平行四边形全章测试题

合集下载

八年级数学下册《平行四边形》单元测试卷(附答案)

八年级数学下册《平行四边形》单元测试卷(附答案)

八年级数学下册《平行四边形》单元测试卷(附答案)一.选择题(共10小题,满分40分)1.如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则CD=()A.4B.5C.6D.72.如图,在平行四边形ABCD中,AC、BD相交于点O,∠ODA=90°,AC=10cm,BD=6cm,则BC的长为()A.4cm B.5cm C.6cm D.8cm3.下面关于平行四边形的说法中,不正确的是()A.对角线互相平分的四边形是平行四边形B.有一组对边平行,一组对角相等的四边形是平行四边形C.有一组对边相等,一组对角相等的四边形是平行四边形D.有两组对角相等的四边形是平行四边形4.如图,在▱ABCD中,EF∥AD,HN∥AB,则图中的平行四边形(不包括四边形ABCD)的个数共有()A.9个B.8个C.6个D.4个5.如图,▱ABCD中,CE平分∠BCD,交AB于点E,AE=3,BE=5,DE=4,则CE的长为()A.B.C.D.6.如图,在▱ABCD中,对角线AC,BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为30,则△ABE的周长为()A.30B.26C.20D.157.如图,平行四边形ABCD的周长为16,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为()A.4B.6C.8D.108.如图,将▱DEBF的对角线EF向两端延长,分别至点A和点C,且使AE=CF,连接AB,BC,AD,CD.求证:四边形ABCD为平行四边形.以下是证明过程,其顺序已被打乱,①∴四边形ABCD为平行四边形;②∵四边形DEBF为平行四边形,∴OD=OB,OE=OF;③连接BD,交AC于点O;④又∵AE=CF,∴AE+OE=CF+OF,即OA=OC.正确的证明步骤是()A.①②③④B.③④②①C.③②④①D.④③②①9.如图,在▱ABCD中,点M,N分别是AD、BC的中点,点O是CM,DN的交点,直线AB分别与CM,DN的延长线交于点P、Q.若▱ABCD的面积为192,则△POQ的面积为()A.72B.144C.208D.21610.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,,则下列结论:①∠CAD=30°②③S平行四边形ABCD=AB•AC④,正确的个数是()A.1B.2C.3D.4二.填空题(共8小题,满分32分)11.如图,已知▱ABCD中,AD⊥BD,AC=10,AD=4,则BD的长是.12.下列条件能判定四边形ABCD是平行四边形的是.A.AB∥CD,AD∥BC B.AD=BC,AB=CDC.AB∥CD,AD=BC D.∠A=∠C,∠B=∠D13.如图,平行四边形ABCD中,对角线AC、BD相交于点O,若AB=2,BC=3,∠ABC=60°,则图中阴影部分的面积是.14.如图,平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D的位置用数对表示为.15.如图,▱ABCD的对角线相交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线长的和.16.如图,在▱ABCD中,AB=5,BC=8,∠ABC和∠BCD的角平分线分别交AD于点E、F,若BE=6,则CF=.17.如图,在平行四边形ABCD中,BD是对角线,E,F分别是边AD,BC上不与端点重合的两点,连接EF,下列条件中使得四边形BFDE是平行四边形的是.(多选)A.AE=CFB.EF经过BD的中点C.BE∥DFD.EF⊥AD18.在如图的网格中,以格点A、B、C、D、E、F中的4个点为顶点,你能画出平行四边形的个数为个.三.解答题(共6小题,满分48分)19.如图,在▱ABCD中,AE平分∠BAD交BD于点E,交BC于点M,CF平分∠BCD交BD于点F.(1)求证:AE=CF;(2)若∠ABC=70°,求∠AMB的度数.20.在▱ABCD中,对角线AC⊥AB,BE平分∠ABC交AD于点E,交AC于点F.(1)求证:AE=AB;(2)若AB=3,BC=5,求AF的长.21.如图,在平行四边形ABCD中,点F是AD中点,连接CF并延长交BA的延长线于点E.(1)求证:AB=AE.(2)若BC=2AE,∠E=31°,求∠DAB的度数.22.如图,点B、C、E、F在同一直线上,BE=CF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)四边形ABED是平行四边形.23.如图,在等边△ABC中,D是BC的中点,以AD为边向左侧作等边△ADE,边ED与AB交于点G.(1)求∠CAE的度数;(2)取AB的中点F,连接CF,EF,求证:四边形CDEF是平行四边形.24.在▱ABCD中,点O是对角线BD的中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE如图1.(1)求证:四边形BEDF是平行四边形;(2)若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、P如图2.①当CD=6.CE=4时,求BE的长;②求证:CD=CH.参考答案与解析一.选择题(共10小题,满分40分)1.解:在▱ABCD中,AD=8;∴BC=AD=8,AD∥BC;∴CE=BC﹣BE=8﹣3=5,∠ADE=∠CED;∵DE平分∠ADC;∴∠ADE=∠CDE;∴∠CDE=∠CED;∴CD=CE=5;故选:B.2.解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm;∴OA=OC=AC=5(cm),OB=OD=BD=3(cm);∵∠ODA=90°;∴AD===4(cm);∴BC=AD=4(cm);故选:A.3.解:A、∵对角线互相平分的四边形是平行四边形;∴选项A不符合题意;B、∵有一组对边平行,一组对角相等的四边形是平行四边形;∴选项B不符合题意;C、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形;∴选项C符合题意;D、∵有两组对角相等的四边形是平行四边形;∴选项D不符合题意;故选:C.4.解:设EF与NH交于点O;∵在▱ABCD中,EF∥AD,HN∥AB;∴AD∥EF∥BC,AB∥NH∥CD;则图中的四边BEON、DFOH、DHNC、BEFC、BAHN、AEOH、AEFD、ONCF都是平行四边形,共8个.故选:B.5.解:∵AE=3,BE=5;∴AB=8;∵四边形ABCD是平行四边形;∴CD=AB=8,AB∥CD,AD=BC;∴∠DCE=∠CEB;∵CE平分∠BCD;∴∠DCE=∠BCE;∴∠BCE=∠BEC;∴BC=BE=5=AD;∵AE2+DE2=9+16=25,AD2=25;∴AE2+DE2=AD2;∴∠AED=90°;∵DC∥CD;∴∠CDE=90°;在△DCE中,由勾股定理可得:CE===4;故选:A.6.解:∵四边形ABCD是平行四边形;∴AB=CD,AD=BC,OB=OD;又∵OE⊥BD;∴OE是线段BD的中垂线;∴BE=DE;∴AE+ED=AE+BE;∵▱ABCD的周长为30;∴AB+AD=15;∴△ABE的周长=AB+AE+BE=AB+AD=15;故选:D.7.解:∵平行四边形ABCD;∴AD=BC,AB=CD,OA=OC;∵EO⊥AC;∴AE=EC;∵AB+BC+CD+AD=16;∴AD+DC=8;∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8;故选:C.8.解:连接BD,交AC于点O,如图所示:∵四边形DEBF为平行四边形;∴OD=OB,OE=OF;又∵AE=CF;∴AE+OE=CF+OF;即OA=OC;∴四边形ABCD为平行四边形;即正确的证明步骤是③②④①;故选:C.9.解:连接MN,如图所示:∵四边形ABCD是平行四边形;∴CD∥AB,AD∥BC,AD=BC;∴∠CDQ=∠Q,∠DCB=∠CBQ;∵点M,N分别是AD、BC的中点;∴DM=CN,CN=BN;∴四边形CDMN是平行四边形;在△CDN和△BQN中;;∴△CDN≌△BQN(AAS);同理可得:△CDM≌△P AM;∴△POQ的面积=四边形ABCD的面积+△COD的面积,O是CM的中点;∵▱ABCD的面积为192;∴四边形CDMN的面积是96;∴△CDM的面积为四边形CDMN的面积的一半,即48;∴△COD的面积为24;∴△POQ的面积=四边形ABCD的面积+△COD的面积=192+24=216.故选:D.10.解:①∵AE平分∠BAD;∴∠BAE=∠DAE;∵四边形ABCD是平行四边形;∴AD∥BC,∠ABC=∠ADC=60°;∴∠DAE=∠BEA;∴∠BAE=∠BEA;∴AB=BE=1;∴△ABE是等边三角形;∴AE=BE=1;∵BC=2;∴EC=1;∴AE=EC;∴∠EAC=∠ACE;∵∠AEB=∠EAC+∠ACE=60°;∴∠ACE=30°;∵AD∥BC;∴∠CAD=∠ACE=30°;故①正确;②∵BE=EC,OA=OC;∴OE=AB=,OE∥AB;∴∠EOC=∠BAC=60°+30°=90°;Rt△EOC中,OC=;∵四边形ABCD是平行四边形;∴∠BCD=∠BAD=120°;∴∠ACB=30°;∴∠ACD=90°;Rt△OCD中,OD=;∴BD=2OD=;故②正确;③由②知:∠BAC=90°;∴S平行四边形ABCD=AB•AC;故③正确;④由②知:OE是△ABC的中位线;∴OE=AB;∵AB=BC;∴OE=BC=AD;故④正确;故选:D.二.填空题(共8小题,满分32分)11.解:∵四边形ABCD是平行四边形;∴AO=CO=AC,DO=BO;∵AC=10;∴AO=5;∵AD⊥DB;∴∠ADB=90°,AD=4;∴DO==3;∴BD=6;故答案为:6.12.解:A.根据AB∥CD,AD∥BC能推出四边形ABCD是平行四边形;B.根据AD=BC,AB=CD能推出四边形ABCD是平行四边形;C.根据AB∥CD,AD=BC能得出四边形是等腰梯形,不能推出四边形ABCD是平行四边形D.根据∠A=∠C,∠B=∠D能推出四边形ABCD是平行四边形;故答案为:ABD.13.解:作AM⊥BC于M,如图所示:则∠AMB=90°;∵∠ABC=60°;∴∠BAM=30°;∴BM=AB=×2=1;在Rt△ABM中,AB2=AM2+BM2;∴AM===;∴S平行四边形ABCD=BC•AM=3;∵四边形ABCD是平行四边形;∴AD∥BC,BO=DO;∴∠OBE=∠ODF;在△BOE和△DOF中;;∴△BOE≌△DOF(ASA);∴S△BOE=S△DOF;∴图中阴影部分的面积=▱ABCD的面积=;故答案为:.14.解:∵平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3);∴点D坐标为(8,6);故答案为:(8,6).15.解:∵四边形ABCD是平行四边形;∴AB=CD=5;∵△OCD的周长为23;∴OD+OC=23﹣5=18;∵BD=2DO,AC=2OC;∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36;故答案为:36.16.解:如图,设BE与FC的交点为H,过点A作AM∥FC,交BE与点O;∵四边形ABCD是平行四边形;∴AD∥BC,AB∥CD;∴∠ABC+∠DCB+180°;∵BE平分∠ABC,CF平分∠BCD;∴∠ABE=∠EBC,∠BCF=∠DCF;∴∠CBE+∠BCF=90°;∴∠BHC=90°;∵AM∥CF;∴∠AOE=∠BHC=90°;∵AD∥BC;∴∠AEB=∠EBC=∠ABE;∴AB=AE=5;又∵∠AOE=90°;∴BO=OE=3;∴AO===4;在△ABO和△MBO中;;∴△ABO≌△MBO(ASA);∴AO=OM=4;∴AM=8;∵AD∥BC,AM∥CF;∴四边形AMCF是平行四边形;∴CF=AM=8;故答案为:8.17.解:∵四边形ABCD是平行四边形;∴AD∥BC;∵AE=CF,AD=BC;∴DE=BF;∴四边形BFDE是平行四边形;故A选项符合题意;若EF经过BD的中点O;∵AD∥BC;∴∠EDO=∠FBO;在△BOF和△DOE中;;∴△BOF≌△DOE(ASA);∴BF=DE;∴四边形BFDE是平行四边形;故B选项符合题意;∵DE∥BF,BE∥DF;∴四边形BFDE是平行四边形;故C选项符合题意;由EF⊥AD不能判定四边形BFDE是平行四边形;故D选项不符合题意;故答案为:A,B,C.18.解:如图所示:图中平行四边形有▱ABEC,▱BDEC,▱BEFC共3个.故答案为:3.三.解答题(共6小题,满分48分)19.(1)证明:∵四边形ABCD是平行四边形;∴AB∥CD,AB=CD,∠BAD=∠BCD∴∠ABE=∠CDF;∵AE平分∠BAD,CF平分∠BCD;∴∠BAE=∠DCF;∴△ABE≌△CDF(ASA);∴AE=CF;(2)∵四边形ABCD是平行四边形;∴AD∥BC,∠BAD+∠ABC=180°;∵∠ABC=70°;∴∠BAD=110°;∵AM平分∠BAD,AD∥BC;∴∠AMB=∠DAM=55°.20.(1)证明:∵四边形ABCD为平行四边形;∴∠AEB=∠EBC;∵BE平分∠ABC;∴∠ABE=∠EBC;∴∠ABE=∠AEB;∴AE=AB;(2)解:AC⊥AB,AB=3,BC=5;∴AC=;过F点作FH⊥BC,垂足为H;∵BE平分∠ABC,AC⊥AB;∴AF=FH;∵S△ABC=S△ABF+S△BFC;∴AB•AC=AB•AF+BC•FH;即;∴AF=.21.(1)证明:∵四边形ABCD是平行四边形;∴AB=CD,AB∥CD,BC=AD;∴∠E=∠DCF;∵点F是AD中点;∴AF=DF;∵∠EF A=∠CFD;∴△AFE≌△DFC(AAS);∴CD=AE;∴AB=AE;(2)解:由(1)可得AF=DF,BC=AD;∵BC=2AE;∵∠E=31°;∴∠AFE=∠E=31°;∴∠DAB=2∠E=62°.22.证明:(1)∵BE=CF;∴BE﹣CE=CF﹣CE;即BC=EF;又∵AC⊥BC于点C,DF⊥EF于点F;∴∠ACB=∠DFE=90°;在△ABC和△DEF中;;∴△ABC≌△DEF(SAS);(2)由(1)知△ABC≌△DEF;∴AB=DE,∠ABC=∠DEF;∴AB∥DE;∴四边形ABED是平行四边形.23.(1)解:∵△ABC是等边三角形,D是BC的中点;∴AD⊥BC,∠BAC=60°;∴∠DAC=∠BAC=30°;∵△AED是等边三角形;∴∠EAD=60°;∴∠CAE=∠EAD+∠DAC=90°;(2)证明:∵F是等边△ABC边AB的中点,D是边BC的中点;∴CF=AD,CF⊥AB;∵△AED是等边三角形;∴AD=ED;∴CF=ED;∵∠BAD=∠BAC=30°,∠EAG=∠EAD=30°;∴ED⊥AB;∴CF∥ED;∵CF=ED;∴四边形CDEF是平行四边形.24.(1)证明:∵在平行四边形ABCD中,点O是对角线BD的中点;∴AD∥BC,BO=DO;∴∠ADB=∠CBD;在△BOE与△DOF中;;∴△BOE≌△DOF(ASA);∴DF=BE且DF∥BE;∴四边形BEDF是平行四边形;(2)①解:如图,过点D作DN⊥EC于点N;∵DE=DC=6,DN⊥EC,CE=4;∴EN=CN=2;∴DN===4;∵∠DBC=45°,DN⊥BC;∴∠DBC=∠BDN=45°;∴DN=BN=4;∴BE=BN﹣EN=4;②证明:∵DN⊥EC,CG⊥DE;∴∠CEG+∠ECG=90°,∠DEN+∠EDN=90°;∴∠EDN=∠ECG;∵DE=DC,DN⊥EC;∴∠EDN=∠CDN;∵∠DHC=∠DBC+∠BCH=45°+∠BCH,∠CDB=∠BDN+∠CDN=45°+∠CDN;∴∠CDB=∠DHC;∴CD=CH.。

【精选】人教版八年级下册数学第十八章《平行四边形》测试卷(含答案)

【精选】人教版八年级下册数学第十八章《平行四边形》测试卷(含答案)

【精选】人教版八年级下册数学第十八章《平行四边形》测试卷(含答案)一、选择题(每题3分,共30分)1.已知在▱ABCD中,∠B+∠D=200°,则∠B的度数为( ) A.100° B.160° C.80° D.60°2.【2022·广东】如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=( )A.14B.12C.1 D.2(第2题) (第4题) (第5题) (第8题) 3.【2022·河北】依据所标数据,下列一定为平行四边形的是( )4.【教材P44例2改编】【2021·恩施州】如图,在▱ABCD中,AB=13,AD=5,AC ⊥BC,则▱ABCD的面积为( )A.30 B.60 C.65 D.65 25.【教材P53例1改编】如图,在矩形ABCD中,对角线AC,BD交于点O,∠AOB =60°,AB=5,则BD的长为( )A.20 B.15 C.10 D.56.【2021·河南】关于菱形的性质,以下说法不正确...的是( )A.四条边相等 B.对角线相等C.对角线互相垂直 D.是轴对称图形7.下列命题中,是真命题的为( )A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形8.如图,已知在菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是( )A.16 3 B.16 C.8 3 D.89.【2022·青岛】如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE的长度为( )A.62B. 6 C.2 2 D.2 3(第9题) (第10题) (第11题) (第13题)10.【教材P68复习题T13拓展】【2022·恩施州】如图,在四边形ABCD中,∠A=∠B=90°,AD=10 cm,BC=8 cm,点P从点D出发,以1 cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是( )A.当t=4时,四边形ABMP为矩形B.当t=5时,四边形CDPM为平行四边形C.当CD=PM时,t=4D.当CD=PM时,t=4或6二、填空题(每题3分,共24分)11.如图,在▱ABCD中,AB=5,AC=8,BD=12,则△COD的周长是________.12.在Rt△ABC中,∠C=90°,AC=5,BC=12,则斜边上的中线CD=________. 13.【2021·益阳】如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC =BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是________(限填序号).14.如图,平行四边形ABCD的三个顶点的坐标分别为A(1,1),B(4,1),D(2,3),要把顶点A平移到顶点C的位置,则其平移方式可以是:先向右平移________个单位长度,再向上平移________个单位长度.(第14题) (第15题) (第16题) (第17题) 15.【2022·哈尔滨】如图,菱形ABCD的对角线AC,BD相交于点O.点E在OB 上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为________.16.如图,在矩形ABCD中,E是BC边上一点,AE=AD,DF⊥AE于点F,连接DE,AE=5,BE=4,则DF=________.17.【2022·苏州】如图,在平行四边形ABCD中,AB⊥AC, AB=3, AC=4,分别以A,C为圆心,大于12AC的长为半径画弧,两弧相交于点M,N,过M,N两点作直线,与BC交于点E,与AD交于点F,连接AE,CF.则四边形AECF的周长为________.18.以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是____________.三、解答题(19,20题每题8分,21,22题每题12分,其余每题13分,共66分)19.【2022·桂林】如图,在▱ABCD中,点E和点F是对角线BD上的两点,且BF =DE.(1)求证:BE=DF;(2)求证:△ABE≌△CDF.20.【2021·郴州】如图,四边形ABCD中,AB=DC,将对角线AC向两端分别延长至点E,F,使AE=CF, 连接BE,DF.若BE=DF,证明:四边形ABCD是平行四边形.21.【教材P55练习T2改编】【2021·长沙】如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4.(1)求证:▱ABCD是矩形;(2)求AD的长.22.【2021·十堰】如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠FAC=30°,∠B=45°,求AB的长.23.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF;(2)若正方形的边长是5,BE=2,求AF的长.24.【2022·北京八中模拟】在▱ABCD中,AB≠AD,对角线AC,BD交于点O,AC =10,BD=16.点M,N在对角线BD上,点M从点B出发以每秒1个单位长度的速度向点D运动,到达点D时停止运动,同时点N从点D出发,运动至点B后立即返回,点M停止运动的同时,点N也停止运动,设运动时间为t 秒(t>0).。

平行四边形单元测试卷

平行四边形单元测试卷

平行四边形单元测试卷一、选择题(每题2分,共10分)1. 平行四边形的对边具有什么性质?A. 相等B. 平行C. 垂直D. 以上都不是2. 下列哪个不是平行四边形的性质?A. 对角线互相平分B. 对边相等C. 对角相等D. 内角和为360°3. 平行四边形的面积如何计算?A. 底乘高B. 对角线乘积的一半C. 周长除以4D. 以上都不是4. 如果一个平行四边形的两组对边分别相等,那么这个平行四边形是:A. 矩形B. 菱形C. 梯形D. 不能确定5. 平行四边形的对角线将平行四边形分成:A. 两个三角形B. 两个梯形C. 两个矩形D. 四个小平行四边形二、填空题(每空1分,共10分)1. 平行四边形的对角线_______。

2. 矩形的四个角都是_______。

3. 菱形的对角线_______。

4. 平行四边形的面积公式为_______。

5. 如果一个平行四边形的底为5厘米,高为3厘米,那么它的面积是_______平方厘米。

三、判断题(每题1分,共5分)1. 所有平行四边形都是矩形。

()2. 菱形的四条边都是相等的。

()3. 平行四边形的对角线一定垂直。

()4. 矩形和菱形都是特殊的平行四边形。

()5. 梯形不是平行四边形。

()四、简答题(每题5分,共10分)1. 请简述平行四边形和矩形的区别。

2. 请解释为什么平行四边形的对角线互相平分。

五、计算题(每题10分,共20分)1. 一个平行四边形的底是8厘米,高是4厘米,请计算它的面积。

2. 如果一个平行四边形的对角线长度分别为10厘米和12厘米,且它们相交于中点,求这个平行四边形的面积。

六、解答题(每题15分,共15分)1. 一个平行四边形的对角线互相垂直,且长度分别为12厘米和16厘米。

如果这个平行四边形的面积是96平方厘米,请求出它的底和高。

答案:一、选择题:1-5 BACAD二、填空题:1. 互相平分 2. 直角 3. 垂直且互相平分 4. 底×高 5.15三、判断题:1-5 ×√×√×四、简答题:1. 平行四边形的对边平行且相等,而矩形的四个角都是直角,且对角线相等。

平行四边形全章练习题

平行四边形全章练习题

平行四边形的性质练习题之阿布丰王创作1、平行四边形得周长为50cm ,两邻边之差为5cm,求各边长。

2.平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3,则AB=_______,BC=________.3.四边形ABCD 是平行四边形,∠BAC=90°,AB=3,AC=4,求AD 的长。

4.平行四边形ABCD 中,∠A-∠B=20°,∠A=______∠B=______∠C=______∠D=______5、四边形ABCD 是平行四边形,AB=6cm,BC=8cm ,∠B=70°,则AD=________,CD=______,∠D=_______,∠A=______,∠C=_______.6.平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,则平行四边形面积=_______7.在平行四边形ABCD 中,∠BAC=34°, ∠ACB=26°,则∠DAC=________,∠D=________8.如图,在平行四边形ABCD 中,CE ⊥AD,CF ⊥BA 交BA 的延长线于F ,∠FBC=30°,CE=3cm,CF=5cm,则平行四边形ABCD 的周长=_______ 9、平行四边形得周长为50cm ,两邻边之差为5cm,则长边是________ ,短边是__________.ABCDF EOMABCD4321图3F EDCBA 10、平行四边形 ABCD 中,∠A+∠C=200°.则:∠A= _______,∠B= _________ .11、如图,在ABCD 中,DE ⊥AB ,E 是垂足,如果∠C=40°,求∠A 与∠ADE 的度数。

12 、如图,在ABCD 中,已知对角线AC 和BD 相交于点O ,△BOC 的周长为24,BC=10,求对角线AC 与BD 的和是多少? 13.如图所示,在ABCD 中,AB=10cm ,AB 边上的高DH=4cm ,BC=6cm ,求BC 边上的高DF 的长.14、如图,ABCD 的周长为60㎝,△AOB 的周长比△BOC 大8㎝,求AB 、BC 的长。

