[教育]应用统计方法第二章参数估计
应用多元统计分析课后习题答案高惠璇
第三章 多元正态总体参数的检验
3-2 设X~Nn(μ,σ2In), A,B为n阶对称阵.
若AB =0 ,证明X′AX与X′BX相互独立.
证明的思路:记rk(A)=r. 因A为n阶对称阵,存在正交阵Γ,使得
Γ ′AΓ=diag(λ1,…,λr 0,..,0) 令Y=Γ′X,则Y~Nn(Γ′μ,σ2In),
(2x12
x22
2x1x2
22x1
14x2
65)
1 2 1 2
1
2
exp
1
212
2 2
(1
2
)
[
2 2
(
x1
1 ) 2
21 2(x1
1)(x2
2
)
2 1
(
x2
2
)
2
]
比较上下式相应的系数,可得:
1 2
2 2
1 2
2
1
2 1
1
1 2 1
2 1
1
2
1/
21
2 2
2
2
2 1
21 22 21 21
f (x; , ) a
a0 (2 ) p/ 2 |
(x )1
|1/ 2 ,当0 a
(x )
1
ba02
时,
其中 b2 2 ln[a(2 ) p/2 | |1/ 2 ] 2 ln[aa0 ] 0, 20
第二章 多元正态分布及参数的估计
因 0,的特征值记为1 2 p 0, i对应
3-1 设X~Nn(μ,σ2In), A为对称幂等 阵,且rk(A)=r(r≤n),证明
证明 因A为对称幂等阵,而对称幂等阵的
应用统计学:参数估计习题及答案.(优选)
简答题1、矩估计的推断思路如何?有何优劣?2、极大似然估计的推断思路如何?有何优劣?3、什么是抽样误差?抽样误差的大小受哪些因素影响?4、简述点估计和区间估计的区别和特点。
5、确定重复抽样必要样本单位数应考虑哪些因素?计算题1、对于未知参数的泊松分布和正态分布分别使用矩法和极大似然法进行点估计,并考量估计结果符合什么标准2、某学校用不重复随机抽样方法选取100名高中学生,占学生总数的10%,学生平均体重为50公斤,标准差为48.36公斤。
要求在可靠程度为95%(t=1.96)的条件下,推断该校全部高中学生平均体重的范围是多少?3、某县拟对该县20000小麦进行简单随机抽样调查,推断平均亩产量。
根据过去抽样调查经验,平均亩产量的标准差为100公斤,抽样平均误差为40公斤。
现在要求可靠程度为95.45%(t=2)的条件下,这次抽样的亩数应至少为多少?4、某地区对小麦的单位面积产量进行抽样调查,随机抽选25公顷,计算得平均每公顷产量9000公斤,每公顷产量的标准差为1200公斤。
试估计每公顷产量在8520-9480公斤的概率是多少?(P(t=1)=0.6827, P(t=2)=0.9545, P(t=3)=0.9973)5、某厂有甲、乙两车间都生产同种电器产品,为调查该厂电器产品的电流强度情况,按产量等比例类型抽样方法抽取样本,资料如下:试推断:(1)在95.45%(t=2)的概率保证下推断该厂生产的全部该种电器产品的平均电流强度的可能范围(2)以同样条件推断其合格率的可能范围(3)比较两车间产品质量6、采用简单随机重复和不重复抽样的方法在2000件产品中抽查200件,其中合格品190件,要求:(1)计算样本合格品率及其抽样平均误差(2)以95.45%的概率保证程度对该批产品合格品率和合格品数量进行区间估计。
(3)如果极限误差为2.31%,则其概率保证程度是多少?7、某单位按重复抽样方式随机抽取40名职工,对其业务考试成绩进行检查,资料如下:6889 88 84 86 87 75 73 72 687582 99 58 81 54 79 76 95 767160 91 65 76 72 76 85 89 926457 83 81 78 77 72 61 70 87(1)根据上述资料按成绩分成以下几组:60分以下、60-70分、70-80分、80-90分、90-100分。
应用多元统计分析课后习题答案详解北大高惠璇(第二章部分习题解答) (2).ppt
4 3
u1u2
1
2
exp[
1 2
(2u12
u22
2u1u2 )]du1du2
1
2
u12
u1e 2
1
2
u2e
1 2
(
u2
u1
)
2
du2
du1
1
2
u12
u1e 2
1
2
(u2
u1
)e
1 2
(u2
u1
)
2
du2
u1
e
1 2
(
u2
u1
)
2
du2
du1
1
2
u e
2
u12 2
2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
X
X X
(1) (2)
~
N
2
p
(1) (2)
,
1 2
2 1
,
其中μ(i) (i=1,2)为p维向量,Σi (i=1,2)为p阶矩阵,
应用多元统计分析课后习题答案高惠璇第二章部分习题解答学习资料
1 2 [y ( 1 7 )2 (y 2 4 )2]
g(y1,y2)
设函数 g(y1, y2) 是随机向量Y的密度函数.
15
第二章 多元正态分布及参数的估计
(3) 随机向量
YYY12~N274,
I2
(4) 由于 XX X121011Y Y12CY
1 0 1 1 7 4 3 4 , 1 0 1 1 I2 1 0 1 1 1 1 2 1
e e d x e 2
2
1 2 (x 1 7 )2
9
第二章 多元正态分布及参数的估计
1 1 2(2x1 22x2 16 5 x1 2 1x4 14)91 2(x2x17)2
e e dx 2
2
2 1e 2 1 e dx 1 2(x1 28x1 1)6
1 2(x2x17)2 2
1(
1 e2
(22)(22)0
可得Σ的特征值 1 2 (1 )2 , 2 (1 ).
