某碾压混凝土重力坝设计计算书

合集下载

重力坝计算书

重力坝计算书

MOW3 = -111.9×5.376 = -601.6 KN·m ∑MOW = 6986.7 KN·m ② 静水压力(水平力) P1 = γH12 /2 = 9.81×(1105.67-1090)2 /2 = -1204.4 KN P2 =γH22 /2 =9.81×(1095.18-1090)2 /2 = 131.6 KN (←) ∑P = -1072.8 KN (→) P1 作用点至 O 点的力臂为: (1105.67-1090)/3 = 5.223m P2 作用点至 O 点的力臂为: (1095.18-1090)/3 = 1.727 m 静水压力对 O 点的弯矩(顺时针为“-” ,逆时针为“+” ) : MOP1 = 1204.4×5.223 = -6290.6 KN·m MOP2 = 131.6×1.727 = 227.3 KN·m ∑MOP = -6063.3 KN·m ③ 扬压力 扬压力示意图请见下图: (→)
由确定坝顶超高计算时已知如下数据:单位:m
平均波长 Lm 波高 h1% 7.644 0.83
坝前水深 H 15.5
波浪中心线至计算水位的高度 hZ
0.283
使波浪破碎的临界水深计算如下:
H cr Lm Lm 2h1% ln 4 Lm 2h1%
将数据代入上式中得到:
H cr 7.644 7.644 2 0.83 ln 1.013 4 7.644 2 0.83
单位: KN、 KN· m
正常使用极限状态 持久状态 1868.6准值
均采用荷载设计值
⑵.由规范 8.结构计算基本规定中可知大坝坝体抗滑稳定和坝基岩 体进行强度和抗滑稳定计算属于 1)承载能力极限状态,在计算时, 其作用和材料性能均应以设计值代入。基本组合,以正常蓄水位对 应的上、下游水位代入,偶然组合以校核洪水位时上、下游水位代 入。 而坝体上、下游面混凝土拉应力验算属于 2)正常使用极限状 态,其各设计状态及各分项系数 = 1.0,即采用标准值输入计算。 此时结构功能限值 C = 0。 荷载各项标准值和设计值请见附表 1。 ① 坝体混凝土与基岩接触面抗滑稳定极限状态 a、基本组合时,取持久状态对应的设计状况系数ψ=1.0,结构系数 γd1=1.2,结构重要性系数γ0 =0.9。 基本组合的极限状态设计表达式

碾压混凝土重力坝设计计算书

碾压混凝土重力坝设计计算书

目录第一章设计依据11.1 工程等级与建筑物级别21.2 工程洪水标准3第二章洪水调节计算52.1 工程洪水标准52.2 调洪计算52.2.1 调洪计算基本原理52.2.2 水位与流量关系的确定62.2.3 机算调洪数据72.2.4校核水库防空时间24第三章水能计算263.1 电站出力的估算263.2 机组台数和单机容量的选择263.3 水轮机型号和参数选择263.4 淤沙高程与电站取水口高程计算273.4.1 淤沙高程273.4.2 电站进水口底板高程27第四章水电站厂房初步设计294.1 水电站厂房的布置294.2 厂房轮廓的确定294.2.1主厂房长度的确定294.2.2 主厂房宽度的确定294.2.3 尾水平台与尾水闸室的布置30第五章大坝设计315.1 大坝有关参数的确定315.2 非溢流坝设计325.2.1 非溢流坝基本剖面设计325.2.2 非溢流坝实用剖面设计335.2.3 非溢流坝的荷载组合335.2.4 非溢流坝抗滑稳定验算(坝基处2—2截面)345.2.5 非溢流坝段应力验算(坝基处2—2截面)385.2.6 坝基处2—2截面部应力验算405.2.7非溢流坝段折坡处抗滑稳定验算(1—1截面)435.2.8非溢流坝段折坡应力验算(1—1截面)485.3 溢流坝段设计495.3.1 溢流坝段基本数据495.3.2溢流坝段实用剖面设计505.3.3溢流坝段消能设施的结构尺寸确定515.3.4溢流坝抗滑稳定验算(坝基处2—2截面)525.3.5溢流坝段应力验算(坝基处2—2截面)565.3.6 溢流挑射距离和冲坑深度计算585.4 厂房坝段设计595.4.1 水电站厂房的型式595.4.2 水电站厂房的布置595.4.3 电站引水管的布置形式595.4.4 厂房坝段坝身剖面设计59第六章施工组织设计616.1 施工导流标准616.2 施工导流布置和水力计算616.2.1导流方法616.2.2 导流布置616.3 一期导流计算626.3.1 导流水力计算626.3.2 上下游围堰的堰顶高程636.3.3 围堰断面设计636.3.4 围堰工程量计算666.4 二期导流机算676.4.1 坝体缺口和底孔联合泄流水力计算676.4.2 堰顶高程的确定与堰顶宽度的确定676.4.3 围堰断面设计676.4.4 围堰工程量计算686.5 封堵时间与蓄水计划69毕业设计(论文)原创性声明和使用授权说明原创性声明本人重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作与取得的成果。

混凝土重力坝设计

混凝土重力坝设计

网络教育学院本科生毕业论文(设计)题目:碾压混凝土重力坝设计学习中心:层次:专科起点本科专业:年级:年春/秋季学号:学生:指导教师:完成日期:年月日内容摘要本论文中实例过程是一座综合利用的小型水利工程,………….水产养殖。

本次设计为混凝土重力坝设计,设计内容主要包括………….的设计。

设计的准备工作有………………………..。

后期工作有………….地基处理。

关键词:混凝土重力坝;剖面尺寸;抗滑稳定;应力分析目录内容摘要 (I)引言 (1)1 设计资料 .................................................................................. 错误!未定义书签。

1.1 某重力坝基本资料 ....................................................... 错误!未定义书签。

1.1.1 流域概况 ............................................................ 错误!未定义书签。

1.1.2 地形地质 ............................................................ 错误!未定义书签。

1.1.3 建筑材料 ............................................................ 错误!未定义书签。

1.1.4 水文条件 ............................................................ 错误!未定义书签。

1.1.5 气象条件 ............................................................ 错误!未定义书签。

1.2 某重力坝工程综合说明 ............................................... 错误!未定义书签。

碾压混凝土的重力坝设计大纲例范本

碾压混凝土的重力坝设计大纲例范本
8.2 设计原则
观测布置应符合下列原则:
(1)观测项目和测点布设应考虑碾压混凝土分层铺筑、上升速度快、间歇期短等特点,全面反映大坝的工作状况,并宜做到少而精;
(2)观测坝段应选择地质条件复杂或具有代表性的坝段;
(3)观测项目的确定,应根据工程的重要性、设计计算及模型试验成果、温度控制等方面的要求,并参考类似工程的观测布置资料;
(2)具有足够的整体性和均匀性,以满足坝基抗滑稳定要求和减少不均匀沉陷;
(3)具有足够的抗渗性,以满足渗透稳定的要求;
(4)具有足够的耐久性,以防止岩体性质在水压的长期作用下发生恶化。
6.1.2坝基处理措施
根据坝基处理要求,结合本工程地质条件,坝基处理措施有:坝基开挖、固结灌浆、防渗帷幕、坝基排水、断层破碎带与软弱夹层的处理等。
(3)SDJ 21-78 混凝土重力坝设计规范(试行)及补充规定;
(4)DL/T 5005-92 碾压混凝土坝设计导则;
(5)SDJ 10-78 水工建筑物抗震设计规范(试行);
(6)SL 53-94 水工碾压混凝土施工规范;
(7)SL 48-94 水工碾压混凝土试验规范;
(8)SDJ 336-89 混凝土大坝安全监测技术规范。
4.4 泄洪建筑物布置
4.5 引(输)水建筑物布置
4.6 施工导流建筑物布置
5 坝体断面设计
5.1 设计原则
(1)碾压混凝土重力坝的断面设计在体型上应力求简单,便于施工,上游坝面宜采用铅直面。
(2)在断面设计中,应根据工程等级、结构布置、施工工艺和运行要求等因素注意做好防渗和排水设计。
(3)断面设计应注意对碾压混凝土层间薄弱面的复核。
6.2 坝基开挖
6.2.1坝基开挖深度

