第十章 花色遗传
园林植物遗传学复习思考题

园林植物遗传学复习思考题(2006-05-31 10:22:11)转载分类:保研考研版第一章绪论1.基本概念:遗传变异基因型表现型饰变2.简述生物体内的可遗传变异3.简述生物体遗传与个体发育的关系第二章遗传的细胞学基础1. 列出本章的主要名词术语,并予以解释。
2. 简述染色体的亚显微结构。
3. 简述细胞有丝分裂和减数分裂的特点及区别。
4. 水稻正常的孢子体(sporophyte)组织染色体数是12对。
问下列各组织的染色体数目是多少?(1)胚乳;(2)花粉管的管核;(3)胚囊;(4)根断。
5. 某物质细胞的染色体数为2n=24,分别说明下列各细胞分裂时期中有关数据:①有丝分离前期和后期染色体的着丝粒数;②减数分裂前期I、后期I、前期II和后期II染色体着丝粒数;③减数分裂前期I、中期I和末期I的染色体数。
6. 说明以下问题:①在高等植物中,10个小孢子母细胞、10个大孢子母细胞、10个小孢子和10个大孢子能分别产生多少个配子?②在动物细胞中,100个精原细胞、100个初级精原细胞、100个卵原细胞和100个次级卵母细胞能分别产生多少个精子或卵子?第三章孟德尔式遗传分析1.萝卜块根的形状有长形的,圆形的,有椭圆形的,以下是不同类型的杂交的结果:长形×圆形-→ 596椭圆形长形×椭圆形-→205长形,201椭圆形椭圆形×圆形-→198椭圆形,202圆形椭圆形×椭圆形-→158长形,112椭圆形,161圆形说明萝卜块根性状属于什么遗传类型,并自定基因符号,标明上述各杂交组合亲本及其后代的基因型。
2.番茄的红果色(R)对黄果色(r)为显性。
分别选用黄果番茄和红果番茄作亲本进行杂交,后代出现了不同比例的表现型,请注明下列杂交组合亲代和子代的基因型。
(1)红果×红果(2)红果×黄果(3)红果×黄果↓ ↓ ↓3红果:1黄果 1红果:1黄果红果3.讨论分离规律的表现形式(3 :1,1 :2 :1,1 :1)。
高中生物基因突变题目训练卷

高中生物基因突变题目训练卷一、选择题1、以下哪种情况最可能导致基因突变?()A DNA 复制时碱基配对错误B 基因重组C 染色体结构变异D 环境条件稳定不变【解析】DNA 复制时碱基配对错误是导致基因突变的内在因素,基因重组不会产生新基因,染色体结构变异是染色体水平的变化,环境条件稳定不变一般不会引发基因突变。
所以答案是 A。
2、基因突变发生在()A DNA→RNA 的过程中B DNA→DNA 的过程中C RNA→蛋白质的过程中D RNA→DNA 的过程中【解析】基因突变发生在 DNA 复制,即DNA→DNA 的过程中。
A 选项是转录,C 选项是翻译,D 选项是逆转录,通常不会导致基因突变。
答案选 B。
3、下列关于基因突变特点的说法,错误的是()A 基因突变在生物界中是普遍存在的B 大多数基因突变对生物体是有害的C 基因突变是定向的D 基因突变具有随机性【解析】基因突变具有普遍性、随机性、不定向性、低频性、多害少利性等特点。
不定向性意味着基因突变不是定向的,C 选项错误。
A、B、D 选项说法均正确。
答案选 C。
4、一个基因中一个碱基对发生替换,可能的结果是()A 变成它的等位基因B 基因的位置发生改变C 基因的数量发生改变D 基因的结构和功能都不改变【解析】一个碱基对发生替换可能导致密码子改变,从而氨基酸改变,进而可能使蛋白质结构和功能改变,产生新的性状,形成原基因的等位基因。
基因的位置和数量不会因为一个碱基对的替换而改变。
基因结构会改变,功能也可能改变。
答案选 A。
5、下列哪种生物的基因突变频率较高?()A 高等动物B 高等植物C 细菌D 病毒【解析】病毒的遗传物质简单,且复制速度快,更容易发生基因突变。
高等动物和高等植物的细胞结构复杂,基因调控机制较为完善,基因突变频率相对较低。