22
第二章 多元正态分布及参数的估计
λi (i=1,2)对应的特征向量为 1
1
l1
2 1 2
l1
2 1 2
由(1)可得椭圆方程为 2(1y 1 2)b22(1y 2 2)b21
其 b 2 中 2 la n ( 2 ) [ | |1 /2 ] 2 l2 n2 [ 1 2 a ]
解二:比较系数法 设 f(x 1,x2)2 1ex 1 2 p (2 x 1 2x2 2 2 x 1x2 2x 1 2 1x2 4 6) 5
2 1 2 11 2ex 2 p 1 2 2 2 1 (1 2)[2 2(x 1 1)2 2 1 2(x 1 1)x (2 2) 1 2(x2 2)2]
参数估计的一般步骤
参数估计的一般步骤引言:参数估计是统计学中一项重要的任务,它用于根据样本数据来推断总体参数的值。
参数估计的一般步骤包括确定估计方法、选择样本、计算估计值和进行推断。
本文将详细介绍参数估计的一般步骤,并以人类的视角进行描述,使读者更好地理解和应用这些步骤。
一、确定估计方法在参数估计中,首先需要确定合适的估计方法。
估计方法可以分为点估计和区间估计两种。
点估计方法通过单个数值来估计参数的值,例如最大似然估计和矩估计。
区间估计方法则通过一个区间来估计参数的范围,例如置信区间估计。
选择合适的估计方法是参数估计的第一步。
二、选择样本在确定了估计方法后,接下来需要选择合适的样本进行参数估计。
样本应当具有代表性,能够反映总体的特征。
为了保证样本的代表性,可以使用随机抽样方法来选择样本。
通过合理选择样本,可以减小估计误差,提高参数估计的准确性。
三、计算估计值在选择好样本后,需要计算参数的估计值。
对于点估计方法,可以使用最大似然估计或矩估计等方法来计算参数的估计值。
对于区间估计方法,可以使用置信区间估计来计算参数的范围。
计算估计值时,需要根据样本数据和估计方法进行相应的计算,确保估计结果的准确性。
四、进行推断在计算得到估计值后,需要进行推断,即根据估计值对总体参数进行推断。
对于点估计方法,可以直接使用估计值作为总体参数的估计值。
对于区间估计方法,可以使用置信区间来表示总体参数的范围。
通过推断可以了解总体参数的可能取值范围,帮助做出正确的决策和预测。
总结:参数估计的一般步骤包括确定估计方法、选择样本、计算估计值和进行推断。
在进行参数估计时,需要选择合适的估计方法和样本,计算出估计值,并进行相应的推断。
参数估计在统计学中扮演着重要的角色,它帮助我们根据样本数据来推断总体参数的值,从而更好地了解和应用统计学。
通过本文的介绍,希望读者能够更好地理解和应用参数估计的一般步骤。
应用多元统计分析课后习题答案高惠璇(第二章部分习题解答
2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
注意:由D(X)≥0,可知 (Σ1-Σ2) ≥0.
8
第二章 多元正态分布及参数的估计
2-11 已知X=(X1,X2)′的密度函数为
f
( x1 ,
x2 )
1
2
exp
1 2
(2 x12
x22
2 x1 x2
22 x1
14 x2
65)
试求X的均值和协方差阵.
解一:求边缘分布及Cov(X1,X2)=σ12
应用多元统计分析
第二章部分习题解答
第二章 多元正态分布及参数的估计
2-1 设3维随机向量X~N3(μ,2I3),已知
002,
A
0.5 0.5
1 0
00.5.5, d 12.
试求Y=AX+d的分布.
解:利用性质2,即得二维随机向量Y~N2(y,y),
其中:
2
第二章 多元正态分布及参数的估计
2-2 设X=(X1,X2)′~N2(μ,Σ),其中
应用数理统计习题答案_西安交大(论文资料)
应用数理统计答案学号:姓名:班级:目录第一章数理统计的基本概念 (2)第二章参数估计 (14)第三章假设检验 (24)第四章方差分析与正交试验设计 (29)第五章回归分析 (32)第六章统计决策与贝叶斯推断 (35)对应书目:《应用数理统计》施雨著西安交通大学出版社第一章 数理统计的基本概念1.1 解:∵2(,)X N μσ∼ ∴ 2(,)n X N σμ∼∴)(0,1)X N μσ−∼分布∴(1)0.95P X P μ−<=<=又∵ 查表可得0.025 1.96u = ∴ 221.96n σ=1.2 解:(1) ∵ (0.0015)X Exp ∼∴ 每个元件至800个小时没有失效的概率为:8000.001501.2(800)1(800)10.0015x P X P X e dxe −−>==−<=−=∫∴ 6个元件都没失效的概率为: 1.267.2()P e e −−==(2) ∵ (0.0015)X Exp ∼∴ 每个元件至3000个小时失效的概率为:30000.001504.5(3000)0.00151x P X e dxe−−<===−∫∴ 6个元件没失效的概率为: 4.56(1)P e −=−1.4 解:ini n x n x ex x x P ni i 122)(ln 2121)2(),.....,(122=−−Π∑==πσμσ1.5证:∵21122)(na a x n x a x ni ni ii+−=−∑∑==∑∑∑===−+−=+−+−=ni i ni i ni i a x n x x naa x n x x x x 1222211)()(222a) 证:)(11111+=+++=∑n ni i n x x n x )(11)(1111n n n n n x x n x x x n n −++=++=++])()1(1 ))((12)[(11)](11[11)(11212111121211212112n n n i n n n i n i n i ni n n n i n i n in x x n n x x x x n x x n x x n x x n x x n S −+++−−+−−+=−+−−+=−+=++=+=+=+=++∑∑∑∑] )(11))1()((12)([112111212n n n n n n n n n x x n x n x x n x x n x x nS n −++−+−+−−++=++++])(11S [1 ])(1[nS 11212n 212n n n n n x x n n n x x n n n −+++=−+++=++ 1.6证明 (1) ∵22112211221()()()2()()()()()nni ii i nni i i i ni i X X X X X X X X X n X X X n X μμμμμ=====−=−+−=−+−−+−=−+−∑∑∑∑∑(2) ∵2221112221221()22ii i nn ni i i i i ni ni XX X X X nX X nX nX X nX =====−=−+=−+=−∑∑∑∑∑1.10 解: (1).