重力坝设计计算书

重力坝设计计算书

1挡水坝段的设计1.1坝顶高程的确定由于设计洪水位低于正常洪水位,故取正常洪水位和校核洪水位作为控制情况。

坝底高程取挡水坝段最低点▽275.00 m ,坝顶高程为正常蓄水位▽365.00 m ,校核洪水位▽369.29 m ,确定静水位至坝顶的高差△h 。

(1) 正常蓄水位情况下:▽h=c z l h h h ++ 式中: (1—1)▽h —静水位至坝顶的高差,m ;l h —波浪高度,这里用m ;z h —波浪中心线至静水位高度,m ;c h —安全超高,m ,此处取0.5m 。

由于多年最大风速v=25 m/s ,正常蓄水位=0.13th (1—2)=0.13=0.621 (m)所以 /==0.01 , 查累计频率与平均波高的比值得 /=2.42,==0.621=1.50 (m)Lm = 0.0386 ×g (1--3) =0.03869.81=14.61 (m)H=365 – 275 =90(m)Lm Hcth Lm h h l z ππ22= (1—4)= =0.487▽h=c z l h h h ++=1.50+0.487+0.5=2.487 (m)则坝顶高程为= +▽h=365.00+2.487=367.487(m )(2) 设计洪水位情况下:由于多年最大风速v=25 m/s ,正常蓄水位=0.13th (1—2)=0.13=0.621 (m)所以 /==0.01 , 查累计频率与平均波高的比值得 /=2.42,==0.621=1.50 (m)Lm = 0.0386 ×g (1--3)=0.03869.81=14.61 (m)H=365 – 275 =90(m)Lm Hcth Lm h h l z ππ22=(1—4)= =0.487▽h=c z l h h h ++=1.50+0.487+0.5=2.487 (m)则坝顶高程为= +▽h=365.00+2.487=367.487(m )(2)校核洪水位情况下:最大风速的多年平均值 =(12+10.3+15+18.7+13+12+16+25+16+19+10+12)/12=18.33 (m) =0.13th=0.13=0.281 (m)所以 /==0.005 , 查累计频率与平均波高的比值得 /=2.42,==0.281=0.55 (m)Lm = 0.0386 ×g=0.03869.81=7.14 (m)LmH cth Lm h h l z ππ22= = =0.133▽h=c z l h h h ++=0.55+0.133+0.4=1.083 (m)则坝顶高程为= +▽h=369.29+1.083=370.373(m )综上所述,坝顶高程取较大值,并取防浪墙高度为1.2米,则坝顶高程为369.17米,取整数所以的坝顶高程取为370米。

H江碾压混凝土重力坝设计计算书

H江碾压混凝土重力坝设计计算书

目录第一章工程规模的确定....................................................... - 3 -1.1 水利枢纽与水工建筑物的等级划分..................................... - 3 -1.2 永久建筑物洪水标准................................................. - 3 -第二章调洪演算 ............................................................ - 4 -2.1洪水调节计算....................................................... - 4 -2.1.1 洪水调节计算方法........................................................ - 4 -2.1.2 洪水调节具体计算........................................................ - 4 -2.1.3 计算结果统计:.......................................................... - 8 -第三章大坝设计 ............................................................. - 9 -3.1 坝顶高确定 ........................................................ - 9 -3.1.1 计算方法................................................................ - 9 -3.1.2 计算过程................................................................ - 9 -3.2 坝顶宽度 ......................................................... - 10 -3.3 开挖线的确定...................................................... - 10 -3.4 非溢流坝剖面设计.................................................. - 10 -3.4.1 折坡点高程拟定......................................................... - 11 -3.4.2 非溢流坝剖面拟定....................................................... - 11 -3.5 非溢流坝段坝体强度和稳定承载能力极限状态验算...................... - 17 -3.5.1 荷载计算成果........................................................... - 17 -3.5.2正常蓄水位时坝体沿坝基面的抗滑稳定性及强度验算.......................... - 42 -3.5.3正常蓄水位时坝体2-2面的抗滑稳定性及强度验算............................ - 43 -3.5.4正常蓄水位时坝体3-3面的抗滑稳定性及强度验算............................ - 43 -3.5.5正常蓄水位时坝体4-4面的抗滑稳定性及强度验算............................ - 46 -3.5.6校核洪水位时坝体沿坝基面的抗滑稳定性及强度验算.......................... - 47 -3.5.7校核洪水位时坝体2-2面的抗滑稳定性及强度验算............................ - 47 -3.5.8校核洪水位时坝体3-3面的抗滑稳定性及强度验算............................ - 48 -3.5.9校核洪水位时坝体4-4面的抗滑稳定性及强度验算............................ - 50 -3.5.10正常蓄水位地震时坝体沿坝基面的抗滑稳定性及强度验算..................... - 52 -3.5.11正常蓄水位地震时坝体2-2面的抗滑稳定性及强度验算....................... - 53 -3.5.12正常蓄水位地震时坝体3-3面的抗滑稳定性及强度验算....................... - 53 -3.5.13正常蓄水位地震时坝体4-4面的抗滑稳定性及强度验算....................... - 56 -3.5.14设计水位时坝体沿坝基面的抗滑稳定性及强度验算........................... - 57 -3.5.15设计水位时坝体2-2面的抗滑稳定性及强度验算............................. - 59 -3.5.16设计水位时坝体3-3面的抗滑稳定性及强度验算............................. - 59 -3.5.17设计水位时坝体4-4面的抗滑稳定性及强度验算............................. - 61 -3.6 应力计算 ......................................................... - 62 -3.6.1 边缘应力............................................................... - 63 -3.6.2内部应力............................................................... - 63 -3.6.3 截面应力计算表......................................................... - 65 -3.6.4 应力图................................................................. - 65 -3.7 溢流坝段的设计.................................................... - 79 -3.7.1 溢流坝剖面设计......................................................... - 79 -3.7.2 消能防冲设计........................................................... - 81 -3.7.3 稳定及应力的计算....................................................... - 83 -第四章第二建筑物(压力钢管)的设计计算.....................................- 102 -4.1 引水管道的布置................................................... - 102 -4.1.1压力钢管的型式 ........................................................ - 102 -4.1.2轴线布置 .............................................................. - 102 -4.1.3 进水口................................................................ - 102 -4.2 闸门及启闭设备................................................... - 103 -4.3 细部构造 ........................................................ - 103 -4.3.1通气孔设计 ............................................................ - 103 -4.3.2充水阀设计 ............................................................ - 103 -4.3.3伸缩节设计 ............................................................ - 103 -4.4 压力钢管结构设计与计算........................................... - 103 -4.4.1 确定钢管厚度.......................................................... - 104 -4.4.2 承受内水压力的结构分析................................................ - 105 -第五章施工组织设计 ........................................................- 111 -5.1 导流标准 ........................................................ - 111 -5.2导流方案......................................................... - 111 -5.3 导流工程参数..................................................... - 112 -第一章工程规模的确定1.1 水利枢纽与水工建筑物的等级划分参考《水利水电工程等级划分及洪水标准》SL252-20001、可确定该工程规模为大(1)型工程等级为Ⅰ级2、水工建筑物级别(永久性水工建筑物)工程等级为Ⅰ级,则主要建筑物级别1级,次要建筑物3级3、临时性水工建筑物级别保护对象为1级主要永久建筑物,3级次要永久建筑,则临时性水工建筑物为4级。