细菌的基因突变频率也低于病毒。
答案选D。
二、填空题1、基因突变是由于 DNA 分子中发生__________的增添、缺失或替换,而引起的基因__________的改变。
花色遗传知识

B End
花色素的三大类群
类黄酮
B 金花茶
10:23
花生花
花色素的三大类群
花青素
凤仙花
天竺葵色素(砖红色) 红 花青素(红色) 花翠素(蓝色) 蓝
甲基花青素 3´甲花翠素
锦葵色素 报春花色素
B
10:23
花色与色素
纯色花 变色花奶油色、象牙色、白色花
黄色花 橙色花与褐色花 深红色、粉红色、紫色、蓝色、黑色 变色花
B
10:23
助色素基因
功能:与控制色素种类的基因或决定色素含量的基因密切相关
性质:属类黄酮,单独存在于细胞中几乎无色 但与花青素共存时,形成一种复合体,呈蓝色
(蓝色)
(红色)
复合
花青素 戊醇or加热
体生
花青素
成与 分解
助色素
室温
A
花青素 助色素
合成途径
助色素
原料物质 a
B
10:23
兰色花重要成因
易变基因
定义:能频繁来回突变的 即回复突变频率较高的基因称为易变基因
常造成花序或花朵上形成异质条纹、斑块的效果
矮牵牛、金鱼草、牵牛、桃花、杜鹃、鸡冠花等
紫 茉 莉 的 异 质 条 纹
B
10:23
控制花瓣内部酸度的基因
功能: 控制花瓣内部酸性强弱的基因 特别提示:在含有这种基因的植物中,即使色素的种 类或含量相同,只要的控制酸度的基因是显性,花瓣就 带红色;若是隐性,则为蓝色
报春花 R/r基因和D/d共同控制,前者影响酸度, 后者作用于前者。
香豌豆 D基因可降低花瓣细胞液中的 pH值 虞美人 P基因可降低花瓣细胞液中的 pH值
花色的遗传育种

课程:园林植物遗传育种专题题目:花色的遗传特性和育种2012年12月22日目录1.花色的含义及其化学基础 (3)1.1 花色的含义 (3)1.2花色的化学基础 (3)1.2.1花色素的种类 (4)1.2.1.1类胡萝卜素 (4)1.2.1.2类黄酮 (4)1.2.1.3 与生物碱有关的其它水溶性色素 (4)1.2.2色素在花瓣中的分布 (4)2花色的成色作用 (5)2.1细胞内pH值 (5)2.2分子堆积作用( molecular stacking) (5)2.3螯合作用 (6)2.4花瓣表皮细胞的形状 (6)3花色的遗传特性 (6)4改变花色的途经方法 (7)4.1杂交育种 (7)4.2突变育种 (9)4.3基因工程在花色育种中的应用 (10)5小结 (11)花色的遗传特性和育种摘要:介绍了植物花色遗传的基础,花色素的种类,显色影响因素,以及花色的遗传表现特性。
综述了我国花色遗传学和改变花色方法的研究进展,特别是基因工程在改变花色中的应用,并对花色基因工程的前景作一展望。
关键词:观赏植物花色育种基因工程ornamental plants genetic andbreedingAbstract: Describes the genetic basis of plant color, flower color type, color factors, and control the formation of the color gene. An overview of China's color change color genetics and methods of research, especially genetic engineering to change the color of the application, and color to make a genetically engineered future prospects.Keywords: breeding of ornamental plants genetic engineering花色是观赏植物的重要性状,花色的优劣直接关系到观赏植物的观赏价值和植物接授传粉的几率,创造新花色也是园林花卉育种的主要目标之一。