特殊的平行四边形全章分节练习题

特殊的平行四边形全章分节练习题

第一节 菱形 (2016年7月16日)1、菱形的定义:有一组_________________________相等的平行四边形叫菱形.2、菱形的性质:①.菱形的四条边______;菱形的对角线_____________,且每条对角线______________. ②.菱形既是 对称图形,又是 图形,它有 条对称轴. 3、菱形的判定:①.__________________边都相等的四边形菱形.②.对角线_____________________________的平行四边形是菱形.③.对角线_____________________________________________的四边形是菱形. 4、菱形的面积与两对角线的关系是________________________ 5、练习:①.如图,BD 是菱形ABCD 的一条对角线,若∠ABD=65°,则∠A=_____. ②. 一个菱形的两条对角线分别是6cm ,8cm ,则这个菱形的周长 等于 cm ,面积= cm 2③.若菱形的周长为8cm,高为1cm,则菱形两邻角的度数比为 6、如图,在平面直角坐标系中,四边形ABCD 是菱形,∠ABC=60°, 且点A 的坐标为(0,2),则点B 坐标( ), 点C 坐标为( ),点D 坐标为( )。

7、一平行四边形的一条边长是9,两条对角线长分别是12和56,它是 形,它的面积是 ,周长是 。

8、如图,四边形ABCD 是菱形,对角线AC=8cm ,DB=6cm, DH ⊥AB 于点H ,求DH 的长.第二节 矩形 (2016年7月17日)1、矩形的定义:_________________的平行四边形叫矩形.2、矩形的性质:①.矩形的四个角都是______;矩形的对角线_______________________. ②. 矩形既是 对称图形,又是 图形,它有 条对称轴.3、矩形的判定:①.有_____个是直角的四边形是矩形.②.对角线____________________________的平行四边形是矩形. ③.对角线________________________________的四边形是矩形. 4、矩形ABCD 的两条对角线相交于O ,∠AOD=120°,AB=4cm ,则矩形对角线AC 长为______cm .5、四边形ABCD 中,AD //BC ,则四边形ABCD 是 ,其对角线AC ,BD 交于点O ,若 ∠OAB=∠OBA ,则四边形ABCD 是_______.8、如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n 个矩形的面积为9、如图,矩形纸片ABCD ,长AD =9cm ,宽AB =3 cm ,将其折叠,使点D 与点B 重合,那么折叠后DE 的长和折痕EF 的长分别为 和 。

人教版八年级数学下册第十八章《平行四边形》综合测试卷(含答案)

人教版八年级数学下册第十八章《平行四边形》综合测试卷(含答案)

人教版八年级数学下册第十八章《平行四边形》综合测试卷一、单选题(共30分)1.如图,在四边形ABCD 中,AB ∥CD ,要使四边形ABCD 是平行四边形,下列可添加的条件不正确的是( )A .AD =BCB .AB =CDC .AD ∥BC D .∥A =∥C 2.如图,在∥ABCD 中,连接AC ,∥ABC =∥CAD =45°,AB =2,则BC 的长是( )A 2B .2C .2D .43.如图,在长方形ABCD 中无重叠放入面积分别为216cm 和212cm 的两张正方形纸片,则图中空白部分的面积为( )2cmA .1683-B .1283-+C .843-D .423- 4.如图,已知平行四边形ABCD 的对角线AC ,BD 交于点O ,且AC =8,BD =10,则边AB 的长可以是( )A .1B .8C .10D .125.在平面直角坐标系中,A ,B ,C 三点的坐标分别为(0,0),(0,4),(1,1),以这三点为平行四边形的三个顶点,则第四个顶点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.如图,矩形ABCD 和矩形CEFG ,AB =1,BC =CG =2,CE =4,点P 在边GF 上,点Q 在边CE 上,且PF =CQ ,连结AC 和PQ ,M ,N 分别是AC ,PQ 的中点,则MN 的长为( )A .3B .6C 37D 17 7.如图,菱形ABCD 对角线AC ,BD 交于点O ,15ACB ∠=︒,过点C 作CE AD ⊥交AD 的延长线于点E .若菱形ABCD 的面积为4,则菱形的边长为( )A .22B .2C .2D .48.如图,在ABC 中,90A ∠=,D 是AB 的中点,过点D 作BC 的平行线,交AC 于点E ,作BC 的垂线交BC 于点F ,若AB CE =,且DFE △的面积为1,则BC 的长为( )A .25B .5C .5D .10 9.如图,在矩形ABCD 内有一点F ,FB 与FC 分别平分∥ABC 和∥BCD ,点E 为矩形ABCD 外一点,连接BE ,CE .现添加下列条件:∥EB ∥CF ,CE ∥BF ;∥BE =CE ,BE =BF ;∥BE ∥CF ,CE ∥BE ;∥BE =CE ,CE ∥BF ,其中能判定四边形BECF 是正方形的共有( )A .1个B .2个C .3个D .4个 10.在平面直角坐标系中,长方形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点,若E 为x 轴上的一个动点,当∥CDE 的周长最小时,求点E 的坐标( )A .(一3,0)B .(3,0)C .(0,0)D .(1,0)二、填空题(共24分)11.在菱形ABCD 中,∥BAD =72°,点F 是对角线AC 上(不与点A ,C 重合)一动点,当ADF 是等腰三角形时,则∥AFD 的度数为_____.12.如图,在ABC 中,点M 为BC 的中点,AD 平分,BAC ∠且BD AD ⊥于点D ,延长BD 交AC 于点,N 若12,18AB AC ==,则MD =_______________________.13.如图,在Rt ∥ABC 中,∥ABC =90º,D 、E 、F 分别为AB 、BC 、CA 的中点,若BF =6,则DE =_____.14.平行四边形ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,∥AOB 的周长比∥BOC 的周长为8cm ,则AB 的长为_____cm .15.如图,在平行四边形ABCD 中,BF 平分∥ABC ,交AD 于点F ,CE 平分∥BCD ,交AD 于点E ,AB =8,BC =12,则EF 的长为__________.16.如图在Rt △ABC 中,∥ACB =90°,AC =4,BC =3,D 为斜边AB 上一点,以CD 、CB 为边作平行四边形CDEB ,当AD =_____,平行四边形CDEB 为菱形.17.如图,在平行四边形ABCD 中,AB =10,AD =6,AC ∥BC .则BD =_____.18.如图所示,在ΔABC 中,点D 是BC 的中点,点E ,F 分别在线段AD 及其延长线上,且DE =DF ,给出下列条件:∥BE ∥EC ;∥BF∥EC ;∥AB =AC∥从中选择一个条件使四边形BECF 是菱形,你认为这个条件是____(只填写序号).三、解答题(共66分)19.如图,在ABCD 中,对角线AC 与BD 相交于点O ,点,E F 分别为,OB OD 的中点,连接,AE CF .求证:AE CF .20.如图,∥ABCD 的对角线AC 、BD 交于点O ,E 、F 是对角线AC 上两点,AE =CF .求证:四边形DEBF 是平行四边形.21.如图,将∥ABCD 的边AB 延长至点E ,使BE=AB ,连接DE 、EC 、BD 、DE 交BC 于点O .(1)求证:∥ABD∥∥BEC ;(2)若∥BOD=2∥A ,求证:四边形BECD 是矩形.22.如图,在ABC ∆中,AD 是高,E F 、分别是AB AC 、的中点.(1)EF 与AD 有怎样的位置关系?证明你的结论;(2)若6,4BC AD ==,求四边形AEDF 的面积.23.如图,等边AEF ∆的顶点E ,F 在矩形ABCD 的边BC ,CD 上,且45CEF ∠=. 求证:矩形ABCD 是正方形.24.如图,在正方形ABCD 中,点E 、F 分别在边BC 和CD 上,且BE CF =,连接AE 、BF ,其相交于点G ,将BCF △沿BF 翻折得到BC F '△,延长FC '交BA 延长线于点H .(1)求证:AE BF =;(2)若3AB =,2EC BE =,求BH 的长.25.如图,在▱ABCD 中,AE∥BC ,AF∥CD ,垂足分别为E ,F ,且BE=DF (1)求证:▱ABCD 是菱形;(2)若AB=5,AC=6,求▱ABCD 的面积.26.如图,在矩形ABCD 中,AB =15,E 是BC 上的一点,将∥ABE 沿着AE 折叠,点B 刚好落在CD 边上点G 处;点F 在DG 上,将∥ADF 沿着AF 折叠,点D 刚好落在AG 上点H 处,且CE =45BE , (1)求AD 的长;(2)求FG 的长27.如图,BD是∥ABC的角平分线,过点作DE//BC交AB于点E,DF//AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)若∥ABC=60°,∥ACB=45°,CD=6,求菱形BEDF的边长.28.(1)如图1,正方形ABCD中,E为边CD上一点,连接AE,过点A作AF∥AE 交CB的延长线于F,猜想AE与AF的数量关系,并说明理由;(2)如图2,在(1)的条件下,连接AC,过点A作AM∥AC交CB的延长线于M,观察并猜想CE与MF的数量关系,并说明理由;(3)解决问题:王师傅有一块如图所示的板材余料,其中∥A=∥C=90°,AB=AD.王师傅想切一刀后把它拼成正方形.请你帮王师傅在图3中画出剪拼的示意图.参考答案:1.A2.C3.B4.B5.C6.C7.A8.A9.D10.D11.108°或72°12.313.614.1915.416.7517.1318.∥22.(1)EF 垂直平分AD ;(2)6AEDF S 四边形. 24.5.25.S 平行四边形ABCD =24 26.(1)AD = 9;(2)FG =7.5 27.(2)628.(1)AE=AF (2)CE=MF ,。

(完整版)第9章中心对称图形—平行四边形测试题含答案

(完整版)第9章中心对称图形—平行四边形测试题含答案

第9章 中心对称图形—平行四边形 测试题一、选择题(每小题3分,共30分) 1.(2015年汕尾)下列命题中正确的是( )A. 一组对边相等,另一组对边平行的四边形是平行四边形B. 对角线互相垂直的四边形是菱形C. 对角线相等的四边形是矩形D. 对角线互相垂直平分且相等的四边形是正方形2.如图1,将△ABC 沿BC 方向平移得到△DCE ,连接AD ,下列条件能够判定四边形ACED 为菱形的是( )A .AB =BC B .AC =BC C .∠B =60°D .∠ACB =60°3.如图2,DE 是△ABC 的中位线,若AD =4,AE =5,BC =12,则△ADE 的周长是( ) A .7.5 B .30 C .15 D .24 4.如图3,在菱形ABCD 中,∠BAD =80°,AB 的垂直平分线交对角线AC 于点F ,垂足为E ,连接DF ,则∠CDF 的度数为( ) A. 50° B .60° C .70° D .80°5.如图4,在□ABCD 中,对角线AC ,BD 相交于点O ,过点O 作EF ⊥AC 交BC 于点E ,交AD 于点F ,连接AE ,CF ,则四边形AECF 是( ) A .矩形 B .菱形 C .正方形 D .无法确定 6.如图5,在正方形ABCD 中,E ,F 分别为AB ,CD 的中点,连接DE ,BF ,CE ,AF ,正方形ABCD 的面积为1,则阴影部分的面积为( )A .21 B .31 C .41D .517. 用两个完全相同的直角三角形拼下列图形:①平行四边形,②矩形,③菱形,④正方形,⑤等腰三角形,⑥等边三角形.一定能拼成的图形是( ) A. ①④⑤ B. ②⑤⑥ C. ①②③ D. ①②⑤8.如图6,将矩形纸片ABCD 折叠,使点A 落在BC 上的点F 处,折痕为BE ,若沿EF 剪下,则折叠部分是一个正方形,其数学原理是( ) A .邻边相等的矩形是正方形 B .对角线相等的菱形是正方形 C .两个全等的直角三角形构成正方形 D .轴对称图形是正方形9.如图7,把一个矩形纸片对折两次,然后沿虚线剪下一个角,为了得到一个内角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°10.如图8,把矩形ABCD沿EF翻折,点B恰好落在AD边上的点B′处,若AE=1,DE=3,∠EFB=60°,则矩形ABCD的面积是()A.3 B.6 C.33D.43二、填空题(每小题4分,共32分)11.在□ABCD中,若添加一个条件:____,则四边形ABCD是矩形;若添加一个条件:____,则四边形ABCD是菱形.12.如图9,矩形ABCD内有一点E,连接AE,DE,CE,若AD=ED=EC,∠ADE =20°,则∠AEC的度数为____.13.在菱形ABCD中,AE⊥BC于点E,若菱形ABCD的面积为48 cm2,且AE=6 cm,则AB的长为_________.14. 如图10,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连接DE,则DE的最小值为_________.15. (2015年赤峰)如图11,在四边形ABCD中,AD∥BC,E是DC上一点,连接BE并延长,交AD的延长线于点F,请你只添加一个条件:____________,使得四边形BDFC 为平行四边形.16. 如图12,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形E FGH的面积为_________.17. 如图13,在□ABCD中,AC,BD相交于点O,AB=10 cm,AD=8 cm,AC⊥BC,则OB的长为_________cm.18.如图14,将矩形纸片ABCD沿EF折叠,使D点与BC边的中点D′重合.若BC=8,CD=6,则CF的长为_________.三、解答题(共58分)19.(8分)如图15,在四边形ABCD中,∠ABC=∠ADC=90°,P是AC的中点.求证:∠BDP=∠DBP.20.(8分)如图16,在直线MN上和直线MN外分别取点A,B,过线段AB的中点O作CD∥MN,分别与∠MAB与∠NAB的平分线相交于点C,D.求证:四边形ACBD是矩形.21.(10分)如图17,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E,F,且DE=DF.求证:(1)△AE D≌△CFD;(2)四边形ABCD是菱形.22. (10分)如图18,在□ABCD中,BE,CE分别平分∠ABC,∠BCD,E在AD上,BE=12,CE=5.求□ABCD的周长和面积.23.(10分)如图19,在△ACD中,∠ADC=90°,∠ADC的平分线交AC于点E,EF⊥AD交AD于点F,EG⊥DC交DC于点G,请你说明四边形EFDG是正方形.24.(12分)如图20,在矩形ABCD中,对角线AC,BD相交于点O,点P是线段AD上一动点(不与点D重合),PO的延长线交BC于点Q.(1)求证:四边形PBQD为平行四边形.(2)若AB=3 cm,AD=4 cm,P从点A出发,以1 cm/s的速度向点D匀速运动,设点P的运动时间为t s,问:四边形PBQD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.附加题(15分,不计入总分)以四边形ABCD 的边AB ,BC ,CD ,DA 为斜边分别向外侧作等腰直角三角形,直角顶点分别为E ,F ,G ,H ,顺次连接这四个点,得到四边形EFGH .(1)如图①,当四边形ABCD 为正方形时,我们发现四边形EFGH 也是正方形;如图②,当四边形ABCD 为矩形时,请判断四边形EFGH 的形状(不要求证明).(2)如图③,当四边形ABCD 为一般平行四边形时,设∠ADC =α(0°<α<90°). ①试用含α的代数式表示∠HAE ; ②求证:HE=HG .③四边形EFGH 是什么四边形?并说明理由.参考答案一、1.D 2.B 3.C 4.B 5.B 6.C 7. D 8.A 9.D 10.D二、11.答案不唯一,如∠ADC =90° AB =BC 12.120° 13.8 cm 14.4.8 15. 答案不唯一,如BD ∥FC ,或BC=DF ,或DE=CE 16. 12 17.73 18.35三、19.证明:因为∠ABC =∠ADC =90°,点P 是AC 的中点,所以BP =21AC ,DP =21AC .所以BP =DP .所以∠BDP =∠DBP . 20.证明:因为AD 平分∠BA N,所以∠DA N=∠BAD .因为CD ∥MN,所以∠CDA =∠DA N.所以∠BAD =∠CDA .所以DO =AO .同理,CO =AO .所以CO =DO .又AO =BO ,所以四边形ACBD 是平行四边形.因为AC ,AD 均为角平分线,所以∠CAD =90°,所以平行四边形ACBD 是矩形. 21.证明:(1)因为DE ⊥AB ,DF ⊥BC ,所以∠AED =∠CFD =90°.因为四边形ABCD 是平行四边形,所以∠A =∠C .又DE =DF ,所以△AED ≌△CFD .(2)因为△AED ≌△CFD ,所以AD =CD .因为四边形ABCD 是平行四边形,所以四边形ABCD 是菱形.22.解:因为BE ,CE 分别平分∠AB C ,∠BCD ,所以∠EBC=21∠ABC ,∠ECB=21∠DCB. 因为AB ∥CD ∠DCB=180°. 所以∠EBC+∠ECB=21(∠ABC+∠DCB )=90°. 所以△EBC 是直角三角形.因为BE =12,CE =5,由勾股定理,得BC=13. 因为四边形ABCD 是平行四边形,所以AD ∥BC. 所以∠DE C=∠ECB.因为∠ECD=∠ECB ,所以∠DEC=∠ECD. 所以DE=CD. 同理,AB=A E.所以AB+CD=AE+DE=AD=BC=13.所以□ABCD 的周长为AB+BC+CD+DA=13+13+13=39. 过点E 作BC 所以S △EBC =21BC·EH=21BE·CE=21×12×5=30. 所以□ABCD 的面积为BC·EH=2×30=60.23.解:因为∠ADC =90°,EF ⊥AD ,EG ⊥CD ,所以四边形EFDG 是矩形. 又DE 平分∠ADC ,所以EF =EG .所以四边形EFDG 是正方形. 24.(1)证明:因为四边形ABCD 是矩形,所以A D ∥BC ,OD =OB .所以∠PDO =∠QBO .又∠POD =∠QOB ,所以△POD ≌△QOB .所以OP =OQ .所以四边形PBQD 为平行四边形.(2)解:能.由题意,知AP =t cm ,PD =(4-t ) cm .当PB =PD =(4-t ) cm 时,四边形PBQD 是菱形.因为四边形ABCD 是矩形,所以∠BAP =90°.在Rt △ABP 中,AP 2+AB 2=PB 2,即t 2+32=(4-t )2.解得t =87.所以当点P 的运动时间为87s 时,四边形PBQD 是菱形.附加题(1)解:四边形EFGH 是正方形. (2)①解:在□ABCD 中,AB ∥CD ,所以∠BAD =180°-∠ADC =180°-α.因为△HAD 和△EAB 都是等腰直角三角形,所以∠HAD =∠EAB =45°. 所以∠HAE =360°-∠HAD -∠EAB -∠BAD =360°-45°-45°-(180°-α)=90°+α.②证明:因为△AEB 和△DGC 都是等腰直角三角形,所以AE =22AB ,DG =22CD .在□ABCD 中,AB =CD ,所以AE =DG .因为△HAD 和△GDC 都是等腰直角三角形,所以∠HDA =∠CDG =45°.所以∠HDG =∠HDA +∠ADC +∠CDG =45°+α+45°=90°+α=∠HAE .又HA =HD ,所以△HAE ≌△HDG ,所以HE =HG . ③解:四边形EFGH 是正方形.理由:同②,得GH =GF ,FG =FE .因为HE =HG ,所以GH =GF =EF =HE .所以四边形EFGH 是菱形.因为△HAE ≌△HDG ,所以∠DHG =∠AHE .因为∠AHD =∠AHG +∠DHG =90°,所以∠EHG =∠AHG +∠AHE =90°.所以四边形EFGH 是正方形.。

平行四边形试题集含答案

平行四边形试题集含答案
20、菱形
∵四边形ABCD为平行四边形∴AD∥BC,∠2=∠3∵AB∥EF∴四边形ABED为平行四边形∵∠2=∠1∴∠1=∠3∴AB=BE∴四边形ABED为菱形
第五章平行四边形测试题
一、选择题(每小题3分,共24分)
1.在 ABCD中,∠A:∠B:∠C=2:3:2,则∠D=()
(A)36°(B)108°(C)72°(D)60°
二、填空题(每小题3分,共分)
9.若一个多边形的内角和为1 080°,则这个多边形的边数是_______.
10.已知AD∥BC,要使四边形ABCD为平行四边形,需要增加的条件是_______(填一个你认为正确的条件).
11.在 ABCD中,若∠A+∠C=120°,则∠A=_______,∠B=_________.
12.在 ABCD中,AB=4cm,BC=6cm,则 ABCD的周长为_______cm.
13.已知O是 ABCD的对角线交点,AC=24cm,BD=38cm,AD=28cm,则△AOD的周长是________.
14.已知平行四边形的面积是144cm2,相邻两边上的高分别为8cm和9cm,则这个平行四边形的周长为________.
16.9.6 CM 17、AC=4 cm , BD=4
18.证明:连结PC∵四边形ABCD为平行四边形∴AB=AC,∠ABD=∠DPC ∠BCD=90°∵BP=BP∴△ABP≌△CBP∴AP = CP∵PE⊥BC,PF⊥DC∴四边形PECF为矩形∴EF=PC∴EF=AP
19、证明:⑴连结AD∵AB=AC,D为BC的中点∴AD为∠BAC的平分线∵DE⊥AB,DF⊥AC ∴DE=DF ⑵∠BAC=90° DE⊥DF
求AC和BD的长.
图8
18、如图9,在正方形ABCD中,P为对角线BD上一点,

人教版八年级数学下册第十八章-平行四边形章节测评试题(含答案解析)

人教版八年级数学下册第十八章-平行四边形章节测评试题(含答案解析)