H江碾压混凝土重力坝设计说明书1

H江碾压混凝土重力坝设计说明书1
在设计坝体断面时,必须本着重力坝依靠自身重量来维持结构稳定的原则。坝体上游面垂直,只在坝踵附近有陡的折坡,溢流坝上游顶部有倒悬。重力坝坝体的应力以材料力学法分析,坝体稳定的条件是坝体和坝基的最大应力须在坝段混凝土和坝基岩石的容许应力范围之内。
重力坝以材料力学法分析,它可以直接求出坝体横剖面边界之内的任何一点的应力。坝体稳定的条件是坝体和坝基的最大应力须在坝段混凝土和坝基岩石的容许应力范围之内。溢流坝段的分析同上。
厂房为全地下式厂房,主厂房尺寸为388.5×28.5×74.4(m×m×m),机组间距为3ห้องสมุดไป่ตู้.5m,安装间(主/副)长度为60/30m。主变室为地下式,尺寸为405.5×19.5×32.3~34.2(m×m×m)。开关站为地面户内式,平面尺寸为335×17.5(m×m)。
1.1.2
LT水库是W江防洪的战略性工程,承担W江中下游地区防洪任务,总防护人口达1200万人,保护耕地近700 万亩。工程的兴建可使W江和W、N江三角洲防洪标准由约20年一遇提高到约400年一遇(400m提高到约50年一遇),遇DTX水库联合防洪,可使下游的防洪标准由20年一遇提高到100年一遇;无论式从防洪效益还是替代防洪工程投资来说,其防洪作用均非常显著。
The spillway is a necessary discharge structure for a river project, which is used to discharge the excess flood that thereservoir can not accommodate so as to guarantee the project retaining structure and other structure security run. Usually the gravity dam installs spillway in the crest.The design of the blood calculus based on the water balance, and I used the list algorithm, find out the best one in the practicable spilling alternatives, with their design water level and check water level together.

碾压混重力坝毕业设计

碾压混重力坝毕业设计

碾压混重力坝毕业设计碾压混重力坝设计前言某水库工程是河北省和水利部“八·五”重点工程建设项目之一。

该工程是以供水、灌溉、养殖等综合利用为主的大型控制枢纽工程。

青龙河流域水量充沛,控制流域面积6340km2,,多年平均径流量9.6亿m3,是滦河流域较大的一条支流。

但由于降雨、径流的年际年内分配极不均匀,必须修建大型控制工程调节水量,丰富的水资源才能得以充分开发利用。

水库按满足秦皇岛市生活、工业用水和滦河中下游农业用水的需要设计,工程规模是:正常蓄水位141 m,调节库容7.09亿m3,水库库容系数0.77,水量利用系数为70%。

坝后式电站装机容量20Mw。

根据《水利水电枢纽工程等级划分及设计标准》SDJ12-78的规定,一期工程为二等工程,大坝为2级建筑物,正常应用洪水为100年一遇,非常运用洪水为1000年一遇。

辅助建筑物按Ⅲ级设计,临时建筑物按Ⅳ级设计。

枢纽建筑物包括电站坝段,溢流坝段、两岸非溢流坝段。

坝型为碾压混凝土重力坝坝。

底孔坝块两个,孔口进口后接,深式压力管道,进口底高程90.0m,最大单孔泄流量900m3/s。

溢流坝共5孔,孔宽20m,装设8x8m弧形钢闸门。

溢流面采用WES曲线,堰顶高程130,最大泄量3200m3/s,下游防洪允许单宽流量160m3/s,泄水建筑物按100年一遇洪水设计,采用宽尾墩与消力池联合消能方式,枢纽工程总泄量5000m3/s。

水电站为3级建筑物,正常运用洪水为30年一遇,非常运用洪水为200年一遇,电站装机容量20MW,多年平均发电量为6275x104kwh.。

水库上游设计洪水位为142.0m,相应下游水位为92.0m,库容为8.32×108m3,溢流坝相应的泄量为15243m3/s;上游校核洪水位为143.3m,相应下游水位为92.4m,库容为8.70×108m3,溢流坝相应的泄量为19857m3/s;上游正常蓄水位为141m(与汛限水位同高),相应下游水位为86.1m;死水位为90.0m,相应的库容为0.78×108m3。

XX碾压混凝土重力坝设计说明书

XX碾压混凝土重力坝设计说明书
第二章 水文水利计算
2.1
2
1.依据
为使工程的安全可靠性与其造价的经济合理性有机统一起来,水利枢纽及其组成建筑物要分等分级,即按工程规模、效益及其在国民经济中的重要性,将水利枢纽分等,然后将枢纽中的建筑物按作用和重要性进行分级。设计水工建筑物均需要根据规范规定,按建筑物的重要性、级别、结构类型、运用条件等,采用一定的洪水标准,保证遇设计洪水标准以内的洪水时建筑物的安全。
三级配为4080mm∶20~40mm∶5~20mm= 30∶40∶30
二级配为 20~40mm∶5~20mm= 50∶50
2.碾压混凝土配合比见表1-3;
3.碾压混凝土热力学性能见表1-4;
4.碾压混凝土物理力学指标见表1-5;
5.碾压混凝土单价(初步估计)为220元/m 。
表1-3 碾压混凝土配合比(初步推荐)
临时性建筑物类型
临时性水工建筑物级别
3
4
5
土石结构
50~20
20~10
10~5
混凝土、浆砌石结构
20~10
10~5
5~3
根据本工程的等别及表2—3、表2—4的有关规定确定,可确定XX工程的洪水标准见表2-5:
表2—5XX工程的洪水标准
水工建筑物
类型
永久性水工建筑物级别
临时性建筑物
重现期(年)
设计
1000~500
碾压混凝土单价初步估计为220表13碾压混凝土配合比初步推荐设计标号2090209020902090三级配三级配二级配二级配水胶比055905590556052634343838170170180190粉煤灰掺量50605040外加剂掺量rc1025rc1025rc1025rc1025混凝土材料用量kgm9595100100水泥8510290114粉煤灰8510290767617598418401483147913781376外加剂043043045048理论容重kgm2509250324992506表14碾压混凝土热力学性能表应用部位面层二级配90rcc水泥品种中热425水灰比056056056胶凝材料用量kgm水泥908595粉煤灰908595温度c202020404040导温系数000370003600036000360003500035导热系数kjkgk798181858385绝热温升c28d160155170最终185175195线膨胀系数909085表15碾压混凝土物理力学指标90rcc水泥品种中热425水灰比056056056胶凝材料用量kgm水泥908595粉煤灰908595018018018抗压强度mpa240240250抗拉强度mpa202021抗剪断强度mpa121251212508085弹性模量1000mpa2525255极限拉伸值000011009095容重gcm245024802470122工程基本参数xx水利枢纽工程参数表项目参数项目参数枢纽任务发电为主兼顾防洪死库容6510流域面积67176km兴利库容129310年降雨量1474mm调洪库容112410年平均流量772m年平均径流量2436亿立方取水方式单管单机有压取水安装高程2462m最大风速及1539ms22km设计水头615m辉绿岩引用流量1000电站装机415万kw碾压混凝土重力坝水轮机型号hl220lj550最大坝高90m发电机型号sf150601280坝顶宽度10m引水管道d73m钢管溢流方式表孔溢流电站及底孔辅助泄洪主厂房平面尺寸12884244m溢流堰型wes曲线实用堰导流方案分段围堰法导流底孔58m围堰形式横向