植物花色遗传机理

植物花色遗传机理姓名:胡浩班级:生物技术121 学号:11312112 摘要: 植物花色是决定植物观赏价值的关键特征。
以相关研究为例,介绍决定花色的相关分子机理; 论述花色遗传调控的机理。
关键词:花色;遗传调控;花色素;花色改良1、花色素的化学组成与存在组织植物花朵中主要含有三大类色素,即类黄酮( Flavonoids) 、类胡萝卜素( Carotenoids) 及生物碱类( Alkaloid ) 。
各种色素的合成备一套完整的链式反应, 其表达由一系列基因及基因组控制。
类黄酮是植物的次生代谢产物,分为黄酮、黄酮醇、黄烷酮(flavonone)和花色苷(anthocyanins)等。
花色苷即花色素苷,控制花的粉红、红、蓝、紫和红紫等,由花色素和糖(saccharide)组成。
类胡萝卜素是胡萝卜素(carotene)和叶黄素(xanthophyll)(即胡萝卜醇,carotenol)的统称,所含共轭双键构成生色团,表现黄、橙、红和紫等。
生物碱是含负氧化态氮原子的环状有机物,是氨基酸的次生代谢产物。
花色素一般存在于花瓣的上表皮细胞,深色花瓣的栅状组织、海绵组织及下表皮细胞也含有色素。
不同花色素在细胞内存在的位置及状态不相同, 类胡萝卜素以沉积形式或结晶态存在于细胞质的色素体上, 而类黄酮则以细胞液状态存在于液泡之中。
花色是色素综合的外在表现, 决定于液泡的p H 值、花色素普、黄酮醇及其它辅色素的存在与浓度。
2、液泡pH值对花色影响花瓣细胞液pH 直接与花色相关。
尽管花瓣细胞液pH多在2.5~7.5,但红色花的细胞液比蓝色花的酸性更强; 红色花衰老时液泡pH增加且花色变蓝。
花瓣细胞液pH直接影响花色素的颜色表现。
花色苷呈色具pH 依赖性:pH<2时显红或黄; pH<3时显红或蓝; pH>6时显多种色; pH3~6时形成的无色甲醇假碱可再转化为无色顺式查尔酮和反式查尔酮; 在特定pH溶液中,花色苷的几种型式达成平衡且表现特定颜色; 一般,花色苷在低pH下为红色且稳定,在弱酸性的液泡pH下更趋蓝色且常不稳定;pH也影响花色苷的共色作用而影响花色。
1A “花色与遗传”

教學示例
【分享經驗整合成果】
以下是一個示例: 1.辦一個研究成果發表會 2. 色盲者的世界又是何種顏色? 為他們不能開車,原因又是甚麼?我們應珍惜可見
說明
的花花世界,怎樣利用自交、雜交選擇你喜歡的花色,將自己想的解決方法和大家 分享,而大家提出問題,探討這方法的可行性?
3.回應每個活動的「評量表」:學生可以在「分組成果發表會」上提出問題或私下參訪各 小組成員,討論評量單上的題目。 4.對探討工作之檢討,例如 ‧在本次研究中,你們小組感到最有成就的是什麼? ‧體認到「顏色」對生物或人的影響是些什麼?
【評鑑與展望】
以下是一個示例: 1.學生之學習成就檢核 科學與技術認知的學習 ‧可將本議題探討的內容中與課程綱要相關的科學概念列舉出來,配合各小組的探究活動 ,設計成試題,由學生填答、口頭回答或進行紙筆測試。 「過程技能」、「思考智能」與「科學應用」之考核。 ‧由學生在實驗或搜集資料時表現之觀察、比較與分類、組織與關連、歸納與推斷等能力 來評量。 ‧由學生搜集資料、撰寫報告、討論的能力來評量。 ‧由學生在處理問題時對情境之批評、提出策略之創意及安排工作流程,整合整體工作之 能力來評量。 「科學態度」、「科學本質之體認」之考核 ‧可由學生熱衷參與及細心切實的工作、求真求實的精神來評量。 2.對相關問題之聯想 ‧如何讓色盲者仍享有開車的權利,發揮自己的創造能力? ‧電視的顏色是如何產生? ‧電腦是如何調色的? ‧列表機又是如何調色? ‧照相後的底片是如何清洗成彩色的照片的?
