五年级计数问题奥数题

合集下载

五年级数学下册奥数题100题(含答案)之鸡兔同笼与数字数位问题

五年级数学下册奥数题100题(含答案)之鸡兔同笼与数字数位问题

五年级数学下册奥数题100题(含答案)之鸡兔同笼与数字数位问题五年级奥数题二、鸡兔同笼问题1、鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?三、数字数位问题1、把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?2、A和B是小于100的两个非零的不同自然数。

求A+B分之A-B的最小值。

3、已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少?4、一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.5、一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.6、把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少?7、一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.8、有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.9、有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数.10、如果现在是上午的10点21分,那么在经过28799...99(一共有20个9)分钟之后的时间将是几点几分?参考答案二.鸡兔同笼问题1、解:4*100=400,400-0=400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。

400-28=372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么?4+2=6 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6)372÷6=62 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只100-62=38表示兔的只数三.数字数位问题1、解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。

五年级下册数学奥数试题——几何计数

五年级下册数学奥数试题——几何计数

五年级下册数学奥数试题——几何计数
第9讲几何计数
一、知识点
几何计数,就是数几何图形的个数.常用的方法是枚举法,一般要按照一定的顺序来枚举,注意寻找规律,做到不重复不遗漏.要多观察,思考,分析中总结归纳出解决问题的规律和方法.
二、典型例题
例1 下列图形中各有多少个三角形?
练习1下图中各有多少个三角形?
例2 下图中共有多少个三角形?
练习2 如图中共有多少个三角形?
例3 下列图形中,分别有多少个正方形?
练习3 围棋棋盘是由19条横线和19条竖线组成的正方形方阵,其中有多少个正方形?
例4 图中(下列各题中,长方形都包括正方形)
(1)一共有多少个长方形?
(2)包含数字“1”的长方形共有多少个?
(3)包含数字“2”的长方形共有多少个?
练习4 如图,一个长为9,宽为4的长方形网格,每一小格都是一个正方形.那么:(1)一共有多少个长方形?
(2)包含“√”的长方形有多少个?
例5 图中共有多少个长方形?(长方形包括正方形)
例6 图中有多少个平行四边形?
1
2
√。

小学五年级奥数题100道及答案(完整版)

小学五年级奥数题100道及答案(完整版)

小学五年级奥数题100道及答案(完整版)1. 一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是()A. 208B. 203C. 200D. 198答案:A解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208。

2. 有一个自然数,被10 除余7,被7 除余4,被4 除余1。

这个自然数最小是()A. 137B. 107C. 131D. 101答案:C解析:这个数加上 3 就能被10、7、4 整除,10、7、4 的最小公倍数是140,所以这个数是140 - 3 = 137。

3. 一筐苹果,2 个一拿,3 个一拿,4 个一拿,5 个一拿都正好拿完而没有余数,这筐苹果最少应有()A. 120 个B. 90 个C. 60 个D. 30 个答案:C解析:苹果数量是2、3、4、5 的公倍数,最小公倍数是60。

4. 把66 分解质因数是()A. 66 = 1×2×3×11B. 66 = 6×11C. 66 = 2×3×11D. 2×3×11 = 66答案:C解析:分解质因数是把一个合数写成几个质数相乘的形式。

5. 两个质数的积一定是()A. 质数B. 奇数C. 偶数D. 合数答案:D解析:两个质数相乘的积,除了1 和它本身以外还有这两个质数作为因数,所以是合数。

6. 一个合数至少有()个因数。

A. 1B. 2C. 3D. 4答案:C解析:合数是指除了能被1 和本身整除外,还能被其他数(0 除外)整除的自然数。

所以一个合数至少有3 个因数。

7. 10 以内既是奇数又是合数的数是()A. 7B. 8C. 9D. 5答案:C解析:9 不能被2 整除是奇数,同时除了1 和9 本身还有3 这个因数,所以是合数。

8. 下面算式中,结果最大的是()A. 300÷8÷6×5B. 300÷(8÷6)×5C. 300÷(8÷6×5)D. 300÷8÷(6×5)答案:C解析:分别计算出每个选项的结果进行比较。

小学五年级数学奥数题100道及答案(完整版)

小学五年级数学奥数题100道及答案(完整版)

小学五年级数学奥数题100道及答案(完整版)题目1:计算:1 + 2 + 3 + 4 + 5 + …+ 99 + 100答案:5050解析:这是一个等差数列求和,公式为(首项+ 末项)×项数÷ 2 ,即(1 + 100)×100 ÷2 = 5050题目2:有三个连续自然数,它们的乘积是60,求这三个数。

答案:3、4、5解析:将60 分解质因数60 = 2×2×3×5 = 3×4×5题目3:一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是多少?答案:208解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208题目4:甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。

各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。

A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,两车共行了一个全程,甲行了60 千米。

第二次相遇时,两车共行了三个全程,甲行了60×3 = 180 千米。

此时甲距离 A 地40 千米,所以两个全程是180 + 40 = 220 千米,全程为110 千米。

题目5:鸡兔同笼,共有头48 个,脚132 只,鸡和兔各有多少只?答案:鸡30 只,兔18 只解析:假设全是鸡,有脚48×2 = 96 只,少了132 - 96 = 36 只脚。

每把一只鸡换成一只兔,脚多4 - 2 = 2 只,所以兔有36÷2 = 18 只,鸡有48 - 18 = 30 只。

题目6:小明从一楼到三楼用了18 秒,照这样计算,他从一楼到六楼需要多少秒?答案:45 秒解析:一楼到三楼走了 2 层楼梯,每层用时18÷2 = 9 秒。

一楼到六楼走5 层楼梯,用时5×9 = 45 秒。

五年级的奥数题

五年级的奥数题

五年级的奥数题以下是适合五年级学生的奥数题:1.有一堆苹果,如果3个3个地数,最后会剩下2个;如果4个4个地数,最后也会剩下2个;如果5个5个地数,最后还是会剩下2个。

已知这堆苹果的数量在90至100之间,那么这堆苹果一共有多少个?2.一个自然数,如果它顺着看和倒过来看都是一样的,那么称这个数为“回文数”。

例如1331,7,202都是回文数,而220则不是回文数。

问:从二位数到六位数中,一共有多少个回文数?3.一个四位数,它的各位数字之和是11,如果把它的各位数字按从大到小的顺序排列,得到一个新的四位数,比原数大2331,求这个四位数。

4.有100个自然数,它们的总和是10000。

在这些数里,奇数的个数比偶数多,那么这些数里至多有多少个偶数?5.小王从家里到学校要走5分钟,平均每分钟走90米。

他来回一趟学校要走多少米?6.小华有一些书,她给了小明3本后,还剩下8本。

如果小明给小华2本,小华就比小明多3本。

小华和小明原来各有多少本书?7.一个两位数,它的十位数字与个位数字的和是10,如果把这个两位数的十位数字与个位数字互换位置,所得到的新数就比原数大36。

求这个两位数。

8.有一根绳子,连续对折3次,量得每折长4米,这根绳子长多少米?9.小王、小张和小李三人进行象棋比赛,每两人赛一盘,规定:赢一盘得2分,输得0分,打平各得1分,全部比赛的三盘棋下完后,小王得3分,小张得1分,那么小李得多少分?10.12个连续奇数的和为198,求这12个数中最小的数。

这些奥数题旨在培养学生的逻辑思维、数学思维和问题解决能力。

通过解答这些问题,学生可以锻炼自己的思维灵活性和创造力。

在解答过程中,建议家长或老师给予适当的引导和提示,帮助学生理解问题并找到正确的答案。

五年级奥数训练《计数问题》每天练习题及答案

五年级奥数训练《计数问题》每天练习题及答案

五年级奥数训练《计数问题》每天练习题及答案计数效果难度:★★★★世界杯决赛圈共有32只球队参与,分为小组赛和淘汰赛两个阶段。

第一阶段,每4支球队为一组,组内每两个球队都要竞赛一场,前两名晋级第二阶段,并最终决出一、二、三名。

请问,世界杯决赛圈共要停止多少场竞赛?冠军球队要参与多少场竞赛?难度:★★★★★在一切的三位数中,各位数字之和是19的数共有多少个?答案翻页检查计数效果难度:★★★★世界杯决赛圈共有32只球队参与,分为小组赛和淘汰赛两个阶段。

