 8 7 6根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分9.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是()A.(4n﹣1,)B.(2n﹣1,)C.(4n+1,)D.(2n+1,)10.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2 B.2 C.3 D.二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:4﹣|﹣6|= .12.2015武汉园博园开幕,预计国庆期间共接待游客48万人,48万用科学记数法表示为.13.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为.14.如图,已知∠1=∠2=∠3=59°,则∠4= .15.已知△ABC中,∠ABC=45°,AB=7,BC=17,以AC为斜边在△ABC外作等腰Rt△ACD,连接BD,则BD的长为.16.定义符号min{a,b}的含义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.如:min{2,﹣4}=﹣4,min{1,5}=1,则min{﹣x2+1,﹣x}的最大值是.三.解答题(共8小题,共72分)17.解方程:﹣1=0.18.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.19.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?20.如图,直线y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与x轴交于点C,其中点A 的坐标为(﹣2,4),点B的横坐标为﹣4.(1)试确定反比例函数的关系式;(2)求△AOC的面积.21.如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,连接CD.过点C作CE⊥DB,垂足为E,直线AB与CE相交于F点.(1)求证:CF为⊙O的切线;(2)当BF=5,sinF=时,求BD的长.22.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?23.如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿A→O→D和D→A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.(1)求菱形ABCD的周长;(2)记△DMN的面积为S,求S关于t的解析式,并求S的最大值;(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P有几个?并求出点P到线段OD的距离;若不存在,请说明理由.24.如图:二次函数y=ax2+c(a<0,c>0)的图象C1交x轴于A、B两点,交y轴于D,将C1沿某一直线方向平移,平移后的抛物线C2经过B点,且顶点落在直线x=上.(1)求B点坐标(用a、c表示);(2)求出C2的解析式(用含a、c的式子表示);(3)点E是点D关于x轴的对称点,C2的顶点为F,且∠DEF=45°,试求a、c应满足的数量关系式.2016年湖北省武汉XX中学中考数学四模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.无理数的值最接近()A.1 B.2 C.3 D.4【考点】估算无理数的大小.【分析】由于4<5<9,且5更接近4,则2<<3,于是可判断与最接近的整数为2.【解答】解:∵4<5<9,∴2<<3,∴与无理数最接近的整数为2.故选B【点评】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.2.若分式有意义,则x的取值范围是()A.x≠5 B.x≠﹣5 C.x>5 D.x>﹣5【考点】分式有意义的条件.【分析】要使分式有意义,分式的分母不能为0.【解答】解:∵x﹣5≠0,∴x≠5;故选A.【点评】解此类问题,只要令分式中分母不等于0,求得字母的值即可.3.下列运算正确的是()A.(a﹣b)2=a2﹣b2B.(1+a)(a﹣1)=a2﹣1C.a2+ab+b2=(a+b)2D.(x+3)2=x2+3x+9【考点】平方差公式;合并同类项;完全平方公式.【专题】计算题;整式.【分析】A、原式利用完全平方公式化简得到结果,即可作出判断;B、原式利用平方差公式计算得到结果,即可作出判断;C、原式为最简结果,错误;D、原式利用完全平方公式化简得到结果,即可作出判断.【解答】解:A、原式=a2﹣2ab+b2,错误;B、原式=a2﹣1,正确;C、原式为最简结果,错误;D、原式=x2+6x+9,错误,故选B【点评】此题考查了平方差公式,合并同类项,以及完全平方公式,熟练掌握公式及法则是解本题的关键.4.下列事件中是必然事件的是()A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上【考点】随机事件.【分析】必然事件就是一定会发生的事件,依据定义即可判断.【解答】解:A.是不可能事件,故A选项不符合题意;B.是随机事件,故B选项不符合题意;C.是必然事件,故C选项符合题意;D.是随机事件,故D选项不符合题意.故选:C.【点评】该题考查的是对必然事件,随机事件,不可能事件的概念的理解.用到的知识点为:必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.下面计算正确的是()A.a4•a2=a8B.b3+b3=b6C.x6÷x2=x3D.(y2)4=y8【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂相乘,底数不变指数相加;合并同类项法则;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘;对各选项分析判断后利用排除法求解.【解答】解:A、a4•a2=a6,故A错误;B、b3+b3=2b3,故B错误;C、x6÷x2=x4,故C错误;D、(y2)4=y8,故D正确.故选:D.【点评】本题考查同底数幂的乘法、合并同类项、同底数幂的除法、幂的乘方,熟练掌握运算性质和法则是解题的关键.6.如图,已知正方形ABCD的边长为2,如果将线段BD绕着点B旋转后,点D落在CB的延长线上的D′处,那么tan∠BAD′等于()A.1 B.C.D.2【考点】解直角三角形.【专题】压轴题.【分析】根据旋转不变性,BD=BD′.根据三角函数的定义可得tan∠BAD′的值.【解答】解:由题知,∠ABD′=90°,BD=BD′==2,∴tan∠BAD′===.故选B.【点评】本题主要突破两点:一是三角函数的定义;二是旋转图形的性质.7.用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据主视图的定义,找到从正面看所得到的图形即可.【解答】解:从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.8.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分)35 39 42 44 45 48 50人数(人) 2 5 6 6 8 7 6根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分【考点】众数;统计表;加权平均数;中位数.【分析】结合表格根据众数、平均数、中位数的概念求解.【解答】解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为: =45,平均数为: =44.425.故错误的为D.故选D.【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.9.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是()A.(4n﹣1,)B.(2n﹣1,)C.(4n+1,)D.(2n+1,)【考点】坐标与图形变化-旋转.【专题】压轴题;规律型.【分析】首先根据△OA1B1是边长为2的等边三角形,可得A1的坐标为(1,),B1的坐标为(2,0);然后根据中心对称的性质,分别求出点A2、A3、A4的坐标各是多少;最后总结出A n的坐标的规律,求出A2n+1的坐标是多少即可.【解答】解:∵△OA1B1是边长为2的等边三角形,∴A1的坐标为(1,),B1的坐标为(2,0),∵△B2A2B1与△OA1B1关于点B1成中心对称,∴点A2与点A1关于点B1成中心对称,∵2×2﹣1=3,2×0﹣=﹣,∴点A2的坐标是(3,﹣),∵△B2A3B3与△B2A2B1关于点B2成中心对称,∴点A3与点A2关于点B2成中心对称,∵2×4﹣3=5,2×0﹣(﹣)=,∴点A3的坐标是(5,),∵△B3A4B4与△B3A3B2关于点B3成中心对称,∴点A4与点A3关于点B3成中心对称,∵2×6﹣5=7,2×0﹣=﹣,∴点A4的坐标是(7,﹣),…,∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,…,∴A n的横坐标是2n﹣1,A2n+1的横坐标是2(2n+1)﹣1=4n+1,∵当n为奇数时,A n的纵坐标是,当n为偶数时,A n的纵坐标是﹣,∴顶点A2n+1的纵坐标是,∴△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).