⊙研究一個「議題」,當然會對此議題有進 一步的瞭解,不過也因此聯想到一些更深刻 的問題。因此,結束此議題的探討工作時, 希望開拓出更廣闊的視野,結束在一種「興 趣盎然」、「因時間不足,尚有很多有待改 進及研究的問題…」這種狀態。
报春花花色遗传的生化机制

某些酶的合成和活性受到基因 表达的调控,这些基因的表达 又受到上游基因和环境因素的 调节。
基因表达与调控
80%
转录水平调控
基因表达首先在转录水平上受到 调控,转录因子可以识别和结合 上游启动子区域,激活或抑制靶 基因的转录。
100%
转录后水平调控
转录后水平调控涉及mRNA的稳 定性、翻译效率和蛋白质的修饰 等方面,这些过程可以影响蛋白 质的合成和功能。
分子机制解析
揭示了花色基因通过调控类黄酮 代谢途径来影响花色,包括查尔 酮合成酶、花青素还原酶等关键 酶的作用。
转录调控研究
发现MYB、bHLH和WD40等转 录因子在花色形成中的重要调控 作用,以及miRNA对花色基因的 表达调控。
面临的挑战与问题
01
02
03
遗传复杂性
报春花花色由多个基因控 制,且存在基因与环境互 作,导致遗传解析难度大。
生化分析技术
蛋白质组学分析
利用生化技术对花色相关蛋白质进行 分离、纯化和鉴定,了解其性质和功 能。
代谢物组学分析
通过生化技术对花色形成过程中涉及 的代谢物进行分析,揭示花色的生化 基础和调控机制。
05
报春花花色遗传研究的现状与展望
研究现状与成果
基因定位与克隆
通过全基因组关联分析、图位克 隆等方法,成功定位和克隆了多 个控制报春花花色的基因。
代谢组学研究
结合代谢组学技术,系统研究 花色形成的代谢过程和关键代 谢物,揭示更完整的生化机制 。
基因编辑与功能验证
利用CRISPR-Cas9等基因编辑 技术,对花色基因进行精确编 辑,验证其在花色形成中的作 用。
跨物种比较研究
通过对不同物种间花色形成的 比较研究,揭示花色形成的共 性和特性,为花卉育种提供理 论指导。
第十章花色遗传

(2)调节花色素量的基因
( 花色由于色素含量的多寡,花色从浅色到深色, 颜色的深浅也是基因决定的。例如,紫花地丁花从白 色到深蓝紫色,中间有过渡颜色,这是由于有A、B两 组基因及其显隐性组合不同所致,aaBB基因呈白 色,AAbb呈浅蓝紫色,AaBb呈蓝紫色,AABb和 AABB均呈深蓝紫色。花色素的含量,随着A、B两组 基因显性数的增加由少变多,花色由浅变深;) 相反的四倍体金鱼草,花色由EI基因控制,有4 个EI基因的近白色,3个的呈微红色,2个的淡红色, 1个呈红色,0个的呈浓红色,即随着EI基因的增加, 花色由红色逐渐变成淡色,说明EI基因对花色的形成 有减退的作用。
二
花色
狭义指花瓣的颜色. 广义指花器官花萼、雄蕊甚至苞片 发育成花瓣的颜色。 通常所说的花色往往包括了这几部 分的颜色,而我们所讨论的花色仅指的 是一朵花色彩明显的部分,尤其是指发 育成花瓣状的那部分的颜色。
对大多数植物来说这部分是指内花被(inner perianth) ――又被称为花冠(corolla); 像百合、鸢尾、水仙等,花萼发育成花瓣状而 和花冠难以区别。 有雄蕊发育成花瓣颜色的如重瓣牡丹、重瓣月 季等 也有的苞片(bract)明显发育成花瓣状而缺少 真正的花被如三角梅、一品红、虎刺梅。
特点:
类胡萝卜素一般不溶于水,可溶于脂肪 和类脂,因而在植物细胞内不能以溶解 状态存在于细胞液中,一般含于细胞质 内的色素体上,故又称其为质体色素。 其中胡萝卜色素的化学结构属于碳氢化 合物,故易溶于石油醚类,而不溶于醇 类;胡萝卜醇是胡萝卜素的羟基衍生物, 因此和石油醚的亲和性低,和醇的亲合 性高。
纯色花
