电网电流保护与方向电流保护

合集下载

电网的电流保护和方向电流保护

电网的电流保护和方向电流保护
2
2、对继电器的基本要求: 工作可靠,动作过程具有“继电特性”。
3、过电流继电器原理框图:
输入
电流交换
比较
I
Ir
小延时 ≥ 2~3ms
输出
Iop
整定值 调整
继电器电流<返回电流Ire,继电器返回; 继电器电流>动作电流Iop,继电器动作;
3
4、继电器的继电特性:
继电器的动作明确干脆
动作
不可能停留在某一中间
29
4.灵敏度校验 2)灵敏度不满足要求时的调整 可与下一条线路的限时电流速断保护配合。
I K I II
II II
s et .2
rel set.1
t
II 2

t1II

t
式中:K
II rel

1.1
~
1.2
30
5.限时电流速断保护的构成
YR QF
信号
KA
KT
KS
I
t
TA
限时电流速断保护的单相原理接线图
3.限时电流速断保护的动作配合
A
2
B1
C
QF2
QF1
Ik
II set.2
t
I II set.2
t
II 2
II set.1
l
t1II
t2I
t t1I
t
l
当线路上装设了电流速断和限时电流速断保护以后,它们的联合工作就可以保证
全线路范围内的故障都能够在0.5s的时间以内予以切除
27
4.灵敏度校验
—为了能够保护本线路的全长,限时电流速断保护必须在系统最 小运行方式下,线路末端发生两相短路时,具有足够的反应能力。 —通常用灵敏系数来衡量

电力系统继电保护-(第2版)第二章-电流保护PPT课件全文编辑修改

电力系统继电保护-(第2版)第二章-电流保护PPT课件全文编辑修改
➢最小运行方式:是指系统投入运行的电源容量最小,系统的
等值阻抗最大,以致发生故障时,通过保护装置的短路电流为 最小的运行方式。
➢最大短路电流:在最大运行方式下三相短路时通过保护装置
的电流为最大,称为最大短路电流。
Ik.m axZ E Z s.m iE nZ k 1Z s.m in E Z 1 L k 1短路类型系数
流来整定。
动作电流:
I =K II
II
set.2 rel
Iset.1
K r I e I l 1 .1 ~ 1 .2 ( 非 周 期 分 量 已 衰 减 )
为保证选择性,动作时限要高于下一线路电流速断保护的动 作时限一个时限级差△t (Δt一般取0.5s)
动作时间: t2II t1 tt
(1) 前一级保护动作的负偏差(即保护可能提前动作) ; (2) 后一级保护动作的正偏差(即保护可能延后动作) ; (3) 保护装置的惯性误差(即断路器跳闸时间:从接通跳闸回 路到触头间电弧熄灭的时间) ; (4) 再加一个时间裕度。
Lmin
1( Z1
3 E
2
II set
Zs.max)
(保证选择性和可靠性,牺牲一定的灵敏性,获得速动性)
三、保护实现原理图
电流速断保护的主要优点是动作迅速、简单可靠。 缺点是不能保护线路的全长,且保护范围受系统运行方式和 线路结构的影响。当系统运行方式变化很大或被保护线路很 短时,甚至没有保护范围。
对于单侧电源网络的相间短路保护主要采用三段式电流 保护,即第一段为无时限电流速断保护,第二段为限时电 流速断保护,第三段为定时限过电流保护。其中第一段、 第二段共同构成线路的主保护,第三段作为后备保护
电流互感器和电流继电器是实现电流保护的基本元件。

电网相间短路的方向性电流保护

电网相间短路的方向性电流保护
同一母线两侧 1)、时限相同:均装设。 2)、时限不同:时限小的保护装设。
二、方向过电流保护单相原理接线图
方向过电流保护装置构成: 启动元件 功率方向元件 时限元件
四、功率方向继电器的接线方式
1.含义: 继电器与电流互感器和电压互感器之间的连接方式。
2.基本要求 ➢ 保证选择性和较高的灵敏性 ➢ 保证继电器正方向故障时动作,反方时制动。
原因分析:
➢ 反方向故障时,对侧电源提供的短路电流引起保护误动。
解决方法:
➢ 加装方向元件----功率方向继电器,构成方向性电流保护, 仅当方向元件和电流测量元件均启动时才启动逻辑元件。 双侧电源系统保护变成针对两个单侧电源的子系统。
发生正方向故障时,保护启动,反方向故障时,保护闭锁。
3、方向性电流保护的工作原理
引入分支系数:
Kfz