人教版八年级数学下册第十八章-平行四边形章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OA C的坐标为()A.,1)B.(1,1)C.(1D.,1)2、如图菱形ABCD,对角线AC,BD相交于点O,若BD=8,AC=6,则AB的长是()A.5 B.6 C.8 D.103、如图,已知P 是AOB ∠平分线上的一点,60AOB ︒∠=,PD OA ⊥,M 是OP 的中点,4cm DM =,如果C 是OB 上一个动点,则PC 的最小值为( )A .8cmB .5cmC .4cmD .2cm4、顺次连接矩形各边中点得到的四边形是( )A .平行四边形B .矩形C .菱形D .正方形5、如图所示,公路AC 、BC 互相垂直,点M 为公路AB 的中点,为测量湖泊两侧C 、M 两点间的距离,若测得AB 的长为6km ,则M 、C 两点间的距离为( )A .2.5kmB .4.5kmC .5kmD .3km6、如图,已知四边形ABCD 和四边形BCEF 均为平行四边形,∠D =60°,连接AF ,并延长交BE 于点P ,若AP ⊥BE ,AB =3,BC =2,AF =1,则BE 的长为( )A .5B .C .D .7、如图,在菱形ABCD中,AB=5,AC=8,过点B作BE⊥CD于点E,则BE的长为()A.125B.245C.6 D.4858、如图,在平面直角坐标系中,点A是x轴正半轴上的一个动点,点C是y轴正半轴上的点,BC AC⊥于点C.已知16AC=,6BC=.点B到原点的最大距离为()A.22 B.18 C.14 D.109、如图,已知在正方形ABCD中,10AB BC CD AD====厘米,90A B C D∠=∠=∠=∠=︒,点E在边AB 上,且4AE=厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒.若存在a与t的值,使BPE与CQP全等时,则t的值为()A.2 B.2或1.5 C.2.5 D.2.5或210、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为()A .46.5cmB .22.5cmC .23.25cmD .以上都不对第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在直角三角形ABC 中,∠B =90°,点D 是AC 边上的一点,连接BD ,把△CBD 沿着BD 翻折,点C 落在AB 边上的点E 处,得到△EBD ,连接CE 交BD 于点F ,BG 为△EBD 的中线.若BC =4,△EBG 的面积为3,则CD 的长为____________2、如图,在▱ABCD 中,BC =3,CD =4,点E 是CD 边上的中点,将△BCE 沿BE 翻折得△BGE ,连接AE ,A 、G 、E 在同一直线上,则AG =______,点G 到AB 的距离为______.3、如图,在ABC 中,2AB AC ==,90BAC ∠=︒,M ,N 为BC 上的两个动点,且MN AM AN +的最小值是________.4、一个三角形三边长之比为4∶5∶6,三边中点连线组成的三角形的周长为30cm ,则原三角形最大边长为_________cm .5、如图,在长方形ABCD 中,9DC =.在DC 上找一点E ,沿直线AE 把AED 折叠,使D 点恰好落在BC上,设这一点为F,若ABF的面积是54,则FCE△的面积=______________.三、解答题(5小题,每小题10分,共计50分)1、如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三边长都是有理数的直角三角形;(2)在图2中,画一个以BC为斜边的直角三角形,使它们的三边长都是无理数且都不相等;(3)在图3中,画一个正方形,使它的面积是10.2、如图,在Rt△ABC中,∠ACB=90°.(1)作AB的垂直平分线l,交AB于点D,连接CD,分别作∠ADC,∠BDC的平分线,交AC,BC于点E,F(尺规作图,不写作法,保作图痕迹);(2)求证:四边形CEDF是矩形.3、如图:在Rt ABC中,90∠=,点O为AB的中点,点P为直线BC上的动点(不与点A︒ACB︒∠=,30∆,连接BQ.B,C重合),连接OC,OP,以OP为边在OC的上方作等边OPQ(1)OBC是________三角形;=;(2)如图1,当点P在边BC上时,运用(1)中的结论证明CP BQ(3)如图2,当点P在CB的延长线上时,(2)中的结论是否依然成立?若成立,请加以证明,若不成立,请说明理由.4、如图,在▱ABCD中,对角线AC,BD交于点O,E是BD延长线上一点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,AB=a,求四边形ABCD的面积.5、已知:如图,30∠=︒,45B∠=︒,AD是BC上的高线,CE是AB边上的中线,DG CE于G.ACDAB=,求线段AC的长;(1)若6(2)求证:CG EG.---------参考答案-----------一、单选题1、B【解析】【分析】作CD⊥x轴,根据菱形的性质得到OC=OA Rt△OCD中,根据勾股定理求出OD的值,即可得到C点的坐标.【详解】:作CD⊥x轴于点D,则∠CDO=90°,∵四边形OABC是菱形,OA∴OC=OA又∵∠AOC=45°,∴∠OCD=90°-∠AOC=90°-45°=45°,∴∠DOC=∠OCD,∴CD=OD,在Rt△OCD中,OC CD2+OD2=OC2,∴2OD2=OC2=2,∴OD2=1,∴OD=CD=1(负值舍去),则点C的坐标为(1,1),故选:B.【点睛】此题考查了菱形的性质、等腰直角三角形的性质以及勾股定理,根据勾股定理和等腰直角三角形的性质求出OD=CD=1是解决问题的关键.2、A【解析】【分析】由菱形的性质可得OA=OC=3,OB=OD=4,AO⊥BO,由勾股定理求出AB.【详解】解:∵四边形ABCD是菱形,AC=6,BD=8,∴OA=OC=3,OB=OD=4,AO⊥BO,在Rt△AOB中,由勾股定理得:5AB=,故选:A.【点睛】本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键.3、C【解析】【分析】根据题意由角平分线先得到OPD △是含有30角的直角三角形,结合直角三角形斜边上中线的性质进而得到OP ,DP 的值,再根据角平分线的性质以及垂线段最短等相关内容即可得到PC 的最小值.【详解】解:∵点P 是∠AOB 平分线上的一点,60AOB ∠=︒, ∴1302AOP AOB ∠=∠=︒,∵PD ⊥OA ,M 是OP 的中点,4cm DM =∴28cm OP DM ==, ∴14cm 2PD OP ==∵点C 是OB 上一个动点∴当PC OB ⊥时,PC 的值最小,∵OP 平分∠AOB ,PD ⊥OA ,PC OB ⊥∴PC 最小值4cm PD ==,故选C .【点睛】本题主要考查了角平分线的性质、含有30角的直角三角形的选择,直角三角形斜边上中线的性质、垂线段最短等相关内容,熟练掌握相关性质定理是解决本题的关键.4、C【解析】【分析】如图,矩形ABCD 中,利用三角形的中位线的性质证明111,,,,222EF BD EF BD GH BD GH BD FG AC ∥∥,再证明四边形ABCD 是平行四边形,再证明,EF FG 从而可得结论.【详解】解:如图,矩形ABCD 中,,AC BD ∴=,,,E F G H 分别为四边的中点,111,,,,222EF BD EF BD GH BD GH BD FG AC ∥∥, ,,EF GH EF GH ∥∴ 四边形ABCD 是平行四边形,11,,,22AC BD EF BD FG AC === ,EF FG ∴= ∴ 四边形EFGH 是菱形.故选C .【点睛】本题考查的是矩形的性质,菱形的判定,三角形的中位线的性质,熟练的运用三角形的中位线的性质解决中点四边形问题是解本题的关键.5、D【解析】【详解】根据直角三角形斜边上的中线性质得出CM =12AB ,即可求出CM .【解答】解:∵公路AC,BC互相垂直,∴∠ACB=90°,∵M为AB的中点,AB,∴CM=12∵AB=6km,∴CM=3km,即M,C两点间的距离为3km,故选:D.【点睛】本题考查了直角三角形的性质,解题关键是掌握直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半.6、D【解析】【分析】过点D作DH⊥BC,交BC的延长线于点H,连接BD,DE,先证∠DHC=90º,再证四边形ADEF是平行四边形,最后利用勾股定理得出结果.【详解】过点D作DH⊥BC,交BC的延长线于点H,连接BD,DE,∵四边形ABCD是平行四边形,AB=3,∠ADC=60º,∴CD=AB=3,∠DCH=∠ABC=∠ADC=60º,∵DH⊥BC,∴∠DHC =90º,∴∠ADC +∠CDH =90°,∴∠CDH =30°,在Rt △DCH 中,CH =12CD =32,DH ,∴222223(2)192BD BH DH =+=++=, ∵四边形BCEF 是平行四边形,∴AD =BC =EF ,AD ∥EF ,∴四边形ADEF 是平行四边形,∴AF ∥DE ,AF =DE =1,∵AF ⊥BE ,∴DE ⊥BE ,∴22219118BE BD DE =-=-=, ∴BE =故选D .【点睛】本题考查了平行四边形的判定与性质,勾股定理,解题的关键是熟练运用这些性质解决问题.7、B【解析】【分析】根据菱形的性质求得BD 的长,进而根据菱形的面积等于12AC BD CD BE ⋅=⋅,即可求得BE 的长【详解】解:如图,设,AC BD 的交点为O ,四边形ABCD 是菱形AC BD ∴⊥,142AO CO AC ===,DO BO =,5CD AB == 在Rt AOB 中,5AB =,4AO =3BO ∴26BD BO ∴== 菱形的面积等于12AC BD CD BE ⋅=⋅1168242255AC BD BE CD ⋅⨯∴==⨯= 故选B【点睛】本题考查了菱形的性质,掌握菱形的性质,求得BD 的长是解题的关键.8、B【解析】【分析】首先取AC的中点E,连接BE,OE,OB,可求得OE与BE的长,然后由三角形三边关系,求得点B到原点的最大距离.【详解】解:取AC的中点E,连接BE,OE,OB,∵∠AOC=90°,AC=16,∴OE=CE12=AC=8,∵BC⊥AC,BC=6,∴BE=10,若点O,E,B不在一条直线上,则OB<OE+BE=18.若点O,E,B在一条直线上,则OB=OE+BE=18,∴当O,E,B三点在一条直线上时,OB取得最大值,最大值为18.故选:B【点睛】此题考查了直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.9、D【解析】【分析】根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQ,BE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.解:当2a =,即点Q 的运动速度与点P 的运动速度都是2厘米/秒,若△BPE ≌△CQP ,则BP =CQ ,BE =CP ,∵AB =BC =10厘米,AE =4厘米,∴BE =CP =6厘米,∴BP =10-6=4厘米,∴运动时间t =4÷2=2(秒);当2a ≠,即点Q 的运动速度与点P 的运动速度不相等,∴BP ≠CQ ,∵∠B =∠C =90°,∴要使△BPE 与△OQP 全等,只要BP =PC =5厘米,CQ =BE =6厘米,即可.∴点P ,Q 运动的时间t =252 2.5BP ÷=÷=(秒).综上t 的值为2.5或2.故选:D .【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.10、C【解析】【分析】如图所示,8cm AB =,9cm BC =,7cm AC =,DE ,DF ,EF 分别是三角形ABC 的中位线,GH ,GI ,HI 分别是△DEF 的中位线,则14.5cm 2DE BC ==,14cm 2EF AB ==,1 3.5cm 2DF AC ==,即可得到△DEF 的周长==12cm DE DF EF ++,由此即可求出其他四个新三角形的周长,最后求和即可.解:如图所示,8cm AB =,9cm BC =,7cm AC =,DE ,DF ,EF 分别是三角形ABC 的中位线,GH ,GI ,HI 分别是△DEF 的中位线, ∴14.5cm 2DE BC ==,14cm 2EF AB ==,1 3.5cm 2DF AC ==, ∴△DEF 的周长==12cm DE DF EF ++,同理可得:△GHI 的周长==6cm HI HG GI ++,∴第三次作中位线得到的三角形周长为3cm ,∴第四次作中位线得到的三角形周长为1.5cm∴第三次作中位线得到的三角形周长为0.75cm∴这五个新三角形的周长之和为1263 1.50.75=23.25cm ++++,故选C .【点睛】本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理.二、填空题1【解析】【分析】由折叠的性质可得,BD CE ⊥,4BE BC ==,12CF CE =,由勾股定理可得,CE =得,26BCD BDE BEG S S S ===△△△,求得CF 的长度,即可求解.【详解】解:由折叠的性质可得,BD CE ⊥,4BE BC ==,12CF CE =,BCD BDE △≌△ ∴BCE 为等腰直角三角形,F 为CE 的中点,BCD BDE SS = ∴12BF CF EF CE ===由勾股定理可得,CE∴12BF CF EF CE ====∵BG 为△EBD 的中线,△EBG 的面积为3∴26BCD BDE BEG S S S ===△△△162BCD S BD CF =⨯=△,解得BD =∴DF BD BF =-=由勾股定理得:CD =【点睛】此题考查了折叠的性质,勾股定理以及直角三角形的性质,解题的关键是灵活利用相关性质进行求解.2、【解析】【分析】根据折叠性质和平行四边形的性质可以证明△ABG≌△EAD,可得AG=DE=2,然后利用勾股定理可得求出AF的长,进而可得GF的值.【详解】解:如图,GF⊥AB于点F,∵点E是CD边上的中点,∴CE=DE=2,由折叠可知:∠BGE=∠C,BC=BG=3,CE=GE=2,在▱ABCD中,BC=AD=3,BC∥AD,∴∠D+∠C=180°,BG=AD,∵∠BGE+∠AGB=180°,∴∠AGB=∠D,∵AB∥CD,∴∠BAG=∠AED,在△ABG和△EAD中,AGB DBAG AED BG AD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABG≌△EAD(AAS),∴AG=DE=2,∴AB=AE=AG+GE=4,∵GF⊥AB于点F,∴∠AFG=∠BFG=90°,在Rt△AFG和△BFG中,根据勾股定理,得AG2-AF2=BG2-BF2,即22-AF2=32-(4-AF)2,解得AF=118,∴GF2=AG2-AF2=4-12164=13564,∴GF,故答案为2.【点睛】本题考查了折叠的性质、平行四边形的性质、勾股定理等知识,证明△ABG≌△EAD是解题的关键.3【解析】【分析】过点A作AD//BC,且AD=MN,连接MD,则四边形ADMN是平行四边形,作点A关于BC的对称点A′,连接AA′交BC于点O,连接A′M,三点D、M、A′共线时,AM AN最小为A′D的长,利用勾股定理求A′D的长度即可解决问题.【详解】解:过点A作AD//BC,且AD=MN,连接MD,则四边形ADMN 是平行四边形,∴MD =AN ,AD =MN ,作点A 关于BC 的对称点A ′,连接A A ′交BC 于点O ,连接A ′M , 则AM =A ′M ,∴AM +AN =A ′M +DM ,∴三点D 、M 、A ′共线时,A ′M +DM 最小为A ′D 的长, ∵AD //BC ,AO ⊥BC ,∴∠DA A '=90°,∵2AB AC ==,90BAC ∠=︒,,∴BC=BO=CO =AO ,∴AA '=在Rt△AD A '中,由勾股定理得:A 'D =∴AM AN +【点睛】本题主要考查了等腰三角形的性质,平行四边形的判定与性质,勾股定理等知识,构造平行四边形将AN转化为DM是解题的关键.4、24【解析】【分析】由三边长之比得到三角形的三条中位线之比,再由这三条中位线组成的三角形周长求出三中位线长,推出边长,再比大小判断即可.【详解】∵ 如图,H、I、J分别为BC,AC,AB的中点∴12HI AB=,12IJ BC=,12HJ AC=又∵30HI IJ HJ++=∴60AB BC AC++=∵AB:AC:BC=4:5:6,即BC边最长∴660=244+5+6BC=⨯故填24.【点睛】本题考查了三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.5、6【解析】【分析】根据三角形的面积求出BF,利用勾股定理列式求出AF,再根据翻折变换的性质可得AD=AF,然后求出CF,设DE=x,表示出EF、EC,然后在Rt△CEF中,利用勾股定理列方程求解和三角形的面积公式解答即可.【详解】解:∵四边形ABCD是矩形∴AB=CD=9,BC=AD∵12•AB•BF=54,∴BF=12.在Rt△ABF中,AB=9,BF=12,由勾股定理得,15AF=.∴BC=AD=AF=15,∴CF=BC-BF=15-12=3.设DE=x,则CE=9-x,EF=DE=x.则x2=(9-x)2+32,解得,x=5.∴DE=5.∴EC=DC-DE=9-5=4.∴△FCE的面积=1122CF CE⨯⨯=×4×3=6.【点睛】本题考查了翻折变换的性质,矩形的性质,三角形的面积,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.三、解答题1、(1)见解析;(2)见解析;(3)见解析【分析】(1)如图,AB =4,BC =3,5AC =,利用勾股定理逆定理即可得到△ABC 是直角三角形;(2)如图,AB =AC =BC ==△ABC 是直角三角形;(3)如图,AB BC CD AD =====AC =222AC AB BC =+,∠ABC =90°,即可得到四边形ABCD 是正方形,10ABCD SAB BC =⋅=.【详解】解:(1)如图所示,AB =4,BC =3,5AC =,∴222AC AB BC =+,∴△ABC 是直角三角形;(2)如图所示,AB ==AC =BC =∴222AC AB BC =+,∴△ABC 是直角三角形;(3)如图所示,AB BC CD AD ==== AC =∴222AC AB BC =+,∴∠ABC =90°,∴四边形ABCD 是正方形,∴10ABCDS AB BC =⋅=.【点睛】 本题主要考查了有理数与无理数,正方形的判定,勾股定理和勾股定理的逆定理,熟知相关知识是解题的关键.2、(1)见解析(2)见解析【分析】(1)利用垂直平分线和角平分线的尺规作图法,进行作图即可.(2)利用直角三角形斜边中线性质,以及角平分线的性质直接证明CED ∠与EDF ∠都是90︒,最后加上90ACB ∠=︒,即可证明结论.【详解】(1)答案如下图所示:分别以A 、B 两点为圆心,以大于2AB 长为半径画弧,连接弧的交点的直线即为垂直平分线l ,其与AB 的交点为D ,以点D 为圆心,适当长为半径画弧,分别交DA 于点M ,交CD 于点N ,交BD 于点T ,然后分别以点M ,N 为圆心,大于2MN 为半径画弧,连接两弧交点与D 点的连线交AC 于点E ,同理分别以点T ,N 为圆心,大于2TN 为半径画弧,连接两弧交点与D 点的连线交BC 于点F . (2)证明:D 点是AB 与其垂直平分线l 的交点,D ∴点是AB 的中点,CD ∴是Rt △ABC 上的斜边的中线,2AB CD AD ∴==, DE 、DF 分别是∠ADC ,∠BDC 的角平分线,12CDE ADE ADC ∴∠=∠=∠,12CDF CDB ∠=∠,EDF CDE CDF ∠=∠+∠,11190222EDF ADC CDB ADB ∴∠=∠+∠=∠=︒ , CD AD CDE ADE DE DE =⎧⎪∠=∠⎨⎪=⎩, ()CDE ADE SAS ∴∆∆≌,1902CED AED AEC ∴∠=∠=∠=︒, 在四边形CEDF 中,90ACB CED EDF ∠=∠=∠=︒,∴四边形CEDF 是矩形.【点睛】本题主要是考查了尺规作图、直角三角形斜边中线性质以及矩形的判定,熟练利用直角三角形斜边中线性质,找到三角形全等的判定条件,并且选择合适的矩形判定条件,是解决本题的关键.3、(1)等边;(2)见解析;(3)成立,理由见解析【分析】(1)根据含30度角的直角三角形的性质,直角三角形斜边上的中线等于斜边的一半可证明12BC OC OB AB ===,即可证明△OBC 是等边三角形; (2)先证明COP BOQ ∠=∠,即可利用SAS 证明COP BOQ ≌,得到CP BQ =;(3)先证明COP BOQ ∠=∠,即可利用SAS 证明COP BOQ ≌,得到CP BQ =.【详解】(1)∵∠ACB =90°,∠A =30°,O 是AB 的中点, ∴12BC OC OB AB ===, ∴△OBC 是等边三角形,故答案为:等边;(2)由(1)可知,OB OC =,60BOC ∠=︒, OPQ 是等边三角形,OP OQ ∴=,60POQ ∠=︒,60COP BOP BOQ ∴∠=︒-∠=∠,即COP BOQ ∠=∠,在COP 和BOQ △中OC OB COP BOQ OP OQ =⎧⎪∠=∠⎨⎪=⎩, ()COP BOQ SAS ∴≌,CP BQ ∴=;(3)成立,CP BQ =证明:由(1)可知,OB OC =,60BOC ∠=︒, OPQ 是等边三角形,OP OQ ∴=,60POQ ∠=︒,60COP BOP BOQ ∴∠=︒+∠=∠,即COP BOQ ∠=∠,在COP 和BOQ △中OC OB COP BOQ OP OQ =⎧⎪∠=∠⎨⎪=⎩, ()COP BOQ SAS ∴≌,CP BQ ∴=.【点睛】本题主要考查了等边三角形的性质与判定,全等三角形的性质与判定,含30度角的直角三角形的性质,直角三角形斜边上的中线,熟练掌握等边三角形的性质与判定条件是解题的关键.4、(1)见解析;(2)正方形ABCD的面积为2a【分析】(1)由等边三角形的性质得EO⊥AC,即BD⊥AC,再根据对角线互相垂直的平行四边形是菱形,即可得出结论;(2)证明菱形ABCD是正方形,即可得出答案.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AO=OC,∵△ACE是等边三角形,∴EO⊥AC(三线合一),即BD⊥AC,∴▱ABCD是菱形;(2)解:∵△ACE是等边三角形,∴∠EAC=60°由(1)知,EO⊥AC,AO=OC∴∠AEO=∠OEC=30°,△AOE是直角三角形,∵∠AED=2∠EAD,∴∠EAD=15°,∴∠DAO=∠EAO﹣∠EAD=45°,∵▱ABCD是菱形,∴∠BAD=2∠DAO=90°,∴菱形ABCD 是正方形,∴正方形ABCD 的面积=AB 2=a 2.【点睛】本题考查了菱形的判定与性质、正方形的判定与性质、平行四边形的性质、等边三角形的性质等知识,证明四边形ABCD 为菱形是解题的关键.5、(1)(2)见解析【分析】(1)根据30°角所对直角边等于斜边的一半,得到AD =3,根据等腰直角三角形,得到CD =AD =3,根据勾股定理,得到AC 的长即可;(2)根据斜边上的中线等于斜边的一半,得到DE =DC ,根据等腰三角形三线合一性质,证明即可.【详解】(1)AD BC ⊥90ADB ADC ∴∠=∠=︒30B ∠=︒,6AB =132AD AB ∴== 45ACD ∠=︒45CAD ∴∠=︒3AD CD ∴==AC ∴=(2)连接DE90ADB ∠=︒,AE BE =12ED AB ∴=, 12AD AB =,AD CD =, ED CD ∴=,GD EC ⊥,EG CG ∴=.【点睛】 本题考查了30°角的性质,等腰直角三角形的性质,斜边上中线的性质,等腰三角形三线合一性质,熟练掌握性质是解题的关键.。

平行四边形测试题含答案

平行四边形测试题含答案

数学试题第十八章平行四边形班级________ 姓名________ 得分_______一、选择题(本大题共10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是满足题目要求的,请把其代号填在答题栏中相应题号的下面)。

1.下列命题中,真命题的个数是( )①对角线互相平分的四边形是平行四边形.②两组对角分别相等的四边形是平行四边形.③一组对边平行,另一组对边相等的四边形是平行四边形.A.3个B.2个C.1个D.0个2.已知一个平行四边形两邻边的长分别为10和6,那么它的周长为( ).A. 16B. 60C.32D. 303.矩形、菱形、正方形都具有的性质是()A.每一条对角线平分一组对角B.对角线相等C.对角线互相平分D.对角线互相垂直4.有下列四个命题,其中正确的个数为( )①两条对角线互相平分的四边形是平行四边形②两条对角线相等的四边形是菱形③两条对角线互相垂直的四边形是正方形④两条对角线相等且互相垂直的四边形是正方形A.4B.3C.2D.15.若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是( )A.梯形B.矩形C.菱形D.正方形6.平行四边形ABCD中, ∠A:∠B:∠C:∠D的值可以是( )A. 4:3:3:4B. 7:5:5:7C. 4:3:2:1D. 7:5:7:57. 菱形的两条对角线长分别为6㎝和8㎝,则这个菱形的面积为( )8.(2013·襄阳中考)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形A BCD的两条对角线的和是( )A.18B.28C.36D.469.如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为( )A.4cmB.5cmC.6cmD.8cm10.如图,在周长为20cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD交AD于E,则△ABE 的周长为( )A.4 cmB.6 cmC.8 cmD.10 cm二、填空题(本大题共8个小题,11至14题每题3分,15至18题每题4分,共28分.请把答案填在题中的横线上)11.在平行四边形ABCD中, ∠A=40º,则∠B=______.12.矩形的一边长是3.6㎝, 两条对角线的夹角为60º,则矩形对角线长是_____ .13.等腰梯形两条对角线互相垂直,一条对角线长为6㎝,则这个梯形的面积为 .14.在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是 .(写出一种即可)15.如图,在平行四边形ABCD中,AE⊥BC于E,AC=AD, ∠CAE=56º,则∠D= .16.如图,在平行四边形ABCD中,AD=5cm,AB⊥BD,点O是两条对角线的交点,OD=2 cm,则AB=______cm.17.如图所示,平行四边形ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点M,N,若△CON的面积为2,△DOM的面积为4,则△AOB的面积为______.18.如图,在▱ABCD中,对角线AC,BD相交于点O,如果AC=14,BD=8,AB=x,那么x的取值范围是______.三、解答题(本大题共5个小题,共62分。