第一阶段,每4支球队为一组,组内每两个球队都要竞赛一场,前两名晋级第二阶段,并最终决出一、二、三名。

请问,世界杯决赛圈共要停止多少场竞赛?冠军球队要参与多少场竞赛?【答案】竞赛型效果分为单循环、双循环和淘汰赛三种。

第一阶段为单循环赛,每小组4队,共8组;每两个球队之间均竞赛一场,=4×3/2=6场,即每一小组6场竞赛,每支球队均有3场。

此阶段共举行了8×6=48场竞赛,冠军参与3场。

第二阶段为淘汰赛,共16支球队,两两一组竞赛,第一轮淘汰8支球队,剩8支;第二轮淘汰4支球队,剩4支;第三轮淘汰2支球队,剩两支,第四轮淘汰1支球队,剩1支,为冠军。

此阶段共举行8+4+2+1=15场竞赛〔淘汰赛,最终淘汰15支球队,每场淘汰一支〕,冠军参与4场。

此外,淘汰赛第三阶段的两支淘汰球队之间还要停止一场,决出第三名。

所以,世界杯决赛圈,共停止48+15+1=64场竞赛,冠军球队参与7场。

难度:★★★★★在一切的三位数中,各位数字之和是19的数共有多少个?【答案】枚举法。

百位为9时,十位+个位=10,1+9,2+8,…,9+1共9种;百位为8时,十位+个位=11,2+9,3+8,…,9+2共8种;百位为7时,…… 共7种;百位为1时,十位+个位=18,9+9,共1种;由此失掉,共9+8+7+…+1=45种。

小学五年级数学奥数题100道附完整答案

小学五年级数学奥数题100道附完整答案

小学五年级数学奥数题100道附完整答案题目1:一个数除以4 余3,除以5 余4,除以6 余5,这个数最小是多少?答案:这个数加上1 就能被4、5、6 整除,4、5、6 的最小公倍数是60,所以这个数最小是59。

题目2:有三根铁丝,长度分别是120 厘米、180 厘米和300 厘米。

现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?答案:每小段的长度是120、180、300 的最大公因数,即60 厘米。

一共可以截成:(120 + 180 + 300) ÷60 = 10 段。

题目3:一间教室长8 米,宽6 米,高4 米。

要粉刷教室的天花板和四周墙壁,除去门窗和黑板面积25.4 平方米,粉刷的面积是多少平方米?答案:天花板面积:8×6 = 48 平方米,四周墙壁面积:2×(8×4 + 6×4) = 112 平方米,总面积:48 + 112 = 160 平方米,粉刷面积:160 - 25.4 = 134.6 平方米。

题目4:一个长方体玻璃缸,从里面量长40 厘米,宽25 厘米,缸内水深12 厘米。

把一块石头浸入水中后,水面升到16 厘米,求石块的体积。

答案:升高的水的体积就是石块的体积,40×25×(16 - 12) = 4000 立方厘米。

题目5:甲、乙两数的最大公因数是12,最小公倍数是180,甲数是36,乙数是多少?答案:180×12÷36 = 60,乙数是60。

题目6:有一筐苹果,无论是平均分给8 个人,还是平均分给18 个人,结果都剩下3 个,这筐苹果至少有多少个?答案:8 和18 的最小公倍数是72,72 + 3 = 75 个,这筐苹果至少有75 个。

题目7:一个长方体的棱长总和是80 厘米,长10 厘米,宽7 厘米,高是多少厘米?答案:高:80÷4 - 10 - 7 = 3 厘米。

五年级奥数.计数综合.排列组合(ABC级).学生版

五年级奥数.计数综合.排列组合(ABC级).学生版

分列组合常识构造一、分列问题在现实生涯中经常会碰到如许的问题,就是要把一些事物排在一路,构成一列,盘算有若干种排法,就是分列问题.在排的进程中,不但与介入分列的事物有关,并且与各事物地点的先后次序有关.一般地,从个不合的元素中掏出()个元素,按照必定的次序排成一列,叫做从个不合元素中掏出个元素的一个分列.依据分列的界说,两个分列雷同,指的是两个分列的元素完整雷同,并且元素的分列次序也雷同.假如两个分列中,元素不完整雷同,它们是不合的分列;假如两个分列中,固然元素完整雷同,但元素的分列次序不合,它们也是不合的分列.分列的根本问题是盘算分列的总个数.从个不合的元素中掏出()个元素的所有分列的个数,叫做从个不合的元素的分列中掏出个元素的分列数,我们把它记做.依据分列的界说,做一个元素的分列由个步调完成:步调:从个不合的元素中任取一个元素排在第一位,有种办法;步调:从剩下的()个元素中任取一个元素排在第二位,有()种办法;……步调:从剩下的个元素中任取一个元素排在第个地位,有(种)办法;由乘法道理,从个不合元素中掏出个元素的分列数是,即,这里,,且等号右边从开端,后面每个因数比前一个因数小,共有个因数相乘.二、分列数一般地,对于的情形,分列数公式变成.暗示从个不合元素中取个元素排成一列所构成分列的分列数.这种个分列全体掏出的分列,叫做个不合元素的全分列.式子右边是从开端,后面每一个因数比前一个因数小,一向乘到的乘积,记为,读做的阶乘,则还可以写为:,个中.在分列问题中,有时刻会请求某些物体或元素必须相邻;求某些物体必须相邻的办法数量,可以将这些物体当作一个整体绑缚在一路进行盘算.三、组合问题日常生涯中有许多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同窗中选出几人介入某项运动等等.这种“分组”问题,就是我们将要评论辩论的组合问题,这里,我们将侧重研讨有若干种分组办法的问题.一般地,从个不合元素中掏出个()元素构成一组不计较组内各元素的次序,叫做从个不合元素中掏出个元素的一个组合.从分列和组合的界说可以知道,分列与元素的次序有关,而组合与次序无关.假如两个组合中的元素完整雷同,那么不管元素的次序若何,都是雷同的组合,只有当两个组合中的元素不完整雷同时,才是不合的组合.从个不合元素中掏出个元素()的所有组合的个数,叫做从个不合元素中掏出个不合元素的组合数.记作.一般地,求从个不合元素中掏出的个元素的分列数可分成以下两步:第一步:从个不合元素中掏出个元素构成一组,共有种办法;第二步:将每一个组合中的个元素进行全分列,共有种排法.依据乘法道理,得到.是以,组合数.这个公式就是组合数公式.四、组合数的主要性质一般地,组合数有下面的主要性质:()这个公式的直不雅意义是:暗示从个元素中掏出个元素构成一组的所有分组办法.暗示从个元素中掏出()个元素构成一组的所有分组办法.显然,从个元素中选出个元素的分组办法恰是从个元素中选个元素剩下的()个元素的分组办法.例如,从人中选人开会的办法和从人中选出人不去开会的办法是一样多的,即.划定,.五、插板法一般用来解决求分化必定命量的无不同物体的办法的总数,应用插板法一般有三个请求:①所要分化的物体一般是雷同的:②所要分化的物体必须全体分完:③介入分物体的组至少都分到1个物体,不克不及有没分到物体的组消失.在有些标题中,已知前提与上面的三个请求其实不必定完整相符,对此应该对已知前提进行恰当的变形,使得它与一般的请求相符,再实用插板法.六、应用插板法一般有如下三种类型:⑴小我分个器械,请求每小我至少有一个.这个时刻我们只须要把所有的器械排成一排,在个中的个闲暇中放上个插板,所以分法的数量为.⑵小我分个器械,请求每小我至少有个.这个时刻,我们先发给每小我个,还剩下个器械,这个时刻,我们把剩下的器械按照类型⑴来处理就可以了.所以分法的数量为.⑶小我分个器械,许可有人没有分到.这个时刻,我们无妨先借来个器械,每小我多发1个,如许就和类型⑴一样了,不过这时刻物品总数变成了个,是以分法的数量为.例题精讲【例 1】4个男生2个女生6人站成一排合影留念,有若干种排法?假如请求2个女生紧挨着排在正中央有若干种不合的排法?【巩固】4男2女6小我站成一排合影留念,请求2个女的紧挨着有若干种不合的排法?【例 2】将A.B.C.D.E.F.G七位同窗在操场排成一列,个中学生B与C必须相邻.请问共有若干种不合的分列办法?【巩固】6名小同伙站成一排,若两人必须相邻,一共有若干种不合的站法?若两人不克不及相邻,一共有若干种不合的站法?【例 3】书架上有4本不合的漫画书,5本不合的童话书,3本不合的故事书,全体竖起排成一排,假如同类型的书不要离开,一共有若干种排法?假如只请求童话书和漫画书不要离开有若干种排法?【巩固】四年级三班举办六一儿童节联欢运动.全部运动由2个跳舞.2个演唱和3个小品构成.请问:假如请求同类型的节目持续表演,那么共有若干种不合的出场次序?【例 4】8人围圆桌会餐,甲.乙两人必须相邻,而乙.丙两人不得相邻,有几种坐法?【巩固】a,b,c,d,e五小我排成一排,a与b不相邻,共有若干种不合的排法?【例 5】一台晚会上有个演唱节目和个跳舞节目.求:⑴当个跳舞节目要排在一路时,有若干不合的安插节目标次序?⑵当请求每个跳舞节目之间至少安插个演唱节目时,一共有若干不合的安插节目标次序?【巩固】由个不合的独唱节目和个不合的合唱节目构成一台晚会,请求随意率性两个合唱节目不相邻,开端和最后一个节目必须是合唱,则这台晚会节目标编排办法共有若干种?【例 6】有10粒糖,分三天吃完,天天至少吃一粒,共有若干种不合的吃法?【巩固】小红有10块糖,天天至少吃1块,7天吃完,她共有若干种不合的吃法?【巩固】有12块糖,小光要6天吃完,天天至少要吃一块,问共有种吃法.【例 7】10只无差此外橘子放到3个不合的盘子里,许可有的盘子空着.请问一共有若干种不合的放法?【巩固】将个雷同的苹果放到个不合的盘子里,许可有盘子空着.一共有种不合的放法.【例 8】把20个苹果分给3个小同伙,每人起码分3个,可以有若干种不合的分法?【巩固】三所黉舍组织一次联欢晚会,共表演14个节目,假如每校至少表演3个节目,那么这三所黉舍表演节目数的不合情形共有若干种?【例 9】(1)小明有10块糖,天天至少吃1块,8天吃完,共有若干种不合吃法?(2)小明有10块糖,天天至少吃1块,8天或8天之内吃完,共有若干种吃法?【巩固】有10粒糖,天天至少吃一粒,吃完为止,共有若干种不合的吃法?【例 10】马路上有编号为,,,…,的十只路灯,为勤俭用电又能看清路面,可以把个中的三只灯关失落,但又不克不及同时关失落相邻的两只,在两头的灯也不克不及关失落的情形下,求知足前提的关灯办法有若干种?【巩固】黉舍新建筑的一条道路上有盏路灯,为了节俭用电而又不影响正常的照明,可以熄灭个中盏灯,但两头的灯不克不及熄灭,也不克不及熄灭相邻的盏灯,那么熄灯的办法共有若干种?【例 11】在四位数中,列位数字之和是4的四位数有若干?【巩固】大于2000小于3000的四位数中数字和等于9的数共有若干个?【例 12】所有三位数中,与456相加产生进位的数有若干个?【巩固】从1到2004这2004个正整数中,共有几个数与四位数8866相加时,至少产生一次进位?教室检测【随练1】某小组有12个同窗,个中男少先队员有3人,女少先队员有人,全组同窗站成一排,请求女少先队员都排一路,而男少先队员不排在一路,如许的排法有若干种?【随练2】把7支完整雷同的铅笔分给甲.乙.丙3小我,每人至少1支,问有若干种办法?【随练3】在三位数中,至少消失一个6的偶数有若干个?家庭功课【作业1】将三盆同样的红花和四盆同样的黄花摆放成一排,请求三盆红花互不相邻,共有种不合的放法.【作业2】黉舍合唱团要从个班中填补名同窗,每个班至少名,共有若干种抽调办法?【作业3】能被3整除且至少有一个数字是6的四位数有个.【作业4】黉舍乒乓球队一共有4名男生和3名女生.某次比赛后他们站成一排拍照,请问:(1)假如请求男生不克不及相邻,一共有若干不合的站法?(2)假如请求女生都站在一路,一共有若干种不合的站法?【作业5】由0,1,2,3,4,5构成的没有反复数字的六位数中,百位不是2的奇数有个.【作业6】泊车站划出一排个泊车地位,今有辆不合的车须要停放,若请求残剩的个空车位连在一路,一共有若干种不合的泊车计划?教授教养反馈学生对本次课的评价○特殊知足○知足○一般家长看法及建议家长签字:。

