数字信号处理上机实验问题详解(第三版)
数字信号处理(第三版)课后习题答案全
因此
d X ( e j ) FT[ nx( n)] j d
第2章
时域离散信号和系统的频域分析
6. 试求如下序列的傅里叶变换: (1) x1(n)=δ(n-3) (2) x2 (n) δ(n 1) δ(n) δ(n 1) (4) x4(n)=u(n+3)-u(n-4) 解 (1)
0.5ቤተ መጻሕፍቲ ባይዱ 2 n
n<0时, c内有极点0.5、 2、 0, 但极点0是一个n阶极点,
改成求c外极点留数, 可是c外没有极
点, 因此 x(n)=0 最后得到
x(n)=(0.5n-2n)u(n)
第2章
时域离散信号和系统的频域分析
19. 用部分分式法求以下X(z)的反变换:
(1)
1 1 z 1 3 X ( z) , 1 2 5z 2 z 2
7 7 j j e 2 (e 2 1 1 j j e 2 (e 2 7 j e 2 ) 1 j e 2 )
e j3
7 sin( ) 2 1 sin( ) 2
第2章
时域离散信号和系统的频域分析
14. 求出以下序列的Z变换及收敛域: (1) 2-nu(n) (5) δ(n-1) 解 (1) ZT[2 n u(n)]
n n
n 1
2n z n z 1 2
2z 1 1 2 z 1 2 1 z 1 (5) ZT[δ(n-1)]=z-10<|z|≤∞
第2章
16. 已知
时域离散信号和系统的频域分析
3 2 X ( z) 1 1 1 2 z 1 1 z 2
求出对应X(z)的各种可能的序列表达式。
数字信号处理课后答案+第4章(高西全丁美玉第三版)
6*. 按照下面的IDFT算法编写MATLAB语言 IFFT程 序, 其中的FFT部分不用写出清单, 可调用fft函数。 并分 别对单位脉冲序列、 矩形序列、 三角序列和正弦序列进行 FFT和IFFT变换, 验证所编程序。
解: 为了使用灵活方便, 将本题所给算法公式作为函 数编写ifft46.m如下: %函数ifft46.m %按照所给算法公式计算IFET function xn=ifft46(Xk, N) Xk=conj(Xk); %对Xk取复共轭 xn=conj(fft(Xk, N))/N; %按照所给算法公式计算IFFT 分别对单位脉冲序列、 长度为8的矩形序列和三角序列 进行FFT, 并调用函数ifft46计算IFFT变换, 验证函数 ifft46的程序ex406.m如下:
快速卷积时, 需要计算一次N点FFT(考虑到H(k)= DFT[h(n)]已计算好存入内存)、 N次频域复数乘法和 一次N点IFFT。 所以, 计算1024点快速卷积的计算时间Tc 约为
Fs <
1024 = 15 625 次 /秒 65536 × 10−6
Fs 15625 = = 7.8125 kHz 2 2
1 x ( n) = IDFT[ X ( k )] = [DFT[ X * ( k )]]* N
%程序ex406.m %调用fft函数计算IDFT x1n=1; %输入单位脉冲序列x1n x2n=[1 1 1 1 1 1 1 1]; %输入矩形序列向量x2n x3n=[1 2 3 4 4 3 2 1]; %输入三角序列序列向量x3n N=8; X1k=fft(x1n, N); X2k=fft(x2n, N); X3k=fft(x3n, N); %计算x1n的N点DFT %计算x2n的N点DFT %计算x3n的N点DFT
数字信号处理课后答案+第3章(高西全丁美玉第三版)
k = 0, 1, ⋯, N − 1
(8) 解法一 直接计算:
1 jω 0 n x8 (n) = sin(ω0 n) ⋅ RN (n) = [e − e − jω 0 n ] R N ( n ) 2j
X 8 ( n) =
∑
n =0
N −1 kn x8 (n)WN
1 = [ e jω 0 n − e − jω 0 n ] e 2 j n =0
1− e
j(ω0 −
2π N k) 2π N −1 sin (ω0 − j(ω0 − k )( ) N 2 N 2 =e 2π sin (ω0 − k ) / 2 N
k = 0, 1, ⋯, N − 1
或
X 7 (k ) =
1 − e jω0 N
2π j(ω0 − k ) N 1− e
N −1
N −1
由于 所以
∑
n =0
N −1
n WN ( m + k )
N = 0
m= N −k m ≠ N − k , 0≤ m ≤ N − 1
DFT[X(n)]=Nx(N-k)
N −1 k =0
k=0, 1, …, N-1
5. 如果X(k)=DFT[x(n)], 证明DFT的初值定理
证: 由IDFT定义式
2π mn +θ ) N 2π mn +θ ) N ]
1 = [e 2j
j(