2022-2023学年北师大版八年级数学下册第六章《平行四边形》测试卷附答案解析

2022-2023学年北师大版八年级数学下册第六章《平行四边形》测试卷附答案解析

2022-2023学年八年级数学下册第六章《平行四边形》测试卷一、单选题1.下列条件中不能判定四边形ABCD 是平行四边形的是()A .AB CD ∥,AB CD=B .AB CD ∥,AD BC ∥C .AB CD ∥,AD BC =D .AB CD ∥,A C∠=∠2.下列∠A :∠B :∠C :∠D 的值中,能判定四边形ABCD 是平行四边形的是()A .1:2:3:4B .1:4:2:3C .1:2:2:1D .3:2:3:23.下列说法正确的是()A .平行四边形是轴对称图形B .平行四边形的邻边相等C .平行四边形的对角线互相垂直D .平行四边形的对角线互相平分4.已知一个多边形的内角和与外角和的和为2160°,这个多边形的边数为()A .9B .10C .11D .125.如图,▱ABCD 的周长为36,对角线AC 、BD 相交于点O ,点E 是CD 的中点,BD=12,则△DOE 的周长为()A .15B .18C .21D .246.一个正多边形每个内角与它相邻外角的度数比为3:1,则这个正多边形是()A .正方形B .正六边形C .正八边形D .正十边形7.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A .∠A =∠1+∠2B .2∠A =∠1+∠2C .3∠A =2∠1+∠2D .3∠A =2(∠1+∠2)8.如图,P 是面积为S 的ABCD Y 内任意一点,PAD 的面积为1S ,PBC 的面积为2S ,则()A .122S S S +>B .122S S S +<C .122SS S +=D .12S S +的大小与P 点位置有关9.如图,小明从A 点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A 点时,一共走的路程是()A .100米B .110米C .120米D .200米10.如图,△ABC 是等边三角形,P 是三角形内一点,PD ∥AB ,PE ∥BC ,PF ∥AC ,若△ABC 的周长为24,则PD +PE +PF =()A .8B .9C .12D .1511.有下列说法:①平行四边形具有四边形的所有性质:②平行四边形是中心对称图形:③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形.其中正确说法的序号是().A .①②④B .①③④C .①②③D .①②③④12.如图,△ABC 的周长为19,点D ,E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M ,若BC =7,则MN 的长度为()A.32B.2C.52D.3二、填空题13.一个多边形的内角和是它的外角和的4倍,这个多边形是_____边形.14.一个多边形外角和是内角和的29,则这个多边形的边数为________.15.一个多边形的每一个外角都等于36°,则这个多边形的边数为____________.16.一个多边形,除了一个内角外,其余各角的和为3000°,则内角和是______.17.如图,▱ABCD中,AB=3cm,BC=5cm,BE平分∠ABC交AD于E点,CF平分∠BCD交AD于F 点,则EF的长为_____cm.18.如图,将等边三角形、正方形和正五边形按如图所示的位置摆放.1230∠=∠= ,则3∠=___.19.如图, ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=___厘米.20.如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF =18°,则∠PFE的度数是__________.21.如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,∠EAF =45°,且32AE AF +=平行四边形ABCD 的周长等于______.三、解答题22.在 ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF .(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB .23.在ABC 中,点D ,F 分别为边AC ,AB 的中点.延长DF 到点E ,使DF EF =,连接BE .(1)求证:ADF BEF ≌△△;(2)求证:四边形BCDE 是平行四边形.24.如图,在Rt △ABC 中,∠ACB =90°,点D ,E 分别是边AB ,AC 的中点,延长BC 到点F ,使CF =12BC .连结CD 、EF ,那么CD 与EF 相等吗?请证明你的结论.25.已知:如图A 、C 是▱DEBF 的对角线EF 所在直线上的两点,且AE =CF .求证:四边形ABCD 是平行四边形.26.如图所示,点E ,F ,G ,H 分别是四边形ABCD 的边,,,AB BC CD DA 的中点,求证:四边形EFGH 是平行四边形.27.如图,平行四边形ABCD 的对角线AC ,BD 相交于О点,DE AC ⊥于E 点,BF AC ⊥于F .(1)求证:四边形DEBF 为平行四边形;(2)若20AB =,13AD =,21AC =,求DOE 的面积.28.如图,四边形ABCD 中,∠A =∠ABC =90°,AD =1,BC =3,点E 是边CD 的中点,连接BE 并延长与AD 的延长线交于点F .(1)求证:四边形BDFC 是平行四边形;(2)若BC =BD ,求BF 的长.29.如图,点A 、D 、C 、B 在同一条直线上,AC BD =,AE BF =,//AE BF .求证:(1)ADE BCF ∆≅∆;(2)四边形DECF 是平行四边形.30.如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD ,等边△ABE ,已知∠BAC =30°,EF ⊥AB ,垂足为F ,连接DF(1)试说明AC =EF ;(2)求证:四边形ADFE 是平行四边形.31.如图,△ABC 中,D 是AB 边上任意一点,F 是AC 中点,过点C 作CE //AB 交DF 的延长线于点E ,连接AE ,CD .(1)求证:四边形ADCE 是平行四边形;(2)若∠B =30°,∠CAB =45°,2AC =,求AB 的长.32.如图,在四边形ABCD 中,AB CD =,BE DF =;AE BD ⊥,CF BD ⊥,垂足分别为E ,F .(1)求证:ABE ≌CDF ;(2)若AC 与BD 交于点O ,求证:AO CO =.33.如图,在平行四边形ABCD 中,点E 是边AD 的中点,连接CE 并延长交BA 的延长线于点F ,连接AC ,DF .(1)求证: AEF ≌ DEC ;(2)求证:四边形ACDF 是平行四边形.34.如图,在□ABCD 中,点O 是对角线AC 、BD 的交点,EF 过点O 且垂直于AD .(1)求证:OE =OF ;(2)若S ▱ABCD =63,OE =3.5,求AD 的长.35.如图,AB ,CD 相交于点O ,AC ∥DB ,OA =OB ,E 、F 分别是OC ,OD 中点.(1)求证:OD =OC .(2)求证:四边形AFBE 平行四边形.36.已知:如图,在ABC 中,中线,BE CD 交于点,,O F G 分别是,OB OC 的中点.求证:(1)//DE FG ;(2)DG 和EF 互相平分.37.如图,▱ABCD 中,BD ⊥AD ,∠A =45°,E 、F 分别是AB ,CD 上的点,且BE =DF ,连接EF 交BD 于O .(1)求证:BO =DO ;(2)若EF ⊥AB ,延长EF 交AD 的延长线于G ,当FG =1时,求AD 的长.38.如图,点D 是ABC 内一点,点E ,F ,G ,H 分别是AB ,AC ,CD ,BD 的中点.(1)求证:四边形EFGH 是平行四边形;(2)如果∠BDC =90°,∠DBC =30°,2CD =,AD =6,求四边形EFGH 的周长.39.在四边形ABCD 中,已知AD ∥BC ,∠B =∠D ,AE ⊥BC 于点E ,AF ⊥CD 于点F .(1)求证:四边形ABCD 是平行四边形;(2)若AF =2AE ,BC =6,求CD 的长.40.如图,在四边形ABCD 中,//,90,16cm,12cm,21cm AD BC B AD AB BC ∠==== .动点P 从点B 出发,沿射线BC 的方向以每秒2cm 的速度运动到C 点返回,动点Q 从点A 出发,在线段AD 上以每秒1cm 的速度向点D 运动,点P ,Q 分别从点B ,A 同时出发,当点Q 运动到点D 时,点P 随之停止运动,设运动时间为t (秒).(1)当010.5t <<时,若四边形PQDC 是平行四边形,求出满足要求的t 的值;(2)当010.5t <<时,若以C ,D ,Q ,P 为顶点的四边形面积为260cm ,求相应的t 的值;(3)当10.516t ≤<时,若以C ,D ,Q ,P 为顶点的四边形面积为260cm ,求相应的t 的值.41.如图,在平面直角坐标系xOy 中,已知直线AB :y =23x +4交x 轴于点A ,交y 轴于点B .直线CD :y =-13x -1与直线AB 相交于点M ,交x 轴于点C ,交y 轴于点D .(1)直接写出点B 和点D 的坐标;(2)若点P 是射线MD 的一个动点,设点P 的横坐标是x ,△PBM 的面积是S ,求S 与x 之间的函数关系;(3)当S =20时,平面直角坐标系内是否存在点E ,使以点B ,E ,P ,M 为顶点的四边形是平行四边形?若存在,请直接写出点P 坐标并求出所有符合条件的点E 的坐标;若不存在,请说明理由.42.在ABC 中,AB AC =,点D 在边BC 所在的直线上,过点D 作//DF AC 交直线AB 于点F ,//DE AB 交直线AC 于点E .(1)当点D 在边BC 上时,如图①,求证:DE DF AC +=.(2)当点D 在边BC 的延长线上时,如图②,线段DE ,DF ,AC 之间的数量关系是_____,为什么?(3)当点D 在边BC 的反向延长线上时,如图③,线段DE ,DF ,AC 之间的数量关系是____(不需要证明).43.如图,在平面直角坐标系xOy 中,直线y =-12x +32与y =x 相交于点A ,与x 轴交于点B .(1)求点A ,B 的坐标;(2)在平面直角坐标系xOy 中,是否存在一点C ,使得以O ,A ,B ,C 为顶点的四边形是平行四边形?如果存在,试求出所有符合条件的点C 的坐标;如果不存在,请说明理由;(3)在直线OA 上,是否存在一点D ,使得△DOB 是等腰三角形?如果存在,试求出所有符合条件的点D 的坐标,如果不存在,请说明理由.参考答案:1.C2.D3.D4.D5.A6.C7.B8.C9.A10.A11.D12.C 13.十14.1115.1016.3060 17.118.42︒19.320.18.21.1222.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD .∵BE ∥DF ,BE =DF ,∴四边形BFDE 是平行四边形.∵DE ⊥AB ,∴∠DEB =90°,∴四边形BFDE 是矩形;(2)∵四边形ABCD 是平行四边形,∴AB ∥DC ,∴∠DFA =∠FAB .在Rt △BCF 中,由勾股定理,得BC 22FC FB +2234+,∴AD =BC =DF =5,∴∠DAF =∠DFA ,∴∠DAF =∠FAB ,即AF 平分∠DAB .23.【详解】(1)证明:∵点F 为边AB 的中点,∴BF AF =,在ADF △与BEF △中,AF BF AFD BFE DF EF =⎧⎪∠=∠⎨⎪=⎩,∴(SAS)ADF BEF △△≌;(2)证明:∵点D 为边AC 的中点,∴AD DC =,由(1)得ADF BEF ≌△△,∴AD BE =,ADF BEF ∠=∠,∴DC BE =,//DC BE ,∴四边形BCDE 是平行四边形.24.【详解】解:结论:CD =EF .理由如下:∵D 、E 分别是边AB 、AC 的中点,∴DE ∥BC ,DE 12=BC .∵CF 12=BC ,∴DE =CF ,∴四边形DEFC 是平行四边形,∴CD =EF .25.【详解】证明:∵平行四边形DEBF ,∴//DE BF ,//DF BE ,∴DEF BFE ∠=∠,DFE BEF ∠=∠,∵180DEF DEA ∠+∠=︒,180BFE BFC ∠+∠=︒,180DFE DFC ∠+∠=︒,180BEF BEA ∠+∠=︒,∴DEA BFC ∠=∠,DFC BEA ∠=∠,∵平行四边形DEBF ,∴DE BF =,DF BE =,在DEA △和BFC △中,DE BF DEA BFC AE CF =⎧⎪∠=∠⎨⎪=⎩∴DEA BFC △≌△,∴AD BC =,在DFC △和BEA △中,DF BE DFC BEA AE CF =⎧⎪∠=∠⎨⎪=⎩∴DFC BEA △≌△,∴CD AB =,∴四边形ABCD 是平行四边形.26.【详解】解:如图,连接BD.∵点E ,H 分别是线段,AB DA 的中点,∴EH 是ABD △的中位线,∴EH ∥BD ,12EH BD =.同理,1//,2FG BD FG BD =.∴//,=EH FG EH FG ,∴四边形EFGH 是平行四边形.27.【详解】(1)证明:,DE AC BF AC ⊥⊥ ,,90DE BF AED CFB ∴∠=∠=︒ ,四边形ABCD 是平行四边形,,AD BC AD BC ∴= ,DAE BCF ∴∠=∠,在ADE V 和CBF V 中,90AED CFB DAE BCF AD CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()ADE CBF AAS ∴≅ ,DE BF ∴=,又DE BF ,∴四边形DEBF 为平行四边形;(2)解: 四边形ABCD 是平行四边形,20,21AB AC ==,12120,22CD AB OA AC ∴====,,13DE AC AD ⊥= ,22222AD AE DE CD CE ∴-==-,即22221320AE CE -=-,()()231CE AE CE AE ∴+-=,即()231AC CE AE -=,23111CE AE AC∴-==①,又21CE AE AC +== ②,∴联立①、②得:5AE =,2211,122OE OA AE DE AD AE ∴=-==-=,则DOE 的面积为11111233222OE DE ⋅=⨯=.28.(1)证明:∵90A ABC ∠∠︒==,∴180A ABC ∠∠︒+=,∴BC ∥AF ,∴CBE DFE ∠∠=,∵E 是边CD 的中点,∴CE =DE ,在△BEC 与△FED 中,CBE DFEBEC FED CE DE ∠∠⎧⎪∠=∠⎨⎪=⎩=∴△BEC ≌△FED (AAS ),∴D BC F =,∴四边形BDFC 是平行四边形;(2)解:∵BD =BC =3,∠A =90°,1AD =,∴22223122AB BD AD -=-==∵四边形BDFC 是平行四边形∴3BC DF ==∴4AF =∴()222222426BF AB AF ++==29.【详解】证明:(1)AC BD = ,AC CD BD CD ∴-=-,即AD BC =,//AE BF ,A B ∴∠=∠,在ADE ∆与BCF ∆中,AD BC A B AE BF =⎧⎪∠=∠⎨⎪=⎩,()ADE BCF SAS ∴∆≅∆;(2)由(1)得:ADE BCF ∆≅∆,DE CF ∴=,ADE BCF ∠=∠,EDC FCD ∴∠=∠,//DE CF ∴,∴四边形DECF 是平行四边形.30.【详解】证明:(1)∵Rt △ABC 中,∠BAC =30°,∴AB =2BC .又∵△ABE 是等边三角形,EF ⊥AB ,∴AB =2AF .∴AF =BC .∵在Rt △AFE 和Rt △BCA 中,AF =BC ,AE =BA ,∴△AFE ≌△BCA (HL ).∴AC =EF .(2)∵△ACD 是等边三角形,∴∠DAC =60°,AC =AD .∴∠DAB =∠DAC +∠BAC =90°.∴EF //AD .∵AC =EF ,AC =AD ,∴EF =AD .∴四边形ADFE 是平行四边形.31.(1)证明:∵AB //CE ,∴∠CAD =∠ACE ,∠ADE =∠CED .∵F 是AC 中点,∴AF =CF .在△AFD 与△CFE 中,CAD ACE ADE CED AF CF ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AFD ≌△CFE (AAS ),∴DF =EF ,∴四边形ADCE 是平行四边形;(2)解:过点C 作CG ⊥AB 于点G,∵∠CAB =45°,∴AG CG =,在△ACG 中,∠AGC =90°,∴222AG CG AC +=,∵2AC =CG =AG =1,∵∠B =30°,∴12CG BC =,∴2BC =,在Rt △BCG 中,22413BG BC CG =-=-=,∴13AB AG BG =+=.32.【详解】(1)证明:∵AE BD ⊥,CF BD ⊥,∴90AEB CFD ∠=∠=︒,∵AB CD =,BE DF =,∴ABE ≌CDF .(2)由(1)ABE ≌CDF ,∴AE CF =,∵AE BD ⊥,CF BD ⊥,∴90AEO CFO ∠=∠=︒,∵AOE COF ∠=∠,∴()AEO CFO AAS ≌∴AO CO =.33.【详解】(1)∵在平行四边形ABCD 中,AB ∥CD ,∴∠FAE =∠CDE ,∵点E 是边AD 的中点,∴AE =DE ,在△AEF 和△DEC 中FAE CDE AE DE AEF DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEF ≌△DEC (ASA ).(2)∵△AEF ≌△DEC ,∴AF =DC ,∵AF ∥DC ,∴四边形ACDF 是平行四边形.34.(1)解:∵四边形ABCD 是平行四边形,O 是AC 与BD 的交点,∴AO =CO ,AD ∥BC ,∴∠OAE =∠OCF ,∠OEA =∠OFC ,∴△AOE ≌△COF (AAS ),∴OE =OF ;(2)解:由(1)得OE =OF =3.5,∴EF =7,∵AD ∥BC ,EF ⊥AD ,∴EF 的长即为平行四边形ABCD 中AD 边上的高,∵四边形ABCD 的面积为63,∴=63AD EF ⋅,∴AD =9.35.【详解】证明:(1)∵AC ∥DB ,∴∠CAO =∠DBO ,∵∠AOC =∠BOD ,OA =OB ,∴△AOC ≌△BOD ,∴OC =OD ;(2)∵E 是OC 中点,F 是OD 中点,∴OE =12OC ,OF =12OD ,∵OC =OD ,∴OE =OF ,又∵OA =OB ,∴四边形AFBE 是平行四边形.36.【详解】(1)在△ABC 中,∵BE 、CD 为中线∴AD =BD ,AE =CE ,∴DE ∥BC 且DE =12BC .在△OBC 中,∵OF =FB ,OG =GC ,∴FG ∥BC 且FG =12BC .∴DE ∥FG(2)由(1)知:DE ∥FG ,DE =FG .∴四边形DFGE 为平行四边形.∴DG 和EF 互相平分37.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴DC AB ∥,∴OBE ODF ∠=∠,在OBE △与ODF △中OBE ODF BOE DOF BE DF =⎧⎪=⎨⎪=⎩∠∠∠∠∴()OBE ODF AAS ≌△△,∴BO DO =.(2)解:∵BD AD ⊥,∴90ADB ∠=︒,∴45DBA A ∠=∠=︒,∴AD DB =,∴EF AB ⊥,∴45G A ∠=∠=︒,∵EF AB ⊥,,AB DC ∴DF OG ⊥,∴45GDF G ==︒∠∠,∴GDF 为等腰直角三角形,∴1DF FG ==,∴2222112DG DF FG =+=+=,∵BD AD ⊥,∴90ADB GDO ∠=∠=︒,∴45GOD G ∠=∠=︒,∴2DO DG ==由(1)OBE ODF ≌△△,∴=2OB OD =∴2222DB OD OB =+==22AD DB ==,故答案为:22AD =.38.(1)证明:∵点E ,F ,G ,H 分别是AB ,AC ,CD ,BD 的中点.∴EH =FG =12AD ,EF HG ==12BC ,∴四边形EFGH 是平行四边形;(2)∵∠BDC =90°,∠DBC =30°,∴BC =2CD =4.由(1)得:四边形EFGH 的周长=EH +GH +FG +EF =AD +BC ,又∵AD =6,∴四边形EFGH 的周长=AD +BC =6+4=10.39.【详解】(1)证明:∵AD //BC ,∴∠BAD +∠B =180°,∵∠B =∠D ,∴∠BAD +∠D =180°,∴AB //CD ,又∵AD//BC,∴四边形ABCD是平行四边形;(2)解:∵AE⊥BC于点E,AF⊥CD于点F,∴平行四边形的面积=BC×AE=CD×AF,∵AF=2AE,∴BC=2CD=6,∴CD=3.40.【详解】解:(1)∵四边形PQDC是平行四边形,∴DQ=CP,当0<t<10.5时,P、Q分别沿AD、BC运动,如图1所示:∵DQ=AD-AQ=16-t,CP=21-2t∴16-t=21-2t解得:t=5;即当t=5秒时,四边形PQDC是平行四边形;(2)当0<t<10.5时,P、Q分别沿AD、BC运动,如图1所示:CP=21-2t,DQ=16-t,若以C,D,Q,P为顶点的四边形面积为60cm2,则12(DQ+CP)×AB=60,即12(16-t+21-2t)×12=60,解得:t=9;即当0<t<10.5时,若以C,D,Q,P为顶点的四边形面积为60cm2,t的值为9秒;(3)当10.5≤t<16时,如图2所示,点P到达C点返回,CP=2t-21,DQ=16-t,则同(2)得:12(DQ+CP)×AB=60,即12(16-t+2t-21)×12=60,解得:t=15.即当10.5≤t<16时,若以C,D,Q,P为顶点的四边形面积为60cm2,t的值为15秒.41.【详解】解:(1)∵点B是直线AB:y=23x+4与y轴的交点坐标,∴B(0,4),∵点D 是直线CD :y =-13x -1与y 轴的交点坐标,∴D (0,-1);(2)如图1,∵直线AB 与CD 相交于M ,∴243113y x y x ⎧=⎪⎪⎨⎪=-⎪⎩+①-②①-②可得:x +5=0,∴x =-5,把x =-5代入②可得:y =23,∴M 坐标为(-5,23),∵B (0,4),D (0,-1),∴BD =5,∵点P 在射线MD 上,当P 在MD 的延长线上时,x ≥0,S =S △BDM +S △BDP =12×5(5+x )=52522x +,当P 在线段MD 上时,-5<x <0,S =S △BDM -S △BDP =12×5(5+x )=52522x +,∴S =52522x +(x >-5)(3)如图,由(2)知,S =52522x +,当S =20时,52522x +=20,∴x =3,∴P (3,-2),①当BP 是对角线时,取BP 的中点G ,连接MG 并延长取一点E '使GE '=GM ,设E '(m ,n ),∵B (0,4),P (3,-2),∴BP 的中点坐标为(32,1),∵M (-5,23),∴25331222nm +-+==,,∴m =8,n =43,∴E '(8,43),②当AB 为对角线时,同①的方法得,E (-8,203),③当MP 为对角线时,同①的方法得,E ''(-2,-163),即:满足条件的点E 的坐标为(8,43)、(-8,203)、(-2,-163).42.【详解】证明:(1)∵//DF AC ,//DE AB .∴四边形AFDE 是平行四边形.∴DF AE =.∵AB AC =.∴B C ∠=∠.∵//DE AB .∴EDC B ∠=∠.∴EDC C ∠=∠.∴DE EC =.∴DE DF EC AE AC +=+=.(2)DF AC DE =+.理由:∵//DF AC ,//DE AB ,∴四边形AFDE 是平行四边形.∴AE DF =.∵//DE AB ,∴B BDE ∠=∠.∵AB AC =,∴B ACB ∠=∠.∵DCE ACB ∠=∠,∴BDE DCE ∠=∠.∴DE CE =.∴AC DE AC CE AE DF +=+==.(3)DE AC DF=+理由:∵DF ∥AC ,DE ∥AB ,∴四边形AEDF是平行四边形,∴DF=AE,∠EDC=∠ABC,又∵∠AB=AC,∴∠ABC=∠C∴∠EDC=∠C,∴DE=EC,∴DE EC AE AC AC DF==+=+.43.【详解】(1)∵直线y=-12x+32与y=x相交于点A,∴联立得1322y xy x⎧=-+⎪⎨⎪=⎩,解得11xy=⎧⎨=⎩,∴点A(1,1),∵直线y=-12x+32与x轴交于点B,∴令y=0,得-12x+32=0,解得x=3,∴B(3,0),(2)存在一点C,使得以O,A,B,C为顶点的四边形是平行四边形.①如图1,过点A作平行于x轴的直线,过点O作平行于AB的直线,两直线交于点C,∵AC∥x轴,OC∥AB,∴四边形CABO是平行四边形,∵A(1,1),B(3,0),∴AC=OB=3,∴C(-2,1),②如图2,过点A作平行于x轴的直线,过点B作平行于AO的直线,两直线交于点C,∵AC∥x轴,BC∥AO,∴四边形CAOB是平行四边形,∵A(1,1),B(3,0),∴AC=OB=3,∴C(4,1),③如图3,过点O作平行于AB的直线,过点B作平行于AO的直线,两直线交于点C,∵OC∥AB,BC∥AO,∴四边形CBAO是平行四边形,∵A(1,1),B(3,0),∴AO=BC,OC=AB,作AE⊥OB,CF⊥OB,易得OE=EF=FB=1,∴C(2,-1),(3)在直线OA上,存在一点D,使得△DOB是等腰三角形,①如图4,当OB=OD时,作DE⊥x轴,交x轴于点E∵OB=3,点D在OA上,∠DOE=45°∴DE=OE=32,∴D(-32,-32),②如图5,当OD=OB时,作DE⊥x轴,交x轴于点E∵OB=3,点D在OA上,∠DOE=45°∴DE=OE=322,∴D(322,322),③如图6,当OB=DB时,21∵∠AOB =∠ODB =45°,∴DB ⊥OB ,∵OB =3,∴D (3,3),④如图7,当DO =DB 时,作DE ⊥x 轴,交x 轴于点E ∵∠AOB =∠OBD =45°,∴OD ⊥DB ,∵OB =3,∴OE =32,AE =32,∴D (32,32).综上所述,在直线OA 上,存在点D (-322,-322),D (322,322),D (3,3)或D (32,32),使得△DOB 是等腰三角形.。