小学五年级奥数题100题(附答案).

小学五年级奥数题100题(附答案).

五年级奥数题100题(附答案)1. 765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002. (9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1) =9000+9000+…….+9000 (500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。

6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。

五年级高斯奥数之几何计数含答案

五年级高斯奥数之几何计数含答案

第6讲几何计数内容概述合理使用各种已学的计数方法来解决几何计数问题;学会利用图形的位置和形状进行恰当的分类;掌握方格表中长方形个数的计算方法;注意利用图形的对称性来简化计算.典型问题兴趣篇1.如图10-1,线段AB、BC、CD、DE的长度都是3厘米.请问:图中一共有多少条线段?这些线段的长度之和是多少厘米?2.小明把巧克力棒摆成了如图10-2所示的形状,其中每一条小短边代表一个巧克力棒.请问:(1)一共有多少个巧克力棒?(2)这些巧克力棒共构成了多少个三角形?(3)嘴馋的小明吃掉一个巧克力棒后(图中两端带有箭头的小边),剩下的图形中还有多少个三角形?3.如图10-3,它是由18个大小相同的小正三角形拼成的四边形,其中某些相邻的小正三角形可以拼成较大的正三角形,图中包含“冰”的各种大小的正三角形一共有多少个?4.如图104和10-5,数一数,两个图形中分别有多少个三角形?5.如图10-6,在一个4x4的方格表中,共有多少个正方形?6.如图10-7,数一数图中一共有多少条线段?多少个矩形?7.如图10-8,AB、CD、EF、MN互相平行,则图中梯形个数与三角形个数的差是多少?8.如图10-9,125个黑色与白色小立方体相间排列拼成了一个大立方体,其中露在表面上的黑色小立方体有多少个?9.如图10-10,木板上钉着12枚钉子,排成三行四列的长方阵.用橡皮筋一共可以套出多少个不同的三角形?10.如图10-11,在2x3的长方形中,每个小正方形的面积都是1.请问:以A、B、C、D、E、,、G为顶点且面积为1的三角形共有多少个?拓展篇1.如图10-12,数一数,图中有多少个三角形?2.如图10-13,数一数下面的三个图形中分别有多少个三角形.3.如图10-14,数一数,图中有多少个三角形?4.如图10-15,数一数.,图中共有多少个长方形?(正方形是一种特殊的长方形)5.如图10-16,四条边长度都相等的四边形称为菱形,用16个同样大小的菱形组成如图的一个大菱形.数一数,图中共有多少个菱形?6.如图10-17,这是一个长为9,宽为4的网格,每一个小格都是一个正方形.请问:(1)从中可以数出多少个长方形?(2)从中可以数出包含黑点的长方形有多少个?7.如图10-18,数一数,图中共有多少个长方形?8.如图10-19,数一数,图中共有多少个平行四边形?9.如图10-20,18个大小相同的小正三角形拼成了一个平行四边形,数一数,图中共有多少个梯形?10.如图10-21,方格纸上放了20枚棋子,以这些棋子为顶点,可以连出多少个正方形?11.一个平面封闭图形,只要组成它的边中有一条边不是直线段,就将这个图形称为曲边形,例如圆、半圆、扇形等都是曲边形.在图10-22中,共有多少个不同的曲边形?12.如图10-23,一个2×3的网格中,每个小正方形的面积都是1.以这些格点为顶点,可以连成多少个面积为l的三角形?超越篇1.图10-24是一个等边三角形的点阵.以这些点为顶点,可以画出多少个等腰三角形(包括等边三角形)?2.如图10-25,数一数,图中共有多少个三角形?3.如图10-26,这是一个4x8的矩形网格,每一个小格都是一个正方形.请问:(1)包含有两个“★”的矩形共有多少个?(2)至少包含一个“★”的矩形有多少个?4.如图10-27,在图中的3×3正方形格子中,格线的交点称为格点.例如:A,B,C这3个点都是格点,那么,以格点为顶点,且完全覆盖了阴影部分小方格的三角形共有多少个?5.如图10-28,用12个点将圆周12等分,以这些点为顶点的梯形共有多少个?6.一个平面封闭图形,只要组成它的边中有一条边不是直线段,就将这个图形称为曲边形,例如圆、半圆、扇形等都是曲边形,在图10-29中,共有多少个不同的曲边形?7.如图10-30,木板上钉着16枚钉子,排成四行四列的方阵.用橡皮筋一共可以套出多少个不同的等腰三角形?8.如图10-31,在3×3的方格表内,每个小正方形的面积均为1.请问:(1)以格点为顶点共可以连出多少个面积为4的三角形?(2)以格点为顶点共可以连出多少个面积为3的三角形?(3)以格点为顶点共可以连出多少个面积为1.5的三角形?第10讲几何计数内容概述合理使用各种已学的计数方法来解决几何计数问题;学会利用图形的位置和形状进行恰当的分类;掌握方格表中长方形个数的计算方法;注意利用图形的对称性来简化计算.典型问题兴趣篇1.如图10-1,线段AB、BC、CD、DE的长度都是3厘米.请问:图中一共有多少条线段?这些线段的长度之和是多少厘米?解:1,4+3+2+1=10段2,4×1+3×2+2×3+1×4=20厘米2.小明把巧克力棒摆成了如图10-2所示的形状,其中每一条小短边代表一个巧克力棒.请问:(1)一共有多少个巧克力棒?(2)这些巧克力棒共构成了多少个三角形?(3)嘴馋的小明吃掉一个巧克力棒后(图中两端带有箭头的小边),剩下的图形中还有多少个三角形?解:1,(1+2+3+4)×3=30根2,(1+3+5+7)+(1+2+3+1)+(1+2)+1=27个3,27-2-2-1=22个3.如图10-3,它是由18个大小相同的小正三角形拼成的四边形,其中某些相邻的小正三角形可以拼成较大的正三角形,图中包含“冰”的各种大小的正三角形一共有多少个?解:1+4+1=6个4.如图104和10-5,数一数,两个图形中分别有多少个三角形?解:5+4+1+1+1=12个6×2+10×2=28个5.如图10-6,在一个4x4的方格表中,共有多少个正方形?解:42+32+22+12=30个6.如图10-7,数一数图中一共有多少条线段?多少个矩形?解:C53×4+C42×5=70条C52×C42=60个7.如图10-8,AB、CD、EF、MN互相平行,则图中梯形个数与三角形个数的差是多少?解:C52×C42-C52×4=208.如图10-9,125个黑色与白色小立方体相间排列拼成了一个大立方体,其中露在表面上的黑色小立方体有多少个?解:4×6+2×12=48个9.如图10-10,木板上钉着12枚钉子,排成三行四列的长方阵.用橡皮筋一共可以套出多少个不同的三角形?解:C123-4×3-4-4=200个10.如图10-11,在2x3的长方形中,每个小正方形的面积都是1.请问:以A、B、C、D、E、F、G为顶点且面积为1的三角形共有多少个?解:3×2+4+2+1=13个拓展篇1.如图10-12,数一数,图中有多少个三角形?解:25+10+6+3+1+3=48个2.如图10-13,数一数下面的三个图形中分别有多少个三角形.解:10+4×5+5=35个35-6=29个35+6×2=47个3.如图10-14,数一数,图中有多少个三角形?解:35×2+3×5=85个4.如图10-15,数一数.,图中共有多少个长方形?(正方形是一种特殊的长方形)解:7+2+2+2+3+1=17个5.如图10-16,四条边长度都相等的四边形称为菱形,用16个同样大小的菱形组成如图的一个大菱形.数一数,图中共有多少个菱形?解:4×4+3×3+2×2+1×1=30个6.如图10-17,这是一个长为9,宽为4的网格,每一个小格都是一个正方形.请问:(1)从中可以数出多少个长方形?(2)从中可以数出包含黑点的长方形有多少个?解:C102×C52=450个2×3×4×6=144个7.如图10-18,数一数,图中共有多少个长方形?解:15×6+21×3-6×3=135个8.如图10-19,数一数,图中共有多少个平行四边形?