重力坝设计计算书

重力坝设计计算书

院:土木工程学院专业:水利水电工程专业年级: 2012学号:学生姓名:杨林指导教师:邹爽老师2015年7月16日目录一、设计坝顶高程1.确定坝基开挖高程 (1)2.计算坝顶高程 (1)二、绘制坝基开挖线 (2)三、设计非溢流坝段1.设计实用剖面 (3)2.实用坝体剖面稳定及强度验算 (4)四、设计溢流坝段1.孔口形式及溢流坝前沿总长 (15)2.溢流面体型设计 (15)五、溢流坝段稳定验算1.溢流坝段剖面图 (18)2.设计洪水位状况 (19)3.校核洪水位情况 (21)六、设计消能工1.选择鼻坎形式 (24)2.确定挑角、鼻坎高程和反弧半径 (24)3.计算挑距和下游冲刷坑深度 (24)七、坝体细部构造拟定1.横缝布置 (28)2.坝顶的布置 (28)3.廊道系统 (28)4.横缝灌浆,固结灌浆,排水措施 (29)八、附录重力坝设计资料 (30)一、设计坝顶高程1.确定坝基开挖高程由相关水文、地质等资料初步估计坝高为50米左右,可建在微风化至弱风化上部基岩上,又下坝址河面高程1858.60m ,综合槽探、硐探、钻探和地表地质勘察资料,坝址区左右岸坡残坡积层厚度达3~5m ,局部地段深达10m ,河床上第四纪冲积覆盖层厚度为8.8m 左右;结合风化线深度,初步拟定坝基最低开挖高程为1843.50m 。

大坝校核洪水为500年一遇,坝体级别为4级。

2.计算坝顶高程坝顶应高于校核洪水位,坝顶上游防浪墙顶的高程应高于波浪顶高程,其与正常蓄水位或校核洪水位的高差,选择两者中防浪墙顶高程的高者作为选定高程。

(1).相关资料(2). 计算h l 根据官厅公式计算: 当20gDV =20~250 时,为累计频率5%的波高h 5%; 当20V gD=250~1000 时,为累计频率10%的波高h 10%; 本设计20V gD=(9.8×0.6×103)/20.72=13.723 故取h l ≈h 5%.(3).计算防浪墙顶高程及基本剖面坝高二、绘制坝基开挖线坝高超过100m时,坝可建在新鲜、微风化或弱风化下部基岩上;坝高在50~100m时,可建在微风化至弱风化上部基岩上;坝高小于50m时,可建在弱风化中部至上部基岩上。

重力坝计算书

重力坝计算书
堤顶超高计算值(m)
1.31
0.86

工况
坝前水位
计算坝顶超高
计算坝顶高程
设计洪水工况(m)
242.10
1.31
243.41
校核洪水工况(m)
242.50
0. S6
243.36
由表5-11可得,坝顶高程或防浪墙顶高程应不小于243. 41m,取坝顶高程243. 00m,设置0.50m防浪墙,墙顶再设钢管护栏。
1.6淤沙压力17
1.6.1水平淤沙压力公式17
1.6.2淤沙浮容重计算17
1. 6.3淤沙高程18
1.6.4淤沙压力及其力矩计算18
1.7波浪压力及其力矩19
1.7.1波浪压力公式19
1. 7.2设计工况19
1.7.3校核工况19
1.7基本作用荷载各种工况下的工W、ZP和工M20
1.8极限状态设计法分析挡水坝段稳定21
1. 9. 2.3校核工况边缘应力计算28
1. 9.3考虑扬压力时的边缘应力计算29
1. 9. 3.1边缘应力计算公式29
1. 9. 3.2设计工况边缘应力计算30
1. 9. 3.3校核工况边缘应力计算31
第二章溢流坝设计计算33
2.1溢洪堰堰型选择33
2.2溢洪道水力计算33
2.3溢流堰堰面曲线34
力矩作以下规定:以坝底中心为力矩,逆时针为正,顺时针为负。
1.3. 3.2按实体重力坝计算坝体自重及力矩
图1.2实体重力坝自重计算图
一区:
=24 x 4.5 x 0.5x1 = 54.00 A:/V
厶=7.35加
A/】=叱厶=54.00.00 x 7.35= 396.90KNjh
二区:

(完整版)重力坝设计计算书

(完整版)重力坝设计计算书

水工建筑物课程设计设计名称:混凝土重力坝设计学院:土木工程学院专业:水利水电工程专业年级: 2012学号:**********学生姓名:**指导教师:邹爽老师2015年7月16日目录一、设计坝顶高程1.确定坝基开挖高程 (1)2.计算坝顶高程 (1)二、绘制坝基开挖线 (2)三、设计非溢流坝段1.设计实用剖面 (3)2.实用坝体剖面稳定及强度验算 (4)四、设计溢流坝段1.孔口形式及溢流坝前沿总长 (15)2.溢流面体型设计 (15)五、溢流坝段稳定验算1.溢流坝段剖面图 (18)2.设计洪水位状况 (19)3.校核洪水位情况 (21)六、设计消能工1.选择鼻坎形式 (24)2.确定挑角、鼻坎高程和反弧半径 (24)3.计算挑距和下游冲刷坑深度 (24)七、坝体细部构造拟定1.橫缝布置 (28)2.坝顶的布置 (28)3.廊道系统 (28)4.橫缝灌浆,固结灌浆,排水措施 (29)八、附录重力坝设计资料 (30)一、设计坝顶高程1.确定坝基开挖高程由相关水文、地质等资料初步估计坝高为50米左右,可建在微风化至弱风化上部基岩上,又下坝址河面高程1858.60m ,综合槽探、硐探、钻探和地表地质勘察资料,坝址区左右岸坡残坡积层厚度达3~5m ,局部地段深达10m ,河床上第四纪冲积覆盖层厚度为8.8m 左右;结合风化线深度,初步拟定坝基最低开挖高程为1843.50m 。

大坝校核洪水为500年一遇,坝体级别为4级。

2.计算坝顶高程坝顶应高于校核洪水位,坝顶上游防浪墙顶的高程应高于波浪顶高程,其与正常蓄水位或校核洪水位的高差,选择两者中防浪墙顶高程的高者作为选定高程。

(1).相关资料(2). 计算h l 根据官厅公式计算: 当20gDV =20~250 时,为累计频率5%的波高h 5%; 当20V gD=250~1000 时,为累计频率10%的波高h 10%; 本设计20V gD=(9.8×0.6×103)/20.72=13.723 故取h l ≈h 5%.(3).计算防浪墙顶高程及基本剖面坝高二、绘制坝基开挖线坝高超过100m时,坝可建在新鲜、微风化或弱风化下部基岩上;坝高在50~100m时,可建在微风化至弱风化上部基岩上;坝高小于50m时,可建在弱风化中部至上部基岩上。