∑∑====ni i n i i x E n x n E X E 11)(1)1()(p np n=⋅=1np mp x D n x n D X D ni in i i )1()(1)1()(121−===∑∑==))(1()(122∑=−=n i i x x n E S E)1(1)])1(1())1(([1)])()(())()(([1])()([1])([12222212212212p mp nn p m p mp n n p m p mp n n x E x D n x E x D n x nE x E n x x E n ni i i n i i n i i −−=+−−+−=+−+=−=−=∑∑∑=== 同理,(2). λ===∑∑==ni i n i i x E n x n E X E 11)(1)1()(λnx D n x n D X D ni in i i 1)(1)1()(121===∑∑==λnn x E x D n x E x D n x nE x E n S E ni i i n i i 1)])()(())()(([1])()([1)(2122122−=+−+=−=∑∑==(3). 2)(1)1()(11b a x E n x n E X E ni i n i i +===∑∑==na b x D nx n D X D ni ini i 12)()(1)1()(2121−===∑∑==12)(1)])()(())()(([1])()([1)(22122122a b nn x E x D n x E x D n x nE x E n S E ni i i n i i −⋅−=+−+=−=∑∑==(4). λ===∑∑==ni i n i i x E n x n E X E 11)(1)1()(nx D nx nD X D ni ini i 2121)(1)1()(λ===∑∑==221221221)])()(())()(([1])()([1)(λnn x E x D n x E x D n x nE x E n S E ni i i n i i −=+−+=−=∑∑==(5). μ===∑∑==ni ini i x E nx nE X E 11)(1)1()(nx D nx nD X D ni i ni i 2121)(1)1()(σ===∑∑==221221221)])()(())()(([1])()([1)(σ⋅−=+−+=−=∑∑==nn x E x D n x E x D n x nE x E n S E ni i i n i i1.11 解:由统计量的定义知,1,3,4,5,6,7为统计量,5为顺序统计量 1.17 证:),(~ λαΓX ∵xe x xf λαααλ−−Γ=∴1)()( 令kXY =ke ky k k e ky yf kyky ⋅Γ=⋅Γ=∴−−−−λαααλαααλαλ11)()( )()()(即 ),(~ky Y αΓ1.18 证:),(~ b a X β∵),()1()( 11b a B x xx f b a −−−=∴),(),( ),()1()( 11b a B b k a B b a B x x x X E b a k k +=−=∴∫∞+∞−−−),(),1()( b a B b a B X E +=∴ba a ab a b a b a a a a b a b a a a b b a b a b a +=Γ+Γ++ΓΓ=Γ++Γ+Γ+Γ=ΓΓ+Γ⋅++ΓΓ+Γ=)()()()()()()1()()1()()()()1()()1(),(),2()(2b a B b a B X E +=))(1()1()()()()2()()2(b a b a a a a b b a b a b a ++++=ΓΓ+Γ⋅++ΓΓ+Γ= 22)]([)()( X E X E X D −=∴2))(1())(1()1(b a b a ab ba ab a b a a a +++=+−++++= 1.19 解:∵ (,)X F n m ∼分布2212(1)022()((1))((1)()()()(1)()()n n m n mn m yn m y n mn nP Y y P X X y m myP X y n n n x x dx m mm ++−−+≤=+≤=<−Γ=+ΓΓ∫2222122221122()()()1((1()()11(1)(1)(,)n n m n m n m n m n m f y P Y y y y yy y yy B ++−−−−′=≤Γ=+ΓΓ−−−−=∴ 22(1)(,)n mn n Y X X m mβ=+∼分布1.20 解:∵ ()X t n ∼分布122212()()((2(1n n P Y y P X y P X xdxn ++−≤=≤=≤≤=+112211221212122()()()(1)()1()(1(()()n n n n n f y P Y y y y n y y nn n +++−−+−−′=≤Γ=+Γ=+ΓΓ∴ 2(1,)2nY X F =∼分布1.21 解: (1) ∵ (8,4)X N ∼分布∴ 4(8,)25X N ∼ 分布,即5(8)(0,1)2X N −∼ ∴ 样本均值落在7.88.2∼分钟之间的概率为:5(7.88)5(8)5(8.28)(7.88.2)()2220.383X P X P −−−≤≤=≤≤=(2) 样本均值落在7.58∼分钟之间的概率为:5(7.58)5(8)5(88)(7.58)(2225(8)(0 1.25)20.3944X P X P X P −−−≤≤=≤≤−=≤≤= 