故选:C.【点评】此题主要考查了坐标与图形变化﹣旋转问题,要熟练掌握,解答此题的关键是分别判断出A n的横坐标、纵坐标各是多少.10.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2 B.2 C.3 D.【考点】轴对称-最短路线问题.【专题】计算题;压轴题.【分析】由于点B与D关于AC对称,所以连接BD,与AC的交点即为P点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.【解答】解:设BE与AC交于点F(P′),连接BD,∵点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度;∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故选:A.【点评】此题主要考查轴对称﹣﹣最短路线问题,要灵活运用对称性解决此类问题.二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:4﹣|﹣6|= ﹣2 .【考点】有理数的减法;绝对值.【分析】根据绝对值的性质和有理数的减法运算法则进行计算即可得解.【解答】解:4﹣|﹣6|,=4﹣6,=﹣2.故答案为:﹣2.【点评】本题考查了有理数的减法,绝对值的性质,是基础题,熟记运算法则和性质是解题的关键.12.2015武汉园博园开幕,预计国庆期间共接待游客48万人,48万用科学记数法表示为 4.8×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:48万=48 0000=4.8×105,故答案为:4.8×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.13.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两球恰好是一个黄球和一个红球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,两球恰好是一个黄球和一个红球的有6种情况,∴两球恰好是一个黄球和一个红球的为: =.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.14.如图,已知∠1=∠2=∠3=59°,则∠4= 121°.【考点】平行线的判定与性质.【专题】计算题.【分析】由∠1=∠3,利用同位角相等两直线平行,得到AB与CD平行,再利用两直线平行同旁内角互补得到∠5与∠4互补,利用对顶角相等得到∠5=∠2,由∠2的度数求出∠5的度数,即可求出∠4的度数.【解答】解:∵∠1=∠3,∴AB∥CD,∴∠5+∠4=180°,又∠5=∠2=59°,∴∠4=180°﹣59°=121°.故答案为:121°【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.15.已知△ABC中,∠ABC=45°,AB=7,BC=17,以AC为斜边在△ABC外作等腰Rt△ACD,连接BD,则BD的长为.【考点】等腰直角三角形.【分析】显然直接求BD不好入手,那么就将问题进行转化.注意到△ACD为等腰Rt△,于是以AB为腰向左作等腰Rt△ABE,则易证△ABD与△AEC相似,相似比为,从而只需求出EC即可,此时∠EBC=135°,于是过E作EF⊥BC于F,则△EFB也为等腰Rt△,算出EF、BF,进而算出EC,问题迎刃而解.【解答】解:以AB为腰作等腰Rt△ABE,连接EC,∵△ADC为等腰Rt△,∴,∠EAB=∠DAC=45°,∴∠EAB+∠BAC=∠BAC+∠DAC,∴∠EAC=∠DAB,∴△EAC∽△BAD,∴,作EF⊥BC交BC延长线于F,∵∠ABC=45°,∠EBA=90°,∴∠EBF=45°,∴△EFB为等腰Rt△,∴EF=FB===7,∴EC==25,∴BD==.【点评】本题主要考查了等腰直角三角形的判定与性质、相似三角形的判定与性质、勾股定理等重要知识点,有一定难度.正确作出辅助线是本题的难点.16.定义符号min{a,b}的含义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.如:min{2,﹣4}=﹣4,min{1,5}=1,则min{﹣x2+1,﹣x}的最大值是.【考点】二次函数的最值;正比例函数的性质.【专题】新定义.【分析】理解min{a ,b}的含义就是取二者中的较小值,画出函数图象草图,利用函数图象的性质可得结论. 【解答】解:在同一坐标系xOy 中,画出函数二次函数y=﹣x 2+1与正比例函数y=﹣x 的图象,如图所示.设它们交于点A 、B .令﹣x 2+1=﹣x ,即x 2﹣x ﹣1=0,解得:x=或,∴A (,),B (,).观察图象可知:①当x ≤时,min{﹣x 2+1,﹣x}=﹣x 2+1,函数值随x 的增大而增大,其最大值为;②当<x <时,min{﹣x 2+1,﹣x}=﹣x ,函数值随x 的增大而减小,其最大值为;③当x ≥时,min{﹣x 2+1,﹣x}=﹣x 2+1,函数值随x 的增大而减小,最大值为.综上所示,min{﹣x 2+1,﹣x}的最大值是.故答案:.【点评】本题考查了二次函数与正比例函数的图象与性质,充分理解定义min{a ,b}和掌握函数的性质是解题的关键.三.解答题(共8小题,共72分)17.解方程:﹣1=0.【考点】解一元一次方程.【分析】去分母、移项、合并同类项即可. 【解答】解:去分母得:x+1﹣2=0, x=2﹣1, x=1.【点评】本题考查了解一元一次方程的应用,能正确运用等式的性质进行变形是解此题的关键.18.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.【考点】全等三角形的判定.【专题】证明题.【分析】由垂直的定义可得到∠C=∠D,结合条件和公共边,可证得结论.【解答】证明:∵AC⊥BC,BD⊥AD,∴∠C=∠D=90,在Rt△ACB和Rt△BDA中,,∴△ACB≌△BDA(HL).【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.19.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000 名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】图表型.【分析】(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.【解答】解:(1)这次被调查的同学共有400÷40%=1000(名);故答案为:1000;(2)剩少量的人数是;1000﹣400﹣250﹣150=200,补图如下;(3)18000×=3600(人).答:该校18000名学生一餐浪费的食物可供3600人食用一餐.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.如图,直线y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与x轴交于点C,其中点A 的坐标为(﹣2,4),点B的横坐标为﹣4.(1)试确定反比例函数的关系式;(2)求△AOC的面积.【考点】反比例函数与一次函数的交点问题.【专题】数形结合;待定系数法.【分析】根据A的坐标为(﹣2,4),先求出k′=﹣8,再根据反比例函数求出B点坐标,从而利用待定系数法求一次函数的解析式为y=x+6,求出直线与x轴的交点坐标后,即可求出S△AOC=CO•y A=×6×4=12.【解答】解:(1)∵点A(﹣2,4)在反比例函数图象上∴4=∴k′=﹣8,(1分)∴反比例函数解析式为y=;(2分)(2)∵B点的横坐标为﹣4,∴y=﹣,∴y=2,∴B(﹣4,2)∵点A(﹣2,4)、点B(﹣4,2)在直线y=kx+b上∴4=﹣2k+b2=﹣4k+b解得k=1b=6∴直线AB为y=x+6(4分)与x轴的交点坐标C(﹣6,0)∴S△AOC=CO•y A=×6×4=12.(6分)【点评】主要考查了用待定系数法求函数解析式和反比例函数中k的几何意义,这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.21.如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,连接CD.过点C作CE⊥DB,垂足为E,直线AB与CE相交于F点.(1)求证:CF为⊙O的切线;(2)当BF=5,sinF=时,求BD的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)连接OC.