第18章 平行四边形单元测试题1(全)

第18章 平行四边形单元测试题1(全)

第18章平行四边形单元测试题(1)一、单选题1.“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm 的正方形ABCD沿对角线BD方向平移1cm得到正方形A′B′C′D′,形成一个“方胜”图案,则点D′,B之间的距离为()A.1cm B.2cm C.(2√2+1)cm D.(2√2−1)cm2题图3题图6题图7题图2.满足下列条件的四边形是正方形的是()A.对角线互相垂直且相等的平行四边形B.对角线互相垂直的菱形C.对角线相等的矩形D.对角线互相垂直平分的四边形3.如图,点P是菱形ABCD内一点,PE⊥AB,PF⊥AD,垂足分别是E和F,若PE=PF,下列说法不正确的是()A.点P一定在菱形ABCD的对角线AC上B.可用HL证明Rt△AEP≌Rt△AFPC.AP平分∠BAD D.点P一定是菱形ABCD的两条对角线的交点4.在▱ABCD中,若∠A=60°,则∠D的度数是()A.60∘B.90∘C.120∘D.30∘5.平行四边形的两条对角线将它分成4个小三角形,则这4个小三角形的面积()A.都不相等B.不都相等C.都相等D.结论不确定6.在平行四边形ABCD中,AC,BD相交于O,AC=10,BD=8,则AD的长度的取值范围是()A.AD>1B.1<AD<9C.AD<9D.AD>97.如图,矩形ABCD 的对角线AC与BD相交于点O,∠AOB=60°,AB=3,则OC等于()A.3 B.3.5 C.4 D.58.如图,M、N分别是△ABC的边AB、AC的中点,若∠A=55°,∠ANM=45°,则∠B=().A.20°B.45°C.80°D.70°8题图9题图10题图15题图9.如图,在▱ABCD中,∠A=45°,AD=2,点M、N分别是边AB、BC上的动点,连接DN、MN,点E、F分别为DN、MN的中点,连接EF,则EF的最小值为( )D.2√2A.1 B.√2C.√22BD的长为半径作弧,两弧相交于两点,过这两点10.如图,BD为▱ABCD的对角线,分别以B,D为圆心,大于12的直线分别交AD,BC于点E,F,交BD于点O,连接BE,DF.根据以上尺规作图过程,下列结论不一定正确的是() A.点O为▱ABCD的对称中心B.BE平分∠ABDC.S△ABE:S△BDF=AE:ED D.四边形BEDF为菱形11.在▱ABCD中,AC、BD是两条对角线,如果添加一个条件,可推出在▱ABCD中是菱形,那么这个条件可以是()A.AB=CD B.AC=BD C.AC⊥BD D.AB⊥BD12.给出下列判断:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线相等的四边形是矩形;③有一条对角线平分一个内角的平行四边形为菱形.其中不正确的有( )A.3个B.2个C.1个D.0个1至12题答案:二、填空题13.已知平行四边形的周长是30,相邻两边的长相差3,则两条邻边中较长的边长为.14.一个直角三角形斜边上的中线和高分别是6和5,它的面积=.15.如图,在△ABC中,D,E分别是边AB,BC的中点,若DE的长是2√2,则AC的长为.16.如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=8,EF=1,则BC长为.16题图19题图20题图21题图17.平行四边形的周长等于56 cm,两邻边长的比为3∶1,那么这个平行四边形较长的边长为 . 18.若顺次连接对角线长分别为10和16的菱形ABCD四边中点形成新的四边形,则该新四边形的周长为.19.如图已知正方形ABCD的边长为16,M在DC上,且DM=4,N是AC上的一动点,则DN+MN的最小值是 . 20.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E为边BC的中点,连接OE,已知OE=a,则菱形ABCD 的周长为(用含a的式子表示).21.如图,在平面直角坐标系内,矩形OABC的顶点A(3,0),C(0,9),点D和点E分别位于线段AC,AB 上,将△ABC沿DE对折,恰好能使点A和点C重合.若x轴上有一点P,使△AEP为等腰三角形,则点P的坐标为.22.如图,在同一平面内,直线l同侧有三个正方形,A,B,C,若A,C的面积分别为9和4,则阴影部分的总面积为22题图23题图13至22题答案:三、解答题23.已知,如图所示,折叠长方形OABC的一边BC,使点B落在AO边的点D处,已知B(10,8),求:(1)求D的坐标;(2)求E的坐标.)×√624.(1)计算:(2√12−√13(2)直角三角形ABC中,∠ACB=90°,D是斜边AB的中点,两直角边AC=6,BC=8,求CD的长.24题图25题图25.如图,在△ABC中.【实践与操作】请利用尺规作图完成以下操作:(1)作△ABC的角平分线AD,交边BC于点D;(2)作线段AD的垂直平分线,分别交边AB,AC于点E,F;(3)连接DE,连接DF.(要求:不写作法,标明字母);【猜想与证明】试猜想四边形AEDF的形状,并加以证明.26.如图,已知A(2,3)和直线y=x.(1)分别写出点A关于直线y=x的对称点B和关于原点的对称点C的坐标;(2)若点D是点B关于原点的对称点,判断四边形ABCD的形状,并说明理由.27.在四边形ABCD中,AB、BC、CD、DA的中点分别为P、Q、M、N.(1)如图1,试判断四边形PQMN怎样的四边形,并证明你的结论;(2)若在AB上取一点E,连接DE,CE,恰好△ADE和△BCE都是等边三角形(如图2),判断此时四边形PQMN 的形状,并证明你的结论.28.如图,已知△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足是E,F是BC的中点,求证:BD=2EF.参考答案:1.D【分析】先求出BD,再根据平移性质得BB′=1cm,然后由DB′=BD−BB′求解即可.【详解】解:由题意,BD=√22+22=2√2(cm),由平移性质得BB′=1cm,∴点D,B′之间的距离为DB′=BD−BB′=(2√2−1)cm,故选:D.【点睛】本题考查平移性质、正方形的性质,熟练掌握平移性质是解答的关键.2.A【分析】根据正方形的判定方法即可求解.【详解】解:A选项,对角线互相垂直且相等的平行四边形是正方形,故A选项正确,符合题意;B选项,对角线互相垂直的菱形还是菱形,故B选项错误,不符合题意;C选项,对角线相等的菱形是正方形,故C选项错误,不符合题意;D选项,对角线互相垂直平分的长方形是正方形,故D选项错误,不符合题意;故选:A.【点睛】本题主要考查正方形的判定,掌握“对角线相互垂直的矩形是正方形”,“对角线相等的菱形是正方形”,“对角线互相垂直且相等的平行四边形是正方形”的知识是解题的关键.3.D【详解】试题分析:根据到角的两边距离相等的点在角的平分线上判断出AP平分∠BAD,根据菱形的对角线平分一组对角线可得AC平分∠BAD,然后对各选项分析判断利用排除法求解.∵PE⊥AB,PF⊥AD,PE=PF,∴AP平分∠BAD,∵四边形ABCD是菱形,∴对角线AC平分∠BAD,故A、C选项结论正确;可以利用“HL”证明Rt△AEP≌Rt△AFP,故B选项正确;点P在AC上,但不一定在BD上,所以,点P一定是菱形ABCD的两条对角线的交点不一定正确.考点:菱形的性质;全等三角形的判定;角平分线的性质4.C【分析】本题主要考查了平行四边形的性质,掌握平行四边形的邻角互补成为解题的关键.如图:由平行四边形的性质得出∠A+∠D=180°,据此即可解答.【详解】解:如图:∵▱ABCD中,AB∥CD,∴∠A+∠D=180°,∵∠A=60°,∴∠D=180°−∠A=120°.故选:C.5.C【分析】根据平行四边形的性质,对角线互相平分,则可知,两条对角线将它分成4个小三角形都是等底等高的,因此面积相等.【详解】如图,作DQ⊥AC,BP⊥AC∵▱ABCD中,CE=EA,DE=EB,AD=BC∴△ADE≌△CBE(SSS),∴DQ=PBCE⋅DQ,∴4个小三角形的面积都可表示为12∴4个小三角形的面积相等.故选:C【点睛】此题考查平行四边形的性质,解题关键是三角形面积公式为底乘以高的一半,三角形等底等高即可证明面积相等.6.B【分析】根据平行四边形性质可知,平行四边形的对角线互相平分,则AO,DO,与AD三边组成三角形,然后再利用三角形三边关系解题即可.【详解】解:设AC,BD交于点O,平行四边形对角线平分,则有AO=CO=5,BO=DO=4,再根据三角形两边之和大于第三边,两边之差小于第三边,可得:1<AD<9.故选:B .【点睛】本题结合三角形的三边关系,考查了平行四边形的对角线互相平分这一性质,解题时注意数形结合. 7.A【分析】由矩形的性质得出OA =OB ,由已知条件证出△AOB 是等边三角形,得出OA =AB =3,得出OA =OC =3即可.【详解】解:∵四边形ABCD 是矩形, ∴OA =12AC ,OB =12BD ,AC =BD ,∴OA =OB , ∵∠AOB =60°,∴△AOB 是等边三角形, ∴OA =AB =3, ∴OA =OC =3; 故选:A .【点睛】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,并能进行推理论证是解题的关键. 8.C【分析】根据三角形中位线定理得出MN //BC ,进而利用平行线的性质解答即可. 【详解】解:∵M 、N 分别是△ABC 的边AB 、AC 的中点,∠A =55°,∠ANM =45°, ∴MN //BC ,∴∠C =∠ANM =45°,∴∠B =180°−∠A −∠C =180°−55°−45°=80°, 故选:C .【点睛】此题考查三角形中位线定理,关键是根据三角形中位线定理得出MN //BC 解答. 9.C【分析】连接DM ,根据中位线的性质得出EF =12DM ,当DM ⊥AB 时,DM 最小,根据等腰直角三角形的性质,勾股定理即可求解.【详解】解:如图,连接DM ,∵E、F分别为DN、MN的中点,∴EF=12DM,∴EF的最小值,就是DM的最小值,当DM⊥AB时,DM最小,∴DM=√22AD=√2∴EF=12DM=√22,故选:C.【点睛】本题考查了中位线的性质,垂线段最短,勾股定理,等腰直角三角形的性质,掌握中位线的性质是解题的关键.10.B【分析】由作图知,EF是线段BD的垂直平分线,利用平行四边形的性质可判断选项A;根据菱形的判定定理可判断选项C;根据菱形的性质得到S△BDF=S△BDE,可判断选项D;BE不一定平分∠ABD,选项B不正确.【详解】解:由作图知,EF是线段BD的垂直平分线,即点O为▱ABCD的对称中心,故选项A正确,不符合题意;∵四边形ABCD是平行四边形,∴DE∥BF,∴∠DEF=∠BFE,∵EF是线段BD的垂直平分线,∴BE=ED,BF=FD,∠BFE=∠EFD,∴∠DEF=∠EFD,∴DE=DF,∴DE=DF=BE=BF,∴四边形BEDF为菱形,故选项D正确,不符合题意;∴S△BDF=S△BDE,∴S△ABE:S△BDF=S△ABE:S△BDE=AE:ED,故选项C正确,不符合题意;BE不一定平分∠ABD,故选项B不正确,符合题意;故选:B.【点睛】本题考查平行四边形的性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11.C【分析】根据菱形的定义和判定定理逐项作出判断即可.【详解】解:A. AB=CD,无法判断四边形ABCD是菱形,不合题意;B. AC=BD,根据对角线相等的平行四边形是矩形可以判断□ABCD是矩形,不合题意;C. AC⊥BD,根据对角线互相垂直的平行四边形是菱形可以判断□ABCD是菱形,符合题意;D. AB⊥BD,可以得到∠B=90°,根据有一个角是直角的平行四边形叫矩形可以判断□ABCD是矩形,不合题意.故选:C【点睛】本题考查了菱形的判定,熟知菱形的定义和判定定理是解题的关键.12.B【分析】根据平行四边形、矩形以及菱形的判定定理进行逐一分析判断,从而得出答案即可.【详解】一组对边平行且相等的四边形是平行四边形,故①错误;对角线相等的平行四边形是矩形,故②错误;有一条对角线平分一个内角的平行四边形为菱形,故③正确;综上所述,不正确的有2个,故选:B.【点睛】本题主要考查了平行四边形、矩形以及菱形的判定,熟练掌握相关概念是解题关键.13.9【分析】根据平行四边形的对边相等,设较长的边长为x,则较短的边长为(x−3),根据周长是30,建立一元一次方程解方程求解即可.【详解】解:设较长的边长为x,则较短的边长为(x−3),2(x+x−3)=30解得x=9故答案为:9【点睛】本题考查了平行四边形的性质,平行四边形的性质是解题的关键.14.30【分析】根据直角三角形斜边上的中线先求出斜边长,再利用三角形的面积进行计算即可解答.【详解】解:∵直角三角形斜边上的中线是6,∴斜边长=2×6=12,∵直角三角形斜边上的高是5,×12×5=30,∴直角三角形的面积=12故答案为:30.【点睛】本题考查了直角三角形斜边上的中线,熟练掌握直角三角形斜边上的中线是解题的关键.15.4√2【分析】根据三角形中位线定理,即可求解.【详解】解:∵D,E分别是边AB,BC的中点,∴AC=2DE,∵DE的长是2√2,∴AC=4√2.故答案为:4√2【点睛】本题主要考查了三角形中位线定理,熟练掌握三角形的中位线等于第三边的一半,并且平行于第三边是解题的关键.16.15.【分析】根据平行四边形的性质和角平分线的定义得∠ABF=∠AFB,∠DCE=∠CED,从而得AB=AF,DC=DE,进而即可求解.【详解】∵四边形ABCD为平行四边形,AB=8,∴CD=AB=8,AD//BC,∴∠AFB=∠CBF,∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∴AF=AB=8,同理DE=DC=8,∵EF=1,∴AE=AF−EF=8−1=7,∴AD=AE+DE=7+8=15,故答案为15.【点睛】本题主要考查平行四边形的性质,角平分线的定义,等腰三角形的判定和性质,综合应用平行四边形的性质,角平分线的定义,等腰三角形的判定和性质,是解题的关键.17.21cm【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC.∵平行四边形的周长等于56cm,∴AB+CD+AD+BC=56cm,∴AB+BC=28cm.∵BC:AB=3:1,∴BC=21cm,AB=7cm,∴这个平行四边形较长的边长为21cm.故答案为21cm.18.26【分析】根据三角形的中位线得出EH=12BD,GF=12BD,EF=12AC,HG=12AC,求出EH、GF、EF、HG的长度,再求出周长即可.【详解】解:如图,∵E、F、G、H分别是边AB、BC、CD、AD的中点,∴EH=12BD,GF=12BD,EF=12AC,HG=12AC,∵AC=10,BD=16,∴EH=8,FG=8,EF=5,HG=5,∴四边形EFGH的周长是EF+FG+HG+EH=5+8+5+8=26,故答案为:26.【点睛】本题考查了菱形的性质,三角形的中位线性质等知识点,能熟记三角形的中位线平行于第三边,并且等于第三边的一半是解此题的关键.19.20.【详解】试题解析:连接BN.∵四边形ABCD是正方形,∴NB="ND."∴DN+MN="BN+MN."当点B、N、M在同一条直线上时,ND+MN有最小值.由勾股定理得:BM=√MC2+BC2=20考点:轴对称-最短路线问题.20.8a【分析】根据菱形性质和直角三角形斜边上中线等于斜边一半,可以求出BC=2OE,进而可以求出菱形周长.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,∵点E为边BC的中点,∴BC=2OE=2a,∴菱形ABCD周长为8a.故答案为:8a.【点睛】本题也可以根据菱形性质得到O为AC中点,利用三角形中位线性质求出AB,亦可求解.21.(8,0)或(-2,0)/(-2,0)或(8,0)【分析】由矩形的性质可得BC=OA =3,AB=OC=9,∠B=90°=∠OAE,由折叠的性质可得AE=CE,由勾股定理可求AE的长,由等腰三角形的性质可求解.【详解】解:∵四边形OABC矩形,且点A(3,0),点C(0,9),∴BC=OA =3,AB=OC=9,∠B=90°=∠OAE,∵将△ABC沿DE对折,恰好能使点A与点C重合.∴AE=CE,∵CE2=BC2+BE2,∴CE2=9+(9-CE)2,∴CE=5,∴AE=5,∵△AEP为等腰三角形,且∠EAP=90°,∴AE=AP=5,∴点E坐标(8,0)或(-2,0)故答案为:(8,0)或(-2,0)【点睛】本题考查了翻折变换,等腰三角形的性质,矩形的性质,勾股定理,坐标与图形变化-对称,求出AE的长是本题的关键.22.6【分析】如图,先标注各顶点,作PD⊥PG,NE⊥NK,QE⊥NE,垂足分别为P,N,E,PD于QE交于点D,则PD⊥QE,证明△GPF≌△DPQ,可得:DQ=GF,PD=PG=3,同理利用三角形全等的性质可得:QD=2,QE=3,从而可得答案.【详解】解:如图,先标注各顶点,作PD⊥PG,NE⊥NK,QE⊥NE,垂足分别为P,N,E,PD于QE交于点D,则PD⊥QE,∵A,C的面积分别为9和4,∴PG=3,NK=2,∵正方形,A,B,C,∴PQ=PF,∠QPF=90°,∠PDQ=∠PGF=90°,∴∠GPF+∠DPF=90°,∠DPF+∠DPQ=90°,∴∠GPF=∠DPQ,∴△GPF≌△DPQ,∴DQ=GF,PD=PG=3,同理可得:GF=NK=2,PG=FK=3,EN=NK=2,QE=FK=3,∴DQ=2,∴S=12×3×2+12×2×3=6.故答案为:6.【点睛】本题考查的是全等三角形的判定与性质,作出适当的辅助线构建全等三角形是解题的关键. 23.(1)(6,0)(2)(10,3)【分析】本题主要考查了折叠变换的性质、勾股定理等几何知识点及其应用问题.(1)根据折叠性质得,CD=AB=10,由勾股定理得OD=6,可得点D坐标;(2)在Rt△ADE中,根据勾股定理即可求点E坐标.【详解】(1)解:由折叠可知:CD=CB,∵B(10,8),∴CD=CB=10,OC=8,在Rt△ODC中,由勾股定理得OD=6,∴点D坐标为(6,0);(2)∵OA=BC=10,OD=6,∴AD=OA−OD=10−6=4由折叠可知:BE=DE,设AE=x,则DE=BE=8−x,在Rt△ADE中,由勾股定理得:AE2+AD2=DE2,解得:x=3,∴点E坐标为(10,3).24.(1)11√2;(2)5【分析】(1)原式利用乘法分配律计算即可得到结果.(2)首先利用勾股定理求出AB=10.再利用直角三角形斜边上中线的性质可得答案.×6【详解】解:(1)原式=2√12×6−√13=12√2−√2=11√2;(2)在Rt△ABC中,由勾股定理得,AB=√AC2+BC2=√62+82=10,∵D是斜边AB的中点,AB=5.∴CD=12【点睛】本题主要考查了勾股定理,二次根式的混合运算,直角三角形斜边上中线的性质等知识,熟练掌握性质是解题的关键.25.实践与操作:见解析;猜想与证明:菱形,见解析【分析】[实践与操作]根据角平分线,垂直平分线的作法作图即可;[猜想与证明]根据垂直平分线的性质得到FA=FD,EA=ED,∠EOA=∠FOA=90°,证明△AEO≌△AFO(ASA),得到AE=AF,再根据四边相等的四边形是菱形证明即可.【详解】解:[实践与操作]如图,即为所求;[猜想与证明]四边形AEDF为菱形,理由如下:∵EF垂直平分AD,交点为O,∴FA=FD,EA=ED,∠EOA=∠FOA=90°,∵AD平分∠BAC,∴∠EAO=∠CAO,∵AO=AO,∴△AEO≌△AFO(ASA),∴AE=AF,∴AE=ED=DF=FA,∴四边形AEDF是菱形.【点睛】本题考查了尺规作图,角平分线和垂直平分线的作法,垂直平分线的性质,菱形的判定,解题的关键是掌握基本尺规作图的方法,菱形的判定方法.26.(1)B(3,2),C(−2,−3)(2)矩形,见解析【分析】本题考查矩形,点关于直线对称的知识,解题的关键是掌握点关于直线对称的性质,矩形的判定,即可.(1)根据点A关于直线y=x对称,则x,y互换即为对称点坐标求出点B,根据点关于原点对称横纵坐标互为相反数,即可;(2)根据点关于原点对称横纵坐标互为相反数,求出点D,再根据矩形的判定,即可.【详解】(1)∵A(2,3),∴点A关于直线y=x的对称点B(3,2);∵关于原点对称横纵坐标互为相反数,∴A(2,3)关于原点的对称点C的坐标为:C(−2,−3).(2)∵点B(3,2),∴点B(3,2)原点的对称点D的坐标为:D(−3,−2),∵点B与点D关于原点对称,点A与点C关于原点对称,∴BO=DO,AO=CO,∴四边形ABCD是平行四边形,∵点A关于直线y=x的对称点为B,点A关于原点的对称点为C,点B关于原点的对称点为D,∴AC=DB,∴平行四边形ABCD是矩形.27.(1)平行四边形,证明见解析;(2)菱形,证明见解析【分析】(1)根据平行四边形的判定,对边平行且相等的四边形是平行四边形即可求解.(2)根据题意列出方程,数形结合证明平行四边形PQMN 的临边相等,根据一组临边相等的平行四边形是菱形即可求解.【详解】解:(1)四边形PQMN 为平行四边形;连接AC 、BD .∵PQ 为△ABC 的中位线,∴PQ ∥AC ,PQ =12AC , 同理MN ∥AC .MN =12AC . ∴MN =PQ ,MN ∥PQ ,∴四边形PQMN 为平行四边形;(2)四边形PQMN 是菱形;理由如下:设△ADE 的边长是x ,△BCE 的边长是y ,∴DB 2=(12x +y )2+(√32x )2=x 2+xy +y 2,AC 2=(x +12y )2+(√32y )2=x 2+xy +y 2, 由(1)得MN =12AC 与(1)同理可证MP =12BD∴MN =MP ,∴平行四边形PQMN 是菱形;【点睛】本题考查中位线的性质、平行四边形的性质、等边三角形的性质、菱形的判定等知识点,熟练掌握几何图形的性质,进行等量代换、数形结合即可求解.28.见解析.【分析】先证明CE =DE, 再证明EF 是△CDB 的中位线,从而可得结论.【详解】证明:∵AD=AC,AE⊥CD∴CE=ED∵F是BC的中点∴EF是△CDB的中位线∴BD=2EF【点睛】本题考查的是等腰三角形的性质,三角形的中位线的性质,掌握“三角形的中位线平行于第三边且等于第三边的一半”是解题的关键.。