若取100个样品,样本均值落在7.58∼分钟之间的概率为:10(7.88)10(8)10(8.28)(7.88.2)(2222*(0.84130.5)0.6826X P X P −−−≤≤=≤≤=−= 单个样品大于11分钟的概率为:110.77340.2266P =−= 25个样品的均值大于9分钟的概率为210.97980.0202P =−= 100个样品的均值大于8.6分钟的概率为310.99870.0013P =−= 所以第一种情况更有可能发生1.23 解:(1) ∵ 2(0,)X N σ∼分布 ∴ 2(0,X N nσ∼分布∴ 22)(1)nXχσ∼∵ 222221()(ni i nXa X an X an σσ===∑∴ 21a n σ=同理 21b m σ=(2) ∵2(0,)X N σ∼分布 ∴222(1)X χσ∼分布由2χ分布是可加性得:2221()ni i X n χσ=∑∼()ninX c X t m ==∑∼ ∴c =(3) 由(2)可知2221()ni i X n χσ=∑∼2221122211(,)nni ii i n mn mi ii n i n X d Xnn dF n m XmXmσσ==++=+=+=∑∑∑∑∼∴ md n=1.25 证明:∵ 211(,)X N μσ∼分布 ∴ 2211((1)i X μχσ−∼∴ 1221111(()n i i X n μχσ=−∑∼同理 2222212(()n i i Y n μχσ=−∑∼ 1122222112211111222221122112()()(,)()()n n i i i i n n i i i i X n n X F n n Y n Y n μσμσμσμσ====−−=−−∑∑∑∑∼ 第二章 参数估计2.1 (1) ∵ ()X Exp λ∼分布∴ ()1E X λ=令 ˆ1X λ= 解得λ的矩估计为: ˆ1X λ= (2) ∵ (,)X U a b ∼分布∴ ()2a bE X +=2()()12b a D X −=令 1ˆˆ2ab A X +==22221ˆˆˆˆ()()1124n i i b a a b A X n =−++==∑ (22211n i i X X S n =−=∑)解得a 和b 的矩估计为:ˆˆaX bX =−=(3) 110()1E X x x dx θθθθ−=∗=+∫令 1ˆˆ1A X θθ==+∴ˆ1XXθ=− (4) 110()(1)!kk x kE X x x e dx k βββ−−=∗=−∫令ˆkX β= ∴ ˆkXβ=(5) 根据密度函数有2221()22()E X a aE X a λλλ=+=++根据矩估计有1222221ˆˆˆ22ˆˆˆa A X a a A S X λλλ+==++==+解得λ和a 的矩估计为:ˆˆaX λ==(6) ∵ (,)X B m p ∼ ∴ ()E X mp =令 1ˆmpA X == 解得p 的矩估计为:ˆXpm= 2.3解:∵ X 服从几何分布,其概率分布为:1()(1)k P X k p p −==−故p 的似然函数为: 1()(1)ni i x nnL p p p =−∑=−对数似然函数为:1ln ()ln ()ln(1)ni i L p n p x n p ==+−−∑令 1ln ()1()01nii L p n x n p p p =∂=−−=∂−∑ ∴ 1ˆpX= 2.4 解:由题知X 应服从离散均匀分布,⎪⎩⎪⎨⎧≤≤==其它01 1)(Nk N k x p2)(NX E =矩估计: 令 7102=∧N1420=∴∧N 极大似然估计:⎪⎩⎪⎨⎧≤≤=其它07101 1)(NN N L ∵要使)(N L 最大,则710=N710=∴∧N 2.5 解:由题中等式知:2196.196.196.1)025.01(025.0)(1S X +=+=∴+=+−Φ=∴=−Φ−∧∧∧−σμθσμμσθσμθ2.6 解:(1) 05.009.214.2=−=R ∵0215.005.04299.05=×==∴∧d Rσ(2)将所有数据分为三组如下所示:1x 2x 3x 4x5x 6x i R1 2.14 2.10 2.15 2.13 2.12 2.13 0.05 2 2.10 2.15 2.12 2.14 2.10 2.13 0.05 32.11 2.14 2.10 2.11 2.15 2.10 0.050197.005.03946.005.0)05.005.005.0(316=×==∴=++=∴∧d R R σ 2.7 解:(1)⎩⎨⎧+<<=其它 01x 1)(θθx f ∵ θθθθθθ≠+==+=++=∴∧21)()(2121)(X E E X E ∴ X =∧θ不是θ的无偏估计,偏差为21=−∧θθ(2) θ=−21(X E ∵ 21−=∴∧X θ是θ的无偏估计(3)22))(()())(()(θθθθ−+=−+=∧∧X E X D E D MSE41121+=n 2.8 证:由例2.24,令2211x a x a +=∧μ,则∧μ 为μ无偏估计应 满足121=+a a因此1μ,2μ,3μ都是μ的无偏估计)()()()(21)()(2513)()(95)9491)(()())(()()(1233212221212∧∧∧∧∧∧=∧<<===+=∴+==∑μμμμμμμD D D X D D X D D X D X D D a a X D X D a D i i i ∵∵2132121X X +=∴∧μ最有效2.9证: )(~λp X ∵ λλ==∴)( )(X D XEX ∵是λ=)(X E 的无偏估计,2*S 是λ=)( X D 的无偏估计)()1()())1((2*2*S E X E S X E αααα−+=−+∴λλααλ=−+=)1(∴2*)1(SX αα−+是λ的无偏估计2.10 解:因为2222((1))()(1)()(1)()1(1)()11(1)1E X S E X E S na E S n n a E S n n n a n nααααλαλαλαλλ∗∗+−=+−=+−−=+−−−=+−=− 所以 2(1)X S αα∗+−是λ的无偏估计量2.15 解:因为ˆθ是θ的有效估计量ˆˆˆ()()()E uE a b aE b a b u