某工程重力坝抗滑稳定计算书及计算步骤教学教材

某工程重力坝抗滑稳定计算书及计算步骤教学教材

某工程重力坝抗滑稳定计算书及计算步骤技施设计浆砌石重力坝抗滑稳定计算书2004年12月说 明1.计算目的与要求对拟定的体型进行抗滑稳定计算,求出拟定体型在各种设计工况下的抗滑稳定安全系数。

同时对坝基面的应力进行计算,以论证是否满足规定的正常使用极限状态与承载能力极限状态要求。

2.计算基本依据1. 建筑体型结构尺寸见附图1;2. 主要地质参数见资料单;3. 材料容重: 浆砌块石:取3/0.23m kN s =γ;水:取3/8.9m kN w =γ; 土的饱和溶重3/12m kN =γ3.计算方法及计算公式 1. 基本假定 1) 坝体为均质、连续、各向同性的弹性材料; 2) 取单宽1米计算,不考虑坝体之间的内部应力。

3)本工程规模小,只计算坝体的抗滑稳定,不对坝体剖面进行浅层与深层抗滑稳定分析以及坝基面应力分析。

2. 地基应力计算按偏心受压公式计算应力:σmax=W M AG ∑∑+ σmin =WMAG∑∑-式中 ∑G —坝体本身的重力,kN ;A ——坝基的受力面积,m 2;∑M —坝体各部分的重力对形心的弯距,kN.M;W —作用在计算截面的抗弯截面系数;3.抗滑稳定坝受到铅直力和水平力的共同作用下,要求沿坝基底面的抗滑力必须大于作用在坝结构水平向的滑动力,并有一定的安全系数。

计算公式为:K C =∑∑Hf G * 式中K c —结构的抗滑稳定安全系数;∑G —坝的基底总铅直力,kN ; ∑H —坝的水平方向总作用力,kN ; f —坝基底的摩擦系数。

4.计算结果总表5.结论经由计算可知,该方案,结构能够满足浆砌石坝在不同运用时期的地基应力和抗滑稳定要求,不会发生地基沉陷和滑动变形,并满足经济适用的原则。

6.主要参考书目a )《浆砌石坝设计规范(SL25-91》;b )《水工建筑物荷载设计规范(DL5077—1997)》;c)天津大学祁庆和《水工建筑物(上册)》(水利电力出版社—1992)溢流坝的稳定计算1基本资料由于坝体受力为平面结构,取单位宽度坝体进行计算。

(完整版)重力坝设计计算书

(完整版)重力坝设计计算书

水工建筑物课程设计设计名称:混凝土重力坝设计学院:土木工程学院专业:水利水电工程专业年级: 2012学号:**********学生姓名:**指导教师:邹爽老师2015年7月16日目录一、设计坝顶高程1.确定坝基开挖高程 (1)2.计算坝顶高程 (1)二、绘制坝基开挖线 (2)三、设计非溢流坝段1.设计实用剖面 (3)2.实用坝体剖面稳定及强度验算 (4)四、设计溢流坝段1.孔口形式及溢流坝前沿总长 (15)2.溢流面体型设计 (15)五、溢流坝段稳定验算1.溢流坝段剖面图 (18)2.设计洪水位状况 (19)3.校核洪水位情况 (21)六、设计消能工1.选择鼻坎形式 (24)2.确定挑角、鼻坎高程和反弧半径 (24)3.计算挑距和下游冲刷坑深度 (24)七、坝体细部构造拟定1.橫缝布置 (28)2.坝顶的布置 (28)3.廊道系统 (28)4.橫缝灌浆,固结灌浆,排水措施 (29)八、附录重力坝设计资料 (30)一、设计坝顶高程1.确定坝基开挖高程由相关水文、地质等资料初步估计坝高为50米左右,可建在微风化至弱风化上部基岩上,又下坝址河面高程1858.60m ,综合槽探、硐探、钻探和地表地质勘察资料,坝址区左右岸坡残坡积层厚度达3~5m ,局部地段深达10m ,河床上第四纪冲积覆盖层厚度为8.8m 左右;结合风化线深度,初步拟定坝基最低开挖高程为1843.50m 。

大坝校核洪水为500年一遇,坝体级别为4级。

2.计算坝顶高程坝顶应高于校核洪水位,坝顶上游防浪墙顶的高程应高于波浪顶高程,其与正常蓄水位或校核洪水位的高差,选择两者中防浪墙顶高程的高者作为选定高程。

(1).相关资料(2). 计算h l 根据官厅公式计算: 当20gDV =20~250 时,为累计频率5%的波高h 5%; 当20V gD=250~1000 时,为累计频率10%的波高h 10%; 本设计20V gD=(9.8×0.6×103)/20.72=13.723 故取h l ≈h 5%.(3).计算防浪墙顶高程及基本剖面坝高二、绘制坝基开挖线坝高超过100m时,坝可建在新鲜、微风化或弱风化下部基岩上;坝高在50~100m时,可建在微风化至弱风化上部基岩上;坝高小于50m时,可建在弱风化中部至上部基岩上。

碾压混凝土大坝施工组织设计

碾压混凝土大坝施工组织设计

1.1 碾压混凝土工程1.1.1 主要工程量大坝为碾压混凝土重力坝,共13个坝段,碾压混凝土工程量见表1.1-1。

1.1.2 施工布置1.1.2.1 施工风、水、电布置施工用水:大坝混凝土施工用水主要为基岩面和老混凝土面清洗、仓面喷雾及混凝土表面冲毛和养护。

根据施工总布置和大坝混凝土上升情况,采用专用管线自总布置铺设至大坝范围的水管中引至各施工部位。

施工供风:根据各部位施工情况采取相适宜的供风方式,主要采用专管从主风管接至施工部位。

根据供风对象及部位采用固定供风站和移动供风站相结合的方式。

施工用电:直接采用专线从总布置提供的接线点接至各施工部位。

1.1.2.2 混凝土生产系统布置根据招标文件技术要求和大坝混凝土施工进度要求,自行设计和运行一座2×3.0m3强制式搅拌楼,碾压混凝土生产能力180~200m3/h,具体详见“第二章施工总平面布置”相关内容。

1.1.2.3 混凝土运输道路布置考虑到本标大坝工程处地形势相对较缓,结合开挖施工道路布置情况,拟采用自卸汽车直接入仓的浇筑方式,混凝土运输主要通道有上坝公路、右1#、2#、3#、4#、基坑2#道路,另根据地形条件新修临1#道路,混凝土运输道路为混凝土生产系统→上坝公路→进场公路→混凝土入仓道路(含移动式临时钢桥)→混凝土浇筑仓面,平均运输距离约 1.5km。