先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC∥DB,再由CE⊥DB,得到OC⊥CF,根据切线的判定即可证明CF为⊙O的切线;(2)连结AD.先解Rt△BEF,得出BE=BF•sinF=3,由OC∥BE,得出△FBE∽△FOC,则,设⊙O 的半径为r,由此列出方程,解方程求出r的值,由AB为⊙O直径,得出AB=15,∠ADB=90°,再根据三角形内角和定理证明∠F=∠BAD,则由sin∠BAD==,求出BD的长.【解答】(1)证明:连接OC.∵OA=OC,∴∠1=∠2.又∵∠3=∠1+∠2,∴∠3=2∠1.又∵∠4=2∠1,∴∠4=∠3,∴OC∥DB.∵CE⊥DB,∴OC⊥CF.又∵OC为⊙O的半径,∴CF为⊙O的切线;(2)解:连结AD.在Rt△BEF中,∵∠BEF=90°,BF=5,sinF=,∴BE=BF•sinF=3.∵OC∥BE,∴△FBE∽△FOC,∴.设⊙O的半径为r,∴,∴.∵AB为⊙O直径,∴AB=15,∠A DB=90°,∵∠4=∠EBF,∴∠F=∠BAD,∴,∴,∴BD=9.【点评】本题考查了切线的判定,解直角三角形,相似三角形的判定与性质等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.22.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?【考点】一元二次方程的应用;一元一次不等式的应用.【专题】增长率问题.【分析】(1)设该快递公司投递总件数的月平均增长率为x,根据“今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同”建立方程,解方程即可;(2)首先求出今年6月份的快递投递任务,再求出21名快递投递业务员能完成的快递投递任务,比较得出该公司不能完成今年6月份的快递投递任务,进而求出至少需要增加业务员的人数.【解答】解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意得10(1+x)2=12.1,解得x1=0.1,x2=﹣2.1(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%;(2)今年6月份的快递投递任务是12.1×(1+10%)=13.31(万件).∵平均每人每月最多可投递0.6万件,∴21名快递投递业务员能完成的快递投递任务是:0.6×21=12.6<13.31,∴该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务∴需要增加业务员(13.31﹣12.6)÷0.6=1≈2(人).答:该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加2名业务员.【点评】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.(12分)(2013•龙岩)如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿A→O→D和D→A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.(1)求菱形ABCD的周长;(2)记△DMN的面积为S,求S关于t的解析式,并求S的最大值;(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P有几个?并求出点P到线段OD的距离;若不存在,请说明理由.【考点】相似形综合题.【专题】压轴题.【分析】(1)根据勾股定理及菱形的性质,求出菱形的周长;(2)在动点M、N运动过程中:①当0<t≤40时,如答图1所示,②当40<t≤50时,如答图2所示.分别求出S的关系式,然后利用二次函数的性质求出最大值;(3)如答图3所示,在Rt△PKD中,DK长可求出,则只有求出tan∠DPK即可.为此,在△ODM中,作辅助线,构造Rt△OND,作∠NOD平分线OG,则∠GOF=∠DPK.在Rt△OGF中,求出tan∠GOF的值,从而问题解决.解答中提供另外一种解法,请参考.【解答】解:(1)在菱形ABCD中,∵AC⊥BD∴AD==50.∴菱形ABCD的周长为200.(2)过点M作MP⊥AD,垂足为点P.①当0<t≤40时,如答图1,∵sin∠OAD===,∴MP=AM•sin∠OAD=t.S=DN•MP=×t×t=t2;②当40<t ≤50时,如答图2,MD=70﹣t ,∵sin ∠ADO===,∴MP=(70﹣t ).∴S △DMN =DN •MP=×t ×(70﹣t )=t 2+28t=(t ﹣35)2+490.∴S=当0<t ≤40时,S 随t 的增大而增大,当t=40时,最大值为480. 当40<t ≤50时,S 随t 的增大而减小,当t=40时,最大值为480. 综上所述,S 的最大值为480.(3)存在2个点P ,使得∠DPO=∠DON .方法一:如答图3所示,过点N 作NF ⊥OD 于点F ,则NF=ND •sin ∠ODA=30×=24,DF=ND •cos ∠ODA=30×=18.∴OF=12,∴tan ∠NOD===2.作∠NOD 的平分线交NF 于点G ,过点G 作GH ⊥ON 于点H ,则FG=GH .∴S △ONF =OF •NF=S △OGF +S △OGN =OF •FG+ON •GH=(OF+ON )•FG .∴FG===,∴tan ∠GOF===.设OD 中垂线与OD 的交点为K ,由对称性可知:∠DPK=∠DPO=∠DON=∠FOG∴tan ∠DPK===,∴PK=.根据菱形的对称性可知,在线段OD的下方存在与点P关于OD轴对称的点P′.∴存在两个点P到OD的距离都是.方法二:答图4所示,作ON的垂直平分线,交OD的垂直平分线EF于点I,连结OI,IN.过点N作NG⊥OD,NH⊥EF,垂足分别为G,H.当t=30时,DN=OD=30,易知△DNG∽△DAO,∴,即.∴NG=24,DG=18.∵EF垂直平分OD,∴OE=ED=15,EG=NH=3.设OI=R,EI=x,则在Rt△OEI中,有R2=152+x2①在Rt△NIH中,有R2=32+(24﹣x)2②由①、②可得:∴PE=PI+IE=.根据对称性可得,在BD下方还存在一个点P′也满足条件.∴存在两个点P,到OD的距离都是.(注:只求出一个点P并计算正确的扣(1分).)【点评】本题考查了相似三角形的判定与性质、菱形、等腰三角形、中垂线、勾股定理、解直角三角形、二次函数极值等知识点,涉及考点较多,有一定的难度.第(2)问中,动点M在线段AO和OD上运动时,是两种不同的情形,需要分类讨论;第(3)问中,满足条件的点有2个,注意不要漏解.24.如图:二次函数y=ax2+c(a<0,c>0)的图象C1交x轴于A、B两点,交y轴于D,将C1沿某一直线方向平移,平移后的抛物线C2经过B点,且顶点落在直线x=上.(1)求B点坐标(用a、c表示);(2)求出C2的解析式(用含a、c的式子表示);(3)点E是点D关于x轴的对称点,C2的顶点为F,且∠DEF=45°,试求a、c应满足的数量关系式.【考点】二次函数综合题.【分析】(1)在y=ax2+c中令y=0,求x的值,可求得B点坐标;(2)利用B、C的对称性,可求得C点坐标,利用两点式可求得C2的解析式;(3)先求得点F坐标,过F作FG⊥y轴于,由条件可得GE=GF,从而可得到关于a、c的数量关系式.【解答】解:(1)y=ax2+c中令y=0,可得ax2+c=0,解得x=±,∵B点在y轴的右侧,∴B点坐标为(,0);(2)∵点B、C关于直线x=上对称∴C 点坐标为(,0),∴抛物线的解析式为y=a (x ﹣)(x ﹣);(3)在y=a (x ﹣)(x ﹣)中,当x=时,可得y=,∵D 、E 关于x 轴对称, ∴E 点坐标为(0,﹣c ), ∴OE=c ,∴GE=c+,过点F 作FG ⊥y 轴于G ,如图,则GF=,∵∠DEF=45°, ∴GE=GF ,∴=c+,整理可得ac=﹣【点评】本题为二次函数综合应用,主要涉及二次函数的对称性、解析式、等腰直角三角形的性质等知识点.在(1)中利用函数与方程的关系是解题的关键,在(2)中利用对称性求得C 点坐标是解题的关键,在(3)中利用45°角得到GE=GF 是解题的关键.本题知识点不多,但计算量较大,综合性较强,难度适中.。
国开电大初等数论(四川)形成作业四参考答案
a.有限个解
b.无法确定
c.无解
d.有无穷多解
【答案】:无解
题目2.形如4n-1的数不能写成()个平方数的和
a. 1
b. 0
c. 2
d. 3
【答案】:2
题目3.同余式x2=365(mod1847)的解的情况()
a.有无理数解
b.不确定
c.有解
d.无解
【答案】:有解
c. 1,2,3,4,5,6,7,8
d. 1,2,4,8,9,13,15,16
【答案】:1,2,4,8,9,13,15,16
题目7.在整数中正素数的个数为( )
a.有限多
b.无限多
c.有1个
d.不一定
【答案】:无限多
题目8.同余式8x=9(mod11)的解为()
a. x=8(mod11)
b. x=4(mod17)
对
错
【答案】:错
题目12.对于同一素数p,二平方剩余之积仍是平方剩余.