−e
− j(
2π = sin mn + θ N
n=0, 1, …, N-1
3. 已知长度为N=10的两个有限长序列:
1 0 ≤ n ≤ 4 x1 (n) = 0 5 ≤ n ≤ 9
数字信号处理课后答案+第3章(高西全丁美玉第三版)PPT课件
所以
DFT[X(n)]=Nx(N-k) k=0, 1, …, N-1 5. 如果X(k)=DFT[x(n)], 证明DFT的初值定理
x(0)
1
N 1
X (k)
证: 由IDFT定义式
N k0
x(n)
1 N
N 1
X (k )WNkn
k 0
n 0, 1, , N 1
可知
x(0)
1
N 1
X (k)
教材第3章习题与上机题解答
1. 计算以下序列的N点DFT, 在变换区间0≤n≤N-1内,
(1) x(n)=1
(2) x(n)=δ(n) (3) x(n)=δ(n-n0) (4) x(n)=Rm(n)
0<n0<N 0<m<N
j2π mn
(5) x(n) e N , 0 m N
(6) x(n) cos 2π mn, 0 m N N
sin
(0
2π N
k
)
/
2
k 0, 1, , N 1
或
1 e j0N
X
7
(k
)
1
e
j(0
2 N
k)
(8) 解法一 直接计算:
k 0, 1, , N 1
x8 (n)
sin(0n)
RN
(n)
1 [e j0n 2j
e j0n ]RN
(n)
X8(n)
N 1
x8 (n)WNkn
n0
1
N 1
[e j0n
1 WNk
j π (m1)k
e N
sin
π N
mk
sin
π N
数字信号处理第三版用MATLAB上机实验
实验二:时域采样与频域采样一、时域采样1.用MATLAB编程如下:%1时域采样序列分析fs=1000A=444.128; a=222.144; w=222.144; ts=64*10^(-3); fs=1000;T=1/fs;n=0:ts/T-1; xn=A*exp((-a)*n/fs).*sin(w*n/fs); Xk=fft(xn);subplot(3,2,1);stem(n,xn);xlabel('n,fs=1000Hz');ylabel('xn');title('xn');subplot(3,2,2);plot(n,abs(Xk));xlabel('k,fs=1000Hz'); title('|X(k)|');%1时域采样序列分析fs=200A=444.128; a=222.144; w=222.144; ts=64*10^(-3); fs=200;T=1/fs;n=0:ts/T-1; xn=A*exp((-a)*n/fs).*sin(w*n/fs);Xk=fft(xn);subplot(3,2,3);stem(n,xn);xlabel('n,fs=200Hz'); ylabel('xn');title('xn');subplot(3,2,4);plot(n,abs(Xk));xlabel('k,fs=200Hz'); title('|X(k)|');%1时域采样序列分析fs=500A=444.128; a=222.144; w=222.144; ts=64*10^(-3); fs=500;T=1/fs;n=0:ts/T-1; xn=A*exp((-a)*n/fs).*sin(w*n/fs); Xk=fft(xn);subplot(3,2,5);stem(n,xn);xlabel('n,fs=500Hz');ylabel('xn');title('xn');subplot(3,2,6);plot(n,abs(Xk));xlabel('k,fs=500Hz'); title('|X(k)|');2.经调试结果如下图:20406080-200200n,fs=1000Hzxnxn2040608005001000k,fs=1000Hz|X (k)|51015-2000200n,fs=200Hzx nxn510150100200k,fs=200Hz |X(k)|10203040-2000200n,fs=500Hzx nxn102030400500k,fs=500Hz|X (k)|实验结果说明:对时域信号采样频率必须大于等于模拟信号频率的两倍以上,才 能使采样信号的频谱不产生混叠.fs=200Hz 时,采样信号的频谱产生了混叠,fs=500Hz 和fs=1000Hz 时,大于模拟信号频率的两倍以上,采样信号的频谱不产生混叠。
《数字信号处理》第三版答案(非常详细完整)
答案很详细,考试前或者平时作业的时候可以好好研究,祝各位考试成功!!电子科技大学微电子与固体电子学陈钢教授著数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。