平行四边形单元测试题及答案

平行四边形单元测试题及答案

平行四边形单元测试题及答案一、选择题1.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2 B.∠BAD=∠BCD C.A B=CD D.A C⊥BD2.依次连接菱形各边中点所得的四边形是()A.矩形B.菱形C.正方形D.平行四边形3.如图,在平行四边形ABCD中,CE是∠DCB的平分线,F是AB的中点,AB=6,BC=4,则AE:EF等于()A.1:2 B.2:1 C.3:2 D.3:14.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°5.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=()A.4cm B.6cm C.8cm D.10cm6.如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()A.18 B.28 C.36 D.467.将一张矩形纸片ABCD如图所示那样折起,使顶点C落在C′处,其中AB=4,若∠C′ED=30°,则折痕ED的长为()A . 4B .C . 8D .8.如图,在菱形ABCD 中,对角线AC ,BD 分别等于8和6,将BD 沿CB 的方向平移,使D 与A 重合,B 与CB 延长线上的点E 重合,则四边形AECD 的面积等于( )A . 36B . 48C . 72D . 969.如图,已知四边形ABCD 中,R ,P 分别是BC ,CD 上的点,E ,F 分别是AP ,RP 的中点,当点P 在CD 上从C 向D 移动而点R 不动时,那么下列结论成立的是( )A . 线段EF 的长逐渐增大B . 线段EF 的长逐渐减少C . 线段EF 的长不变D . 线段EF 的长与点P 的位置有关10.如图,甲、乙两人想在正五边形ABCDE 内部找一点P ,使得四边形ABPE 为平行四边形,其作法如下:(甲) 连接BD 、CE ,两线段相交于P 点,则P 即为所求(乙) 先取CD 的中点M ,再以A 为圆心,AB 长为半径画弧,交AM 于P 点,则P 即为所求.对于甲、乙两人的作法,下列判断何者正确?( )A . 两人皆正确B . 两人皆错误C . 甲正确,乙错误D . 甲错误,乙正确二、填空题11.四边形ABCD 中,如果AB=DC ,当AB________DC 时,四边形ABCD 是平行四边形;当AD________BC 时,四边形ABCD 是平行四边形.12.如图菱形ABCD 的边长是2cm ,E 是AB 的中点,且DE ⊥AB ,则菱形ABCD 的面积为________cm 2.13.如图,▱ABCD 的对角线AC,BD 相交于点O,点E,F 分别是线段AO,BO 的中点.若AC+BD=24第12题第13题厘米,△OAB的周长是18厘米,则EF=厘米.14.在平行四边形ABCD中,∠C=∠B+∠D,则∠A=___,∠D=___。

平行四边形单元测试卷(5套题)

平行四边形单元测试卷(5套题)

第18章平行四边形一、选择题1.如图4-161所示,沿虚线EF将ABCD剪开(BF≠AE),得到的四边形ABFE是( )A.梯形 B.平行四边形C.矩形 D.菱形2.下列说法中正确的有 ( )①平行四边形的对角线互相平分;②菱形的对角线互相平分且相等;③矩形的对角线相等;④正方形的对角线互相平分且相等;⑤等腰梯形的对角线相等.A.2个 B.3个 C.4个 D.5个3.五边形的内角和与外角和之比是 ( )A.5∶2 B.2∶3 C.3∶2 D.2∶54.下列图形中,既是中心对称图形,又是轴对称图形的是 ( )A.等腰三角形 B.正三角形C.等腰梯形 D.菱形5.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积为 ( )A.190 B.96 C.47 D.406.一个多边形截去一个角(不过顶点)后,所成的一个多边形的内角和是2520°,那么原多边形的边数是( )A.13 B.15 C.17 D.197.平面图形的密铺是指在一定范围的平面内,这些图形间 ( )A.没有空隙,可以重叠 B.既有空隙,又可重叠C.可有空隙,但无重叠 D.既无空隙,也不重叠8.若四边形的两条对角线互相垂直,则这个四边形 ( )A.一定是矩形 B.一定是菱形C.一定是正方形 D.形状不确定9.如图4-162所示,设F为正方形ABCD中AD边上一点,CE⊥CF交AB的延长线于E,若正方形ABCD的面积为64,△CEF的面积为50,则△CBE的面积为 ( )A.20 B.24 C.25 D.2610.如图4-163所示,正方形ABCD中,点E,F分别在CD,BC上,且CF=DE,连接BE,AF相交于点G,则下列结论不正确的是 ( )A.∠DAF=∠BE C B.∠AF B+∠BE C=90°C.BE=AF D.AF⊥BE二、填空题11.在四边形ABCD中,∠A∶∠B∶∠D=1∶2∶4,∠C=108°,则∠A= .12.边长为10 cm的正方形的对角线长是 cm,这条对角线和正方形一边的夹角是,这个正方形的面积是 cm2.13.在梯形ABCD中,AB∥CD,AB>CD,CE∥DA交AB于E,且△BCE的周长为10 cm,CD=5 cm,则梯形ABCD 的周长是.14.若矩形的一条短边的长为5 cm,两条对角线的夹角为60°,则它的一条较长的边为 cm.15.如图4-164所示,在矩形纸片ABCD中,AD=9,AB=3,将其折叠,使点D与点B重合,折痕为EF,那么折痕EF的长为 .16.菱形的周长为40 cm,如果把它的高增加4 cm,周长不变,那么面积变为原来倍,则菱形的原面积是.的11217.在四边形ABCD中,AB=CD,要使其变为平行四边形,需要增加的条件是.(只需填一个你认为正确的条件即可)18.如图4-165所示;折叠矩形纸片ABCD,先折出折痕BD,再折叠,使AD落在对角线BD上,A对应A′,得折痕DG,若AB=2,BC=1,则AG= .三、解答题19.如图4-166所示,在ABCD中,E,F在平行四边形的外部,且AE=CF,BE=DF,试指出AC和EF的关系,并说明理由.20.如图4-167所示,在△ABC中,O是AC边上的一个动点,过O作直线MN∥BC,交∠BCA的平分线于点正,交∠BCA的外角平分线于点F.(1)试说明OE=OF;(2)当点O运动到何处时,四边形A ECF是矩形?说明理由.21.(1)如图4-168(1)所示,你能设法将左图的平行四边形变成与它面积相等的右边的矩形吗?画一画;(2)任意剪一张梯形纸片(如图4-168(2)所示),与同学们交流、讨论、研究,怎样通过平移、旋转、轴对称以及折纸等方法将梯形剪拼成一个面积与它相等的矩形?并在图(2)中画出设计方案,简述设计的过程.22.矩形的长和宽如图4-169所示,当矩形周长为12时,求a的值.23.如图4-170所示,O为ABCD的对角线AC的中点,过点O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)试说明∠MAE=∠NCF.参考答案1. A 2.C 3.C 4.D 5.B 6.B 7.D 8.D9.B[提示:由全等可知△CEF是等腰直角三角形,又其面积为50,则CF=CE=10,因为正方形ABCD的面积为64,所以边长BC=8,由勾股定理,得BE=6,所以S△CBE=12BE·BC=12×6×8=24.]10.B 11.36°12.102 45° 100 13.20 cm14.3515.1016.80 cm 217.AB ∥CD ,或AD =BC (答案不唯一)18.12-5[提示:A 对应点A ′,则△A ′DG 和△A ′BG 均为直角三角形,设AG =x ,则A ′G =x ,A ′B =BD-A ′D =5-l ,BG =AB -AG =2-x ,由勾股定理,得A ′G 2+A ′B 2=GB 2,所以x 2+(5-1)2=(2-x )2,解得x =12-5.] 19.提示:连接AF ,EC ,可由AE =CF ,且AE ∥CF ,得四边形A ECF 是平行四边形,故AC 与EF 互相平分.20.提示:(1)先说明OE =OC ,再说明OF =OC . (2)当点O 运动到AC 的中点时,四边形A ECF 是矩形(理由略).21.解:(1)如图4-171所示。

北师大版八年级数学下册第6章《平行四边形》章节综合测试含答案

北师大版八年级数学下册第6章《平行四边形》章节综合测试含答案
∵AD=a, ∴a 的取值范围是:2<a<10. 故答案为:2<a<10. 15.【解答】解:∵四边形 ABCD 是平行四边形, ∴∠AEB=∠EBC,AD=BC=5cm, ∵BE 平分∠ABC,
∴∠ABE=∠EBC, ∴∠ABE=∠AEB, ∴AB=AE=3cm, 同理可得:DF=DC=3cm, ∴EF=AE+FD﹣AD=3+3﹣5=1(cm). 故答案为:1cm. 16.【解答】解:连接 DE 并延长交 AB 于 H. ∵CD∥AB, ∴∠C=∠A, ∵E 是 AC 中点, ∴DE=EH, 在△DCE 和△HAE 中,
新多边形的内角和为 720°,则对应的图形是( )
A.
B.
C.
D.
10.平面直角坐标系中一个平行四边形的三个顶点的坐标分别(0,0),(3,0),(1,3),
则第四个顶点的坐标可能是下列坐标:①(4,3)②(﹣2,3)③(﹣1,﹣3)④(2,
﹣3)中的哪几个( )
A.①②③
B.②③④
C.①②④
D.①③④
有( )
A.1 对
B.2 对
C.3 对
D.4 对
5.如图,在平行四边形 ABCD 中,AB⊥AC,若 AB=8,AC=12,则 BD 的长是( )
A.22
B.16
6.下列结论正确的是( )
C.18
D.20
A.平行四边形是轴对称图形
B.平行四边形的对角线相等
C.平行四边形的对边平行且相等
D.平行四边形的对角互补,邻角相等
北师大版八年级数学下册第 6 章《平行四边形》章节综合测试含答案
一.选择题(共 10 小题,满分 30 分)
1.在▱ ABCD 中,∠A:∠B=7:2,则∠C 的度数是( )

(完整版)平行四边形练习题及答案(DOC).doc

(完整版)平行四边形练习题及答案(DOC).doc

20.1平行四边形的判定一、选择题1 .四边形ABCD,从( 1)AB∥CD;( 2)AB=CD;( 3)BC∥AD;( 4) BC=AD这四个条件中任选两个,其中能使四边形ABCD是平行四边形的选法有()A . 3 种B.4种C.5种D.6种2.四边形的四条边长分别是a, b, c,d,其中 a,b 为一组对边边长, c,d?为另一组对边边长且满足a2+b2+c2+d2=2ab+2cd,则这个四边形是()A .任意四边形B.平行四边形C.对角线相等的四边形 D .对角线垂直的四边形3.下列说法正确的是()A.若一个四边形的一条对角线平分另一条对角线,则这个四边形是平行四边形B.对角线互相平分的四边形一定是平行四边形C.一组对边相等的四边形是平行四边形D.有两个角相等的四边形是平行四边形二、填空题4 .在□ ABCD中,点 E, F 分别是线段A D, BC上的两动点,点 E 从点 A 向 D 运动,点 F从 C?向 B 运动,点 E 的速度边形.m与点F 的速度n 满足 _______关系时,四边形BFDE为平行四5.如图 1 所示,平行四边形ABCD中, E, F 分别为AD,BC边上的一点,连结EF,若再增加一个条件_______,就可以推出BE=DF.图 1图 26 .如图 2 所示, AO=OC,BD=16cm,则当 OB=_____cm时,四边形ABCD是平行四边形.三、解答题7.如图所示,四边形 ABCD中,对角线 BD=4,一边长 AB=5,其余各边长用含有未知数 x的代数式表示,且 AD⊥BD于点 D,BD⊥BC 于点 B.问:四边形 ABCD?是平行四边形吗?为什么?四、思考题8.如图所示,在□ABCD中, E,F 是对角线 AC上的两点,且 AF=CE,?则线段 DE?与 BF的长度相等吗?参考答案一、 1. B 点拨:可选择条件(1)(3)或(2)( 4)或( 1)( 2)或( 3)(4).故有 4 种选法.2. B 点拨: a2+b 2+c2+d2=2ab+2cd 即( a-b)2+( c-d )2=0,即( a-b )2=0 且( c-d )2=0.所以 a=b, c=d,即两组对边分别相等,所以四边形为平行四边形.3. B 点拨:熟练掌握平行四边形的判定定理是解答这类题目的关键.二、 4.相等点拨:利用“一组对边平行且相等的四边形是平行四边形”来确定.5 .AE=CF 点拨:本题答案不惟一,只要增加的条件能使四边形EBFD?是平行四边形即可.6. 8 点拨:根据对角线互相平分的四边形为平行四边形来进行判别.三、 7.解:如图所示,四边形ABCD是平行四边形.理由如下:在 Rt△BCD 中,根据勾股定理,得BC2+BD 2=DC 2,即( x-5 )2+42=( x-3 )2,解得 x=8.所以 AD=11-8=3, BC=x-5=3, DC=x-3=8-3=5 ,所以 AD=BC, AB=DC.所以四边形ABCD是平行四边形.点拨:本题主要告诉的是线段的长度,故只要说明AD=BC, AB=DC即可,本题也可在Rt△ABD中求 x 的值.四、 8.解:线段DE与BF 的长度相等;连结BD交AC于O点,连结DF, BE,如图所示.在ABCD中, DO=OB, AO=OC,又因为 AF=EC,所以 AF-AO=CE-OC,即 OF=OE,所以四边形 DEBF是平行四边形,所以DE=BF.点拨:本题若用三角形全等,也可以解答,但过程复杂,学了平行四边形性质后,要学会应用.20.2 矩形的判定一、选择题1 .矩形具有而一般平行四边形不具有的性质是()A .对角相等B .对边相等C .对角线相等D .对角线互相垂直2 .下列叙述中能判定四边形是矩形的个数是()①对角线互相平分的四边形;②对角线相等的四边形;③对角线相等的平行四边形;④对角线互相平分且相等的四边形.A . 1B . 2C . 3D . 43.下列命题中,正确的是()A.有一个角是直角的四边形是矩形 B .三个角是直角的多边形是矩形C .两条对角线互相垂直且相等的四边形是矩形D .有三个角是直角的四边形是矩形二、填空题4.如图 1 所示,矩形 ABCD中的两条对角线相交于点O,∠ AOD=120°, AB=4cm,则矩形的对角线的长为 _____.D E CF OA B图 1 图 25.若四边形 ABCD的对角线 AC, BD相等,且互相平分于点 O,则四边形 ABCD?是_____ 形,若∠ AOB=60°,那么AB:AC=______.6.如图 2 所示,已知矩形ABCD周长为 24cm,对角线交于点O,OE⊥DC 于点 E,于点 F, OF-OE=2cm,则 AB=______, BC=______.三、解答题7.如图所示,□ABCD的四个内角的平分线分别相交于E, F, G,H 两点,试说明四边形EFGH是矩形.四、思考题8.如图所示,△ABC 中, CE, CF分别平分∠ACB和它的邻补角∠ACD.AE⊥CE 于 E,AF⊥CF 于F,直线EF分别交AB, AC于 M, N 两点,则四边形AECF是矩形吗?为什么?参考答案一、 1. C点拨:A与B都是平行四边形的性质,而D是一般矩形与平行四边形都不具有的性质.2 .B点拨:③是矩形的判定定理;④中对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,故④能判定矩形,应选B.3. D 点拨:选项 D 是矩形的判定定理.二、 4. 8cm5.矩; 1: 2 点拨:利用对角线互相平分来判定此四边形是平行四边形,再根据对角线相等来判定此平行四边形是矩形.由矩形的对角线相等且互相平分,?可知△ AOB 是等腰三角形,又因为∠ AOB=60°,所以AB=AO=1AC.26 . 8cm; 4cm三、 7.解:在□ABCD中,因为AD∥BC,所以∠ DAB+∠CBA=180°,又因为∠ HAB= 1∠DAB,∠ HBA=1∠CBA.2 2所以∠ HAB+∠HBA=90°,所以∠ H=90°.所以四边形EFGH是矩形.点拨:由于“两直线平行,同旁内角的平分线互相垂直”,所以很容易求出四边形EFGH 的四个角都是直角,从而求得四边形EFGH是矩形.四、 8.解:四边形AECF是矩形.理由:因为CE平分∠ ACB, ?CF?平分∠ ACD, ?所以∠ ACE=1∠ACB,∠ ACF=1∠ACD.所以∠ ECF=1(∠ ACB+∠ACD)=90°.22 2又因为 AE⊥CE,AF⊥CF, ?所以∠ AEC=∠AFC=90°,所以四边形AECF是矩形.点拨: ?本题是通过证四边形中三个角为直角得出结论.还可以通过证其为平行四边形,再证有一个角为直角得出结论.20.3菱形的判定一、选择题1.下列四边形中不一定为菱形的是()A .对角线相等的平行四边形B.每条对角线平分一组对角的四边形C.对角线互相垂直的平行四边形D.用两个全等的等边三角形拼成的四边形2.四个点 A, B, C,D 在同一平面内,从① AB∥CD;② AB=CD;③ AC⊥BD;④ AD=BC;5 个条件中任选三个,能使四边形ABCD是菱形的选法有().A . 1 种B.2种C.3种D.4种3 .菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是()A.8cm和 4 3 cm B.4cm和83 cm C.8cm和83 cm D.4cm和43 cm二、填空题4.如图 1 所示,已知□ABCD,AC,BD相交于点O,?添加一个条件使平行四边形为菱形,添加的条件为 ________.(只写出符合要求的一个即可)图 1图 25.如图 2 所示, D, E,F 分别是△ ABC 的边 BC, CA,AB 上的点,且 DE∥AB,DF∥CA,要使四边形 AFDE是菱形,则要增加的条件是 ________.(只写出符合要求的一个即可)6 .菱形 ABCD的周长为48cm,∠ BAD:∠ ABC=1:?2,?则 BD=?_____,?菱形的面积是______.7.在菱形ABCD中, AB=4, AB 边上的高DE垂直平分边AB,则 BD=_____,AC=_____.三、解答题8.如图所示,在四边形ABCD中, AB∥CD, AB=CD=BC,四边形 ABCD是菱形吗? ?说明理由.四、思考题9.如图,矩形 ABCD的对角线相交于点 O,PD∥AC,PC∥BD, PD,PC相交于点 P,四边形 PCOD是菱形吗?试说明理由.参考答案一、 1. A点拨:本题用排除法作答.2. D 点拨:根据菱形的判定方法判断,注意不要漏解.3. C点拨:如图所示,若∠ ABC=60°,则△ABC为等边三角形,?所以 AC=AB=1×32=8( cm), AO=1AC=4cm.4 2因为 AC⊥BD,在 Rt△AOB中,由勾股定理,得OB= 2 2 2 2AB OA 8 4 =43 (cm ? ),所以 BD=2OB=8 3 cm.二、 4. AB=BC 点拨:还可添加AC⊥BD 或∠ ABD=∠CBD等.5.点 D 在∠ BAC的平分线上(或 AE=AF)26. 12cm; 723 cm点拨:如图所示,过 D 作 DE⊥AB 于 E,因为 AD∥BC, ?所以∠ BAD+∠ABC=180°.又因为∠ BAD:∠A BC=1:2,所以∠ BAD=60°,因为 AB=AD,所以△ ABD 是等边三角形,所以BD=AD=12cm.所以 AE=6cm.在Rt△AED 中,由勾股定理,得 AE 2+ED 2=AD 2, 62+ED 2=12 2,所以 ED 2=108 ,所以 ED=6 3 cm,所以S菱形ABCD=12×63=72 3 (cm2).7. 4;4 3 点拨:如图所示,因为DE垂直平分 AB,又因为 DA=AB,所以 DA=DB=4.所以△ ABD 是等边三角形,所以∠ BAD=60°,由已知可得AE=2.在 Rt△AED中,2 2 2 2 2 2 2?AE +DE=AD,即 2 +DE=4 ,所以 DE=12,所以 DE=2 3 ,因为1AC·BD=AB·DE,即1AC·4=4×2 3 ,所以AC=4 3 .2 2三、 8.解:四边形ABCD是菱形,因为四边形ABCD中, AB∥CD,且AB=CD,所以四边形ABCD是平行四边形,又因为AB=BC,所以Y ABCD是菱形.点拨:根据已知条件,不难得出四边形ABCD为平行四边形,又AB=BC,即一组邻边相等,由菱形的定义可以判别该四边形为菱形.四、 9.解:四边形PCOD是菱形.理由如下:因为 PD∥OC,PC∥OD, ?所以四边形P COD是平行四边形.又因为四边形ABCD是矩形,所以OC=OD,所以平行四边形PCOD是菱形.20.4正方形的判定一、选择题1.下列命题正确的是()A.两条对角线互相平分且相等的四边形是菱形B.两条对角线互相平分且垂直的四边形是矩形C.两条对角线互相垂直,平分且相等的四边形是正方形D.一组邻边相等的平行四边形是正方形2.矩形四条内角平分线能围成一个()A.平行四边形B.矩形C.菱形 D .正方形二、填空题3.已知点 D, E,F 分别是△ ABC 的边 AB, BC, CA的中点,连结 DE, EF, ?要使四边形ADEF是正方形,还需要添加条件_______.4.如图 1 所示,直线L 过正方形ABCD的顶点 B,点 A, C 到直线 L?的距离分别是 1 和2,则正方形ABCD的边长是 _______.图 1图2图 35.如图 2 所示,四边形 ABCD是正方形,点 E 在 BC的延长线上, BE=BD且 AB=2cm,则∠E的度数是 ______, BE 的长度为 ____.6.如图 3 所示,正方形 ABCD的边长为 4,E 为 BC上一点, BE=1,F?为 AB?上一点,AF=2, P 为 AC上一动点,则当 PF+PE取最小值时, PF+PE=______.三、解答题7.如图所示,在 Rt△ABC中, CF为∠ ACB的平分线, FD⊥AC 于 D,FE⊥BC于点 E,试说明四边形 CDFE是正方形.BEF四、思考题8.已知如图所示,在正方形 ABCD中, E,F 分别是(1) AF 与 DE相等吗?为什么?(2) AF 与 DE是否垂直?说明你的理由.C D A AB,BC边上的点,且 AE=BF,?请问:参考答案一、 1. C点拨:对角线互相平分的四边形是平行四边形,?对角线互相垂直的平行四边形是菱形,对角线相等的平行四边形是矩形,既是菱形又是矩形的四边形一定是正方形,故选 C.2. D 点拨:由题意画出图形后,利用“一组邻边相等的矩形是正方形”来判定.二、 3.△ ABC是等腰直角三角形且∠ BAC=90°点拨:还可添加△ ABC 是等腰三角形且四边形ADEF是矩形或∠ BAC=90°且四边形ADEF 是菱形等条件.4.5点拨:观察图形易得两直角三角形全等,由全等三角形的性质和勾股定理得正方形的边长为 22 12 = 5.5. 67. 5°; 2 2 cm点拨:因为BD是正方形ABCD的对角线,所以∠ DBC=45°, AD=?AB=2cm.在Rt△BAD中,由勾股定理得 AD 2+AB 2=BD 2,即 22+22=BD 2,所以 BD=2 2 cm,所以 BE=BD=2 2( cm),又因为BE=BD,所以∠ E=∠EDB= 1(180°- 45°)=67. 5°.26.17 点拨:如图所示,作 F 关于AC的对称点G.连结EG交AC于P,则PF+?PE=PG+PE=GE为最短.过 E 作 EH⊥AD.在Rt△GHE中,HE=4,HG=AG-AH=AF-BE=1,所以 GE= 4212 = 17,?即 PF+PE= 17.三、 7.解:因为∠ FDC=∠FEC=∠BCD=90°,所以四边形CDFE是矩形,因为 CF?平分∠ ACB,FE⊥BC,FD⊥AC,所以FE=FD,所以矩形CDFE是正方形.点拨:本题先说明四边形是矩形,再求出有一组邻边相等,?还可以先说明其为菱形,再求其一个内角为90°.四、 8.解:( 1)相等.理由:在△ ADE 与△ BAF 中, AD=AB,∠ DAE=∠ABF=90°, AE=BF,所以△ ADE≌△ BAF( S. A. S.),所以 DE=AF.( 2) AF 与 DE垂直.理由:如图,设DE与 AF 相交于点O.因为△ ADE≌△ BAF, ?所以∠ AED=∠BFA.又因为∠ BFA+∠EAF=90°,所以∠ AEO+∠EAO=90°,所以∠ EOA=90°,所以DE⊥AF.20.5等腰梯形的判定1 A C 一、选择题.下列结论中,正确的是(.等腰梯形的两个底角相等.一组对边平行的四边形是梯形)BD.两个底角相等的梯形是等腰梯形.两条腰相等的梯形是等腰梯形2.如图所示,等腰梯形ABCD的对角线 AC,BD相交于点O,则图中全等三角形有()A. 2 对B.3对C.4对D.5对3.课外活动课上, ?老师让同学们制作了一个对角线互相垂直的等腰梯形形状的风筝,其面积为450cm,则两条对角线所用的竹条长度之和至少为()A . 30 2 cm B.30cm C.60cm D.60 2 cm二、填空题4.等腰梯形上底,下底和腰分别为 4,?10,?5,?则梯形的高为 _____,?对角线为 ______.5.一个等腰梯形的上底长为5cm,下底长为 12cm,一个底角为 60°,则它的腰长为____cm,周长为 ______cm.6.在四边形 ABCD中, AD∥BC,但 AD≠BC,若使它成为等腰梯形,则需要添加的条件是__________ (填一个正确的条件即可).三、解答题7.如图所示,AD是∠ BAC的平分线, DE∥AB, DE=AC,AD≠EC.求证: ?四边形 ADCE是等腰梯形.四、思考题8.如图所示,四边形ABCD中,有 AB=DC,∠ B=∠C,且AD<BC,四边形 ABCD是等腰梯形吗?为什么?参考答案一、 1. D点拨:梯形的底角分为上底上的角和下底上的角,?因此在等腰梯形的性质和判别方法中必须强调同一底上的两个内角(?指上底上的两个内角或下底上的两个内角),否则就会出现错误,因此A, B 选项都不正确,而 C 选项中漏掉了限制条件另外一组对边不平行,若平行该四边形就形成了平行四边形了,因此应选D.2. B点拨:因为△ ABC≌△DCB,△ BAD≌△CDA,△ AOB≌△DOC,所以共有 3 对全等的三角形.3. C点拨:设该等腰梯形对角线长为Lcm,因为两条对角线互相垂直,?所以梯形面积为122L =450,解得 L=30,所以所用竹条长度之和至少为2L=2× 30=60(cm).二、 4. 4:65点拨:如图所示,连结BD,过 A,D 分别作 AE⊥BC,DF⊥BC,垂足分别为E, F.易知△ BAE≌△ CDF,在四边形 AEFD为矩形,所以BE=CF=3, AD=EF=4.在Rt△CDF 中, FC2+DF 2=CD 2,即 32+DF 2=52,所以 DF=4 ,在 Rt △BFD 中, BF2+DF 2=BD 2,即 72+42=BD 2,所以 BD=65 .5. 7;31点拨:如图所示,过点D作 DE∥AB 交 BC于 E.因为ABED是平行四边形.所以 BE=AD=5(cm), AB=DE.又因为 AB=CD,所以 DE=?DC,又因为∠ C=60°,所以△ DEC 是等边三角形,所以 DE=DC=EC=7( cm),所以周长为5+?12+7+7=31(cm).6. AB=CD(或∠ A=∠D,或∠ B=∠C,或 AC=BD,或∠ A+∠C=180°,或∠B+∠D=180°)三、 7.证明:因为 AB∥ED,所以∠ BAD=∠ADE.又因为 AD是∠ BAC的平分线,所以∠ BAD=∠CAD,所以∠ CAD=∠ADE,所以 OA=OD.又因为AC=DE,所以 AC-OA=DE-OD即 OC=OE, ?所以∠ OCE=∠OEC,又因为∠ AOD=∠COE,所以∠ CAD=∠OCE.所以AD∥CE,而 AD≠CE,故四边形ADCE是梯形.又因为∠ CAD=∠ADE, AD=DA, AC=DE,所以△ DAC≌△ ADE,所以DC=?AE,所以四边形ADCE是等腰梯形.点拨:证明一个四边形是等腰梯形时,应先证其是梯形而后再证两腰相等或同一底上的两个角相等.四、 8.解:四边形ABCD是等腰梯形.理由:延长BA, CD,相交于点 E,如图所示,由∠ B=∠C,可得EB=EC.又AB=DC,所以 EB-AB=EC-DC,即 AE=DE,所以∠ EAD=∠EDA.因为∠ E+∠EAD+∠EDA=180°,∠ E+∠B+∠C=180°,所以∠ EAD=∠B.故 AD∥BC. ?又 AD<BC,所以四边形 ABCD是梯形.又AB=DC,所以四边形 ABCD是等腰梯形.点拨:由题意可知,只要推出 AD∥BC,再由 AD<BC就可知四边形 ABCD为梯形,再由AB=DC,即可求得此四边形是等腰梯形,由∠ B=∠C联想到延长 BA,CD,即可得到等腰三角形,从而使AD∥BC.华东师大版数学八年级(下)第 20 章平行四边形的判定测试(答卷时间: 90 分钟,全卷满分: 100 分)姓名得分 ____________一、认认真真选,沉着应战!(每小题 3 分,共 30 分)1. 正方形具有菱形不一定具有的性质是()(A )对角线互相垂直(B)对角线互相平分(C)对角线相等(D)对角线平分一组对角2.如图 (1),EF 过矩形 ABCD 对角线的交点 O,且分别交 AB 、CD 于 E、 F,那么阴影部分的面积是矩形ABCD 的面积的()(A )A 1 1 1( D )3A5(B )( C)104 3D E FFEB C D HB C(1)(2)(3)3.在梯形ABCD 中, AD ∥ BC ,那么 A : B : C : D 可以等于()( A )4:5:6:3(B)6:5:4:3(C)6:4:5:3(D)3:4:5:64.如图 (2) ,平行四边形ABCD 中,DE ⊥ AB 于 E,DF⊥ BC 于 F,若Y ABCD的周长为48,DE = 5, DF= 10,则Y ABCD的面积等于 ()( A )87.5(B)80(C)75(D)72.55. A 、 B、 C、 D 在同一平面内,从① AB∥CD;② AB=CD;③ BC∥AD;④ BC=AD这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有()( A )3种(B)4种(C)5种(D)6种6.如图 (3) ,D、E、F分别是VABC各边的中点,AH 是高,如果 ED5cm ,那么 HF的长为()( A ) 5cm(B)6cm(C)4cm(D)不能确定7.如图( 4):E 是边长为 1 的正方形 ABCD 的对角线 BD 上一点,且 BE = BC, P 为 CE 上任意一点, PQ⊥BC 于点 Q, PR⊥ BE 于点 R,则 PQ+PR 的值是()2 13 2( A )2 ( B)2 ( C)2 ( D)38.如图( 5),在梯形ABCD 中, AD ∥ BC , AB CD , C 60 , BD 平分ABC ,如果这个梯形的周长为30,则AB的长()( A )4 ( B )5 ( C )6 ( D )7A DA DERPB C( 5)B( 4)Q C9.右图是一个利用四边形的不稳定性制作的菱形晾衣架.A B C 已知其中每个菱形的边长为20cm,墙上悬挂晾衣架的两个铁钉 A 、 B 之间的距离为20 3 cm,则∠1等于()1)( A ) 90°(B) 60°(C) 45°(D) 30°10.某校数学课外活动探究小组,在老师的引导下进一步研究了完全平方公式.结合实数的性质发现以下规律:对于任意正数a、 b,都有 a+b ≥ 2 ab 成立.某同学在做一个面积为3600cm2,对角线相互垂直的四边形风筝时,运用上述规律,求得用来做对角线用的竹条至少需要准备xcm.则 x 的值是()(A) 1202(B) 602(C) 120(D) 60二、仔仔填,自信!( 每小 2 分,共20 分)11.一个四形四条次是a、b、c、d,且a2 b 2 c 2 d 2 2ac 2bd,个四形是 _______________ .12.在四形ABCD中,角AC、BD交于点O,从(1)AB CD ;(2) AB ∥CD ;(3)OA OC;(4)OB OD ;(5) AC ⊥ BD ;(6) AC 平分 BAD 六个条件中,取三个推出四形ABCD 是菱形.如( 1)( 2)( 5)ABCD 是菱形,再写出符合要求的两个:ABCD 是菱形;ABCD 是菱形.13. 如,已知直l 把 Y ABCD 分成两部分,要使两部分的面相等,直l 所在位置需足的条件是____________________. (只需填上一个你合适的条件)lA DB C(第 13 )(第 16 )14.梯形的上底 6cm ,上底的一点引一腰的平行,与下底相交,所构成的三角形周 21cm ,那么梯形的周_________ cm。