解:6×3+15+3×2+3+3=45个9.如图10-20,18个大小相同的小正三角形拼成了一个平行四边形,数一数,图中共有多少个梯形?解12×2+4×2+6×2+2+8+2=5610.如图10-21,方格纸上放了20枚棋子,以这些棋子为顶点,可以连出多少个正方形?解:9+4×2+2×2=21个11.一个平面封闭图形,只要组成它的边中有一条边不是直线段,就将这个图形称为曲边形,例如圆、半圆、扇形等都是曲边形.在图10-22中,共有多少个不同的曲边形?解:10+10+10+5+1=36个12.如图10-23,一个2×3的网格中,每个小正方形的面积都是1.以这些格点为顶点,可以连成多少个面积为l的三角形?解:6×7+8×2+8+4=70个超越篇1.图10-24是一个等边三角形的点阵.以这些点为顶点,可以画出多少个等腰三角形(包括等边三角形)?解:等边有:9+3+1+2=15个等腰有:3+2×6+6+3=24个共39个2.如图10-25,数一数,图中共有多少个三角形?解:C72×2+C31×2×4+1=67个3.如图10-26,这是一个4x8的矩形网格,每一个小格都是一个正方形.请问:(1)包含有两个“★”的矩形共有多少个?(2)至少包含一个“★”的矩形有多少个?解:2×1×3×5=30个3×4×6+4×2×5×3-3×2×5=162个4.如图10-27,在图中的3×3正方形格子中,格线的交点称为格点.例如:A,B,C这3个点都是格点,那么,以格点为顶点,且完全覆盖了阴影部分小方格的三角形共有多少个?解:4×4=16个5.如图10-28,用12个点将圆周12等分,以这些点为顶点的梯形共有多少个?解:12×(4+3+2+1)=120个6.一个平面封闭图形,只要组成它的边中有一条边不是直线段,就将这个图形称为曲边形,例如圆、半圆、扇形等都是曲边形,在图10-29中,共有多少个不同的曲边形?解:4×8+4×4+2×3+4×2+1=63个7.如图10-30,木板上钉着16枚钉子,排成四行四列的方阵.用橡皮筋一共可以套出多少个不同的等腰三角形?解:4×6+8×(3+1+3+1)+4×(3+3+2+5+2)=148个8.如图10-31,在3×3的方格表内,每个小正方形的面积均为1.请问:(1)以格点为顶点共可以连出多少个面积为4的三角形?(2)以格点为顶点共可以连出多少个面积为3的三角形?(3)以格点为顶点共可以连出多少个面积为1.5的三角形?解:(1)4个(2)4×10+2×4=48个(3)6×8+4×4+8+4×4+4=92个。

(完整)五年级奥数.计数综合.排列组合(ABC级).教师版

(完整)五年级奥数.计数综合.排列组合(ABC级).教师版

一、 排列问题在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关.一般地,从n 个不同的元素中取出m (m n ≤)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列.排列的基本问题是计算排列的总个数.从n 个不同的元素中取出m (m n ≤)个元素的所有排列的个数,叫做从n 个不同的元素的排列中取出m 个元素的排列数,我们把它记做m n P .根据排列的定义,做一个m 元素的排列由m 个步骤完成:步骤1:从n 个不同的元素中任取一个元素排在第一位,有n 种方法;步骤2:从剩下的(1n -)个元素中任取一个元素排在第二位,有(1n -)种方法; ……步骤m :从剩下的[(1)]n m --个元素中任取一个元素排在第m 个位置,有11n m n m --=-+()(种)方法;由乘法原理,从n 个不同元素中取出m 个元素的排列数是121n n n n m ⋅-⋅-⋅⋅-+L ()()(),即121m n P n n n n m =---+L ()()(),这里,m n ≤,且等号右边从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘.二、 排列数一般地,对于m n =的情况,排列数公式变为12321n n P n n n =⋅-⋅-⋅⋅⋅⋅L ()(). 表示从n 个不同元素中取n 个元素排成一列所构成排列的排列数.这种n 个排列全部取出的排列,叫做n 个不同元素的全排列.式子右边是从n 开始,后面每一个因数比前一个因数小1,一直乘到1的乘积,知识结构排列组合记为!n ,读做n 的阶乘,则n n P 还可以写为:!n n P n =,其中!12321n n n n =⋅-⋅-⋅⋅⋅⋅L L ()() .在排列问题中,有时候会要求某些物体或元素必须相邻;求某些物体必须相邻的方法数量,可以将这些物体当作一个整体捆绑在一起进行计算.三、 组合问题日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.一般地,从n 个不同元素中取出m 个(m n ≤)元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作mn C .一般地,求从n 个不同元素中取出的m 个元素的排列数m n P 可分成以下两步:第一步:从n 个不同元素中取出m 个元素组成一组,共有mn C 种方法;第二步:将每一个组合中的m 个元素进行全排列,共有mm P 种排法.根据乘法原理,得到m m mn n m P C P =⨯.因此,组合数12)112321mmn nm mP n n n n m C m m m P ⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⨯⨯L L ()(()()().这个公式就是组合数公式.四、 组合数的重要性质一般地,组合数有下面的重要性质:m n mn n C C -=(m n ≤)这个公式的直观意义是:m n C 表示从n 个元素中取出m 个元素组成一组的所有分组方法.n mn C -表示从n 个元素中取出(n m -)个元素组成一组的所有分组方法.显然,从n 个元素中选出m 个元素的分组方法恰是从n 个元素中选m 个元素剩下的(n m -)个元素的分组方法.例如,从5人中选3人开会的方法和从5人中选出2人不去开会的方法是一样多的,即3255C C =. 规定1n nC =,01n C =. 五、 插板法一般用来解决求分解一定数量的无差别物体的方法的总数,使用插板法一般有三个要求:①所要分解的物体一般是相同的:②所要分解的物体必须全部分完:③参与分物体的组至少都分到1个物体,不能有没分到物体的组出现.在有些题目中,已知条件与上面的三个要求并不一定完全相符,对此应当对已知条件进行适当的变形,使得它与一般的要求相符,再适用插板法.六、 使用插板法一般有如下三种类型:⑴ m 个人分n 个东西,要求每个人至少有一个.这个时候我们只需要把所有的东西排成一排,在其中的(1)n -个空隙中放上(1)m -个插板,所以分法的数目为11m n C --.⑵ m 个人分n 个东西,要求每个人至少有a 个.这个时候,我们先发给每个人(1)a -个,还剩下[(1)]n m a --个东西,这个时候,我们把剩下的东西按照类型⑴来处理就可以了.所以分法的数目为1(1)1m n m a C ----.⑶ m 个人分n 个东西,允许有人没有分到.这个时候,我们不妨先借来m 个东西,每个人多发1个,这样就和类型⑴一样了,不过这时候物品总数变成了()n m +个,因此分法的数目为11m n m C -+-.一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】 (1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34 (3)34【例2】 把6名实习生分配到7个车间实习共有多少种不同方法? 【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】 8名同学争夺3项冠军,获得冠军的可能性有( )A 、38 B 、83 C 、38A D 、38C【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。