对
错
【答案】:对
题目13.素数写成两个平方数和的方法不是惟一的.
对
错
【答案】:错
题目14.模13的平方非剩余个数为6个.
对
错
【答案】:对
题目15.如果(b,p)=1,则b是模p的平方(mod17)
d. x=9(mod17)
【答案】:x=8(mod11)
题目9.如果同余式x2=a(modp)有解,则成a是模p的()
a.四次剩余
b.三次剩余
c.一次剩余
d.二次剩余
【答案】:二次剩余
题目10.563是素数,=()
a. 0
b. 3
《初等数论》各章习题参考解答
3
1
48
,
在100! 的分解式中的指数
2
100!
100 2
100 4
100 8
100 16
100 64
50
25
12
6
1
94
,
100! 294 348 k 447 348 k 1247 3k,k, 6 1。
故 nmax 47 , M min 3k , k, 6 1。
k
+
1 位正整数,记其最左边
那一位数字为 a Î {2,5},则 xk' + 1 = a´ 10k + xk' ,其中 xk' 是由 2 和 5 组成的十进制 k 位
正整数,由 2k+ 1
若 k = 轾犏臌3 n = 8 ,则 3创5 7篡8 n 840 n ,从而 k = 轾犏臌3 n 吵轾犏臌3 840 9 > 8 ,矛盾!
若 k = 7 ,则 3创4 5篡7 n 420 n ,但 n < 840 ,所以最大的正整数 n = 420 。
6.证明:当 n = 1 时,存在唯一的 x1 = 2 ,则有 21 x1 ;当 n = 2 时,存在唯一的 x2 = 52 ,有 22 x2 ;当 n = 3 时,存在唯一的 x3 = 552 ,有 23 x3 。
n 炒2a
3b 创5g
7 11
77创
k 2
k 3
k 5
77 30
k 3。
由 k ³ 11 ,可得 k ³
11 12
(k
+
1),从而
n>
77 30
壮k 3
77 30
113 123
《初等数论》作业.
《初等数论》作业第一次作业:一、单项选择题1、=),0(b ( ). A b B b - C b D 02、如果a b ,b a ,则( ).A b a =B b a -=C b a ≤D b a ±=3、如果1),(=b a ,则),(b a ab +=( ). A a B b C 1 D b a +4、小于30的素数的个数( ). A 10 B 9 C 8 D 75、大于10且小于30的素数有( ). A 4个 B 5个 C 6个 D 7个6、如果n 3,n 5,则15()n .A 整除B 不整除C 等于D 不一定 7、在整数中正素数的个数( ).A 有1个B 有限多C 无限多D 不一定 二、计算题1、求24871与3468的最大公因数?2、求[24871,3468]=?3、求[136,221,391]=? 三、证明题1、如果b a ,是两个整数,0 b ,则存在唯一的整数对r q ,,使得r bq a +=,其中b r ≤0.2、证明对于任意整数n ,数62332n n n ++是整数. 3、任意一个n 位数121a a a a n n -与其按逆字码排列得到的数n n a a a a 121- 的差必是9的倍数. 4、证明相邻两个偶数的乘积是8的倍数.第二次作业一、单项选择题1、如果( A ),则不定方程c by ax =+有解. A c b a ),( B ),(b a c C c a D a b a ),(2、不定方程210231525=+y x (A ).A 有解B 无解C 有正数解D 有负数解二、求解不定方程 1、144219=+y x .解:因为(9,21)=3,1443,所以有解;化简得4873=+y x ;考虑173=+y x ,有1,2=-=y x , 所以原方程的特解为48,96=-=y x , 因此,所求的解是Z t t y t x ∈-=+-=,348,796。
初等数论习题解析
当 N < 0 时 原方程无非负整数解 此时 ⎧ ⎨x = bt,
⎩y = −at,
a = bq1 + r1 , 0 < r1 < b, b = r 1 q2 + r 2 , 0 < r 2 < r 1 , ······ r n − 2 = r n − 1 qn + r n , r n = 1 . 由第一章 §3 定理 Qn a − Pn b = (−1)n−1 ,
初等数论第三次作业
证明不定方程 x2 + y 2 = z 4 , (x, y ) = 1, x, y, z > 0, 2 | x 的一切正整数解可以写成公式 x = 4ab(a2 − b2 ), y = |a4 + b4 − 6a2 b2 |, z = a2 + b2 , a > b > 0, (a, b) = 1, a, b一奇一偶. 证明:原方程可以写为 x2 + y 2 = ( z 2 ) 2 , 其正整数解为 x = 2uv, y = |u2 − v 2 |, z 2 = u2 + v 2 . 其中 u, v > 0, (u, v ) = 1, u, v 一奇一偶 再考虑方程 z 2 = u2 + v 2 ,
t∈N
求不定方程 2x + 5y + 7z + 3w = ⎧ 10 的全部整数解 ⎪ ⎪ 2x + 5y = t1 , ⎪ ⎨ 解:由于 2, 3, 5, 7 两两互质 所以可设 t1 + 7z = t2 , ⎪ ⎪ ⎪ ⎩t + 3w = 10,
2
初等数论第二次作业 依次解得 ⎧ ⎨x = 3t1 − 5r, 消去 t1 , t2 得 ⎧ ⎨t1 = −6t2 − 7s, ⎩z = t + s,
《初等数论》习题集及答案
《初等数论》习题集及答案《初等数论》习题集第1章第 1 节1. 证明定理1。
2. 证明:若m - p ∣mn + pq ,则m - p ∣mq + np 。
3. 证明:任意给定的连续39个自然数,其中至少存在一个自然数,使得这个自然数的数字和能被11整除。
4. 设p 是n 的最小素约数,n = pn 1,n 1 > 1,证明:若p >3n ,则n 1是素数。
5. 证明:存在无穷多个自然数n ,使得n 不能表示为a 2 + p (a > 0是整数,p 为素数)的形式。
第 2 节1. 证明:12∣n 4 + 2n 3 + 11n 2 + 10n ,n ∈Z 。
2. 设3∣a 2 + b 2,证明:3∣a 且3∣b 。
3. 设n ,k 是正整数,证明:n k 与n k + 4的个位数字相同。
4. 证明:对于任何整数n ,m ,等式n 2 + (n + 1)2 = m 2 + 2不可能成立。
5. 设a 是自然数,问a 4 - 3a 2 + 9是素数还是合数?6. 证明:对于任意给定的n 个整数,必可以从中找出若干个作和,使得这个和能被n 整除。
第 3 节1. 证明定理1中的结论(ⅰ)—(ⅳ)。
2. 证明定理2的推论1, 推论2和推论3。
3. 证明定理4的推论1和推论3。
4. 设x ,y ∈Z ,17∣2x + 3y ,证明:17∣9x + 5y 。
5. 设a ,b ,c ∈N ,c 无平方因子,a 2∣b 2c ,证明:a ∣b 。
6. 设n 是正整数,求1223212C ,,C ,C -n n n n 的最大公约数。
第 4 节1. 证明定理1。
2. 证明定理3的推论。
3. 设a ,b 是正整数,证明:(a + b )[a , b ] = a [b , a + b ]。
4. 求正整数a ,b ,使得a + b = 120,(a , b ) = 24,[a , b ] = 144。
5. 设a ,b ,c 是正整数,证明:),)(,)(,(),,(],][,][,[],,[22a c c b b a c b a a c c b b a c b a =。
初等数论练习题答案(优选.)