1.奶油色、象牙色、白色 具有这几种花色的花,大都含有无色或 淡黄色的黄酮或黄酮醇。不含色素的纯 白色花(白化苗)非常稀少。我们一般所 说的白色花实际上是奶油色或象牙白色。
第10章 花色的遗传

• 例1: • 藏报春,已知色素分布的基因有J/D/G3个。 J基因是花青素生成活跃的基因,具有J基因 时花呈红色,但其在花中心部位作用较弱, 呈粉红色;D/G基因都有抑制花青素生成 的作用,D对花瓣周边抑制作用较强,而G 基因对花的中心部位抑制作用较强。所以 具有D基因的花,花瓣四周有逐渐变白的现 象,而具有G基因的花,花瓣基部变为白色。
• 在天然的花里,助色素多是类黄酮家族的 成员,助色素的生成与控制色素种类的基 因或决定色素含量的基因都有密切的关系。 共同的原料物质是合成花青素还是合成助 色素是由基因决定的,基因A完全显性时, 则合成花青素(红色),隐性时,则合成 助色素。此时花呈红色或白色,如基因A不 完全显性时就会生成花青素和助色素,这 两者可形成复合体,而使花瓣程蓝色。
第十章 花色的遗传
一、花色的遗传学基础
• • • • • 1、花色的遗传学基础 (1)花色的有无是由基因控制的; (2)决定色素种类和色素量的基因; (3)花色素性质的变化也是特定基因控制的; (4)其它色素形成与否及共同着色,细胞液的 PH值,色素的分布等都是由特定基因控制的。 • 基因并不是孤立的,因此基因所在染色体及位置、 基因间相互作用、基因的数量及作用强度都会影 响花色的变化,
二、 花色的遗传改良
• 1、杂交育种 • 杂交育种是目前观赏植物品种改良的主 要途径,也是创造新花色的重要方法,尤 其是种间杂交。
• 2、突变育种 • 自发突变产生的新花色突变体是选育新 花色品种的重要遗传资源。 • 如在二倍体的白花仙客来品种自交系中出 现了黄花突变体。其色素为柚配基查耳酮 (chalcononaringenin),这可能是缺少查 耳酮-黄酮转化的活性基因造成的,可能培 育深黄色仙客来。
• 3、辐射诱变 • 辐射诱变也是创造新花色的重要手段。 单个色素合成酶基因的突变即可产生新的 花色。 • 如Banerji等用1.5 、2.0 、2.5 Kraelγ 射 线照射“Anupam”菊花的生根插条,M1 出现了花色突变的嵌合体,从中分离出了3 个红色突变体。Venkatachalam等在γ 射 线照射的橙粉色百日菊M2中,出现了洋红、 黄、红、红底白点等花色突变体,而与照 射剂量无关,并在M3、M⒋中稳定遗传。
花色与花瓣遗传

❖ 色彩是未被植物色素细胞吸收而反射出来的那部分光谱在 人眼中的表现。色素是色彩的物质基础,同时还受到各种 细胞内环境(PH值、金属离子等)、细胞外环境和光线
等因素的影响。
花色
❖狭义指花瓣的颜色. ❖广义指花器官花萼、雄蕊甚至苞片发育成花瓣的颜色。 ❖通常所说的花色往往包括了这几部分的颜色,而我们所讨 论的花色仅指的是一朵花色彩明显的部分,尤其是指发育成 花瓣状的那部分的颜色。
易变基因
• 易变基因:在花朵中经常发生的花色基因频繁来回突变,这类 基因称为易变基因,如矮牵牛、金鱼草、牵牛及桃花、杜鹃等, 而且回复突变的频率也很高。易变基因常造成花序或花朵上形 成异质条纹、斑块。
• 鸡冠花,一般为黄色和红色,黄色花为隐形a基因控制,红色花 为显性A控制。常见的黄色花为正常类型,但a很易变成A,如a 较早突变成A,则红色斑块较大;如较晚,则红色斑块较小或 者呈条纹状。
素分解。
影响花色变化的因素
(1)色素的理化性质
• 花青素苷的结构 以花青素苷为主要色素的花色丰富,从橙到红、 紫、蓝、黑。
• 辅助着色效应 指黄酮、黄酮醇及其他化合物与花青素苷一起呈现 吸收峰强度变化和谱带位移现象。强度变化包括增色、减色效应;位 移包括红移和蓝移。
• 络合作用 细胞液中存在的Al3+,Fe3+,Mg2+,Mo2+等金属离子与色素形 成络合物,改变色素颜色。