高斯小学奥数五年级下册含答案第15讲_数字谜中的计数

高斯小学奥数五年级下册含答案第15讲_数字谜中的计数

第十五讲数字谜中的计数上一讲我们讲解了一些与数论相关的计数问题,这一讲我们来研究一下数字谜中的计数问题,首先我们来看竖式问题.例1. 如图,请在方框中填入0~4中的数字,使竖式成立.小高的填法如下中图,卡莉娅的填法如下右图,墨莫说,还有很多种填法.同学们你能判断出一共有多少种不同的填法吗?「分析」观察可知竖式中没有进位,个位、十位、百位上的数字和均为4,本题难度一般,但是同学做题时要注意准确性.练习1、如图,方框中都是0~3中的数字,使竖式成立,一共有多少种填法?例2.如图,方框中都是3~6中的数字,求出所填九个数字之和为多少?一共有多少种填法?「分析」注意题目要求只能填入3至6中的数字,能不能确定每一位的数字和?练习2、如图,方框中都是4~7中的数字,一共有多少种填法?+4 4 44 1 3 + 3 14 4 44 2 1 + 2 34 4 4+ 3 3 3+4 9 9 5+5 3 7数字谜中的计数问题,不仅要求填出的方案能满足数字谜的要求,还要把所有情况考虑周全,这也是此类问题比较难的原因.在解决此类问题时,往往分成两步:首先找到所有不同类的填法,然后再考虑每一类填法有多少种即可.但要注意在做这两步时都要做到不重不漏.例3.将1到6填入下图,使得每两个相邻的空格中都有1个奇数1个偶数,那么有多少种填法?「分析」抛开1~6这六个数字的具体数值,只按奇、偶性分析题目是解题关键.练习3、将1~4填入方框中,使得每相邻的2格都既有奇数又有偶数,那么共有多少种填法?例4.在图1的空格内各填入一个一位数,使同一行内左面的数比右面的数大,同一列内上面的数比下面的数小,并且方格内的6个数字互不相同,例如图2为一种填法.那么一共有多少种不同的填法?「分析」对于这类表格填数问题,我们常常用分步的思想分析:先考虑某几个方格中所填的数会是哪些,再考虑这些数在这些方格中的位置有几种可能.练习4、在1~7中选出6个互不相同的数字填入下图的的表中,使得相邻的两个方框内,下面的数字比上面大,右边的数字比左边大.一共有多少种填法?以前在填写数阵图时,一般都需要先找到突破口,再顺藤摸瓜填满所有空格.现在对于数阵图中的计数问题,同样也要先找到数阵图的突破口.例5.在1~9中选出6个互不相同的数字填入下图的表中,使得相邻的两个方框内,下面的数字比上面大,右边的数字比左边大.一共有多少种填法?「分析」首先填出可能性比较少的位置或数字,.例6.将数字1至6分别填入图中各个圆圈,使得每条线段两个端点处所填的数,上面的比「分析」这个数阵图中,我们首先应该考虑的位置是哪个?节日问候特里格教授在洛杉矶城市学院时提出了如下的问题(《美国数学月刊》问题El241,1956年):节日问候“MERRY XMAS TO ALL”是一个数字谜,每个字母代表惟一的数字,而每个词是一个平方数.求所有解.结果只有两个解:27556 3249 81 400和34225 7396 81 900罗森菲尔德(Azriel Rosenfeld)发现,如果加一个条件,要求每个词的数字之和是一个完全平方数,则解是惟一的.卡斯特(Edgar Karst)发现,同一句问候的方程MERRY+XMAS= TOALL也是一个数字谜.其中每个字母代表惟一的数字,而每个词能被3整除.这时有惟一解:84771+5862=90633.作业1. 在右边的竖式中,相同的字母表示相同的数字,不同的字母表示不同的数字.这个竖式有多少种不同的填法?2. 如图,方框中都是6~9内的数字,为使竖式成立,一共有多少种填法?3. 将1到9填入图中,使得每两个相邻的空格中都有1个奇数和1个偶数,有多少种填法?4. 从数字1~6种选5个填入图中,使每相邻两格中,下边的数字比上边的大,右边的数字比左边的大,有多少种填法?5. 如图,在1~10中选6个数字填入图中,使得上面的数比下面的数大,那么有种填法?+7 6 5A B + C A1 2 3第十五讲 数字谜中的计数例题:例7. 答案:20种详解:首先可以确定三位数的首位为4,个位的两个数字,从上到下依次可为(0,4),(1,3),(2,2),(3,1),(4,0),共5种填法.注意到两位数的首位不能为0,十位的两个数字可为(0,4),(1,3),(2,2),(3,1),共4种填法,由乘法原理,共有5420⨯=种填法.例8. 答案: 45;30详解:首先可以判断出四位数的首位为4,个位的三个数字和不能为5或25,只能为15,向十位进1.十位三个数字的和只能为18,百位两个数字的和只能为8.因此所填九个数字之和为48181545+++=.百位上两个数的和是8,有35+和44+这两种情况.其中3和5分别填入两个方框,有2种方法;而4和4则只有1种填法,因此百位上的填法有3种.个位上三个数的和是15,有366++,456++,555++这三种情况.其中3,6,6填入三个方框中有3种填法;4,5,6有33A 6=种填法;5,5,5只有一种填法.因此个位上的填法有36110++=种.千位和十位上的数字都是确定的.由乘法原理,总共的填法有31030⨯=种.例9. 答案:72种详解:首先考虑奇偶性, 如下图所示,共有两种填法.一共有3333A A 272⨯⨯=种填法.和是8和是154 6 6 + 6 4995偶 偶偶 奇 奇 奇 偶 偶 偶奇 奇 奇例10. 答案:30种详解:由于方格内6个数字互不相同,因此四个空格的数是从4~9中选择4个不同的数.有46C 种选法.例如:所选数字为5,6,7,8,如下图所示,可以确定5和8的位置,6和7可以互换,有2种填法,故共有4266C 2C 230⨯=⨯=种填法.例11. 答案:420种详解:从1~9中选择6个不同的数.有69C 种选法.例如:所选数字为1,2,3,4,5,6,如下图所示,首先可以确定1和6的位置,2,3,4,5这四个数填入余下的部分,与专属3中第四个图相同,有5种填法,故共有6399C 5C 5420⨯=⨯=种填法.例12. 答案:20种详解:首先可以确定1的位置,在最下面.然后选3个数填在左边的部分,有35C 种选法,剩下的2个数填在右边,位置确定.注意到,左边部分上面的2个圆圈可以交换位置.故共有35C 220⨯=种填法. 练习:1. 答案:12种简答:没有进位,所以,百位一定填3,1203+=+,所以,个位有4种填法,十位考虑首位不为0,所以,有3种填法,竖式共有:3412⨯=种填法.2. 答案:15种简答: 解法同例23. 答案:8简答:填法如图:,共计8种.4. 答案:14种简答:从1~7中选择6个不同的数.有67C 种选法.例如:所选数字为1,2,3,4,5,6,如下图所16示,首先可以确定1和6的位置,然后可以确定2和5的位置,3和4可以互换,有2种填法,故共有6177C 2C 214⨯=⨯=种填法.作业1. 答案:7.简答:把个位上的A 和B 调换一下,那么有123AA CB +=,可以是3390123+=,4479123+=,5568123+=,6657123+=,7746123+=,8835123+=,9924123+=.一共有7种不同的填法.2. 答案:16.简答:个位数字之和是15,十位数字之和也是15,百位填6.15可以拆成69+和78+.所以一共有16种填法.3. 答案:2880.简答:1~9中有5奇4偶,奇数要填在四角和中心,其余地方填偶数.有5454A A 2880⨯=种.4. 答案:12.简答:先选5个数字出来,有6种选法.选好之后有2种填法,一共有12种填法.5. 答案:1260.简答:首先选6个数字出来,有610C 210=种选法.设选出的6个数字由小到大依次是A 、B 、C 、D 、E 、F ,那么A 填最下面,F 在最上面.有24C 6=种填法.一共有62101260⨯=种填法.。