初等数论练习题答案原点教育培训学校初等数论练习题一一、填空题1、d(2420)=12; ϕ(2420)=_880_2、设a,n 是大于1的整数,若a n -1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。
5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。
.6、分母是正整数m 的既约真分数的个数为_ϕ(m )_。
7、18100被172除的余数是_256。
8、⎪⎭⎫ ⎝⎛10365 =-1。
9、若p 是素数,则同余方程x p - 1 ≡1(mod p )的解数为 p-1 。
二、计算题1、解同余方程:3x 2+11x -20 ≡ 0 (mod 105)。
解:因105 = 3⋅5⋅7,同余方程3x 2+11x -20 ≡ 0 (mod 3)的解为x ≡ 1 (mod 3), 同余方程3x 2+11x -38 ≡ 0 (mod 5)的解为x ≡ 0,3 (mod 5), 同余方程3x 2+11x -20 ≡ 0 (mod 7)的解为x ≡ 2,6 (mod 7), 故原同余方程有4解。
作同余方程组:x ≡ b 1 (mod 3),x ≡ b 2 (mod 5),x ≡ b 3 (mod 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由孙子定理得原同余方程的解为x ≡ 13,55,58,100 (mod 105)。
2、判断同余方程x 2≡42(mod 107)是否有解?11074217271071107713231071107311072107710731072107732107422110721721107213)(=∴-=-=-==-=-=-==⨯⨯≡-•--•-)()()()(),()()()(),()())()(()(解:故同余方程x 2≡42(mod 107)有解。
《初等数论》各章习题参考解答
《初等数论》各章习题参考解答第一章习题参考解答1.解:因为25的最小倍数是100,9的最小倍数是,所以满足条件的最小正整数11111111100a =。
2.解:3在100!的分解式中的指数()1001001001003100!33113148392781⎡⎤⎡⎤⎡⎤⎡⎤=+++=+++=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦, 在100!的分解式中的指数()1001001001001002100!50251261942481664⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=++++=++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,∴ ()9448474847100!2343123,,61k k k k =⋅⋅=⋅⋅=⋅=。
故 max 47n =,min 3M k =,(),61k =。
故 当M 最小值是3的倍数,但不是2的倍数。
3.解:112121n n n n x x ++++++等价于()()21221n n n x x x ++-+-,从而3x ³(n 就不会太大,存在反向关系)。
由()()22121n nn x x x -+-?+,得()()2212n n n x x -+?,即()()()121122nn x x -+?。
若2n ³,则()()()()251221114242nn x xx x-?+??,导致25140x x -+?,无解。
所以,只有1n =,335314x x x +-?,只能是37,14x +=,从而4,11x =。
综上所述,所求正整数对()()(),4,111,1x n =、。
4.解:按题意,2m n >>,记*,m n k k N =+?;则()222211111n n k nk n k k a a a a a a a a a a a a +++-+-?-+--++-22211111n k k n k k a a a a a a a a a ++?---+?-+-,故 存在无穷多个正整数a 满足2111n k k a a a a ++-+-。
初等数论作业答案
初等数论1:[单选题]已知361a是一个4位数(其中a是个位数),它能被5整除,也能被3整除,则a的值是()。
A:0B:2C:5D:9参考答案:C2:[单选题]下面的()是模4的一个简化剩余系。
A:4,17B:1,15C:3,23D:13,6参考答案:B3:[单选题]小于20的正素数的个数是()。
A:11B:10C:9D:8参考答案:D 4:[单选题]下面的数是3的倍数的数是()。
A:19B:119C:1119D:11119参考答案:C5:[单选题]-4除-39的余数是()。
A:3B:2C:1D:0参考答案:C6:[单选题]一个正整数n的各位上的数字是0或1,并且n能被2和3整除,则最小的n 是()。
A:1110B:1101C:1011D:1001参考答案:A7:[单选题][[4.5]+[3.7]]等于()。
A:3B:4C:7D:8参考答案:C8:[单选题]{{1.8}+{2.9}}等于()。
A:0.4B:0.5C:0.6D:0.7参考答案:D 9:[单选题]100与44的最小公倍数是()。
A:4400B:2200C:1100D:440参考答案:C10:[单选题]使3的n次方对模7同余于1的最小的正整数n等于()。
A:6B:2C:3D:13参考答案:A11:[单选题]设a,b,c,d是模5的一个简化剩余系,则a+b+c+d对模5同余于()。
A:0B:1C:2D:3参考答案:A12:[单选题]下面的()是不定方程3x + 7y = 20的一个整数解。
A:x=0,y=3B:x=2,y=1C:x=4,y=2D:x=2,y=2参考答案:D13:[单选题]下面的()是模4的一个完全剩余系。
A:9,17,-5,-1B:25,27,13,-1C:0,1,6,7D:1,-1,2,-2参考答案:C14:[单选题]下面的()是模12的一个简化剩余系。
A:0,1,5,11B:25,27,13,-1C:1,5,7,11D:1,-1,2,-2参考答案:C15:[单选题]若a,b均为偶数,则a + b为()。
《初等数论》版习题解答
《初等数论》版习题解答第⼀章整数的可除性§1 整除的概念·带余除法 1.证明定理3定理3 若12n a a a ,,,都是m 得倍数,12n q q q ,,,是任意n 个整数,则1122n n q a q a q a +++是m 得倍数.证明:12,,n a a a 都是m 的倍数。
∴存在n 个整数12,,n p p p 使 1122,,,n n a p m a p m a p m ===⼜12,,,n q q q 是任意n 个整数1122n nq a q a q a ∴+++1122n n q p m q p m q p m =+++1122()n n p q q p q p m =+++即1122n n q a q a q a +++是m 的整数2.证明 3|(1)(21)n n n ++ 证明(1)(21)(1)(2n n n n n n n ++=+++-(1)(2)(1)(n n n n n n =+++-+ ⼜(1)(2)n n n ++,(1)(2)n n n -+是连续的三个整数故3|(1)(2),3|(1)(1)n n n n n n ++-+3|(1)(2)(1)(1)n n n n n n ∴+++-+从⽽可知3|(1)(21)n n n ++3.若00ax by +是形如ax by +(x ,y 是任意整数,a ,b 是两不全为零的整数)的数中最⼩整数,则00()|()ax by ax by ++.证:,a b 不全为0,x y Z ?