形成,如金鱼草;一种 是由花青素和类胡萝卜素共同形成, 如郁金香; • 褐色是花色素苷和类胡萝卜素共同形成的,如桂竹香、报春 花。
4.深红色、粉红色、紫色、蓝色和黑色
这些花色基本上都产生于花色素苷。此类色素之所以有如此广泛的花色 变异幅度,是由于: •花青素苷B环羟基数不同所致,羟基数越多,花色越蓝 •花青素苷甲基化程度不同,甲基化程度越高,花色越红 •花青素苷含量不同,含量低,粉红;高,红色;浓密,呈深红,棕红甚 至黑色 •细胞内的辅助色素及金属离子也可能使花色发生改变 •花瓣表皮细胞的形状不同,如表皮细胞又细又尖,对光线产生阴影,则 呈现黑色。
园林植物遗传育种

绪论一、园林植物遗传育种学的研究内容和任务。
概念:园林育种:通过遗传育种理论和手段,创造新种质,选育新品种。
内容:①资源收集、筛选、创新、利用②品种选育③杂交种组配选育④繁育苗木、推广应用任务:①创造新种质②筛选、利用新亲本③选育新品种④创造物种多样性二、园林植物遗传育种的目标和途径目标:选育新、奇、特、香、抗、多物种园林花草树木的新种质和品种。
途径:改革名花木走新路,改造洋花木为中华,选拔野花木进花园,新的林木花卉王国靠共建。
三、我国园林植物遗传育种的简史及成就简史:西方发达:加州的花木70%来自中国。
中国落后:广州还可以,花木是朝阳产业,后起之上,发展快,机遇大。
中国园林之母,园林植物的特点是名花好而多,野花多而奇,表现为:①早、特,②香,③常开,④特异性,⑤抗逆性强,⑥自播、随遇而安适应性广。
成就:①珠三角、长三角园林史悠久,从而复兴大大发起。
②形成产业,发展很快,国内、国外联合经营。
③产值由48亿元~1.3亿美元。
④交流的广而多。
⑤科研形成体系。
⑥新、名、特的花木,从色、型、抗性等方面有了新的创举。
⑦园林培育工厂化。
第一章园林植物遗传学第一节花色遗传花色:花瓣色,或花器官花萼、雄芯及苞片发育成花瓣的颜色。
遗传:主要是花色素的遗传。
花色素①胡萝卜素:素和醇的总称②类黄酮:羟化、甲基化、酰化、糖苷化等③花青素:天竺葵、花青、花翠、甲基花青、3′甲花翠、锦葵及报春花色素等育种中靠分离的比例决定基因的显隐性,靠色素中生化结构环决定其颜色。
花色和色素:纯、黄、橙、褐、红、粉、紫、蓝、黑、变色等花色,表3-1/P27花色的基因是以四倍体形式发生作用,是多基因,共同作用的数量遗传性状,花色的深浅、多少、部分还受助色素基因和易变基因的微妙作用。
不同花色杂交,多表现为深色花为显性,浅色花为隐性,但也有白色花是显性,变色的花为基因突变而产生。
花色除与基因有关,与环境也依依相联,如光、温、水、土、肥等因素,一般温低、花鲜、花质好,温高花变色、素变质,所以鲜花开在适温中,也证明了南方高温花少、色差的原因。
花色遗传 (共37张PPT)

Leucocyanidin
ANS
Leucopelargonidin
ANS
Leucoderlphinidin
ANS
Cyanidin
FGT
Pelargonidin
FGT
Derlphinidin
FGT
Cyanidin-3-Glc
2019/1/10
Pelargonidin-3-Glc
Derlphinidin-3-Glc
二氢槲皮醇 Dihydroquercetin
二氢堪非醇 Dihydrokaempferol
二氢杨梅黄酮 Dihydromyricetin
无色花青素 Leucocyanidin
无色天竺葵色素 Leucopelargonidin
无色飞燕草色素 Leucoderlphinidin
花青素 Cyanidin
天竺葵色素 Pelargonidin
CБайду номын сангаасI
Naringeninchalone
