医学基础化学 的总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
稀
溶
液
的依数性
难挥发性非电解质稀溶液的四种依数性,它们均与溶液的质量摩尔浓度成正比,与溶质的本性无关。
∆p = Kb B ∆T f = K f b B (难点)
∆T b = K b b B
ᴨ = RTb B (重点)
根据依数性,可求出溶质的相对分子量,已知一种依数性,可推算其他几种依数性。 非电解质:渗透浓度 = 物质的量浓度 电解质 :渗透浓度 = i ×物质的量浓度
混合溶液的渗透浓度 = 非电解质渗透浓度 + 电解质渗透浓度 稀溶液 bB ≈ cB
临床上规定渗透浓度在280~320 mmol ·L-1的溶液为等渗溶液。 渗透现象产生的条件:有半透膜及膜两侧有渗透浓度差存在。 测定小分子溶质的相对分子质量多用(凝固点降低法) 测定蛋白质等大分子化合物的摩尔质量常用(渗透压法)
常见等渗溶液: 50 g ·L-1 葡萄糖溶液, 9.0 g ·L -1 NaCl 溶液, 12.5 g ·L -1 NaHCO 3溶液等。
渗透浓度cos(mmol ·L-1):渗透活性物质(溶液中能够产生渗透效应的溶质粒子)的物质的量浓度。
电解质溶液
计算电解质溶液依数性的校正因子 i 与解离度的关系: α = i -1 (适用于1-1AB 型) 离子强度是溶液中所有离子产生的电场强度的量度: I= 2
1
Σb i z i 2 298K 时 I 与γ±的关系:lg γ± = –0.509 |z + z –| (适用于I < 0.01mol • kg
–1
的极稀水溶液)
活度与理论浓度的关系 a = γ•
c c
酸碱质子理论: 酸碱的定义、共轭关系、反应实质、酸碱的强度。 质子酸、质子碱、两性物质的判断;共轭酸碱对。
4--的共轭酸:H 3PO 4 H 2PO 4-的共轭碱:HPO 42- [Fe(H2O)6]3+的共轭碱:[Fe(OH)(H2O)5]2+
酸解离常数K a 、碱解离常数K b 的影响因素:本性、温度。 影响酸碱平衡的因素:浓度(稀释定律)、同离子效应和盐效应。 弱酸、弱碱的解离平衡:部分解离;分步电离,以第一步为主。 解离度α的影响因素:本性、温度、浓度。
同离子效应的定性判断、定量计算。 有关离子浓度的计算(重点) 一元酸碱: 近似式、最简式及使用条件。 多元酸碱: 按一元酸碱计算。 两性物质
二元弱酸的酸根阴离子浓度近似等于Ka2
难溶电解质的沉淀溶解平衡(重点)溶度积与溶解度的关系和换算
溶度积规则
沉淀溶解平衡的移动。
Ip = Ksp 饱和溶液平衡状态
Ip < Ksp 不饱和溶液沉淀溶解
Ip > Ksp 过饱和溶液沉淀析出
开始沉淀:Ip = Ksp
沉淀完全:剩余离子浓度c ≤1.0×10-5 mol·L-1
Ksp的表达式以及Ksp与溶解度的相互换算;
有同离子效应存在时溶解度的计算.
掌握AB型、A2B或AB2型和A3B或AB3型的计算公式。
当缓冲比为1时,β极大= 0.576 c总
c总: 总浓度较大,缓冲容量较大。
缓冲比: 越趋近1,缓冲容量越大。
缓冲范围:pH = pKa ± 1
缓冲比在1:10 至10 :1之间变化时,才具有一定缓冲作用,所对应的pH值为缓冲有效区间。缓冲溶液的配制及计算。
人体血液正常pH范围:7.35 ~ 7.45
血液中重要的无机盐缓冲系:H2CO3 –HCO3-
滴定分析
基本概念及常用术语:滴定、标准溶液、试样、计量点及确定、滴定终点、滴定误差。
酸碱指示剂:(重点)
变色原理、变色范围、选择原则。
一元强酸、弱酸的滴定:酸、碱浓度>10–
4 mol •L –
1 ;c = 0.1 mol •L –
1,K a ≥10–
7 。 pH 值的计算、滴定曲线的特点、突跃范围。 标定盐酸:碳酸钠或硼砂( Na 2B 4O 7·10H 2O ) 标定氢氧化钠:草酸或邻苯二甲酸氢钾(KHC 8H 4O 4 )
rounding ),通常按, 使修,和为0.79。 × 25.64, 积 吸收光谱的形状与浓度无关。 透光率T 与吸光度A :
Lambert – Beer 定律
A = εbc 或 A = ab ρ (ε = aM
B )
摩尔吸光系数ε或质量吸光系数a 的大小与被测物质本性、入射光波长、溶剂及温度有关。 吸光系数越大,测定的灵敏度越高。 提高测量灵敏度和准确度的方法
⑴ 测定时调整 c 或 b ,使 T 在20~65%之间(A :0.2~0.7) ⑵ 选择适当的显色剂 ⑶ 选择合适的测定条件 ⑷ 空白溶液的选择 ⑸ 共存离子干扰的消除 0
t
lg
lg I I T A -=-=
化学反应速率
基本概念:化学反应速率、元反应、速率控制步骤、有效碰撞、活化分子、活化能、反应机理、反应分子数、反应级数、半衰期、催化剂、酶等。
碰撞理论认为,在气体反应中,反应物分子不断发生碰撞,在无数次的碰撞中,只有少数或极少数分子才能发生反应,能够发生化学反应的碰撞称为有效碰撞(effective collision )。大部分不发生反应的碰撞叫做弹性碰撞(elastic collision )。
具有较高能量,能发生有效碰撞的分子叫做活化分子(activated molecule )。活化分子具有的最低能量与反应物分子的平均能量之差称为活化能(activation energy )。
化学反应速率与反应的活化能密切相关。当温度一定时,活化能越小,其活化分子数越大,单位体积内的有效碰撞次数越多,反应速率越快;反之活化能越大,活化分子数越小,单位体积内的有效碰撞次数越少,反应速率越慢。
碰撞理论比较直观,容易理解。在具体处理时,把分子当成刚性球体,忽略了分子的内部结构,因此,对一些比较复杂的反应,常不能给予合理的解释。
反应速率的表示方法:用反应进度表示。 (与选何种物质表示无关,与方程式写法有关)
。由若干个元反
van ’t Hoff 近似公式
)(c )(c v ∆∆生成物反应物=
-=T n 10T k k +12T T k k γn = =