∈,由带余除法有0000(),0ax by ax by q r r ax by +=++≤<+则00()()r x x q a y y q b S =-+-∈,由00ax by +是S 中的最⼩整数知0r =00|ax by ax by ∴++00|ax by ax by ++ (,x y 为任意整数) 0000|,|ax by a ax by b ∴++ 00|(,).ax by a b ∴+ ⼜有(,)|a b a ,(,)|a b b 00(,)|a b ax by ∴+故00(,)ax by a b +=4.若a ,b 是任意⼆整数,且0b ≠,证明:存在两个整数s ,t 使得||,||2b a bs t t =+≤成⽴,并且当b 是奇数时,s ,t 是唯⼀存在的.当b 是偶数时结果如何?证:作序列33,,,,0,,,,2222b b b bb b ---则a 必在此序列的某两项之间即存在⼀个整数q ,使122q q b a b +≤<成⽴ ()i 当q 为偶数时,若0.b >则令,22q qs t a bs a b ==-=-,则有 02222b q q qa bs t ab a b b t ≤-==-=-<∴<若0b < 则令,22q qs t a bs a b =-=-=+,则同样有2b t <()ii 当q 为奇数时,若0b >则令11,22q q s t a bs a b ++==-=-,则有1102222b b q q t a bs a b a b t ++-≤=-=-=-<∴≤ 若 0b <,则令11,22q q s t a bs a b ++=-下证唯⼀性当b 为奇数时,设11a bs t bs t =+=+则11()t t b s s b -=-> ⽽111,22b bt t t t t t b ≤≤∴-≤+≤ ⽭盾故11,s s t t == 当b 为偶数时,,s t 不唯⼀,举例如下:此时2b为整数 11312(),,22222b b b b b b b t t ?=?+=?+-=≤§2 最⼤公因数与辗转相除法 1.证明推论4.1推论4.1 a ,b 的公因数与(a ,b )的因数相同.证:设d '是a ,b 的任⼀公因数,∴d '|a ,d '|b 由带余除法111222111111,,,,,0n n n n n n n n n n a bq r b r q r r r q r r r q r r r r b---++-=+=+=+==≤<<<<∴(,)n a b r =∴d '|1a bq -1r =, d '|122b r q r -=,┄, d '|21(,)n n n n r r q r a b --=+=,即d '是(,)a b 的因数。
初等数论习题集参考答案
习题参考答案第一章习题一1. (ⅰ) 由a∣b知b = aq,于是b = (-a)(-q),-b = a(-q)及-b = (-a)q,即-a∣b,a∣-b及-a∣-b。
反之,由-a∣b,a∣-b及-a∣-b也可得a∣b;(ⅱ) 由a∣b,b∣c知b = aq1,c = bq2,于是c = a(q1q2),即a∣c;(ⅲ) 由b∣a i知a i= bq i,于是a1x1+a2x2+ +a k x k = b(q1x1+q2x2+ +q k x k),即b∣a1x1+a2x2+ +a k x k;(ⅳ) 由b∣a知a = bq,于是ac = bcq,即bc∣ac;(ⅴ) 由b∣a知a = bq,于是|a| = |b||q|,再由a ≠ 0得|q| ≥ 1,从而|a| ≥ |b|,后半结论由前半结论可得。
2. 由恒等式mq+np = (mn+pq) - (m-p)(n-q)及条件m-p∣mn+pq可知m-p∣mq+np。
3. 在给定的连续39个自然数的前20个数中,存在两个自然数,它们的个位数字是0,其中必有一个的十位数字不是9,记这个数为a,它的数字和为s,则a, a+ 1, , a+ 9, a+ 19的数字和为s, s+ 1, , s+ 9, s+ 10,其中必有一个能被11整除。
4. 设不然,n1 = n2n3,n2≥p,n3≥p,于是n = pn2n3≥p3,即p≤3n,矛盾。
5. 存在无穷多个正整数k,使得2k+ 1是合数,对于这样的k,(k+ 1)2不能表示为a2+p的形式,事实上,若(k+ 1)2 = a2+p,则(k+ 1 -a)( k+ 1 +a) = p,得k+ 1 -a = 1,k+ 1 +a = p,即p = 2k+ 1,此与p 为素数矛盾。
第一章习题二1. 验证当n =0,1,2,… ,11时,12|f(n)。
2.写a = 3q1+r1,b = 3q2+r2,r1, r2 = 0, 1或2,由3∣a2+b2 = 3Q+r12+r22知r1 = r2 = 0,即3∣a且3∣b。
初等数论答案到第四章
第一章 整数的可除性§1 整除的概念·带余除法 1.证明定理3定理3 若12n a a a ,,,都是m 得倍数,12n q q q ,,,是任意n 个整数,则1122n n q a q a q a +++是m 得倍数.证明:12,,n a a a 都是m 的倍数。
∴ 存在n 个整数12,,n p p p 使 1122,,,n n a p m a p m a p m ===又12,,,n q q q 是任意n 个整数1122n nq a q a q a ∴+++1122n n q p m q p m q p m =+++1122()n n p q q p q p m =+++即1122n n q a q a q a +++是m 的整数2.证明 3|(1)(21)n n n ++ 证明(1)(21)(1)(2n n n n n n n ++=+++-(1)(2)(1)(n n n n n n =+++-+ 又(1)(2)n n n ++,(1)(2)n n n -+是连续的三个整数故3|(1)(2),3|(1)(1)n n n n n n ++-+3|(1)(2)(1)(1)n n n n n n ∴+++-+从而可知3|(1)(21)n n n ++3.若00ax by +是形如ax by +(x ,y 是任意整数,a ,b 是两不全为零的整数)的数中最小整数,则00()|()ax by ax by ++.证:,a b 不全为0∴在整数集合{}|,S ax by x y Z =+∈中存在正整数,因而有形如ax by +的最小整数00ax by +,x y Z ∀∈,由带余除法有0000(),0ax by ax by q r r ax by +=++≤<+则00()()r x x q a y y q b S =-+-∈,由00ax by +是S 中的最小整数知0r =00|ax by ax by ∴++00|ax by ax by ++ (,x y 为任意整数) 0000|,|ax by a ax by b ∴++ 00|(,).ax by a b ∴+ 又有(,)|a b a ,(,)|a b b00(,)|a b ax by ∴+ 故00(,)ax by a b +=4.若a ,b 是任意二整数,且0b ≠,证明:存在两个整数s ,t 使得||,||2b a bs t t =+≤成立,并且当b 是奇数时,s ,t 是唯一存在的.当b 是偶数时结果如何? 证:作序列33,,,,0,,,,2222b b b bb b ---则a 必在此序列的某两项之间即存在一个整数q ,使122q q b a b +≤<成立 ()i 当q 为偶数时,若0.b >则令,22q qs t a bs a b ==-=-,则有 02222b q q qa bs t ab a b b t ≤-==-=-<∴<若0b < 则令,22q qs t a bs a b =-=-=+,则同样有2b t <()ii 当q 为奇数时,若0b >则令11,22q q s t a bs a b ++==-=-,则有 1102222b b q q t a bs a b a b t ++-≤=-=-=-<∴≤ 若 0b <,则令11,22q q s t a bs a b ++=-=-=+,则同样有2b t ≤,综上所述,存在性得证.下证唯一性当b 为奇数时,设11a bs t bs t =+=+则11()t t b s s b -=->而111,22b bt t t t t t b ≤≤∴-≤+≤ 矛盾 故11,s s t t ==当b 为偶数时,,s t 不唯一,举例如下:此时2b为整数 11312(),,22222b b b b b b b t t ⋅=⋅+=⋅+-=≤§2 最大公因数与辗转相除法 1.证明推论4.1推论4.1 a ,b 的公因数与(a ,b )的因数相同. 证:设d '是a ,b 的任一公因数,∴d '|a ,d '|b 由带余除法111222111111,,,,,0n n n n n n n n n n a bq r b r q r r r q r r r q r r r r b---++-=+=+=+==≤<<<<∴(,)n a b r =∴d '|1a bq -1r =, d '|122b r q r -=,┄, d '|21(,)n n n n r r q r a b --=+=,即d '是(,)a b 的因数。