解:()(4)2(2)(1)2()(1)2(2)4(3)0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。
解:(1)x(n)的波形如题2解图(一)所示。
(2)()3(4)(3)(2)3(1)6()6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。
(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。
(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如 5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。
(1)()()2(1)3(2)y n x n x n x n =+-+-; (3)0()()y n x n n =-,0n 为整常数; (5)2()()y n x n =; (7)0()()nm y n x m ==∑。
《数字信号处理》第三版答案(非常详细完整)
答案很详细,考试前或者平时作业的时候可以好好研究,祝各位考试成功!!电子科技大学微电子与固体电子学钢教授著数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。
解:()(4)2(2)(1)2()(1)2(2)4(3)0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。
解:(1)x(n)的波形如题2解图(一)所示。
(2)()3(4)(3)(2)3(1)6()6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。
(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。
(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。
(1)()()2(1)3(2)y n x n x n x n =+-+-; (3)0()()y n x n n =-,0n 为整常数; (5)2()()y n x n =; (7)0()()nm y n x m ==∑。
数字信号处理课后答案+第6章(高西全丁美玉第三版)
4. 已知模拟滤波器的系统函数Ha(s)如下: (1)
H a (s) =
s+a ( s + a) 2 + b 2
(2)
b H a (s) = (s + a)2 + b 2
式中a、 b为常数, 设Ha(s)因果稳定, 试采用脉冲响应不变 法将其转换成数字滤波器H(z)。
7.2687 ×10 16 H a (s ) = 2 ( s − 2 Re[ s1 ]s + | s1 |2 )( s 2 − 2 Re[ s2 ]s + | s2 |2 ) = 7.2687 ×1016 ( s 2 + 1.6731 ×10 4 s + 4.7791 ×10 8)( s 2 +4.0394 × 4 s +4.7790 × 8 10 10 )
1⎞ ⎛ 3 ⎞ ⎟ +⎜ ⎜ 2 ⎟ ⎟ 2⎠ ⎝ ⎠
Ak 1/ 2 1/ 2 H ( z) = ∑ = + s k T −1 ( − a + jb )T −1 1− e z 1− e z 1 − e ( −a − jb )T z −1 k =1
按照题目要求, 上面的H(z)表达式就可作为该题的答案。 但在工程实际中, 一般用无复数乘法器的二阶基本节结构 来实现。 由于两个极点共轭对称, 所以将H(z)的两项通分 并化简整理, 可得
1 G( p) = 2 ( p + 0.618 p + 1)( p2 + 1.618 p + 1)( p + 1)
当然, 也可以先按教材(6.2.13)式计算出极点:
pk = e
数字信号处理课后答案+第3章(高西全丁美玉第三版)
X (k ) =
∑
kn 1 ⋅ WN
=
∑
=
1− e 1− e
N k = 0 = 0 k = 1, 2, ⋯, N − 1
(2) X (k ) = ∑ δ(n)W
n =0
N −1
kn N
(10) 解法一
X (k ) =
∑
n =0
N −1 kn nW N
k = 0, 1, ⋯ , N − 1
上式直接计算较难, 可根据循环移位性质来求解X(k)。 因 为x(n)=nRN(n), 所以 x(n)-x((n-1))NRN(n)+Nδ(n)=RN(n) 等式两边进行DFT, 得到 X(k)-X(k)WkN+N=Nδ(k)
j
2π mn N ,
0<m< N
2π x(n) = cos mn , 0 < m < N N
(7) (8) (9)
x(n)=ejω0nRN(n) x(n)=sin(ω0n)RN(n) x(n)=cos(ω0n)RN(N)