CHI F3’H F3’H
Eriodictyol
F3H
Naringenin
F3H
F3’5’H
Pentahydroxy flavanone
F3H
Dihydroquercetin
DFR
Dihydrokaempferol
DFR
F3’5’H
Dihydromyricetin
(一)花色和色素的种类
1、奶油色、象牙色、白色
2、黄色
3、橙色、绯红色、褐色 4、深红色、粉红色、紫色、蓝色和黑色等 5、花朵开放所引起的花色变化
2019/1/10
色素种类与花色
花色 奶油色及象牙色 黄色 橙色 绯红色 色素组成 黄酮、黄酮醇 (a) 纯胡萝卜素 (a) 纯类胡萝卜素 (b) 天竺葵色素+橙酮 (a) 纯天竺葵素 (b) 花青素+类胡萝卜素 (c) 花青素+类黄酮 (a)花青素+类胡萝卜素 纯花青素 纯甲基花青素 纯花翠素 (a) 花青素+辅色素 (b) 花青素的金属络和物 (c) 花翠素+辅色素 (d) 花翠素的金属络和物 (e) 高 PH 型的花翠素 高含量的花翠素 植物 金鱼草、大丽花 黄色蔷薇 百合 金鱼草 天竺葵、一串红、郁金香,Chadmanthe 及 Lapeyro -usa 桂竹香、蔷薇、报春 山茶、秋海棠 牡丹、蔷薇(Rugosa 系) 南美马鞭草、大鸳鸯茉莉 藿香叶、绿绒蒿 矢车菊 蓝茉莉 飞燕草、多叶羽扇豆 报春花 郁金香、三色堇
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特点:
类胡萝卜素一般不溶于水,可溶于脂肪 和类脂,因而在植物细胞内不能以溶解 状态存在于细胞液中,一般含于细胞质 内的色素体上,故又称其为质体色素。 其中胡萝卜色素的化学结构属于碳氢化 合物,故易溶于石油醚类,而不溶于醇 类;胡萝卜醇是胡萝卜素的羟基衍生物, 因此和石油醚的亲和性低,和醇的亲合 性高。
为辅助途径;
为菊花体内途径
3 花色变异的机理
花卉色素是花色变异的基础,但一朵
花呈现什么样的花色不仅与色素种类有关,
还受细胞内色素含量、色素的理化性质及
基因工程改变花色
1985年,Meyer. P等将玉米DFR(二氢黄烷 醇合成酶)基因导入矮牵牛RL01突变体之 后,使二氢堪非醇(Dihydrokaempferol) 还原,从而为天竺葵色素(Pelargonidin) 生物合成提供了前体,使花色变成砖红色, 创造了矮牵牛的新花色系列,成为世界上 第一例基因工程改变花色的成功先例。
蓝色基因的分离
由于蓝色基因的分离,花卉育种工 作者对蓝色花系的培育给予了很高 的关注,具有梦幻般的魅力的“蓝 色月季”研究如火如荼的展开,相 信人们梦寐以求的蓝色菊花、香石 竹、郁金香等奇特花卉都为时不远。
花色的类别
ቤተ መጻሕፍቲ ባይዱ 白色 黄色
白牡丹
红色和兰色
粉国色
黄麒麟
兰色花
第二节、花色的化学基础
1. 花色素的三大类群
二 花色
狭义指花瓣的颜色. 广义指花器官花萼、雄蕊甚至苞片 发育成花瓣的颜色。 通常所说的花色往往包括了这几部 分的颜色,而我们所讨论的花色仅指的 是一朵花色彩明显的部分,尤其是指发 育成花瓣状的那部分的颜色。
对大多数植物来说这部分是指内花被(inner perianth) ――又被称为花冠(corolla);
花色素苷的糖苷配基一般称为花色素
目前已发现的天然花色素只有7种,天竺 葵色素、花青素、花翠素、甲基花青素、 三甲花翠素、锦葵色素和报春花色素。 这7种花色素的化学结构如图,由母核苯 环中的取代基、羟基和甲氧基的数量及 位置决定的。
花色素
(3) 其他色素
甜菜红素类 甜菜红素是一种吡啶衍生物,其基
五羟黄酮 Pentahydroxyflavanone
二氢槲皮醇 Dihydroquercetin
二氢堪非醇 Dihydrokaempferol