道路布置详见附图《大坝混凝土施工平面布置图》。

(1)基坑2#道路该道路利用基坑开挖2#道路布置,主要负责大坝1607m~1625m高程碾压混凝土运输入仓。

该道路接于进场道路,终于基坑1606m高程,路面宽度6m,道路随坝体的上升不断填筑至1625m高程,最大坡比10%。

(2)右4#道路该道路利用坝肩开挖右4#道路布置,主要负责大坝1625m~1637m高程碾压混凝土运输入仓。

该道路接于进场道路,终于1625m高程,路面宽度6m,道路随坝体的上升不断填筑至1637m高程,最大坡比10%。

第十三章 碾压式混凝土重力坝

第十三章  碾压式混凝土重力坝
第十三章 碾压式混凝土 重力坝
其主要优点是:
1)施工工艺程序简单,可快速施工,缩短工期,提 前发挥工程效益。 2)胶凝材料(水泥+粉煤灰+矿渣等)用量少,一般在 120~160kg/m3,其中水泥用量约为60~90kg/m3。 3)由于水泥用量少,结合薄层大仓面施工,坝体内 部混凝土的水化热温升可大大降低,从而简化了温 控措施。 4)不设纵缝,节省了模板及接缝灌浆等费用。 5)可适用大型通用施工机械设备,提高混凝土运输 和填筑工效。 6)降低工程造价。
(一ቤተ መጻሕፍቲ ባይዱ 材料
碾压式混凝坝的胶凝材料远比常态混凝土用 量少,其中粉煤灰在胶凝材料中所占比重一般为 30%~60%。水胶比一般在0.45~0.7之间。
(二)
由碾压式混凝土重力坝采用通仓碾压,故可 不设纵缝。但为了适应温度伸缩缝和地基不均沉 降,仍应设置横缝,间距一般为15~20m。比常态 混凝土重力坝降低造价约10
观看碾压式混凝土 重力坝视频
第十四章 其它型式重力坝
一、浆砌石重力坝
浆砌石重力坝是由石料和胶 结材料砌筑而成的坝。
朱庄浆砌石重力坝
目录 编辑 第一章 算法初步 [2] 1.1 算法与程序框图 1.2 基本算法语句 1.3 算法案例 阅读与思考 割圆术 复习参考题 第二章 统计 [3] 2.1 阅读与思考 一个著名的案例 阅读与思考 广告中数据的可靠性 阅读与思考 如何得到敏感性问题的诚实反应 2.2 用样本估计总体 阅读与思考 生产过程中的质量控制图 2.3 变量间的相关关系 阅读与思考 相关关系的强与弱 实习作业 复习参 考题 第三章 概率 3.1 的概率 阅读与思考 天气变化的认识过程 3.2 古典概型 3.3 阅读与思考 概率与密码 复习参考题 普通高中课程标准实验教科书 数学 必修3 [1] 在本模块中,学生将学习算法初步、统计、概率的基础知识。 1.算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。中学数学中的算法内容和其他内容是密切联系在一起的,比如线性方程组的求解、数列的求和等。具体来说,需要通过模仿、操作、探索,学习设计程序框图表达解决问题的过程,体会算法的基本思想和含义,理解算法的基本结构和基本算法语句,并了解中国古代数学中的算法。 在本教科书中,首先通过实例明确了算法的含义,然后结合具体算法介绍了算法的三种基本结构:顺序、条件和循环,以及基本的算法语句,最后集中介绍了辗转相除法与更相减损术、秦九韶算法、排序、进位制等典型的几个算法问题,力求表现算法的思想,培养学生的算法意识。 2.现代社会是信息化的社会,人们面临形形色色的问题,把问题用数量化的形式表示,是利用数学工具解决问题的基础。对于数量化表示的问题,需要收集数据、分析数据、解答问题。统计学是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。 本教科书主要介绍最基本的获取样本数据的方法,以及几种从样本数据中提取信息的统计方法,其中包括用样本估计总体分布及数字特征和线性回归等内容。 本教科书介绍的统计内容是在义务教育阶段有关抽样调查知识的基础上展开的,侧重点放在了介绍获得高质量样本的方法、方便样本的缺点以及随机样本的简单性质上。教科书首先通过大量的日常生活中的统计数据,通过边框的问题和探究栏目引导学生思考用样本估计总体的必要性,以及样本的代表性问题。为强化样本代表性的重要性,教科书通过一个著名的预测结果出错的案例,使学生体会抽样不是简单的从总体中取出几个个体的问题,它关系到最后的统计分析结果是否可靠。然后,通过生动有趣的实例引进了随机样本的概念。

碾压混凝土重力坝设计范本

碾压混凝土重力坝设计范本

FJD31050FJD水利水电工程技术设计阶段碾压混凝土实体重力坝设计大纲范本(大中型)水利水电勘测设计标准化信息网1999年3月1工程技术设计阶段碾压混凝土实体重力坝设计大纲主编单位:主编单位总工程师:参编单位:主要编写人员:软件开发单位:软件编写人员:勘测设计研究院年月2目次1. 引言 (4)2. 设计依据文件和规范 (4)3. 设计基本资料 (4)4 坝体布置 (6)5.水力设计 (7)6.坝体断面设计 (8)7.碾压混凝土材料配合比及层面抗剪断参数的试验 (12)8.坝体稳定应力分析 (13)9.坝体构造 (16)10.坝基处理设计 (16)11.坝体观测设计 (17)12.专题研究 (17)13.工程量计算 (17)14.设计成果 (18)31 引言1.1 适用范围本设计大纲范本适用于技施设计阶段一般地区大中型碾压混凝土重力坝的设计。

工程位于,是以为主,兼有等综合利用的水利水电枢纽工程。

挡水建筑物为碾压混凝土实体重力坝,最大坝高 m,水库正常蓄水位 m,总库容亿m3,电站机组台,总装机容量 MW,多年平均发电量亿kW·h。

2 设计依据文件和规范2.1 主要依据文件(1) 工程可行性研究报告;(2) 工程可行性研究报告审批文件;(3) 工程技术设计任务书;(4)有关工程文件和会议纪要。

2.2 主要设计规范(1)SDJ 12-78 水利水电枢纽工程等级划分及设计标准(山区、丘陵区部分)(试行)及补充规定;(2)GB 50201-94 防洪标准;(3)SDJ 21-78 混凝土重力坝设计规范(试行)及补充规定;(4)DL/T 5005-92 碾压混凝土坝设计导则;(5)SL 48-94 水工碾压混凝土试验规程;(6)SDJ 341-89 溢洪道设计规范;(7)SDJ 10-78 水工建筑物抗震设计规范(试行);(8)SDJ 20-78 水工钢筋混凝土结构设计规范(试行);3 设计基本资料3.1 工程等别和建筑物级别(1)工程等别为等;(2)建筑物级别为级。