(10) x(n)=nRN(n) 解: (1)
H (k ) = ∑ ∑ x((n′ + lN )) N e
l =0 n′=0
m −1 N −1
−j
2π( n′+lN ) k rN
2π 2π −j n′k − j lk N −1 k r −1 − j 2π lk ′)e mN e m = X ∑ e m = ∑ ∑ x(n l =0 n′=0 r l =0 m −1
数字信号处理(第三版)课后习题答案全
| z |
| z | 1 2
1 5 7 z n 1 F ( z ) X ( z ) z n 1 z (1 0.5 z 1 )(1 2 z 1 ) 5z 7 zn ( z 0.5)( z 2)
n≥0时, 因为c内无极点,x(n)=0; n≤-1时, c内有极点 0 , 但z=0是一个n阶极点, 改为求圆外极点留数, 圆外极点有z1=0.5, z2=2, 那么
0.5n 2 n
n<0时, c内有极点0.5、 2、 0, 但极点0是一个n阶极点,
改成求c外极点留数, 可是c外没有极
点, 因此 x(n)=0 最后得到
x(n)=(0.5n-2n)u(n)
第2章
时域离散信号和系统的频域分析
19. 用部分分式法求以下X(z)的反变换:
(1)
1 1 z 1 3 X ( z) , 1 2 5z 2 z 2
0
jn
令n′=n-n0, 即n=n′+n0, 则
FT[ x(n n0 )]
n
x(n)e
j ( n n0 )
e jn0 X (e j )
第2章
(2)
时域离散信号和系统的频域分析
FT[ x (n)]
(6) 因为
n
x ( n ) e jn
j 3 j n n n 3
n 0
3
e
jn
n 1
3
e
j n
n 0
3
e
jn
n 1
3
e j n
数字信号处理上机实验答案(第三版)
实验1:系统响应及系统稳定性实验程序清单:close all;clear all%======内容1:调用filter解差分方程,由系统对u(n)的响应判断稳定性======A=[1,-0.9];B=[0.05,0.05]; %系统差分方程系数向量B和Ax1n=[1 1 1 1 1 1 1 1 zeros(1,50)]; %产生信号x1(n)=R8(n)x2n=ones(1,128); %产生信号x2(n)=u(n)hn=impz(B,A,58); %求系统单位脉冲响应h(n)subplot(2,2,1);y='h(n)';stem(hn, 'y'); %调用函数tstem绘图title('(a) 系统单位脉冲响应h(n)');y1n=filter(B,A,x1n); %求系统对x1(n)的响应y1(n)subplot(2,2,2);y='y1(n)';stem(y1n,'y');title('(b) 系统对R8(n)的响应y1(n)');y2n=filter(B,A,x2n); %求系统对x2(n)的响应y2(n)subplot(2,2,4);y='y2(n)';stem(y2n,'y');title('(c) 系统对u(n)的响应y2(n)');%===内容2:调用conv函数计算卷积============================x1n=[1 1 1 1 1 1 1 1 ]; %产生信号x1(n)=R8(n)h1n=[ones(1,10) zeros(1,10)];h2n=[1 2.5 2.5 1 zeros(1,10)];y21n=conv(h1n,x1n);y22n=conv(h2n,x1n);figure(2)subplot(2,2,1);y='h1(n)';stem(h1n,'y'); %调用函数tstem绘图title('(d) 系统单位脉冲响应h1(n)');subplot(2,2,2);y='y21(n)'; stem(y21n,'y');title('(e) h1(n)与R8(n)的卷积y21(n)');subplot(2,2,3);y='h2(n)'; stem(h2n, 'y'); %调用函数tstem绘图title('(f) 系统单位脉冲响应h2(n)');subplot(2,2,4);y='y22(n)';stem(y22n,'y');title('(g) h2(n)与R8(n)的卷积y22(n)');%=========内容3:谐振器分析========================un=ones(1,256); %产生信号u(n)n=0:255;xsin=sin(0.014*n)+sin(0.4*n); %产生正弦信号A=[1,-1.8237,0.9801];B=[1/100.49,0,-1/100.49]; %系统差分方程系数向量B和A y31n=filter(B,A,un); %谐振器对u(n)的响应y31(n)y32n=filter(B,A,xsin); %谐振器对u(n)的响应y31(n)figure(3)subplot(2,1,1);y='y31(n)';stem(y31n,'y');title('(h) 谐振器对u(n)的响应y31(n)');subplot(2,1,2);y='y32(n)';stem(y32n,'y');title('(i) 谐振器对正弦信号的响应y32(n)');实验程序运行结果及分析讨论程序运行结果如图10.1.1所示。