二氢杨梅黄酮 Dihydromyricetin
无色花青素 Leucocyanidin 花青素 Cyanidin
花青素-3-糖苷 Cyanidin-3-Glc
注明:
为主要途径;
无色天竺葵色素 Leucopelargonidin
无色飞燕草色素 Leucoderlphinidin
天竺葵色素 Pelargonidin
飞燕草色素 Derlphinidin
天竺葵色素-3-糖苷 Pelargonidin-3-Glc
飞燕草色素-3-糖苷 Derlphinidin-3-Glc
像百合、鸢尾、水仙等,花萼发育成花瓣状而 和花冠难以区别。
有雄蕊发育成花瓣颜色的如重瓣牡丹、重瓣月 季等
也有的苞片(bract)明显发育成花瓣状而缺少 真正的花被如三角梅、一品红、虎刺梅。
三,花色的研究简史
孟德尔豌豆杂交实验,奠定了花色遗传的理论基础。 1910—1930年德国学者Willstatter和瑞士学者
类黄酮是在化学结构上以黄酮核为基础 的一类物质的总称。根据这种C环的氧化状 态可区别各种类黄酮(图10-3和10-4)。
黄酮
类黄酮
花青素苷(Anthocyanins)
花青素苷是构成从红色到紫色、蓝色的 主要物质,它们以可溶性糖苷的形式存在于 植物体中,即由真正的着色物质跟一个或多 个糖分子结合而成的化合物。
4-香豆酰- CoA 4-Coumaroyl-CoA
丙二酰- CoA Malonyl- CoA
圣草酚-查尔酮 Eriodictyolchalone
柚配质-查尔酮 Naringeninchalone
圣草酚 Eriodictyol
柚配质(黄酮) Naringenin)
肉桂酸盐 Cinnamate
4-香豆酸盐 4-Coumarete
Karrer从大量的生物中分离出结晶的类胡萝卜素 (Caroteno)并研究其化学结构。 截止20世纪中期,基本查明了花色素的主要化学 结构,积累了很多关于形成花色的类胡萝卜素、类 黄酮和花青素等色素群的知识。 进入20世纪后,随着色素化学的发展,用生物化 学解释花色研究的兴起,如类黄酮遗传的研究。
第10章 花色de遗传
花色是园林植物最重要的观赏性状之一
第一节 自然界的花和花色
一、花是由叶子变来的 花是高等植物的繁殖器官,普通的花由雌
蕊、雄蕊、花瓣、花萼四部分组成。 花是节间极度缩短的变态枝条,花萼、花
瓣、雄蕊、雌蕊、心皮等实际上都是叶片的变 态器官,是由花芽原基发育而来的,属于同源 异型器官,统称为花叶(floral leaf)。
本发色基团是重氮七甲川,结构式中的R 及R′可为H或芳香族取代基,分为红色 的甜菜红素和黄色的甜菜黄素两类。
2 色素在花瓣中的分布
2、色素的生化合成
色素是细胞中的次生代谢物 色素合成过程中经多次化学反应 可进行多级调控的反应
图1 花色素苷合成途径
苯丙氨酸 Phenylalanin
咖啡酰-CoA Caffeoyl- CoA
类胡萝卜素的分离、鉴定
石油醚提取干燥花瓣的粉末,用醇式氢 氧化钾处理所得到的提取液,使类胡萝卜素 酯碱化后加水,则可从分离的醇层和醚层中 分别获得胡萝卜醇和胡萝卜素。若采用柱层 析法将其进一步分离则可得到各种胡萝卜素 和胡萝卜醇。此后可用吸收光谱法测定,从 而将分离的各种类胡萝卜素鉴定出来。
(2) 黄酮类化合物(Flavonoid)
(1)类胡萝卜素(黄色至红色) (2)黄酮类化合物
花色素苷(红色系) 类黄酮(黄色、白色、) (3)其他色素
类胡萝卜素
(1)类胡萝卜素(Carotenoid)
类胡萝卜素是胡萝卜素(Carotene) 和胡萝卜醇(Xamthophyu)的总称,是 包含有红色、橙色及黄色的色素。植物 中除了花以外,叶、根和果实等部位也 都含有这类色素,使这部分也呈现由黄 色至红色的各种颜色。