闵嗣鹤、严士健,初等数论第四章习题解答
第四章 同余式§1 习题(P61)1. 求下列各同余式的解 (i )256179(mod337) x ≡ (ii )1215560(mod 2755) x ≡ (iii )12961125(mod 1935) x ≡ 解:(i )由(256,337)1=,∴有唯一解解不定方程 256337179x y -= ……(1) 先解不定方程 2563371x y += ……(2) 由得30(1)79y =-,40(1)104x =-为(2)之特解104179x '=⨯,79179y '=⨯为(1)之特解1041791861681(mod337) x ∴≡⨯=≡是原同余式之一解。
(ii )由(1215,2755)5=,5560,∴有5个不同的解。
解不定方程 12152755560x y -= (1)即解等价不定方程243551112x y -= ……(2) 先解: 2435511x y += ……(3) 解得(3)的特解0195x =-,086y =即得(2)的特解0195112x =-⨯,086112y =-⨯ ∴原同余式五个不同解为 195112551200551(mo x K K =-⨯+≡+ 0,1,2,3,4K = (iii )由(1296,1935)9=,91125 ∴有9个不同解解不定方程 129619351125x y -= ……(1) (1)等价于不定方程 14421512x y -= ……(2) 先解: 1442151x y += ……(3) 解得(3)的一特解 0106x =-,071y =于是得(2)的一特解 0106125x =-⨯,071125y =-⨯∴原同余式的9个不同解为106125215295215(mod 1935) x K K =-⨯+≡+2561 = q 1337 256 813 = q 2256 243 13 6 = q 381 78 3 4 = q 4 13 12 1 q P Q 0 1 2 3 4 13 641 1 4 25 104 01319 790,1,2,,8K =2. 求联立同余式的解4290(mod143) x y +-≡ 29840(m o d 1x y -+≡ 解:解 414329 x y z +-= ……(1) 2914384x y z --=- ……(2) 由(2)2(1)-⨯:14317142z y -=- ……(3) 由(143,17)1=,∴(3)有唯一解。
《初等数论》试卷及参考答案(与闵嗣鹤第三版配套)
《初等数论》试卷一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( )A.00,,0,1,2,;abx x t y y t t d d =-=+=±± B.00,,0,1,2,;abx x t y y t t d d =+=-=±± C.00,,0,1,2,;bax x t y y t t d d =+=-=±± D.00,,0,1,2,;bax x t y y t t dd =-=-=±±4.下列各组数中不构成勾股数的是( )A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡⇒+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡⇒≡ C.()()111212mod mod ;a b m a a b a m ≡⇒≡ D.()()112211mod mod .a b m a b m ≡⇒≡ 6.模10的一个简化剩余系是( ) A.0,1,2,,9; B.1,2,3,,10;C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9. 7.()mod a b m ≡的充分必要条件是( ) A.;m a b - B.;a b m - C.;m a b + D..a b m +8.设()43289f x x x x =+++,同余式()()0mod5f x ≡的所有解为( ) A.1x =或1;- B.1x =或4; C.1x ≡或()1mod5;- D.无解. 9、设f(x)=10n n a x a x a +++其中()0,mod i a x x p ≡是奇数若为f(x)()0mod p ≡的一个解,则:( )A .()()mod ()0mod ,1p f x p χχ∂≡≡∂>一定为的一个解 B .()()0mod ,1,()0mod p f x p χχ∂∂≡∂>≡一定为的一个解C .()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中 D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有 10.()10(),,0mod ,,n n i n f x a x a x a a a p n p =+++≡>/设其中为奇数则同余式()()0mod f x p ≡的解数:( ) A .有时大于p 但不大于n; B .可超过pC .等于pD .等于n11.若2为模p 的平方剩余,则p 只能为下列质数中的 :( )A .3B .11C .13D .23 12.若雅可比符号1a m ⎛⎫=⎪⎝⎭,则 ( ) A .()2mod ,x a m ≡同余式一定有解B .()()2,1,mod a m x a p =≡当时同余式有解;C .()2(,mod m p x a p =≡当奇数)时同余式有解;D .()2(),mod a p x a p =≡当奇数时同余式有解.13.()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于( )A . 4B .3C . 2D . 1 14. 模12的所有可能的指数为;( )A .1,2,4B .1,2,4,6,12C .1,2,3,4,6,12D .无法确定 15. 若模m 的单根存在,下列数中,m 可能等于: ( ) A . 2 B .3 C . 4 D . 12 16.对于模5,下列式子成立的是: ( )A .322ind =B .323ind =C .350ind =D .3331025ind ind ind =+ 17.下列函数中不是可乘函数的是: ( ) A .茂陛鸟斯(mobius)函数w(a) ; B . 欧拉函数()a φ;C .不超过x 的质数的个数()x π;D .除数函数()a τ;18. 若x 对模m 的指数是ab ,a >0,ab >0,则x α对模m 的指数是( ) A .a B .b C .ab D .无法确定 19.()f a ,()g a 均为可乘函数,则( ) A .()()f a g a 为可乘函数; B .()()f ag a 为可乘函数 C .()()f a g a +为可乘函数; D .()()f a g a -为可乘函数 20.