数字信号处理课后答案+第6章(第三版)
比较分子各项系数可知, A1、 A2应满足方程:
A1 A 2 1 A1 s 2 A 2 s1 a
解之得, A1=1/2, A2=1/2, 所以
H a (s) 1/ 2 s ( a jb ) 1/ 2 s ( a jb )
套用教材(6.3.4)式, 得到
(2) H a ( s )
Ha(s)的极点为
b (s a) b
2 2
s1=-a+jb,
s2=-a-jb
将Ha(s)部分分式展开:
j H a (s) j
2 2 s ( a jb ) s ( a jb )
套用教材(6.3.4)式, 得到
j H (z) 2 1 e
H a (s) H a ( p) |
p s
c
c
5 4 2 3
5 3 2 4 5
s 3 .2 3 6 1 c s 5 .2 3 6 1 c s 5 .2 3 6 1 c s 3 .2 3 6 1 c s c
对分母因式形式, 则有
H a (s) H a ( p) |
式中 Ωc=2πfc=2π×20×103=4π×104 rad/s
4. 已知模拟滤波器的系统函数Ha(s)如下: (1)
H a (s) sa (s a) b
2 2
(2)
H a (s)
b (s a) b
2 2
式中a、 b为常数, 设Ha(s)因果稳定, 试采用脉冲响应不变 法将其转换成数字滤波器H(z)。
H (z)
1 e
k 1
2
Ak
skT
z
1
《数字信号处理》第三版答案(非常详细完整)
答案很详细,考试前或者平时作业的时候可以好好研究,祝各位考试成功!!电子科技大学微电子与固体电子学陈钢教授著数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。
解:()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。
解:(1)x(n)的波形如题2解图(一)所示。
(2)()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。
(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。
(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如 5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。
(1)()()2(1)3(2)y n x n x n x n =+-+-; (3)0()()y n x n n =-,0n 为整常数; (5)2()()y n x n =; (7)0()()nm y n x m ==∑。
数字信号处理(第三版)_课后习题答案全_(原题+答案+图)
第 1 章
时域离散信号和时域离散系统
题2解图(一)
第 1 章
时域离散信号和时域离散系统
题2解图(二)
第 1 章
时域离散信号和时域离散系统
题2解图(三)
第 1 章
时域离散信号和时域离散系统
题2解图(四)
第 1 章
时域离散信号和时域离散系统
3. 判断下面的序列是否是周期的; 若是周期的, 确定其周期。
n n0 k n n0
|x(k)|≤|2n0+1|M, 因
此系统是稳定的; 假设n0>0, 系统是非因果的, 因为输出
还和x(n)的将来值有关。
第 1 章
时域离散信号和时域离散系统
(4)假设n0>0, 系统是因果系统, 因为n时刻输出只和n时刻以后的输入 有关。 如果|x(n)|≤M, 则|y(n)|≤M, 因此系统是稳定的。 (5) 系统是因果系统, 因为系统的输出不取决于x(n)的未来值。 如果 |x(n)|≤M, 则|y(n)|=|ex(n)|≤e|x(n)|≤eM, 因此系统是稳定的。 7. 设线性时不变系统的单位脉冲响应h(n)和输入序列x(n)如题7图所示, 要求画出y(n)输出的波形。 解: 解法(一)采用列表法。 y(n)=x(n)*h(n)= x(m)h(n-m)
δ(n-2)]
1 2
=2x(n)+x(n-1)+
x(n-2)
将x(n)的表示式代入上式, 得到
1 y(n)=-2δ(n+2)-δ(n+1)-0.5δ(n)+2δ(n-1)+δ(n-2) 2