最新五年级计数问题奥数题

最新五年级计数问题奥数题

五年级例1.1. 电视台在两节目之间连续插播7条广告。

2. (1)如果要求广告A 在广告B 的前面播放,共有多少种不同的播放顺序?3. 解答:先选定两个位置放A 和B 。

2557C A ⨯=2520。

或7!÷2!4. (2)如果要求广告A 在广告B 的前面播放,广告B 在广告C 的前面播放,共有多少种不同的播放顺序?5. 解答:先选定三个位置放A 、B 、C 。

3447C A ⨯=840。

或7!÷3!6. (3)如果要求广告A 在广告B 的前面播放,广告B 在广告C 的前面播放,广告D 在广告E 的前面播放,共有多少种不同的播放顺序?解答:先选定三个位置放A 、B 、C ,再选两个位置放D 和E 。

322274C C A ⨯⨯=420。

或7!÷3!÷2!7. 有以下3组数(1、2)(3、4、5)(6、7、8、9),每次任选其中一组划去该组中最大的一个数。

若将9个数全部划去,共有多少种不同次序?解答:选定两个位置放1和2,再选定三个位置放3、4、5,剩下的位置放6—9。

2397C C ⨯=1260。

8. 有一种六位数,各位数字之和为51,这样的六位数一共有多少个?解答:51=9+9+9+9+9+6=9+9+9+9+8+7=9+9+9+8+8+8,132666C C A ++=569. 用0、5、5、6、6、9这六个数字可以组成多少个不同的六位数?解答:首先按首位可以是0来算,再去掉首位是0的。

222264C C A ⨯⨯-2253C C ⨯=15010. 大于50000的上升数(即相邻两个数位中要求右边数字比左边的大)有多少个?解答:五位:55C =1 六位:69C =84 七位:79C =36 八位:89C =9 九位:99C =1共:1+84+36+9+1=131例2.1.电视台在两节目之间连续插播7条广告,其中有两条为公益广告。

(1)要求两条公益广告相邻,有多少种不同的播放顺序?解答:6!×2!=1440(2)要求两条公益广告不相邻,有多少种不同的播放顺序?解答:其余5条广告放好顺序后,另两条广告有6个空可以插。

(word完整版)五年级奥数题100题(附答案)

(word完整版)五年级奥数题100题(附答案)

五年级奥数题100题(附答案)1. 765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002. (9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1) =9000+9000+…….+9000 (500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。

6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。

五年级高斯奥数之计数综合二含答案

五年级高斯奥数之计数综合二含答案

第22讲计数综合二内容概述涉及整数知识,具有教字或数阵图形式的计数问题.解题中需要灵活应用已学的各种计数方法,并注意结合题目的具体形式.典型问题兴趣篇1.同时能被6、7、8、9整除的四位数有多少个?2.从1,2,3,…,9这9个数中选出2个数,请问:(1)要使两数之和是3的倍数,一共有多少种不同的选法?(2)要使两数之积是3的倍数,一共有多少种不同的选法?3.在所有由1、3、5、7、9中的3个不同数字组成的三位数中,有多少个是3的倍数?4.用0至5这6个数字可以组成多少个能被5整除且各位数字互不相同的五位数?5.个位比十位大的两位数共有多少个?个位比十位大,十位比百位大的三位数共有多少个?6.如果称能被8整除或者含有数字8的自然数为“吉利数”,那么在l至200这200个自然数中有多少个“吉利数”?7.一个正整数,如果从左到右看和从右到左看都是一样的,那么称这个数称为“回文数”,例如:1331,7,202,66都是回文数,而220则不是“回文数”,请问:从一位到六位的“回文数”一共有多少个?其中第1997个“回文数”是什么?8.一个四位数ABCD,它与逆序数DCBA之和的末两位为56,这样的四位数ABCD有多少个?9.把2005、2006、2007、2008、2009这5个数分别填人图23-1的东、南、西、北、中5个方格内,使横、竖3个数的和相等,一共有多少种不同的填法?10.从1至7中选出6个数字填入图23.2的的表中,使得相邻的两个方框内,下面的数字比上面大,右边的数字比左边大.请先给出一种填法,然后考虑一共有多少种填法?拓展篇1.分子小于6,分母小于20的最简真分数共有多少个?2.从l、2、3、4、5、6、7这7个数中选出3个数,请问:(1)要使这3个数的乘积能被3整除,一共有多少种不同的选法?(2)要使这3个数的和能被3整除,一共有多少种不同的选法?3.小明的衣服口袋中有10张卡片,分别写着1,2,3,…,10.现从中拿出两张卡片,使得卡片上两个数的乘积能被6整除,这样的选法共有多少种?(注:9不能颠倒当作6来使用,6也不能颠倒当作9来使用)4.六位数123475能被11整除,如果将这个六位数的6个数字重新排列,还能排出多少个能被1 1整除的六位数?5.三个2,两个1和一个0可以组成多少个不同的六位数?求所有符合条件的六位数的和.6.有一种“上升数”,这些数的数字从左往右依次增大,将所有的四位“上升数”按从小到大的顺序排成一行:1234,1235,1236,…,6789.请问:此列数中的第100个数是多少?7.有一些三位数的相邻两位数字为2和3,例如132、235等等,这样的三位数一共有多少个?8.在图23—3的方框内填入3、4、5、6中的一个数字,使得竖式成立.请问:所填的九个数字之和是多少?一共有多少种填法?9.在1000,1001,…,2000这1001个自然数中,可以找到多少对相邻的自然数,满足它们相加时不进位?10.将1至7分别填入图234中的7个方框中,使得每行每列中既有奇数又有偶数,一共有多少种不同的填法?11.在图23。

小学奥数五年级测试及答案(计数综合)

小学奥数五年级测试及答案(计数综合)

一、计数综合(一)
如果你的文档出现显示不全的问题,请调整页边距,或将图片缩小查看。

第1题
第2题
第3题
第5题
第6题
试题答案
第1题:
正确答案:B 答案解析
第2题:
正确答案:C 答案解析
第3题:
正确答案:B 答案解析
第4题:正确答案:A 答案解析
第5题:正确答案:B 答案解析
正确答案:D
答案解析
第7题:
正确答案:D
答案解析
二、计数综合(二)第1题
第2题
第4题
第5题
试题答案
第1题:
正确答案:B 答案解析
第2题:正确答案:B 答案解析
第3题:正确答案:C 答案解析
第4题:正确答案:C 答案解析
第5题:正确答案:A 答案解析。

五年级奥数每日一题

五年级奥数每日一题

五年级奥数每日一题一、平均数问题。

1. 有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。

一箱苹果多少个?解析:根据苹果、梨、橘子平均每箱42个,可得出苹果 + 梨+橘子 = 42×3 = 126个;由梨、橘子、桃平均每箱36个,可知梨 + 橘子+桃 = 36×3 = 108个;又因为苹果和桃平均每箱37个,所以苹果 + 桃 = 37×2 = 74个。