θθθ=+=+=+= 221ˆˆˆˆ()()()()D u D a b a D a D θθθ=+=≤ (其中,1ˆθ是θ的任意无偏估计量中的一个)所以 ˆu是u 的有效估计量 2.26 解: 因为总体服从正态分布,所以)01X U N μσ−=∼(,)对于给定的1α−,查标准正态分布表可得2u α,使得2()1P U u αα<=−即:22()1P X p X ααα−<<=−区间的长度2d L α=<,所以 22224u n L ασ>2.28 解:因为总体服从正态分布,所以)01X U N μσ−=∼(,), 222(1)nS V n χσ=−∼由因为U 和V 是相互独立的,所以(1)X T t n =−∼对于给定的1α−,查标t 分布表可得t α,使得 2()1P U t αα<=−,即:22()1P X X ααμα<<+=− 当30n =,35X =,15S =时,第一家航空公司平均晚点时间μ的95%的置信区间为:(29.3032,40.6968)对于给定的1α−,查标t 分布表可得t α,使得 ()1P U t αα>=−, 即:()1P X αμα<+=− 故μ的具有单侧置信上限的单侧置信区间为(,)X α−∞+ 所以经计算可得:第一家航空公司的单侧上限置信区间为(,39.7327)−∞第二种航空公司的单侧上限置信区间为(,36.3103)−∞所以选择第二家航空公司。
教育与心理统计学 第二章 常用统计参数考研笔记-精品
第二章常用统计参数第二章常用统计参数用参数来描述一组变量的分布特征,便于我们对数据分布状况进行更好的代表性的描述,也有利于我们更好地了解数据的特点。
常见的统计参数包括三类:集中量数、差异量数、地位量数(相对量数X相关量数。
描述统计的指标通常有五类。
第一类集中量数:用于表示数据的集中趋势,是评定一组数据是否有代表性的综合指标,比如平均数、中数、众数等。
概述[不背]第二类差异量数:用于表示数据的离散趋势,是说明一组数据分散程度的指标,比如方差、标准差、差异系数等。
第三类地位量数:是反映个体观测数据在团体中所处位置的量数,比如百分位数、百分等级和标准分数等。
第四类相关量数:用于表示数据间的相互关系,是说明数据间关联程度的指标,比如积差相关、肯德尔和谐系数、①相关等。
第五类:是反映数据的分布形状,比如偏态量和峰度等(不作介绍I第一节集中量数(一)集中量数的定义(种类、作用)[湖南12名]描述数据集中趋势的统计量数称为集中量数。
集中量数能反映大量数据向某一点集中的情况。
常用的集中量数包括算术平均数、加权平均数、几何平均数、中数、众数等等,它们的作用都是用于度量次数分布的集中趋势。
(二)算术平均数(平均数、均数)(一级)简述算术平均数的定义和优缺点。
(1)平均数的含义算术平均数可简称为平均数或均数,符号可记为M。
算术平均数即数据总和除以数据个数,即所有观察值的总和与总频数之比。
只有在为了与其他几种集中.数洞区别时,如几何平均数、调和平均数、加权平均数,才全称为算术平均数。
如果平均数是由变量计算的,就用相应的变量表示,如又匕算术平均数是用以度量连续变量次数分布集中趋势及位置的最常用的集中量数,在一组数据中如果没有极端值, 平均数就是集中趋势中最有代表性的数字指标,是真值的最佳估计值。
(2)平均数的优缺点简述算术平均数的使用特点[含优缺点]算术平均数优点①反应灵敏。
观测数据中任1可一个数值或大或小的变化,甚至细微的变化,在计算平均数时,都能反映出来。
应用多元统计分析 第二章正态分布的参数估计答案
练习二 多元正态分布的参数估计2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=-- 其中1a x b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数; (3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()d x cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。
多元正态分布及参数估计
2019/11/6
应用统计方法
22
2、性质 1) 设为常数,则 E (a X )a(E X ); 2)设 A,B,C 分别为常数矩阵,则
E ( A C X ) A E ( X B ) B C
3)设 X 1,X 2, ,X n为 n个同阶矩阵,则
E ( X 1 X 2 X n ) E X 1 E X 2 E X n
对一切 x、y成立,则称 x和 y相互独立。
2、设 x和 y是两个连续随机向量, x和 y相互
独立,当且仅当
f(x|y)fx(x)或 F (x ,y ) F x(x )F y(y )
对一切
2019/11/6
x
、y
成立。 应用统计方法
19
3、设 x1,x2, ,xn是 n个随机向量,若
F ( x 1 , x 2 , , x m ) F 1 ( x 1 ) F 2 ( x 2 ) F m ( x m ) mn
2019/11/6
应用统计方法
23
二、协方差矩阵
1、定义:设 x (x 1 ,x2, ,xp)和 y (y 1 ,y2, ,y q)分 别为 p维和 q维随机向量,则其协方差矩阵为
Exx2 1 E E ((xx1 2))y1E(y1)
y2E(y2) yqE(yq)
降的右连续函数;
2019/11/6
应用统计方法
4
② 分布函数的取值范围为[0,1],即
0F(a1,a2, ,ap)1
③ 分布函数当变量取值为无穷大时,函数值收敛到1,即
F(,, ,)1
2019/11/6
应用统计方法
5
二、两个常用的离散多元分布
第二章 参数估计
0
x 2de
x
2xe
x
dx
2
xde
x
0
x
0
0
2 e dx 2 2
0
9
例4:设X1, … , Xn为取自 N ( , 2 ) 总体的
样本,求参数 , 2 的矩估计。
: E( X ) D( X ) 2 E( X 2 ) [E( X )]2
极大似然法是由德国数学家G.F.Gauss在1821年提 出的.然而这个方法通常归于英国统计学家 R.A.Fisher,因为他在1912年里发现了这一方法,并 且首先研究了这种方法的性质.