+4.5δ(n-3)+2δ(n-4)+δ(n-5)
第 1 章
数字信号处理(第三版)教程及答案第4章
第 4 章 时域离散系统的网络结构及数字信号处理的实现
4.3 按照系统函数或者差分方程画系统流图
按照系统函数设计系统的实现方法主要依据的是系统函 数的特点和要求, 画出系统流图, 然后根据流图设计用硬 件或软件进行实现。 系统的网络结构有很多, 但最基本的是FIR和IIR网络结 构。 这两类结构各有特点。 FIR结构一般没有反馈回路, 单 位脉冲响应是有限长的, 系统稳定, 但相对IIR结构, FIR 结构的频率选择性不高, 换句话说, 要求频率选择性高时, 要求FIR有很高的阶数。
N / 2 −1
H ( z) =
∑
n =0
h(n)[ z − n ± z − ( N − n −1) ]
N为偶数
第 4 章 时域离散系统的网络结构及数字信号处理的实现
H ( z) =
( N −1) / 2 −1
∑
n=0
h(n)[ z − n
N −1 − − ( N − n −1) ±z ] + h( )z 2
第 4 章 时域离散系统的网络结构及数字信号处理的实现
N
Ak H ( z) = C + ∑ 1 − p k z −1 k =1
式中, pk是极点l, C是常整数, Ak是展开式中的系数。 一 般pk、 Ak都是复数。 为了用实数乘法, 将共轭成对的极点 放在一起, 形成一个二阶网络, 公式为
bk 0 + bk1 z H k ( z) = 1 + a k1 z −1 + a k 2 z − 2
−1
第 4 章 时域离散系统的网络结构及数字信号处理的实现
上式中的系数均是实数。 总的系统函数为
H ( z) = C + ∑ H k ( z)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验1:系统响应及系统稳定性实验程序清单:close all;clear all%======内容1:调用filter解差分方程,由系统对u(n)的响应判断稳定性======A=[1,-0.9];B=[0.05,0.05]; %系统差分方程系数向量B和Ax1n=[1 1 1 1 1 1 1 1 zeros(1,50)]; %产生信号x1(n)=R8(n)x2n=ones(1,128); %产生信号x2(n)=u(n)hn=impz(B,A,58); %求系统单位脉冲响应h(n)subplot(2,2,1);y='h(n)';stem(hn, 'y'); %调用函数tstem绘图title('(a) 系统单位脉冲响应h(n)');y1n=filter(B,A,x1n); %求系统对x1(n)的响应y1(n)subplot(2,2,2);y='y1(n)';stem(y1n,'y');title('(b) 系统对R8(n)的响应y1(n)');y2n=filter(B,A,x2n); %求系统对x2(n)的响应y2(n)subplot(2,2,4);y='y2(n)';stem(y2n,'y');title('(c) 系统对u(n)的响应y2(n)');%===内容2:调用conv函数计算卷积============================x1n=[1 1 1 1 1 1 1 1 ]; %产生信号x1(n)=R8(n)h1n=[ones(1,10) zeros(1,10)];h2n=[1 2.5 2.5 1 zeros(1,10)];y21n=conv(h1n,x1n);y22n=conv(h2n,x1n);figure(2)subplot(2,2,1);y='h1(n)';stem(h1n,'y'); %调用函数tstem绘图title('(d) 系统单位脉冲响应h1(n)');subplot(2,2,2);y='y21(n)'; stem(y21n,'y');title('(e) h1(n)与R8(n)的卷积y21(n)');subplot(2,2,3);y='h2(n)'; stem(h2n, 'y'); %调用函数tstem绘图title('(f) 系统单位脉冲响应h2(n)');subplot(2,2,4);y='y22(n)';stem(y22n,'y');title('(g) h2(n)与R8(n)的卷积y22(n)');%=========内容3:谐振器分析========================un=ones(1,256); %产生信号u(n)n=0:255;xsin=sin(0.014*n)+sin(0.4*n); %产生正弦信号A=[1,-1.8237,0.9801];B=[1/100.49,0,-1/100.49]; %系统差分方程系数向量B和A y31n=filter(B,A,un); %谐振器对u(n)的响应y31(n)y32n=filter(B,A,xsin); %谐振器对u(n)的响应y31(n)figure(3)subplot(2,1,1);y='y31(n)';stem(y31n,'y');title('(h) 谐振器对u(n)的响应y31(n)');subplot(2,1,2);y='y32(n)';stem(y32n,'y');title('(i) 谐振器对正弦信号的响应y32(n)');实验程序运行结果及分析讨论程序运行结果如图10.1.1所示。