北师大版八年级数学上册《第六章平行四边形》章节检测卷-带答案

北师大版八年级数学上册《第六章平行四边形》章节检测卷-带答案

北师大版八年级数学上册《第六章平行四边形》章节检测卷-带答案学校:___________班级:___________姓名:___________考号:___________一、单选题(本大题共12小题,每小题3分,共36分)1.如图,在ABCD 中,若70B ∠=︒,则D ∠的度数是( )A .20︒B .50︒C .70︒D .110︒2.如图,四边形ABCD 是平行四边形,若300A C ∠+∠=︒,则A ∠的度数是( )A .120︒B .130︒C .140︒D .150︒ 3.如图,在ABCD 中,AE 平分BAD ∠,交CD 边于点E ,AD=6,EC=4,则AB 长为( )A .4B .6C .10D .124.如图,平行四边形ABCD 中,AB =8,BC =10,对角线AC ,BD 相交于点O ,过点O 的直线分别交AD ,BC 于点E ,F ,且OE =3,则四边形EFCD 的周长是( )A .20B .24C .28D .32 5.如图,在ABCD 中,对角线,AC BD 相交于点E ,延长AB 至点F ,连接CF .若CF BD ∥,则下列说法一定正确的是( )A .12AB AF = B .AF CF = C .AED DCF ∠=∠ D .DEC F ∠=∠6.如图,ABC 中AD DE EF BF ===,点M 、N 分别为边AC 、BC 的中点,连接MN 、MD 、NF ,若8CMN S =△,则MNFD S 四边形的值为( )A .8B .12C .16D .187.如图,在ABCD □中,AB=BD ,点E 在BD 上CE CB =.如果70A ∠=︒,那么DCE ∠等于( )A .20°B .25°C .30°D .35°8.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B '处,若1246.∠=∠=︒则B ∠为( )A .64︒B .104︒C .111︒D .121︒9.如图,□ABCD 的对角线AC 、BD 交于点O ,AE 平分∠BAD 交BC 于点E ,且∠ADC =60°,12AB BC =连接OE .下列结论:∠∠ADO =30°;∠S □ABCD =AB ·AC ;∠OB =AB ;∠S 四边形OECD =32S △AOD ,其中成立的个数为( )A .1个B .2个C .3个D .4个10.一个多边形截去一个角后,形成另一个多边形的内角和为540°,那么原多边形的边数为( )A .4B .4或5C .4或6D .4或5或611.平行四边形ABCD 中45ACB ∠=︒,AC ,BD 交于点O ,E 是BC 边上一点,连接AE ,过点B 作BF AE ⊥并延长交AC 于点G ,交CD 于点H ,已知AB AE =,AF=3,EF=1,则下列结论:∠2BAE CBH ∠=∠;∠27ABE S =△∠2BE CO =;∠GH CH =中正确的个数是( ).A .1个B .2个C .3个D .4个12.如图,已知∠ABC 的面积为12,点D 在线段AC 上,点F 在线段BC 的延长线上,且BF=4CF ,四边形DCFE 是平行四边形,则图中阴影部分的面积为( )A .2B .3C .4D .5二、填空题(本大题共8小题,每小题3分,共24分)13.如图,在平行四边形ABCD 中110A ∠=︒,CE 平分BCD ∠,则AEC ∠的度数是 .14.如图,小明从点A出发,沿直线前进了5米后向左转30,再沿直线前进5米,又向左转30照这样走下去,他第一次回到出发地A点时,一共走了米.15.如图,小明从点A出发,前进5 m后向右转20°,再前进5 m后又向右转20°,这样一直走下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形(1)小明一共走了米;(2)这个多边形的内角和是度.OP ,则BC的长为;16.如图,ABCD的对角线AC、BD相交于点O,P是AB边上的中点,且217.如图,平行四边形ABCD中,AE是DC边上的高,AE=4,点P、Q分别是AD、EC的中点,DC=6,则PQ的长为.18.如图,在梯形ABCD中,AD//BC,对角线AC∠BD,且AC=12,BD=9,则此梯形的中位线长是19.如图,四边形ABCD 中,AD//BC ,12cm AD =和15cm BC =,点P 自点A 向D 以1cm/s 的速度运动,到D 点即停止;点Q 自点C 向B 以2cm/s 的速度运动,到B 点即停止,直线PQ 分原四边形为两个新四边形;则当P ,Q 同时出发 秒后其中一个新四边形为平行四边形.20.四边形ABCD 为平行四边形,已知AB 13BC =6,AC =5,点E 是BC 边上的动点,现将∠ABE 沿AE 折叠,点B ′是点B 的对应点,设CE 长为x ,若点B ′落在∠ADE 内(包括边界),则x 的取值范围为 .三、解答题(本大题共5小题,每小题8分,共40分)21.在平面直角坐标系中,∠ABC 的三个顶点的位置如图所示,现将∠ABC 沿AA′的方向平移,使得点A 移至图中的点A′的位置.(1)在直角坐标系中,画出平移后所得∠A′B′C′(其中B′、C′分别是B 、C 的对应点);(2)求∠ABC 的面积;(3)以A 、B 、C 、D 为顶点构造平行四边形,则D 点坐标为____________.22.如图,小明从点O出发,前进5m后向右转15°,再前进5m后又向右转15°,…这样一直下去,直到他第一次回到出发点O为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?∠的平分线DG交边23.如图,已知四边形ABCD是平行四边形,BCD∠的平分线CF交边AB于F,ADCAB于C,且DG与CF交于点E.=;(1)求证:AF BG∆是直角三角形;(2)求证:EFG∆是等腰直角三角形.(直接写出要添加的条件,不需要证明)(3)在ABCD中,添上一个什么条件使EFG24.如图,在ABCD中AB AD>.(1)用尺规完成以下基本作图:在AB上截取AE,使AE AD∠的平分线交AB于点F,=,连接DE;作BCD交DE 于点G .(保留作图痕迹,不写作法,不下结论)(2)求证:AF BE =.(请补全下面证明过程)证明:∠四边形ABCD 在是平行四边形∠CD AB ∥ AD BC =∠CF 平分BCD ∠∠CD AB ∥∠BFC BCF ∠=∠又∠AE AD = AD BC =∠AE EF BF EF -=-∠AF BE =.25.在ABCD 中3cm 5cm 4cm AB AD BD =,=,=,动点P 从点D 出发,以4cm/s 的速度沿折线DC CB BD --运动,连接AP 交BD 于点O ,设点P 的运动时间为t 秒.(1)当点P 在DC 边上运动时,直接写出DP CP 、的长为DP =________,CP =________.(用含t 代数式表示)(2)在(1)的条件下,当OPD △是等腰三角形时,求t 的值;(3)点Q 与点P 同时出发,且点Q 在AB 边上由点A 向点B 运动,点Q 的速度是1cm/s ,当直线PQ 平分ABCD的面积时,直接写出t 的值.参考答案1.C2.D3.C4.B5.A6.C7.C8.C9.B10.D11.C12.C13.125︒/125度14.6015. 90 288016.4171318.7.519.4或520.613x 3221.(1)略;(2)5.5;(3)(-1,-1),(5,3),(-3,5) 22.(1)小明一共走了120米(2)这个多边形的内角和是3960度 23.(1)略;(2)略;(3)四边形ABCD 为矩形(答案不唯一) 24.(1)略;(2)BCF DCF ∠=∠ BFC DCF ∠=∠ BF BC = AE BF =25.(1)4t ;34t - (2)1s 4 (3)35秒或52秒或3秒。

(完整版)平行四边形练习题附答案

(完整版)平行四边形练习题附答案

平行四边形测试题一、选择题1.若平行四边形ABCD 的周长是40cm ,△ABC 的周长是27cm ,则AC 的长为( ) A .13cm B .3cm C .7cm D .11.5 cm 2.根据下列条件,不能判定四边形是平行四边形的是( )A .一组对边平行且相等的四边形B .两组对边分别相等的四边形C .对角线相等的四边形D .对角线互相平分的四边形 3.已知平行四边形周长为28cm ,相邻两边的差是4cm ,则两边的长分别为( ) A .4cm 、10cm B .5cm 、9cm C .6cm 、8cm D .5cm 、7cm 4.下列条件中,能判定一个四边形是平行四边形的是( )A .一组对边平行,另一组对边相等B .一组对边平行,一组对角相等C .一组邻边相等,一组对角相等D .一组对边平行,一组对角互补 5.若A 、B 、C 三点不在同一条直线上,则以其为顶点的平行四边形共有( )个 A .1 B .2 C .3 D .4 6.能够判定四边形是平行四边形的条件是( )A .一组对角相等B .两条对角线互相垂直C .两条对角线互相平分D .一条邻角互补7.已知平行四边形的一条边长为14,下列各组数中能分别作它的两条对角线长的是( ) A .10与6 B .12与16 C .20与22 D .10与18 8.四边形ABCD 中,AD ∥BC ,当满足条件( )时,四边形ABCD 是平行四边形 A .∠A +∠C =︒180 B .∠B +∠D =︒180 C .∠A +∠B =︒180 D .∠A +∠D =︒180 9.已知下列三个命题⑴两组对角分别相等的四边形是平行四边形 ⑵一个角与相邻两角都互补的四边形是平行四边形 ⑶一组对角相等,一组对边平行的四边形是平行四边形 其中错误的命题的个数是( )A .0个B .1个C .2个D .3个10.平行四边形ABCD 中,对角线AC 、BD 交于点O ,AC = 10,BD = 8,则AD 的取值范围是( ) A .AD >1 B . AD <9 C .1<AD <9 D .AD >9 二、填空题11.一个平行四边形的周长为40,两邻边的比为3∶5,则四边形的长为_________.12.一个平行四边形的一个内角比它的邻角大︒24,则这个四边形的四个内角分别是________.13.在平行四边形ABCD 中,EF 过对角线交点O ,交CD 、AB 于E 、F ,若AB = 4cm ,AD = 3cm ,OF = 1.3cm ,则四边形BCEF 周长为_____________.14.已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长为_____.15.在平行四边形ABCD 中,对角线BD = 7cm ,∠DBC =︒30,BC = 5cm ,则平行四边形ABCD 的面积为___________.16.从平行四边形的一锐角顶点引另两条边的垂线,两垂线夹角︒135,则此四边形的四个角分别为_____________.三、解答题:17.平行四边形周长等于68cm ,被两条对角线分成两个不同的三角形的周长和等于80cm ,两对角线的长度之比是2∶3,求两条对角线的长度.18.如图,AD 、BC 垂直相交于点O ,AB ∥CD ,又BC = 8,AD = 6,求:AB +CD 的长.19.如图,某村有一口呈四边形的池塘,在它的四个角A 、B、C 、D 处均种有一棵大核桃树,这村准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形形状,请问这村能否实现这一设想?若能,请你设计并画出图形;若不能,请说明理由.20.已知如图,在平行四边形ABCD 中,∠A =︒60,E 、F 分别为AB 、CD 的中点,AB = 2AD ,求证:BD=3EF .参考答案:一、选择题:C .C .B . B . C .C .C .D .A .C . 二、填空题:11.7.5、12.5、7.5、12.5 12.︒102、︒78、︒102、︒7813.9.6 cm 14.68 15.17.5 cm 216. ︒45,︒135,︒45,︒135ADC B AB OCDEEC三、解答题:17.设一条对角线长为2a ,则另一条对角线长为3a . ∵平行四边形周长等于68cm ,∴相邻两边的长为 34cm , ∴34+2a +3a = 80,解得a = 9.2, 2a = 18.4,3a = 27.6.即两条对角线的长度分别为18.4 cm 和3a = 27.6 cm . 18.过点C 作CE ∥AD 交BA 延长线于E , ∵AB ∥CD ,∴四边形AECD 是平行四边形, ∴AE = CD ,∠BCE =∠BOA =︒90,CE = AD = 6, BE =22CE BC +=2268+= 10. ∵ BE = AB +AE =AB +CD , ∴AB +CD = 10.19.这村能实现他们的设想.① 分别过点A 、C 作BD 的平行线1l 、2l ,② 分别过点B 、D 作AC 的平行线3l 、4l ,3l 交1l 、2l 于点M 、N ;4l 交1l 、2l 于点P 、Q ,则四边形MNPQ 就是所求的平行四边形.20.连结DE ,在平行四边形ABCD 中,AB =//CD ,DF =21CD ,AE =21AB ,∴DF =//AE , ∴四边形AEFD 是平行四边形,∴EF = AD . 又∵AB = 2AD ,AB = 2AE , ∴AD = AE ,且∠A =︒60, ∴DE = AE = BE ,ADCB AQDPCNB M 1l2l3l4lABOCDABOCDEEC∴∠1 =21∠2 =21×︒30,∴∠ADB =︒90,BD =22AD AB -=22)2(AD AD -=3AD ,∴BD =3EF .。

八年级数学第十八章《平行四边形》全章基础测试题含答案

八年级数学第十八章《平行四边形》全章基础测试题含答案

八年级数学第十八章《平行四边形》全章基础测试题测试1 平行四边形的性质(一)学习要求1.理解平行四边形的概念,掌握平行四边形的性质定理;2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.课堂学习检测一、填空题1.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD 记作__________。