用(苹果 + 梨+橘子)-(梨 + 橘子+桃)=苹果桃 = 126 108 = 18个。

再结合苹果 + 桃 = 74个,根据和差问题公式,较大数=(和 + 差)÷2,这里苹果个数多,所以苹果=(74 + 18)÷2 = 46个。

2. 一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。

问:甲、丁各得多少分?解析:甲、乙、丙三人总分是91×3 = 273分;乙、丙、丁三人总分是89×3 = 267分;甲、丁二人总分是95×2 = 190分。

把前面三个算式相加,得到2(甲+乙 + 丙+丁)=273 + 267+190 = 730分,所以甲+乙 + 丙+丁 = 365分。

用这个和减去乙、丙、丁的总分就得到甲的分数:365 267 = 98分;用甲、丁的总分减去甲的分数就得到丁的分数:190 98 = 92分。

二、行程问题。

3. 甲、乙两辆汽车同时从A、B两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇。

求A、B两地间的距离是多少千米?解析:两车在离中点32千米处相遇,说明甲车比乙车多行了32×2 = 64千米。

甲车每小时比乙车多行56 48 = 8千米。

那么相遇时间就是64÷8 = 8小时。

A、B两地间的距离为(56 + 48)×8 = 832千米。

高斯小学奥数五年级下册含答案第14讲_数论相关的计数

高斯小学奥数五年级下册含答案第14讲_数论相关的计数

第十四讲数论相关的计数在前面的学习中,我们学习了解决计数问题的一些基本方法,包括:枚举法、树形图、分类讨论、加法原理和乘法原理、排列与组合等.计数问题是多种多样的,它经常与其他的知识联系在一起,比如几何、数论、数字谜等等.今天让我们来研究一下结合了数论知识的计数问题.例1.恰好能同时被6,7,8,9整除的四位数有多少个?「分析」大家还记得公倍数怎么求吗?练习1、恰好能同时被4,5,6整除的三位数有多少个?例2.用1、2、3、4、5、7这6个数字各一次组成六位数,并且使这个六位数是11的倍数,有多少种不同的方法?「分析」根据11的整除特性,通过分析奇位数字和与偶位数字和,再结合本题的已知条件可以获得解题的线索.练习2、用1,2,3,4各一次组成四位数,使得它是11的倍数,有多少种不同的方法?例3.从1~10这10个数中选出2个数,请问:(1)要使这2个数的乘积能被3整除,一共有多少种不同的选法?(2)要使这2个数的和能被3整除,一共有多少种不同的选法?「分析」(1)两个数的乘积能被3整除,那么这两个数中至少有一个能被3整除.如何选取才能保证选到3的倍数呢?(2)要考虑两个数的和是否能被3整除,只需要考虑每个数除以3的余数的情况,那么怎样的两个数相加才能被3整除呢?练习3、从1~12这12个数中选出2个数,请问:(1)要使这2个数的乘积能被3整除,一共有多少种不同的选法?(2)要使这2个数的和能被3整除,一共有多少种不同的选法?例4.如果称能被8整除或者含有数字8的自然数为“吉利数”,那么在1至200这200个自然数中有多少个“吉利数”?「分析」这道题目可以从两方面入手,8的倍数和含有数字8的数,注意其中重复的情况.练习4、在1至200这200个自然数中,含有数字9或者能被9整除的有多少个?前面几个例题都是计数与整除相结合的题目.而除了整除之外,与数字相关的问题也属于数论的范畴,下面我们来看两道与数字有关的计数问题.例5.有一种“上升数”,这些数的数字从左往右依次增大,将所有的四位“上升数”按从小到大的顺序排成一行:1234,1235,1236,…,6789.请问:此列数中的第100个数是多少?「分析」数字从左往右依次增大的数是“上升数”,那么四位“上升数”一共有多少个呢?显然,不能将前100个“上升数”都写出来,那怎么才能方便的计算出第100个数呢?例6.一个正整数,如果从左到右看和从右到左看都是一样的,那么称这个数为“回文数”.例如:1331,7,202,66都是回文数,而220则不是回文数.请问:六位回文数有多少个?五位回文数又有多少个?五位的回文数中,有多少个是4的倍数?「分析」“回文数”一定是左右对称的,不妨从左往右分析,一旦左面的一个数字确定,右面一定有一个数字和其相同.回文联数学当中有回文数,在文学当中也有回文联.回文联,它是我国对联修辞奇葩(pā)中的一朵.用回文形式写成的对联,既可顺读,也可倒读,不仅它的意思不变,而且颇具趣味.兹举数例如下.其一:河南省境内有一座山名叫鸡公山,山中有两处景观:“斗鸡山”和“龙隐岩”.有人就此作了一副独具慧眼的回文联:斗鸡山上山鸡斗龙隐岩中岩隐龙其二:厦门鼓浪屿鱼脯浦,因地处海中,岛上山峦叠峰,烟雾缭绕,海淼淼水茫茫,远接云天.于是,一副饶有趣味的回文联便应运而生:雾锁山头山锁雾天连水尾水连天其三:清代,北京城里有一家饭馆叫“天然居”,乾隆皇帝曾就此作过一副有名的回文联:客上天然居居然天上客上联是说,客人上“天然居”饭馆去吃饭.下联是上联倒着念,意思是没想到居然像是天上的客人.乾隆皇帝想出这副回文联后,心里挺得意.即把它当成一个联,向大臣们征对下联,大臣们面面相觑,无人言声.只有大学士纪晓岚即席就北京城东的一座有名的大庙——大佛寺,想出了一副回文联:人过大佛寺寺佛大过人上联是说,人们路过大佛寺这座庙.下联是说,庙里的佛像大极了,大得超过了人.纪学士的下联,想得挺不错.这副回文联放到乾隆皇帝的一块,就组成一副如出一口的新回文联了:客上天然居居然天上客人过大佛寺寺佛大过人其四:湛江德邻里有一副反映邻里之间友好关系,鱼水深情的回文联,至今传颂不衰:邻居爱我爱居邻鱼傍水活水傍鱼作业1.1~100中,7的倍数有多少个?除以7余2的数有多少个?2.从1~15中,选出2个数,使它们的和是3的倍数,共有多少种选法?3.用1、2、3、4、5、8、9组成不重复的七位数,其中有多少个能被11整除?4.如果把三位的“上升数”从小到大排列一下,如123、124、…,那么第20个上升数是多少?5.有一类六位数,组成每个数的六个数字互不相同,并且每个数中任意两个相邻的数字组成的两位数都能被3整除.这类六位数共有多少个?第十四讲 数论相关的计数例题:例7. 答案:18详解:一个数能被6,7,8,9整除,即是6,7,8,9的倍数.6,7,8,9的最小公倍数为504,所有满足条件的数都是504的倍数.999950419423÷=,故1~9999中共有19个数是504的倍数.9995041495÷=,故1~999中共有1个数是504的倍数.则四位数中有19118-=个数是504的倍数.即能同时被6,7,8,9整除的四位数有18个.例8. 答案:72详解:用1,2,3,4,5,7各一次组成六位数,六个数字的和为22.若为11的倍数,则奇位和与偶位和的差只能为0.奇位填1,3,7,偶位填2,4,5,考虑到1,3,7可以互换,2,4,5可以互换,故共有3333A A 36⨯= 种填法.同理奇位填2,4,5,偶位填1,3,7,也有36种填法,共72种填法.例9. 答案:(1)24;(2)15详解:(1)若两个数的乘积是3的倍数,则其中至少有一个数是3的倍数.1~10中是3的倍数的有3,6,9这3个数,不是3的倍数的有7个.分两种情况:<1>两个数中只有一个是3的倍数,有1137C C 21⨯=种选法;<2>两个数均为3的倍数,有23A 3=种选法.共有24种选法.另解:排除法:不加任何条件选两个数的方式减去,没有3的倍数的情况,22107C -C 24=;(2)将1~10这10个数按除以3的余数不同进行分类.除以3余0的有(3,6,9), 除以3余1的有(1,4,7,10),除以3余2的有(2,5,8).若两数之和为3的倍数,分两种情况:<1>两个数除以3均余0.有23C 3=种选法.<2>其中一个数除以3余1,另一个数除以3余2.有1143C C 12⨯=种选法.共有31215+=种选法.例10. 答案:56详解:可以将题目条件分成两部分,先看能被8整除的数,200825÷=,因此能被8整除的数有25个.再看含有数字8的数,我们可以从反面考虑较为方便,即看不含有数字8的数有多少个.百位可以选0或1(百位选0,表示其为两位数),十位可以选除8以外的9个数,个位也可选除8以外的9个数,共有299162⨯⨯=个数不含有数字8.0~199共有200个数,含有数字8的有20016238-=个.考虑到有些数既能被8整除,又含有数字8,这样的数有8,48,88,128,168,以及80和184,共7个数.因此吉利数有2538756+-=个.例11. 答案:3479详解:若上升数的首位为1,剩下的3位可以从2~9中选,且顺序一定,有38C 56=种选法,即首位为1的上升数有56个.同理,若首位为2,剩下的3位可以从3~9中选,有37C 35=种选法,即首位为2的上升数有35个.再考虑首位为3的上升数,依次为3456,3457,3458,3459,3467,3468,3469,3478,3479.即第100个上升数为3479.例12. 答案:900;900;200详解:六位“回文数”应为abccba 的形式,a 有1~9这9种选择,b 有0~9这10种选择,c 有0~9这10种选择,由乘法原理这样的数共有91010900⨯⨯=个.五位“回文数”应为abcba 的形式,a 有1~9这9种选择,b 有0~9这10种选择,c 有0~9这10种选择,由乘法原理这样的数共有91010900⨯⨯=个. 若回文数为4的倍数,则末两位为4的倍数,可为04,08,12,16,……,96共24个数,除去20,40,60,80这四个不满足条件的数,共有20种选择.考虑到c 有0~9这10种选择,故共有2010200⨯=个五位回文数是4的倍数.“练习:1. 答案:15简答:4、5、6的最小公倍数是60,三位数中60的倍数有99960115÷-≈个.2. 答案:8简答:用1,2,3,4各一次组成四位数,四个数字的和为10.若为11的倍数,则奇位和与偶位和的差只能为0.奇位填1,3,偶位填2,4,考虑到1,3,可以互换,2,4,可以互换,故共有224⨯=种填法.同理奇位填2,4,偶位填1,3,也有4种填法,共8种填法.3. 答案:38;22简答:解法同例3.4. 答案:55简答:先看能被9整除的数,2009222÷=,因此能被9整除的数有22个.再看含有数字9的数,仍可从反面考虑,即看不含有数字9的数有多少个.百位可以选0或1(百位选0,表示其为两位数),十位可以选除9以外的9个数,个位也可选除9以外的9个数,共有299162⨯⨯=个数不含有数字9.0~199共有200个数,含有数字9的有20016238-=个.考虑到有些数既能被9整除,又含有数字9,这样的数有9,99,189,90,198,共5个数.因此含有数字9或者能被9整除的有2238555+-=个.作业6. 答案:14,15简答:1007142÷=,7的倍数有14个;100298-=,98714÷=,14115+=.除以7余2的有15个.7. 答案:35简答:1~15中,除以3余0、余1和余2的都有5个.和为3的倍数,那么两数可能是余1+余2或者余0+余0.第一种有5525⨯=种选法,第二种有25C 10=种选法,一共有35种选法.8. 答案:432简答:能被11整除,说明这个七位数奇数位之和与偶数位之和的差是11的倍数.而奇数位之和与偶数位之和的和是123458932++++++=,那么奇数位之和与偶数位之和可以都是16,或者是27和5,后面这种情况不可能.偶数位有3个数字,和为16可能是952++,943++,853++.那么一共可以组成4343A A 3432⨯⨯=个能被11整除的七位数.9. 答案:157简答:前两位为12的上升数有7个,前两位为13的上升数有6个,前两位为14的上升数有5个.那么第19个上升数是156,第20个上升数是157.10. 答案:72简答:如果首位数字除以3余0,那么其余的所有数字也都除以3余0,这样的话一定会重复,这样的六位数不存在.如果首位数字除以3余1,那么后面的数字除以3的余数依次是2、1、2、1、2.这样的六位数有3333A A 36⨯=个.如果首位数字除以3余2,这样的六位数也有36个.一共有72个.。