混凝土重力坝毕业设计计算书

混凝土重力坝毕业设计计算书

目录目录 0第一章非溢流坝设计 (3)坝基面高程的肯定 (3)坝顶高程计算 (3)大体组合情形下: (4)特殊组合情形下: (5)坝宽计算 (6)坝面坡度 (6)坝基的防渗与排水设施拟定 (7)第二章非溢流坝段荷载计算 (7)计算情形的选择 (7)荷载计算 (7)自重 (7)静水压力及其推力 (8)扬压力的计算 (9)淤沙压力及其推力 (12)波浪压力 (13)土压力 (14)第三章坝体抗滑稳固性分析 (15)抗滑稳固计算 (17)抗剪断强度计算 (18)第四章应力分析 (19)总则 (19)大坝垂直应力分析 (19)大坝垂直应力知足要求 (20)计算截面为建基面的情形 (21)荷载计算 (21)运用期(计入扬压力的情形) (22)运用期(不计入扬压力的情形) (23)施工期 (23)第五章溢流坝段设计 (24)泄流方式选择 (25)洪水标准的肯定 (25)流量的肯定 (25)单宽流量的选择 (25)孔口净宽的拟定 (26)溢流坝段总长度的肯定 (26)堰顶高程的肯定 (26)闸门高度的肯定 (27)定型水头的肯定 (28)泄流能力的校核 (28)溢流坝段剖面图 (28)溢流坝段稳固性分析 (29)(1)正常蓄水情形 (29)(2)设计洪水情形 (29)(3)校核洪水情形 (30)第六章消能防冲设计 (31)洪水标准和相关参数的选定 (31)反弧半径的肯定 (31)坎顶水深的肯定 (32)水舌抛距计算 (33)最大冲坑水垫厚度及最大冲坑厚度 (34)第七章泄水孔的设计 (36)有压泄水孔的设计 (36)孔径D的拟定 (36)进水口体形设计 (36)闸门与门槽 (37)渐宽段 (37)出水口 (37)通气孔和平压管 (38)参考文献 (39)毕业设计(论文)任务书题目车家坝河水利枢纽(碾压重力坝设计)(任务起止日期2010 年 3 月29日~ 2010年6月18 日)河海院水利水电专业03 班学生姓名谢龙学号06150311指导教师张建梅教研室主任许光祥院领导周华君第一章非溢流坝设计坝基面高程的肯定由《混凝土重力坝设计规范》可知,坝高100~50米时,重力坝可建在轻风化至弱风化中部基岩上,本工程坝高为50~100m,由于本坝址岩层散布主要为石英砂岩,故可肯定坝基面高程为m。

水库混凝土重力坝设计书

水库混凝土重力坝设计书

水库混凝土重力坝设计书第1章基本资料一、枢纽工程概况:P水库位于TS和CD两地区交界处,坝址位于X河桥上游十公里干流上。

控制流域面积3.37万km2,总库容为14.39亿m3。

P水库枢纽由主坝、电站及泄水底孔等组成,水库主要任务是调节水量,供TJ和TS地区工农业用水和城市人民生活用水,结合引水发电。

并兼顾防洪,要求:尽可能使其工程提前受益,尽早建成。

根据水库的工程规模及其在国民经济中的作用,枢纽定为一等工程,主坝为Ⅰ级建筑物,其它均按Ⅱ级建筑物考虑。

二、气象:P库区年平均气温为10℃左右,一月份最低月平均气温为零下6.8℃,绝对最低气温达零下21.7℃(1969年);7月份最高月平均气温25℃,绝对最气温高达39℃(1955年),多年平均气温见下表(表五)。

表一多年平均气温、水温表单位:℃本流域无霜期较短(90—180天),冰冻期较长(120—200天),P站附近河道一般12月封冻,次年3月上旬解冻,封冻期约70—100天,冰厚0.4—0.6米,岸边可达1米。

流域冬季盛行偏北风,风速可达七、八级,有时更大些,春秋两季风向变化较大,夏季常为东南风,多年平均最大风速为21.5m/s,水库吹程D=3km。

流域多年平均降雨量约为400—700mm,多年平均降水天数及降水量见表六:表二多年月平均降水天数及降水量表单位:mm三、水文分析:1、年径流:栾河水量较充沛,多年平均年径流量为24.5亿m3,占全流域的53%。

年分配很不均匀,主要集中汛期七、八月份。

丰水年时占全年50—60%,枯水年占30—40%,而且年际变化也很大。

2、洪水:多发生在七月下旬至八月上旬,有峰高量大涨落迅速的特点,据调查,近一百年来有六次大洪水。

其中1883年最大,由洪痕估算洪峰流量约为24400—27400 m3/s,实测的45年资料中最大洪峰流量发生在1962年为18800 m3/s。

洪峰历时三天左右,由频率分析法求得:几个重现期所对应的洪峰流量值(见下表表三、表四所示)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第一章设计依据 (1)1.1 工程等级及建筑物级别 (1)1.2 工程洪水标准 (1)第二章洪水调节计算 (3)2.1 工程洪水标准 (3)2.2 调洪计算 (3)2.2.1 调洪计算基本原理 (3)2.2.2 水位与流量关系的确定 (5)2.2.3 机算调洪数据 (5)2.2.4校核水库防空时间 (20)第三章水能计算 (21)3.1 电站出力的估算 (21)3.2 机组台数和单机容量的选择 (21)3.3 水轮机型号和参数选择 (21)3.4 淤沙高程及电站取水口高程计算 (22)3.4.1 淤沙高程 (22)3.4.2 电站进水口底板高程 (23)第四章水电站厂房初步设计 (24)4.1 水电站厂房的布置 (24)4.2 厂房轮廓的确定 (24)4.2.1主厂房长度的确定 (24)4.2.2 主厂房宽度的确定 (24)4.2.3 尾水平台及尾水闸室的布置 (25)第五章大坝设计 (26)5.1 大坝有关参数的确定 (26)5.2 非溢流坝设计 (27)5.2.1 非溢流坝基本剖面设计 (27)5.2.2 非溢流坝实用剖面设计 (28)5.2.3 非溢流坝的荷载组合 (29)5.2.4 非溢流坝抗滑稳定验算(坝基处2—2截面) (29)5.2.5 非溢流坝段应力验算(坝基处2—2截面) (33)5.2.6 坝基处2—2截面内部应力验算 (35)5.2.7 非溢流坝段折坡处抗滑稳定验算(1—1截面) (39)5.2.8 非溢流坝段折坡应力验算(1—1截面) (43)5.3 溢流坝段设计 (45)5.3.1 溢流坝段基本数据 (45)5.3.2溢流坝段实用剖面设计 (45)5.3.3溢流坝段消能设施的结构尺寸确定 (46)5.3.4溢流坝抗滑稳定验算(坝基处2—2截面) (48)5.3.5溢流坝段应力验算(坝基处2—2截面) (52)5.3.6 溢流挑射距离和冲坑深度计算 (54)5.4 厂房坝段设计 (55)5.4.1 水电站厂房的型式 (55)5.4.2 水电站厂房的布置 (55)5.4.3 电站引水管的布置形式 (55)5.4.4 厂房坝段坝身剖面设计 (56)第六章施工组织设计 (57)6.1 施工导流标准 (57)6.2 施工导流布置和水力计算 (57)6.2.1导流方法 (57)6.2.2 导流布置 (57)6.3 一期导流计算 (58)6.3.1 导流水力计算 (58)6.3.2 上下游围堰的堰顶高程 (59)6.3.3 围堰断面设计 (59)6.3.4 围堰工程量计算 (62)6.4 二期导流机算 (63)6.4.1 坝体缺口和底孔联合泄流水力计算 (63)6.4.2 堰顶高程的确定与堰顶宽度的确定 (63)6.4.3 围堰断面设计 (63)6.4.4 围堰工程量计算 (64)6.5 封堵时间及蓄水计划 (65)第一章设计依据1.1 工程等级及建筑物级别根据《水利水电工程等级划分及洪水标准》SL252—2000有注: ①水库总库容指水库最高水位以下的静库容;②治涝面积和灌溉面积均指设计面积。

确定XX水利枢纽工程为Ⅰ等工程,大(1)型规模。

确定XX水利枢纽的水工建筑物级别为:主要建筑物1级,次要建筑物3级,临时性建筑物级别4级。

1.2 工程洪水标准表 1-3 山区、丘陵区水利水电工程永久性水工建筑物的洪水标准[重现期(年)]本工程采用混凝土重力坝,所以永久性水工建筑物的洪水标准:正常运用情况下为1000年一遇(%1.0=P ),非常运用情况下为5000年一遇(%02.0=P )。