设总体的密度函数为f(x,θ), θ为待估参数,θ∈Θ,Θ
为参数空间.当给定样本观察值 x (x1, x2 , xn )后,f(x,
以随便给的,所以根据统计思想建立各种点估计方法
和评价点估计的好坏标准便是估计问题的研究中心.
这里先介绍三个常用的标准:无偏性、有效性和一致
性.
1
有效性
^
^
设 i i ( X1,, X n ), i 1, 2分别是参数 的两个无偏估计,
^
^
^
^
若D 1 D 2 至少有一个n使 成立 , 则称 1比 2 有效.
总体k阶矩 样本k阶矩
k E(Xk )
Ak
1 n
n i 1
X
k i
的矩估计量是
约定:若
是未知参数的矩估计,则u()的矩
估计为u(
),
6
例2、:设X1, … , Xn为取自参数为的指数分布 总体的样本,求的矩估计。
应用多元统计分析课后习题答案高惠璇第二章部分习题解答
22 14
12
2 2
22
2 1
21 212
65
2
4211
22 22
22 14
12
4 3
13
第二章 多元正态分布及参数的估计
故X=(X1,X2)′为二元正态随机向量.且
E(
X
)
4 3
,
D(
X
)
1 1
21
解三:两次配方法
(1)第一次配方: 2x12 2x1x2 x22 (x1 x2 )2 x12
2
]
g( y1, y2 )
设函数 g( y1, y2 ) 是随机向量Y的密度函数.
15
第二章 多元正态分布及参数的估计
(3) 随机向量
Y
YY12
~
N2
7 4
,
I2
(4) 由于
X
X X
1 2
0 1
11
Y1 Y2
CY
0 1
11 74
34
,
0 1
11
I
2
0 1
11
1 1
2 2
X 2 ~ N (3,2).
10
第二章 多元正态分布及参数的估计
12 Cov( X1, X 2 ) E[( X1 E( X1))( X 2 E( X 2 )]
E[( X1 4)( X 2 3)]
(x1 4)(x2 3) f (x1, x2 )dx1dx2
令uu21
x1 x2
19
第二章 多元正态分布及参数的估计
2-17 设X~Np(μ,Σ),Σ>0,X的密度函数记为 f(x;μ,Σ).(1)任给a>0,试证明概率密度等高面
应用数理统计第二章参数估计(3)区间估计
例1 有一大批月饼,现从中随机地取16袋,称得重量(以克 计)如下:506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496 ,设袋装月饼的重量近似地服从正态 分布,试求总体均值的置信度为0.95的置信区间。 解: 2未知, 1-=0.95, /2=0.025,n-1=15, t0.975 (15) 2.1315 由已知的数据算得 x 503.75, S* 6.2022
n1 (n2 1) S12 12 n1 (n2 1) S12 P F (n 1, n1 1) 2 F (n 1, n1 1) 1 2 /2 2 2 1 / 2 2 2 n2 (n1 1) S2 n2 (n1 1) S2
10
得所求的标准差的置信区间为 (4.58, 9.60)
2.4.3 两个正态总体参数的区间估计
在实际中常遇到下面的问题:已知产品的某一质量指标 服从正态分布,但由于原料、设备条件、操作人员不同,或 工艺过程的改变等因素,引起总体均值、总体方差有所改变, 我们需要知道这些变化有多大,这就需要考虑两个正态总体 均值差或方差比的估计问题。
ˆ a ˆ b} {g(a) T ( X , X ,..., X ; ) g(b)} { 1 2 n
其中g ( x )为可逆的已知函数, T ( X 1 , X 2 ,..., X n ; 况
设总体X~N(,2),X1, X2, …,Xn是总体X的样本,求,2 /2 /2 的置信水平为(1)的置信区间.
求得 的置信水平为(1)的置信区间: ( 2未知)
S S* t1 2 (n 1) or X t1 2 (n 1) X n1 n
《应用数理统计》吴翊李永乐第二章 参数估计课后习题参考答案
第二章 参数估计课后习题参考答案2.1 设总体X 服从二项分布()n X X X p p N B ,,,,11,,21 <<为其子样,求N 及p 的矩法估计。
解:()()()p Np X D Np X E -==1,令()⎪⎩⎪⎨⎧-==p Np S Np X 12解上述关于N 、p 的方程得:2.2 对容量为n 的子样,对密度函数22(),0(;)0,0x x f x x x ααααα⎧-⎪=⎨⎪≤≥⎩其中参数α的矩法估计。
解:122()()a E x xx dx ααα==-⎰22022()x x dx ααα=-⎰2321221333ααααααα=-=-= 所以 133a x α∧== 其中121,21(),,,n n x x x x x x x n=+++为n 个样本的观察值。
2.3 使用一测量仪器对同一值进行了12次独立测量,其结果为(单位:mm) 232.50,232.48,232.15,232.52,232.53,232.30 232.48,232.05,232.45,232.60,232.47,232.30 试用矩法估计测量的真值和方差(设仪器无系统差)。
⎪⎪⎩⎪⎪⎨⎧-=-==X S p S X X p X N 2221ˆˆˆ解:()()()∑∑====-====ni i ni i S X X n X D X X n X E 12210255.014025.23212.4 设子样1.3,0.6,1.7,2.2,0.3,1.1是来自具有密度函数()10,1,<<=βββx f 的总体,试用矩法估计总体均值、总体方差及参数β。
解:()()()()4.22ˆ2,1,407.012.1101221========-===⎰⎰∑∑==X Xdx xdx x xf X E x f XX n S X n X ni i ni i ββββββββ参数:总体方差:总体均值:2.5 设n X X X ,,,21 为()1N ,μ的一个字样,求参数μ的MLE ;又若总体为()21N σ,的MLE 。
应用多元统计分析课后习题解答详解北大高惠璇(第二章部分习题解答)
2 2
X 2 ~ N (3,2).