实验内容(2)系统的单位冲响应、系统对和的响应序列分别如图(a)、(b)和(c)所示;实验内容(3)系统h1(n)和h2(n)对的输出响应分别如图(e)和(g)所示;实验内容(4)系统对和的响应序列分别如图(h)和(i)所示。
由图(h)可见,系统对的响应逐渐衰减到零,所以系统稳定。
由图(i)可见,系统对的稳态响应近似为正弦序列,这一结论验证了该系统的谐振频率是0.4 rad。
简答思考题(1) 如果输入信号为无限长序列,系统的单位脉冲响应是有限长序列,可否用线性卷积法求系统的响应。
①对输入信号序列分段;②求单位脉冲响应h(n)与各段的卷积;③将各段卷积结果相加。
具体实现方法有第三章介绍的重叠相加法和重叠保留法。
(2)如果信号经过低通滤波器,把信号的高频分量滤掉,时域信号的剧烈变化将被平滑,由实验内容(1)结果图10.1.1(a)、(b)和(c)可见,经过系统低通滤波使输入信号、和的阶跃变化变得缓慢上升与下降。
实验二时域采样与频域采样(注:本实验程序来自互联网,前半部分运行有误,请同学们自行检察,运行截图是正确的,可作参考)实验程序清单:1 时域采样理论的验证程序清单% 时域采样理论验证程序exp2a.mTp=64/1000; %观察时间Tp=64微秒%产生M长采样序列x(n)% Fs=1000;T=1/Fs;Fs=1000;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xnt,M); %M点FFT[xnt)]yn='xa(nT)';subplot(3,2,1);stem(xnt,yn); %调用自编绘图函数stem绘制序列图box on;title('(a) Fs=1000Hz');k=0:M-1;fk=k/Tp;subplot(3,2,2);plot(fk,abs(Xk));title('(a) T*FT[xa(nT)],Fs=1000Hz');xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))])%=================================================% Fs=300Hz和 Fs=200Hz的程序与上面Fs=1000Hz完全相同。
2 频域采样理论的验证程序清单%频域采样理论验证程序exp2b.mM=27;N=32;n=0:M;%产生M长三角波序列x(n)xa=0:floor(M/2); xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,1024); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32) ;%32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:1023;wk=2*k/1024; %subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域采样');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])实验程序运行结果1 时域采样理论的验证程序运行结果exp2a.m如图10.3.2所示。
由图可见,采样序列的频谱的确是以采样频率为周期对模拟信号频谱的周期延拓。
当采样频率为1000Hz时频谱混叠很小;当采样频率为300Hz时,在折叠频率150Hz附近频谱混叠很严重;当采样频率为200Hz 时,在折叠频率110Hz附近频谱混叠更很严重。
2 时域采样理论的验证程序exp2b.m运行结果如图10.3.3所示。
该图验证了频域采样理论和频域采样定理。
对信号x(n)的频谱函数X(e jω)在[0,2π]上等间隔采样N=16 X k]得到的序列正是原序列x(n)以16为周期进行周期延拓后的主值区序列:时, N点IDFT[()N()IDFT[()][()]()N N N N i x n X k x n iN R n ∞=-∞==+∑由于N<M ,所以发生了时域混叠失真,因此。
()N x n 与x(n)不相同,如图图10.3.3(c)和(d)所示。