五年级奥数专题:图形的计数

五年级奥数专题:图形的计数

A 3A 1OA 2A 4A 5A 7A 6A 8A 9A 10A 11 A 12九 图形的计数(A)年级 班 姓名 得分一、填空题1.下图中一共有( )条线段.2. 如右上图,O 为三角形A1A6A12的边A1A12上的一点,分别连结OA2,OA3,…OA11,这样图中共有_____个三角形.3. 下图中有_____个三角形.4.右上图中共有_____个梯形.5. 数一数(1)一共有( )个长方形. (1) (2)6. 在下图中,所有正方形的个数是______.AC EMNOP7. 在一块画有44方格网木板上钉上了25颗铁钉(如下图),如果用线绳围正方形,最多可以围出_____个.8. 一块相邻的横竖两排距离都相等的钉板,上面有44个钉(如右图).以每个钉为顶点,你能用皮筋套出正方形和长方形共_____个.9. 如下图,方格纸上放了20枚棋子,以棋子为顶点的正方形共有_____个.10. 数一数,下图是由_____个小立方体堆成的.要注意那些看不见的.二、解答题11. 右图中共有7层小三角形,求白色小三角形的个数与黑色小三角形的个数之比.12. 下图中,AB、CD、EF、MN互相平行,则图中梯形个数与三角形个数的差是多少?13.现在都是由边长为1厘米的红色、白色两种正方形分别组成边长为2厘米、4厘米、8厘米、9厘米的大小不同的正方形、它们的特点都是正方形的四边的小正方形都是涂有红颜色的小正方形,除此以外,都是涂有白色的小正方形,要组成这样4个大小不同的正方形,总共需要红色正方形多少个?白色正方形多少个?14.将的每一边4等分,过各分点作边的平行线,在所得下图中有多少个平行四边形?九图形的计数(B)年级班姓名得分一、填空题1. 下图中长方形(包括正方形)总个数是_____.2. 右上图中有正方形_____个,三角形_____个,平行四边形_____个,梯形_____个.3. 下图中共出现了_____个长方形.4. 先把正方形平均分成8个三角形.再数一数,它一共有_____个大小不同的三角形.5. 图形中有_____个三角形.6.如右上图,一个三角形分成36个小三角形.把每个小三角形涂上红色或蓝色,两个有公共边的小三角形要涂上不同的颜色,已知涂成红色的三角形比涂成蓝色的三角形多,那么多_____个.7. 下图是由小立方体码放起来的,其中有一些小方体看不见.图中共有_____个小立方体.8. 右上图中共有_____个正方形.9. 有九张同样大小的圆形纸片,其中标有数码“1”的有1张;标有数码“2”的有2张;标有数码“3”的有3张,标有数码“4”的也有3张。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级
例1.
1. 电视台在两节目之间连续插播7条广告。

(1)如果要求广告A 在广告B 的前面播放,共有多少种不同的播放顺序?
解答:先选定两个位置放A 和B 。

25
57C A ⨯=2520。

或7!÷2!
(2)如果要求广告A 在广告B 的前面播放,广告B 在广告C 的前面播放,共有多少种不同的播放顺序?
解答:先选定三个位置放A 、B 、C 。

34
47C A ⨯=840。

或7!÷3!
(3)如果要求广告A 在广告B 的前面播放,广告B 在广告C 的前面播放,广告D 在广告E 的前面播放,共有多少种不同的播放顺序?
解答:先选定三个位置放A 、B 、C ,再选两个位置放D 和E 。

3
2
2
274C C A ⨯⨯=420。

或 7!÷3!÷2!
2. 有以下3组数(1、2)(3、4、5)(6、7、8、9),每次任选其中一组划去该组中最大的
一个数。

若将9个数全部划去,共有多少种不同次序?
解答:选定两个位置放1和2,再选定三个位置放3、4、5,剩下的位置放6—9。

23
97C C ⨯=1260。

3. 有一种六位数,各位数字之和为51,这样的六位数一共有多少个?
解答:51=9+9+9+9+9+6=9+9+9+9+8+7=9+9+9+8+8+8,1
3
2
666C C A ++=56 4. 用0、5、5、6、6、9这六个数字可以组成多少个不同的六位数? 解答:首先按首位可以是0来算,再去掉首位是0的。

222264C C A ⨯⨯-22
53C C ⨯=150
5. 大于50000的上升数(即相邻两个数位中要求右边数字比左边的大)有多少个? 解答:五位:5
5C =1 六位:6
9C =84 七位:7
9C =36 八位:8
9C =9 九位:9
9C =1 共:1+84+36+9+1=131 例2.
1.电视台在两节目之间连续插播7条广告,其中有两条为公益广告。

(1)要求两条公益广告相邻,有多少种不同的播放顺序? 解答:6!×2!=1440
(2)要求两条公益广告不相邻,有多少种不同的播放顺序?
解答:其余5条广告放好顺序后,另两条广告有6个空可以插。

5
2
56A A ⨯=3600 (3)要求a 、b 、c 三条广告两两不相邻,有多少种不同的播放顺序?
解答:其余4条广告放好顺序后,另三条广告有5个空可以插。

43
45A A ⨯=1440
2.马路一侧有15盏路灯,现要关闭其中6盏,要求不能关掉首、尾两盏灯,并且所有关掉的路灯不能相邻,共有多少种不同关灯结果?
解答:开着的9盏灯中间有8个空可以放关闭的灯,6
8C =28
3.用1、1、2、4、6、8这六张数字卡片组成六位数,要求任意相邻两位的两个数字之差均大于1,满足要求的组数方式有多少种?
解答:4、6、8放好顺序后, 1、1、2有4个空可以插。

3
2
3
343C C A ⨯⨯=72。

相关文档
最新文档