10
第二章 多元正态分布及参数的估计
12 Cov( X1, X 2 ) E[( X1 E( X1))( X 2 E( X 2 )]
E[( X1 4)( X 2 3)]
(x1 4)(x2 3) f (x1, x2 )dx1dx2
令uu21
x1 x2
X
X X
(1) (2)
~
N2 p
(1) (2)
,
1 2
2 1
,
其中μ(i) (i=1,2)为p维向量,Σi (i=1,2)为p阶矩阵,
(1) 试证明X(1) +X(2)和X(1) -X(2) 相互独立.
(2) 试求X(1) +X(2) 和X(1) -X(2) 的分布.
解 :(1) 令
Y
2
x12
22
x1
65
x12
14
x1
49)
1 2
(
x2
x1
7)2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)
2
2
1 e
1 2
(
x1
4
)
2
2
X1 ~ N(4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)2
4
第二章 多元正态分布及参数的估计
(2) 因
Y
X1 X1
应用数理统计(武汉理工大)2-参数估计
1
D(S 2 )nI (
2)
n 1 n
1,
n
故S 2是渐进有效的。
第二章 参数估计
例: 设总体X (), X1, X 2 , , X n是X的一个样本, 讨论的无偏估计X的有效性。
解:lnp( X
,)
ln
X e
X!
X
ln
ln( X
!)
区间估计的关键: 用合适的方法确定两个统计量
1(X1, X2 , , Xn), 2(X1, X2 , , Xn)
第二章 参数估计
1.区间估计的定义及计算步骤
3) 区间估计的例子
例1 设总体X~N(μ , σ2), σ2已知,μ未知,设X1,…,Xn是X的样本, 求μ的置信度为1-α的置信区间。
)
2
n
,
D(ˆ2 )
D(nZ )
n2D(Z )
n2
n
2
2
当n 1时,显然D(ˆ1) D(ˆ2 ),故ˆ1比ˆ2有效。
第二章 参数估计
最小方差无偏估计问题 设 若 及T对 任(g意X(1, , X)的2都,任有一 , XD无n()T是 偏) g估(D计()T的量')一, T '个 ( X无1, X偏2估 , 计, X量n ), 则 无称 偏T估(计X1,, X或2 ,者,称X为n )是最g优(无)的偏一估致计最。小方差
其它类型的估计,如 贝叶斯估计…
第二章 参数估计
2.1参数的点估计
1. 矩估计 2. 极大似然估计 3. 点估计量的评价
应用数理统计吴翊李永乐第二章-参数估计课后习题参考答案
《应用数理统计》吴翊李永乐第二章-参数估计课后习题参考答案(总19页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第二章 参数估计课后习题参考答案设总体X 服从二项分布()n X X X p p N B ,,,,11,,21 <<为其子样,求N 及p 的矩法估计。
解:()()()p Np X D Np X E -==1,令()⎪⎩⎪⎨⎧-==p Np S Np X 12 解上述关于N 、p 的方程得:对容量为n 的子样,对密度函数22(),0(;)0,0x x f x x x ααααα⎧-⎪=⎨⎪≤≥⎩其中参数α的矩法估计。
解:122()()a E x xx dx ααα==-⎰2222()x x dx ααα=-⎰2321221333ααααααα=-=-= 所以 133a x α∧== 其中121,21(),,,n n x x x x x x x n=+++为n 个样本的观察值。
使用一测量仪器对同一值进行了12次独立测量,其结果为(单位:mm) ,,,,,⎪⎪⎩⎪⎪⎨⎧-=-==X S p S X X p X N 2221ˆˆˆ,,,,,试用矩法估计测量的真值和方差(设仪器无系统差)。
解:()()()∑∑====-====ni ini i S XX nX D X X n X E 12210255.014025.2321设子样,,,,,是来自具有密度函数()10,1,<<=βββx f 的总体,试用矩法估计总体均值、总体方差及参数β。
解:()()()()4.22ˆ2,1,407.012.1101221========-===⎰⎰∑∑==X Xdx xdx x xf X E x f XX n S X n X ni i ni i ββββββββ参数:总体方差:总体均值:设n X X X ,,,21 为()1N ,μ的一个字样,求参数μ的MLE ;又若总体为()21N σ,的MLE 。
统计学参数估计
统计学参数估计统计学参数估计是统计学中一种重要的方法,它通过观察样本数据来估计总体参数的值。
参数是描述总体特征的数值,例如总体均值、总体比例等。
参数估计的目的是根据样本信息对总体参数进行推断,从而得到总体特征的近似值。
参数估计的过程通常分为点估计和区间估计两种方法。
点估计是指根据样本数据求出总体参数的一个数值估计量,例如样本均值、样本比例等。
点估计的基本思想是用样本统计量作为总体参数的估计值,它是参数的无偏估计量时,表示点估计是一个良好的估计。
区间估计是指根据样本数据求出一个区间,这个区间包含总体参数的真值的概率较高,通常用置信区间表示。
区间估计的基本思想是总体参数位于一个区间中的可能性,而不是一个确定的值。
置信区间的构造依赖于样本统计量的分布以及总体参数的估计量的抽样分布。
点估计和区间估计的方法有很多,其中最常用的是最大似然估计和矩估计。
最大似然估计是指根据已知样本观测值,选择使样本观测值出现的概率最大的总体参数作为估计值。