设()a μ为茂陛乌斯函数,则有( )不成立A .()11μ=B .()11μ-=C .()21μ=-D .()90μ= 二.填空题:(每小题1分,共10分)21. 3在45!中的最高次n = ____________________; 22. 多元一次不定方程:1122n n a x a x a x N +++=,其中1a ,2a ,…,n a ,N 均为整数,2n ≥,有整数解的充分必要条件是___________________;23.有理数ab,0a b <<,)(,1a b =,能表成纯循环小数的充分必要条件是_______________________;24. 设()0mod x x m ≡为一次同余式()mod ax b m ≡,a ≡()0mod m 的一个解,则它的所有解为_________________________;25. 威尔生(wilson )定理:________________________________________; 26. 勒让德符号5031013⎛⎫⎪⎝⎭=________________________________________; 27. 若)(,1a p =,则a 是模p 的平方剩余的充分必要条件是_____________(欧拉判别条件); 28. 在模m 的简化剩余系中,原根的个数是_______________________; 29. 设1α≥,g 为模p α的一个原根,则模2p α的一个原根为_____________; 30.()48ϕ=_________________________________。
初等数论 习题解答
王进明 初等数论 习题及作业解答P17 习题1-1 1,2(2)(3), 3,7,11,12为作业。
1.已知两整数相除,得商12,余数26,又知被除数、除数、商及余数之和为454.求被除数.解:1226,1226454,a b a b =++++=12261226454,b b ++++=(121)454122626390,b +=---=b =30, 被除数a =12b +26=360.这题的后面部分是小学数学的典型问题之一——“和倍” 问题:商为12,表明被除数减去余数后是除数的12倍,被除数减去余数后与除数相加的和是除数的(12+1)倍,即454122626390---=是除数的13倍.2.证明:(1) 当n ∈Z 且39(09)n q r r =+≤<时,r 只可能是0,1,8;证:把n 按被9除的余数分类,即:若n=3k, k ∈Z ,则3327n k =, r=0; 若n=3k +1, k ∈Z ,则3322(3)3(3)3(3)19(331)1n k k k k k k =+++=+++,r=1; 若n=3k -1, k ∈Z ,则33232(3)3(3)3(3)19(331)8n k k k k k k =-+-=-+-+,r=8. (2) 当 n ∈Z 时,32326n n n -+的值是整数。
证 因为32326n n n -+=32236n n n -+,只需证明分子3223n n n -+是6的倍数。
32223(231)(1)(21)n n n n n n n n n -+=-+=--(1)(21)n n n n =--++=(1)(2)n n n --+(1)(1)n n n -+.由k ! 必整除k 个连续整数知:6 |(1)(2)n n n --,6 |(1)(1)n n n -+.或证:2!|(1)n n -, (1)n n -必为偶数.故只需证3|(1)(21)n n n --.若3|n, 显然3|(1)(21)n n n --;若n 为3k +1, k ∈Z ,则n -1是3的倍数,得知(1)(21)n n n --为3的倍数;若n 为3k -1, k ∈Z ,则2n -1=2(3k -1)-1=6k-3, 2n -1是3的倍数.综上所述,(1)(21)n n n --必是6的倍数,故命题得证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年西南大学初等数论第四次作业
证明题
1. 设n 是整数,证明6 | n (n + 1)(2n + 1)。
证明:n (n + 1)(2n + 1) = n (n + 1)(n – 1) + n (n + 1)(n + 2)。
n (n + 1)(n – 1)是三个连续整数的积,n (n + 1)(n + 2)也是三个连续整数的积, 而三个连续整数的积可被6整除,
所以6 | n (n + 1)(n – 1),6 | n (n + 1)(n + 2)。
由整出的性质可得6 | n (n + 1)(2n + 1)。
2. 设n 是整数,证明:n n -3|6。
证明:)1)(1(3+-=-n n n n n 。
由于)1)(1(+-n n n 是3个连续整数的积,所以n n -3|3。
由于)1(-n n 是2个连续整数的积,所以n n -3|2。
又(2,3)= 1,所以
n n -3|6。
3. 设x ,y 均为整数。
证明:若y x 2|7+,则y x 610|7+。
证明:)2(37610y x x y x ++=+,因为y x 2|7+,所以)2(3|7y x +, 因为7|7,所以7|7x ,从而)2(37|7y x x ++,所以y x 610|7+
4. 设x ,y 均为整数。
证明:若y x 9|5+,则y x 78|5+。
证明:y y x y x 65)9(878-+=+。
因为y x 9|5+,所以)9(8|5y x +。
又因为5|65,所以5|65y 。
从而y y x 65)9(8|5-+,所以y x 78|5+。
5.设x 是实数,n 是正整数,证明:⎥⎦
⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡n x n x ][。
证明:设⎥⎦⎤⎢⎣⎡=n x a ,则1+<≤a n x a ,所以)1(+<≤a n x na 。
因为na 与n (a +1)都是整数,所以)1(][+<≤a n x na , 于是1][+<≤a n x a ,从而a n x =⎥⎦⎤⎢⎣⎡][,所以 ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡n x n x ][。
6.设p 是质数,证明:m m p p p p =++++)()()()1(2ϕϕϕϕ 。
证明:因为1)1(=ϕ,1)(--=a a a p p p ϕ,
所以
)()()1(1)()()()1(122--++-+-+=++++m m m p p p p p p p p ϕϕϕϕ =m p 。
7.证明:若c a |,d b |,则cd ab |。
证明:由c a |,d b |知存在整数p ,
q 使得ap c =,bq d =,所以abpq apbq cd ==, 因为pq 为整数,所以由整除的定义知cd ab |。
8.证明:若)(mod m b a ≡,)(mod m d c ≡,则)(mod m d b c a +≡+。
证明:由)(mod m b a ≡,)(mod m d c ≡得)(|b a m -,)(|d c m -,由整除的性质得)]()[(|d c b a m -+-,即)]()[(|d b c a m +-+,所以)(mod m d b c a +≡+。
9.设a 是大于1的整数,证明44a +是合数。
证明:422224()444a a a a +=++-
222
22(2)4(22)(22)a a a a a a =+-=+-++
由于1a >且是整数,所以22221,221a a a a +->++>,且均为整数,故当a 是大
于1的整数时,44a +是合数。
10.设m 为整数,证明:22|(2)m m ++。
证明:因为2(1)m m m m +=+是两个连续整数的积,所以22|()m m +。
又2|2,所以由整除的性质知22|(2)m m ++。