表1-4 临时性水工建筑物洪水标准[重现期(年)]确定临时性建筑物的洪水标准:20年一遇(%5.0=P )。

第二章 洪水调节计算2.1 工程洪水标准由上面工程洪水标准知道,XX 水利枢纽工程的设计洪水为1000年一遇(P=0.1%),校核洪水为5000年一遇(P=0.02%)。

2.2 调洪计算2.2.1 调洪计算基本原理1.调洪计算基本水文资料 (1)库水位与库容关系曲线表2—1 库水位与库容关系曲线(2)洪水流量过程线时间t(h)流量Q (万m )3校核洪水过程线设计洪水过程线典型洪水过程线图2—1 洪水流量过程线(3)坝址处流量与水位关系曲线 见说明书附图3。

2.调洪计算过程本工程利用列表试算法进行调洪计算。

(1)本次设计共拟订了16个方案进行比较:注: 泄水方式 1 表孔溢流泄洪 (底孔作为安全储备)2 表孔溢流泄洪+发电辅助泄洪 (底孔作为安全储备)(2)水量平衡公式如下:tVt 2121212121)()(∆∆∆-==+-+=-V V q q Q Q q Q(3)水库蓄洪曲线当已知水库入库洪水过程线时,1Q ,2Q ,Q 均为已知;1V , 1q 则是计算时段t ∆开始时的初始条件。

假定暂不计及自水库取水的兴利部门泄向下游的流量,则下泄流量q 应是泄洪建筑物泄流水头H 的函数,而当泄洪建筑物的型式、尺寸等已定时B AH H f q ==)(式(2—2)常用泄流水头H 与下泄流量q 的关系曲线来表示。

根据水利学公式,H 与q 的关系曲线不难求出。

若是堰流,H 即为库水位Z 与堰顶高程之差;若是闸孔出流,H 即为库水位Z 与闸孔中心高程之差。

因此,不难根据H 与q 的关系曲线求出Z 与q 的关系曲线)(Z f q =。

并且,由库水位Z ,又可借助与水库容积特性曲线)(Z f V =,求出相应的水库蓄水容积(蓄存水量)V 。

所以,式(2—2)最终也可以用下泄流量q 与库容)(Z f V =的关系曲线来代替,即)(V f q =上面的式子组成一个方程组,可以解出2q 、2V 。

2.2.2 水位与流量关系的确定本工程泄洪方式采用WES 堰流曲线。

水位与流量关系曲线公式: 2302H g mB Q s εσ=2.2.3 机算调洪数据1. 表孔溢流泄洪(底孔作为安全储备) (1)设计洪水情况(p=0.1%)a.堰顶高程▽303m ,溢流宽度(孔数×孔宽)7×14m进一步深入计算:b.堰顶高程▽303m,溢流宽度(孔数×孔宽)9×11m进一步深入计算:c.堰顶高程▽304m,溢流宽度(孔数×孔宽)7×14m进一步深入计算:d.堰顶高程▽304m,溢流宽度(孔数×孔宽)9×11m进一步深入计算:(2)校核洪水情况(p=0.02%)a.堰顶高程▽303m,溢流宽度(孔数×孔宽)7×14m进一步深入计算:b.堰顶高程▽303m,溢流宽度(孔数×孔宽)9×11m进一步深入计算:c.堰顶高程▽304m,溢流宽度(孔数×孔宽)7×14m98*304*水库调洪演算p=0.02% (列表试算法)进一步深入计算:d.堰顶高程▽304m,溢流宽度(孔数×孔宽)9×11m进一步深入计算:2. 表孔溢流泄洪+发电辅助泄洪(底孔作为安全储备)(2)设计洪水情况(p=0.1%)a.堰顶高程▽303m,溢流宽度(孔数×孔宽)7×14m进一步深入计算:b.堰顶高程▽303m,溢流宽度(孔数×孔宽)9×11m进一步深入计算:c.堰顶高程▽304m,溢流宽度(孔数×孔宽)7×14m进一步深入计算:d.堰顶高程▽304m,溢流宽度(孔数×孔宽)9×11m进一步深入计算:(2)校核洪水情况(p=0.02%)a.堰顶高程▽303m,溢流宽度(孔数×孔宽)7×14m进一步深入计算:b.堰顶高程▽303m,溢流宽度(孔数×孔宽)9×11m进一步深入计算:c.堰顶高程▽304m,溢流宽度(孔数×孔宽)7×14m进一步深入计算:d.堰顶高程▽304m,溢流宽度(孔数×孔宽)9×11m进一步深入计算:2.2.4校核水库防空时间1.第一阶段:表孔、底孔及发电共同放水388830459.3161009.151011.81020.23m V V V ⨯=⨯-⨯=-=∆87.02538.1274.765881.92222)85.0()308.0(11))((11===⨯++++⨯⨯⨯∑A c A RC gL ξμsm ••••gZ A q /62.1765)30459.316(81.9228587.0230=-⨯⨯⨯⨯⨯⨯==μ底孔s m q /28.1163062.176566.98643=+=天)(5.1)360024/(28.116301009.158•t q V =⨯==⨯∆2.第二阶段:底孔和发电共同放水383041011.8m V V ⨯==∆ s m q /62.256562.17658003=+=天)(7.3)360024/(62.25651011.88•t qV =⨯==⨯∆两个阶段需要总天数: 天天)总7(2.57.35.1<=+=••T ,满足要求。

第三章 水能计算3.1 电站出力的估算根据工程基本资料并参考已建工程,XX 水利枢纽工程的调节流量:s m Q Q /12377726.13=⨯==-α调相应的电站在设计供水期内的出力为MW H Q N 1.6795.61123791.081.981.9=⨯⨯⨯==—调η考虑水头利用损失和实际出力等因素,初步估计XX 水利枢纽工程电 站装机容量在600MW 。

3.2 机组台数和单机容量的选择根据已建的工程中,工程基本相似的有铜街子电站和棉花滩电站,它们的装机都是600MW ,都是四台机组,单机容量150MW 。

所以XX 水利枢纽工程的机组台数为四台,单机容量150MW 。

3.3 水轮机型号和参数选择1.水轮机的选型根据该电站的水头范围和该机组的出力范围,在水轮机系列型谱表中查出该电站最好选择HL220机型。

2. 水轮机的额定出力计算。

MW N N gr r 7.1669.0/150/===η3. 水轮机转轮直径的计算m 1η为水轮机模型效率为89%,s m Q m/15.13='为该出力下模型的流量。

由此初步假定原型水轮机在该工况下s m Q Q M /15.1311='=' ,效率 %92=η。

由公式:r r r H H D Q N 21181.9'=η 得 15×104=9.81×1.15×12D ×61.523×0.92求得 m D 474.51=又因为转轮直径应选符合转轮直径系列并考虑计算误差:故取m D 50.51=。

3. 水轮机转速n 的计算m in /7010r n m =',初步假定m n n 1010'=', m H H r av 737.6495.0/5.6195.0/===(对于坝后式水电站):min 4.10250.5/737.6470/11r D H n n av =⨯='= 又因为水轮机的转速要采用发电机的标准转速,为此要选取与上述公式得出的转速相近的发电机的标准转速。

相关文档
最新文档