2.平行四边形的两组对边分别______且______;平行四边形的两组对角分别______;两邻角______;平行四边形的对角线______;平行四边形的面积=底边长×______.3.在□ABCD中,若∠A-∠B=40°,则∠A=______,∠B=______.4.若平行四边形周长为54cm,两邻边之差为5cm,则这两边的长度分别为______.5.若□ABCD的对角线AC平分∠DAB,则对角线AC与BD的位置关系是______.6.如图,□ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=______.6题图7.如图,在□ABCD中,DB=DC、∠A=65°,CE⊥BD于E,则∠BCE=______.7题图8.若在□ABCD中,∠A=30°,AB=7cm,AD=6cm,则S□ABCD=______.二、选择题9.如图,将□ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成....立.的是( ).(A)AF=EF(B)AB=EF(C)AE=AF(D)AF=BE10.如图,下列推理不正确的是( ).(A)∵AB∥CD∴∠ABC+∠C=180°(B)∵∠1=∠2 ∴AD∥BC(C)∵AD∥BC∴∠3=∠4(D)∵∠A+∠ADC=180°∴AB∥CD11.平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为( ).(A)5 (B)6(C)8 (D)12综合、运用、诊断一、解答题12.已知:如图,□ABCD中,DE⊥AC于E,BF⊥AC于F.求证:DE=BF.13.如图,在□ABCD中,∠ABC的平分线交CD于点E,∠ADE的平分线交AB于点F,试判断AF与CE是否相等,并说明理由.14.已知:如图,E、F分别为□ABCD的对边AB、CD的中点.(1)求证:DE=FB;(2)若DE、CB的延长线交于G点,求证:CB=BG.15.已知:如图,□ABCD中,E、F是直线AC上两点,且AE=CF.求证:(1)BE=DF;(2)BE∥DF.拓展、探究、思考16.已知:□ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB为x 轴,如图所示建立直角坐标系,试分别求出B、C、D三点的坐标.17.某市要在一块□ABCD的空地上建造一个四边形花园,要求花园所占面积是□ABCD面积的一半,并且四边形花园的四个顶点作为出入口,要求分别在□ABCD的四条边上,请你设计两种方案:方案(1):如图1所示,两个出入口E、F已确定,请在图1上画出符合要求的四边形花园,并简要说明画法;图1方案(2):如图2所示,一个出入口M已确定,请在图2上画出符合要求的梯形花园,并简要说明画法.图2测试2 平行四边形的性质(二)学习要求能综合运用所学的平行四边形的概念和性质解决简单的几何问题.课堂学习检测一、填空题1.平行四边形一条对角线分一个内角为25°和35°,则4个内角分别为______.2.□ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是______.3.平行四边形周长是40cm,则每条对角线长不能超过______cm.4.如图,在□ABCD中,AE、AF分别垂直于BC、CD,垂足为E、F,若∠EAF=30°,AB=6,AD=10,则CD=______;AB与CD的距离为______;AD与BC的距离为______;∠D=______.5.□ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB=______,BC=______.6.在□ABCD中,AC与BD交于O,若OA=3x,AC=4x+12,则OC的长为______.7.在□ABCD中,CA⊥AB,∠BAD=120°,若BC=10cm,则AC=______,AB=______.8.在□ABCD中,AE⊥BC于E,若AB=10cm,BC=15cm,BE=6cm,则□ABCD的面积为______.二、选择题9.有下列说法:①平行四边形具有四边形的所有性质;②平行四边形是中心对称图形;③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形.其中正确说法的序号是( ).(A)①②④(B)①③④(C)①②③(D)①②③④10.平行四边形一边长12cm,那么它的两条对角线的长度可能是( ).(A)8cm和16cm (B)10cm和16cm (C)8cm和14cm (D)8cm和12cm 11.以不共线的三点A、B、C为顶点的平行四边形共有( )个.(A)1 (B)2 (C)3 (D)无数12.在□ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别是AB和CD的五等分点,点B1、B2、和D1、D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为1,则□ABCD的面积为( )(A)2(B)53 (C)35 (D)1513.根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( )……(1) (2) (3)(A)3n (B)3n (n +1) (C)6n(D)6n (n +1)综合、运用、诊断 一、解答题14.已知:如图,在□ABCD 中,从顶点D 向AB 作垂线,垂足为E ,且E 是AB 的中点,已知□ABCD 的周长为8.6cm ,△ABD 的周长为6cm ,求AB 、BC 的长.15.已知:如图,在□ABCD 中,CE ⊥AB 于E ,CF ⊥AD 于F ,∠2=30°,求∠1、∠3的度数.拓展、探究、思考16.已知:如图,O 为□ABCD 的对角线AC 的串点,过点O 作一条直线分别与AB 、CD 交于点M 、N ,点E 、F 在直线MN 上,且OE =OF .(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.17.已知:如图,在□ABCD中,点E在AC上,AE=2EC,点F在AB上,BF=2AF,若△BEF的面积为2cm2,求□ABCD的面积.测试3 平行四边形的判定(一)学习要求初步掌握平行四边形的判定定理.课堂学习检测一、填空题1.平行四边形的判定方法有:从边的条件有:①两组对边__________的四边形是平行四边形;②两组对边__________的四边形是平行四边形;③一组对边__________的四边形是平行四边形.从对角线的条件有:④两条对角线__________的四边形是平行四边形.从角的条件有:⑤两组对角______的四边形是平行四边形.注意:一组对边平行另一组对边相等的四边形______是平行四边形.(填“一定”或“不一定”)2.四边形ABCD中,若∠A+∠B=180°,∠C+∠D=180°,则这个四边形______(填“是”、“不是”或“不一定是”)平行四边形.3.一个四边形的边长依次为a、b、c、d,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形为______.4.四边形ABCD中,AC、BD为对角线,AC、BD相交于点O,BO=4,CO=6,当AO=______,DO=______时,这个四边形是平行四边形.5.如图,四边形ABCD中,当∠1=∠2,且______∥______时,这个四边形是平行四边形.二、选择题6.下列命题中,正确的是( ).(A)两组角相等的四边形是平行四边形(B)一组对边相等,两条对角线相等的四边形是平行四边形(C)一条对角线平分另一条对角线的四边形是平行四边形(D)两组对边分别相等的四边形是平行四边形7.已知:园边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形;③如果再加上条件“OA=OC”,那么四边形ABCD一定是平行四边形;④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法是( ).(A)①②(B)①③④(C)②③(D)②③④8.能确定平行四边形的大小和形状的条件是( ).(A)已知平行四边形的两邻边(B)已知平行四边形的相邻两角(C)已知平行四边形的两对角线(D)已知平行四边形的一边、一对角线和周长综合、运用、诊断一、解答题9.如图,在□ABCD中,E、F分别是边AB、CD上的点,已知AE=CF,M、N是DE和FB的中点,求证:四边形ENFM是平行四边形.10.如图,在□ABCD中,E、F分别是边AD、BC上的点,已知AE=CF,AF与BE相交于点G,CE与DF相交于点H,求证:四边形EGFH是平行四边形.11.如图,在□ABCD中,E、F分别在边BA、DC的延长线上,已知AE=CF,P、Q分别是DE和FB的中点,求证:四边形EQFP是平行四边形.12.如图,在□ABCD中,E、F分别在DA、BC的延长线上,已知AE=CF,F A与BE的延长线相交于点R,EC与DF的延长线相交于点S,求证:四边形RESF是平行四边形.13.已知:如图,四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线BD交于点O,求证:O是BD的中点.14.已知:如图,△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE 的平行线与线段ED的延长线交于点F,连结AE、CF.求证:CF∥AE.拓展、探究、思考15.已知:如图,△ABC,D是AB的中点,E是AC上一点,EF∥AB,DF∥BE.(1)猜想DF与AE的关系;(2)证明你的猜想.16.用两个全等的不等边三角形ABC和三角形A′B′C′(如图),可以拼成几个不同的四边形?其中有几个是平行四边形?请分别画出相应的图形加以说明.测试4 平行四边形的判定(二)学习要求进一步掌握平行四边形的判定方法.课堂学习检测一、填空题1.如图,□ABCD中,CE=DF,则四边形ABEF是____________.1题图2.如图,□ABCD,EF∥AB,GH∥AD,MN∥AD,图中共有______个平行四边形.2题图3.已知三条线段长分别为10,14,20,以其中两条为对角线,其余一条为边可以画出______个平行四边形.4.已知三条线段长分别为7,15,20,以其中一条为对角线,另两条为邻边,可以画出______个平行四边形.5.已知:如图,四边形AEFD和EBCF都是平行四边形,则四边形ABCD是______.5题图二、选择题6.能判定一个四边形是平行四边形的条件是( ).(A)一组对边平行,另一组对边相等(B)一组对边平行,一组对角互补(C)一组对角相等,一组邻角互补(D)一组对角相等,另一组对角互补7.能判定四边形ABCD是平行四边形的题设是( ).(A)AD=BC,AB∥CD(B)∠A=∠B,∠C=∠D(C)AB=BC,AD=DC(D)AB∥CD,CD=AB8.能判定四边形ABCD是平行四边形的条件是:∠A∶∠B∶∠C∶∠D的值为( ).(A)1∶2∶3∶4 (B)1∶4∶2∶3(C)1∶2∶2∶1 (D)1∶2∶1∶29.如图,E、F分别是□ABCD的边AB、CD的中点,则图中平行四边形的个数共有( ).(A)2个(B)3个(C)4个(D)5个10.□ABCD的对角线的交点在坐标原点,且AD平行于x轴,若A点坐标为(-1,2),则C点的坐标为( ).(A)(1,-2) (B)(2,-1) (C)(1,-3) (D)(2,-3)11.如图,□ABCD中,对角线AC、BD交于点O,将△AOD平移至△BEC的位置,则图中与OA相等的其他线段有( ).(A)1条(B)2条(C)3条(D)4条综合、运用、诊断一、解答题12.已知:如图,在□ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一组线段相等即可).(1)连结______;(2)猜想:______=______;(3)证明:13.如图,在△ABC中,EF为△ABC的中位线,D为BC边上一点(不与B、C重合),AD 与EF交于点O,连结EF、DF,要使四边形AEDF为平行四边形,需要添加条件______.(只添加一个条件)证明:14.已知:如图,△ABC中,AB=AC=10,D是BC边上的任意一点,分别作DF∥AB交AC 于F ,DE ∥AC 交AB 于E ,求DE +DF 的值.15.已知:如图,在等边△ABC 中,D 、F 分别为CB 、BA 上的点,且CD =BF ,以AD 为边作等边三角形ADE .求证:(1)△ACD ≌△CBF ;(2)四边形CDEF 为平行四边形.拓展、探究、思考16.若一次函数y =2x -1和反比例函数x k y 2=的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,利用图象求点A 的坐标;(3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.17.如图,点A (m ,m +1),B (m +3,m -1)在反比例函数xk y =的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.测试5 平行四边形的性质与判定学习要求能综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算.课堂学习检测一、填空题:1.平行四边形长边是短边的2倍,一条对角线与短边垂直,则这个平行四边形各角的度数分别为______.2.从平行四边形的一个锐角顶点作两条高线,如果这两条高线夹角为135°,则这个平行四边形的各内角的度数为______.3.在□ABCD中,BC=2AB,若E为BC的中点,则∠AED=______.4.在□ABCD中,如果一边长为8cm,一条对角线为6cm,则另一条对角线x的取值范围是______.5.□ABCD中,对角线AC、BD交于O,且AB=AC=2cm,若∠ABC=60°,则△OAB 的周长为______cm.6.如图,在□ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则□ABCD的面积是______.7.□ABCD中,对角线AC、BD交于点O,若∠BOC=120°AD=7,BD=10,则□ABCD 的面积为______.8.如图,在□ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,AF=5,2BG,则△CEF的周长为______.49.如图,BD为□ABCD的对角线,M、N分别在AD、AB上,且MN∥BD,则S△DMC______ S△BNC.(填“<”、“=”或“>”)综合、运用、诊断一、解答题10.已知:如图,△EFC中,A是EF边上一点,AB∥EC,AD∥FC,若∠EAD=∠F AB.AB =a,AD=b.(1)求证:△EFC是等腰三角形;(2)求EC+FC.11.已知:如图,△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交BC于F.求证:BE=FC.12.已知:如图,在□ABCD中,E为AD的中点,CE、BA的延长线交于点F.若BC=2CD,求证:∠F=∠BCF.13.如图,已知:在□ABCD中,∠A=60°,E、F分别是AB、CD的中点,且AB=2AD.求证:BF∶BD=3∶3.拓展、探究、思考14.如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)是双曲线上的一点,Q为坐标平面上一动点,P A垂直于x轴,QB垂直于y轴,垂足分别是A、B.图1(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.图2测试6 三角形的中位线学习要求理解三角形的中位线的概念,掌握三角形的中位线定理.课堂学习检测一、填空题:1.(1)三角形的中位线的定义:连结三角形两边____________叫做三角形的中位线.(2)三角形的中位线定理是三角形的中位线____________第三边,并且等于____________________________________.2.如图,△ABC的周长为64,E、F、G分别为AB、AC、BC的中点,A′、B′、C′分别为EF、EG、GF的中点,△A′B′C′的周长为_________.如果△ABC、△EFG、△A′B′C′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n个三角形的周长是__________________.3.△ABC中,D、E分别为AB、AC的中点,若DE=4,AD=3,AE=2,则△ABC的周长为______.二、解答题4.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.5.已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.综合、运用、诊断6.已知:如图,E为□ABCD中DC边的延长线上的一点,且CE=DC,连结AE分别交BC、BD于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF.7.已知:如图,在□ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G.求证:GF=GC.8.已知:如图,在四边形ABCD中,AD=BC,E、F分别是DC、AB边的中点,FE的延长线分别与AD、BC的延长线交于H、G点.求证:∠AHF=∠BGF.拓展、探究、思考9.已知:如图,△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E点,若AB =5,AC=7,求ED.10.如图在△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD 的中点.过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?测试7 矩形学习要求理解矩形的概念,掌握矩形的性质定理与判定定理.课堂学习检测一、填空题1.(1)矩形的定义:__________________的平行四边形叫做矩形.(2)矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角______;矩形的对角线______;矩形是轴对称图形,它的对称轴是____________.(3)矩形的判定:一个角是直角的______是矩形;对角线______的平行四边形是矩形;有______个角是直角的四边形是矩形.2.矩形ABCD中,对角线AC、BD相交于O,∠AOB=60°,AC=10cm,则AB=______cm,BC=______cm.3.在△ABC中,∠C=90°,AC=5,BC=3,则AB边上的中线CD=______.4.如图,四边形ABCD是一张矩形纸片,AD=2AB,若沿过点D的折痕DE将A角翻折,使点A落在BC上的A1处,则∠EA1B=______°。

北师大版九年级数学上册第一章特殊平行四边形测试卷(全章)

北师大版九年级数学上册第一章特殊平行四边形测试卷(全章)

北师大版九年级数学测试卷(考试题)D CB A EF 第一章 特殊平行四边形周周测8一、选择(每题3分,共30分)1 矩形具有而平行四边形不具有的性质是( )A 对角线相等B 对边相等C 对角相等D 对角线互相平分2.下列命题正确的是( )A 有一个角是直角的四边形是矩形B 两条对角线相等的四边形是矩形C 两条对角线互相垂直的四边形是矩形D 四个角都是直角的四边形是矩形3. 如图所示,矩形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果∠BAF =60°,则∠DAE 等于( )A 15°B 30°C 45°D 60° 4. 在菱形ABCD 中,不一定成立的是( ) A 四边形ABCD 是平行四边形 B AC ⊥BDC △ABD 是等边三角形D ∠CAB=∠CAD5. 已知菱形的两条对角线长分别是4cm 和8cm ,则与此菱形同面积的正方形的边长是( )A. 8cm B 4cm C 22cm D 24cm6. 能判定四边形是正方形的条件是( ) A 对角线相等 B 对角线互相平分C 对角形相等且垂直D 对角线相等且互相垂直平分 7.下列命题中,不成立的是( )A 对角线互相平分的四边形是平行四边形B 对角线相等的平行四边形是矩形C 对角线互相垂直的平行四边形是菱形D 对角线互相垂直且相等的四边形是正方形8.在下列图形中,不是轴对称图形,是中心对称图形的是( ) A 矩形 B 菱形 C 平行四边形 D 正方形9.如图,在菱形ABCD 中,∠BAD =80°,AB 的垂直平分线EF 交对角线A C 于点F 、E 为垂足,连结DF ,则∠CDF 等于( ) A .80° B .70° C .65° D .60°A BD CD C B AEF EO A BCD 10. 顺次联结对角线互相垂直且相等的四边形四边的中点所得的四边形是( )A 平行四边形 B 矩形 C 菱形 D 正方形 二、填空(每空2分,共30分)11. 菱形的两条对角线的长分别是4cm 和6cm,则它的面积为_______cm 2. 12. 矩形的对角线的性质是_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D E FC B A(图第1图8题)A 1A 2A 3A 4FE D CB AC 'ED C B A 第16章 平行四边形的认识复习测试一、精心选一选(每小题2分,共20分)1、下列两个图形,可以组成平行四边形的是( )A .两个等腰三角形 ;B. 两个直角三角形 ;C. 两个锐角三角形 ;D. 两个全等三角形 2、平行四边形一边长为12cm ,那么它的两条对角线的长度可能是( ). A 、8cm 和14cmB 、10cm 和14cmC 、18cm 和20cmD 、10cm 和34cm 3、如图1在正方形ABCD 的边BC 延长线上取一点E ,使EC=AC ,AE 交CD 于F ,则∠AFC= ( )A 、112.50 ;B 、1200 ;C 、1350 ;D 、1500图1 图2 图3 4、将一张矩形纸片ABCD 如图2所示折叠,使顶点C 落在C ′点.已知AB=2,30DEC '∠=,则折痕DE 的长为( ) A.2; B.23; C.4;D.15、如图3,在菱形ABCD 中,E 、F 分别是AB 、CD 的中点,如果EF=2,那么ABCD 的周长是( )A .4 ;B .8 ;C .12 ;D .166、如图4,在直角梯形ABCD 中,90ABC ∠=,DC AB ∥,3BC =,4DC =,5AD =.动点P 从B 点出发,由B C D A →→→沿边运动,则ABP △的最大面积为( )A.10 B.12 C.14 D.16 7、如图5,将n 个边长都为1cm 的正方形按如图所示摆放,点A 1、A 2、…、A n 分别是正方形的中心,则n 个这样的正方形重叠部分的面积和为( )A .41cm 2B .4n cm 2C .41-n cm 2 D .n )41( cm 28.已知:菱形ABCD 中,对角线AC 与BD 相交于点O ,E 为 BC 边上的中点,AC=12cm ,BD=16cm ,则OE 的长为( )A .6cmB .5cmC .4cmD .2cm 图5 9.等腰梯形上底与高相等,下底是高的3倍,则底角的度数为( ) A .30° B .45° C .60° D .不能确定10.一个边长为2和3的平行四边形,当它的边长保持不变,其内角大小发生变化,•它可变为( ) A .正方形 B .矩形 C .菱形 D .梯形 11.如图6所示,直角梯形ABCD ,AB ∥CD ,∠B=∠C=90°,AD=8,BC=4,则∠A•和∠D 分别是( )A .30°,150° ;B .45°,135° ;CPBA图412.如图7,厨房的灶台面是用七块大小形状完全相同的瓷砖铺成, •其形状恰好为矩形,测得该矩形的周长为68,则其面积为( )A .98B .196C .280D .284二、细心填一填(每小题2分,共20分) 图71、已知等腰梯形的一个内角为100°,则其余三个角的度数分别是 .2、菱形的两条对角线分别是6cm ,8cm ,则菱形的边长为_____,面积为______3、如图8,在四边形ABCD 是正方形,△CDE 是等边三角形,则∠AED=______,∠AEB=_____图8图9 图10图114、如图9,若将四根木条钉成的矩形木框变成平行四边形ABCD 的形状,并使其面积为矩形面积的一半,则这个平行四边形的最小内角等于________.5、如图10,直线 L 过正方形 ABCD 的顶点 B , 点A 、C 到直线 L 的距离分别是 1 和 2 , 则正方形的边长是6、如图11,在矩形ABCD 中AB=3,BC=2,E 为 BC 的中点,F 在AB 上,且BF=2AF 。

则四边形AFEC 的面积为_________。

图12 图13 7、如图12,矩形ABCD 中,AB=3,AD=4,P 是AD 上的动点,PE ⊥AC•,PF ⊥BD ,则PE+PF 的值为________.图14 图15 图168、将一矩形纸条,按如图13所示折叠,则∠1 = ________度.9.如图14所示,25个边长为1的小正方形拼成一个大正方形,A 、B 、C 、D•都是小正方形的顶点,则四边形ABCD 的面积为_______.10.如图15,在边长为6的菱形ABCD 中,∠DAB=60°,E 是AB 的中点,F 是AC•上一个动点,则EF+BF 的最小值为________.11.在直线L 上依次摆放着七个正方形(如图16所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=________. 三、耐心做一做(1-4每题12分,5题16分,共64分)1、如图,已知平行四边形ABCD 中,AE 、CF 分别平分∠BAD 和∠BCD 。

(1)求证:AC 、EF 互相平分;(2)若∠B =60°,AB =2,BE =2CE ,求四边形AECF 的周长和面积 (1)证明: (2)解: FE D CB A F E DC B A2、如图,矩形ABCD 中,AB =3,BC =4,将矩形沿AC 折叠,使点B 与点E 重合,AD 与EC 相交于点F 。

(1)求证:EF =DF ;(2)求EF 的长。

3、如图甲,四边形ABCD 是等腰梯形,AB DC ∥.由4个这样的等腰梯形可以拼出图乙所示的平行四边形. (1)求梯形ABCD 四个内角的度数; (2)试探梯形ABCD 四条边之间存在的数量关系,并说明理由.5、如图,四边表ABCD 是正方形,M 是AB 延长线上一点.直角三角尺的一条直角边经过点D ,且直角顶点E 在AB 边上滑动(点E 不与点A ,B 重合),另一条直角边与∠CBM 的平分线BF 相交于点F . ⑴如图1,当点E 在AB 边的中点位置时:①通过测量DE ,EF 的长度,猜想DE 与EF 满足的数量关系是____________ ; ②连接点E 与AD 边的中点N ,猜想NE 与BF 满足的数量关系是_______________; ③请证明你的上述两猜想.⑵如图2,当点E 在AB 边上的任意位置时,请你在 AD 边上找到一点N ,使得NE=BF ,进而猜想此时DE 与EF 有怎样的数量关系.EA F DB CDCBA图甲图乙四、探究与应用(本题16分)如图所示,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm.点P从点A开始沿AD 边向点D以1cm/s的速度移动.点Q从点C开始沿CB向点B以2cm/s的速度移动,如果P、Q分别从A、C•同时出发,•设移动的时间为ts,问t为何值时,梯形PQCD是等腰梯形?第16章平行四边形的认识加强题1.如图,在△ABC中,AD平分∠BAC,交BC于D,E为AD上一点,连结BE,M为AB 上一点,过M作MF∥BE,连结EF,且EF∥AB,求证:AF=BM.2.如图,在□ABCD中,AC,BD相交于点O,AE⊥BD于点E,BM⊥AC于点M,CN⊥BD 于点N,DF⊥AC于点F,求证:MN∥EF.MEFD CBANMEFDCBAO3.如图,在矩形ABCD 中,对角线AC,BD 相交于点O,过C 作CE ∥BD,交AB 延长线于点E,求证:AC=EC.4.如图,正方形ABCD 和正方形AEFG 有一个公共顶点,把正方形AEFG 绕A 点旋转到如图所示的位置,连结DG,求证:DG=BE.5.如图,在正方形ABCD 中,E 为BD 上一点,AE 的延长线交BC 的延长线于F,交CD于H,G 为FH 的中点,求证:EC ⊥CG.6.如图,在正方形ABCD 中,M 是CD 的中点,E 是CD 上一点,且∠BAE=2∠DAM,求证: AE=BC+CE.7.如图,在线段AE 上取一点B,使AB>BE,以AB,BE 为边在AE 同侧作正方形ABCD 和B EFG,在AB 上取AH=BE,在BC 的延长线上取一点K,使CK=BG,求证:四边形HFKD 为正方形.GEFD CBAEDCBAOH G EFD C BA M E DCBA K D C8.如图,在梯形ABCD 中,AD ∥BC,对角线AC 与BD 垂直交于O 点,MN 是梯形ABCD 的中位线,∠DBC=30°,求证:AC=MN.9.如图,在直角梯形ABCD 中,AD ∥BC,∠A=∠B=90°,且AB=AD+BC,点E在AB 上,且AE=BC.求证:△CDE 是等腰直角三角形.10.如图,在梯形ABCD 中,AB ∥CD,AD ∥EC,AD=BC,E 为AB 的中点, 求证:ED=EC.11.如图,在等腰梯形ABCD 中,DC ∥AB,P 为下底AB 上任意一点,过P 作PE ⊥AD 于E, PF ⊥BC 于F,过A 作AG ∥PF,交BC 于G,求证:AG=PE+PF.N M D CBA OE DCB AG E F PDC BA E DCBA12.如图,在□ABCD中,EF∥AB,交BC于E,交AD于F,连结AE,BF交于点M,连结CF, DE交于点N,求证:(1)MN∥AD;(2)MN=12 AD.13.如图,在梯形ABCD中,∠A=38°,∠B=52°,M,N分别是DC,AB的中点. 求证: MN= (AB-CD).1 2AB,14.如图,在△ABC中,AD和AM分别是BC边上的高和中线,若MD=求证:∠C=12∠B.15.如图,在△ABC中,∠A>∠B,CD是∠ACB的平分线,AQ⊥CD,垂足为Q,又AB 的中点为P,求证:PQ=12(BC-AC).NMEF DCBANMD CBAMD CBAQPDCBA16.如图,在菱形ABCD 中,E 是AD 的中点,EF ⊥AC 交AB 于M,交BC 延长线于F点,求证:AB,EF 互相平分.ME FDCBA。

相关文档
最新文档