最大似然估计的基本思想是找到一个参数值,使得已观测到的样本结果出现的概率尽可能大。
矩估计是指根据样本矩的观测值,选择使样本矩的偏差与总体矩的偏差最小的总体参数作为估计值。
矩估计的基本思想是利用样本矩估计总体矩,从而近似估计总体参数。
参数估计在实际应用中具有广泛的应用价值。
例如,在医学研究中,需要对患者的疾病概率进行估计,以帮助医生做出正确的诊断和治疗决策。
在经济学研究中,需要对经济指标(如GDP、通胀率等)进行估计,以帮助政府制定宏观经济政策。
在市场调研中,需要对消费者行为进行估计,以帮助企业确定产品定价和市场策略。
然而,参数估计也存在一些局限性。
首先,参数估计的结果仅仅是对总体参数的估计,并不是总体参数的确切值。
其次,参数估计的结果受到样本容量的影响,样本容量越大,估计结果越可靠。
另外,参数估计还需要满足一些假设条件,如总体分布的形式、样本的独立性等,如果这些假设条件不满足,估计结果可能会失效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计方法
统计方法
统计方法
统计方法 •2.3.3 Bayes估计
统计方法
统计方法
统计方法
•注:假如不用先验信息,只用样本和总体信息,那么事件A 发生的概率的最大似然估计为:
•例如:在产品抽检中,只区分合格品与不合格品,对质 量好的一批产品,抽检的产品常为合格品. • 但“抽检3个全为合格品” • “抽检的10个全为合格品”(更信得过)
本章中介绍了参数估计的基本方法。
参数的估计有点估计、贝叶斯估计和区间估计。矩估计法和 极大似然估计法是求参数的点估计量的两种最基本的方法, 务必牢固掌握。衡量估计量好坏的标准有无偏性,最小方差 无偏估计,有效性和相合性(一致性)等,要学会验证一个 估计量是符合哪种标准的估计量,这对了解估计量的特性是 非常重要的。
•(3)先验信息:抽样或试验之前有关统计问题的一些信息.一般说来,
•先验信息来自经验或历史资料.先验信息在日常生活和工作中是很 重要的
统计方法
•Bayes统计学:基于三种信息所进行的统计推断的统计学
•Bayes统计重视总体信息和样本信息的同时,还注意先验 信息的收集,挖掘和加工,使它数量化,形成先验分布,参加到 统计推断中来.以提高统计推断的质量,忽略先验信息的利 用,有时是一种浪费,有时还会导出不合理的结论. •Bayes学派的基本观点:任一未知参数都可以看成随机变量, 可用一个概率分布去描述,这个分布称为先验分布.在获得样 本之后,总体分布,样本,和先验分布通过Bayes公式结合起来 得到关于未知参数的新的分布…..后验分布
当样本符合或接近统计模型的假设时, 该估计应有好的或较好的估计效果;当 样本偏离偏离模型的假设时,即受到干 扰时,该估计量应具有一定的抗干扰能 力而不至于使估计效果变得太坏。
如样本中位数等是估计
•在统计学中有两大学派:频率学派(经典学派)和Bayes学派
统计方法 §2.4 区间估计(Interval Estimation)
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
第二章小结(Summary of Chapter two)
•关于未知参数的统计推断都应基于未知参数的后验分布进 行 •两派争论的焦点:如何利用各种先验信息合理地确定先验分 布.有些场合易解决,有些场合是相当困难的.
统计方法 •2.3.2 Bayes公式密度函数的形式
•这里用随机变量的概率函数再次叙述Bayes公式,从中介绍 Bayes学派的一些具体想法
统计方法
[教育]应用统计方法第二章 参数估计
统计方法
§2.1 点估计(Point Estimation) §2.2 估计量的评价准则 §2.3 区间估计(Interval Estimation)
统计方法
§2.1 点估计(Point Estimation)
统计方法
统计方法
统计方法
统计方法
统计方法
•这两件事留在人们心中的印象是不同的
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
•先验分 布
•后验分布既反映了以往提供的信息,又反映了样本 提供的信息,共轭分布要求先验和后验分布属于同一 类型,就是要求以往的知识与现在样本提供的信息有 某种共同性.如果以后验分布作为进一步实验的先验 分布,再统计试验获得的新的样本,新的后验分布仍 然还是同一个类型的.由此可得共轭分布的优点.
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
§2.2 估计量的评价准则 (Evaluation Rule of Estimator)
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法
统计方法 •最小均方误差准则
统计方法 •相合性(一致性)
•除了要求无偏,方差较小,或均方误差较小外,还要求当样 本容量增大时,它将越来越接近被估计的真值,这是因为当 样本容量增大时,得到的总体信息也就越多. •有效估计必是相合的估计
统计方法
稳健性准则
•2.3.1统计推断的基础 •经典学派:统计推断是根据样本信息对总体分布或总体的特 征数进行推断,用到两种信息:总体信息和样本信息.
•Bayes学派:除上述两种信息外还用到了第三种信息:先验信 息
•(1)总体信息:总体分布或总体所属分布族的信息
•(2)样本信息:抽取样本观测值提供的信息.例如:有了样本观测值,可 以根据它知道总体的一些特征数如总体均值,方差等在一个什么范 围.这是最”新鲜”的信息,且越多越好.没有样本就没有统计学而言.