I'BC IAB

故障线障线路流过的 前一级保护护所在线路流过的流
I II op1

K II rel
I
I op
2
K fz
当仅有助增时:
I

' BC

I AB
K fz 1
仅有外汲时:I
' BC

I AB
K fz 1
无分支时:
I
' BC

I AB
K fz 1
既有助增,又有外汲时,可能大于1也可能小于1
第二节 电网相间短路的方向性电流保护
一、方向性电流保护的工作原理
1、问题的提出
为提高供电可靠性,出现了单电源环形供电网络、双电源 或多电源网络。但在这样的网络中简单的电流保护不能满足 要求。分析如下:

继电保护——电网的电流保护和方向性电流保护

继电保护——电网的电流保护和方向性电流保护

继电保护——电⽹的电流保护和⽅向性电流保护⼀.电流继电器1.定义:电流继电器是实现电流保护最基本的元件,也是反应于⼀个电⽓量(单激励量)⽽动作的简单继电器的典型。

它的⼯作原理是⾮常简单的,就是电磁感应原理,因此不准备多讲,下⾯讲四个基本概念。

2 .四个基本概念:(1)起动电流—能使电流继电器动作的最⼩电流值,称为继电器的起动电流。

这⾥要特别关注最⼩两个字,因为电流继电器是反应电流增加⽽动作的,是增量动作的继电器。

如果是低电压继电器,是⽋量动作的继电器,应该是能使电压继电器动作的最⼤电压值,称为起动电压。

(2)返回电流—能使继电器返回原位的最⼤电流称为继电器的返回电流。

这⾥特要别关注最⼤两个字,理由同前。

如果是低电压继电器的返回电压,应该是继电器返回原位的最⼩电压值,称为返回电压。

(3)继电特性—⽆论起动和返回,继电器的动作都是明确⼲脆的,它不可能停留在某⼀个中间位置,这种特性我们称之为'继电特性'。

(4)返回系数—返回电流与起动电流的⽐值称为继电器的返回系数,可表⽰为 Kh=jdzjhII..。

增量动作的继电器其返回系数⼩于 1,⽋量动作的继电器其返回系数⼤于 1。

以上这四个基本概念不仅是适合于电流继电器和电压继电器,对所有的继电器或保护装置都是适⽤的,但⾸先要搞清楚是增量动作的还是⽋量动作的。

如果是增量动作的,就按照电流继电器的原则去套,如果是⽋量动作的,就按照低电压继电器的原则去套。

⼆.电流速断保护 A B C1.定义:反应于电流增⼤⽽瞬时动作的电流保护,称为电流速断保护。

顾名思义 d1 d2电流速断保护应该侧重于速动性。

2.动作特性分析: İd以图 2-1 来分析电流速断保护的动作特性。

II Ⅰ假定在每条线路上均装有电流速断保护, I'dz.2则当线路 A—B 上发⽣故障时,希望保护 2能瞬时动作,⽽当 B—C 上发⽣故障时,希望保护 1 能瞬时动作,它们的保护范围最好能达到本线路全长的 100%。

第二章电流保护和方向性电流保护

第二章电流保护和方向性电流保护

曲线 max :系统最大运行方式下发生三相 短路情况。 曲线min:系统最小运行方式下发生两相 短路情况。
(线路上某点两相短路电流
为该点三相短路电流的 倍)
3 2
(2) 动作电流整定
原则:按躲开下条线路出口(始端)短路时流过本保护的 最大短路电流整定(以保证选择性): IIdz.1 > I(3)d.B.max 取:IIdz.1= KБайду номын сангаасI· I(3)d.B.max IIdz.2 > I(3)d.c.max IIdz.2= KkI· I(3)d.C.max
可靠系数: KkII = 1.1~1.2
(Id中非周期分量已
衰减,故比K I稍小)
2、动作时限的配合 为保证本线路电流II段与
下条线路电流I段的保护范围
重叠区内短路时的动作选择 性,动作时限按下式配合: tII1=tI2+t≈t (t: 0.35s~0.6s,一般取0.5s) 3、保护装置灵敏性的校验 对于过量保护,灵敏系数:
(可靠系数:KkI = 1.2~1.3)
(3) 灵敏性校验
该保护不能保护本线路全长, 故用保护范围来衡量: max:最大保护范围. min:最小保护范围.
Exx / 3 Exx / 3 3 I 由: Kk 2 Z s.max z1lmin Z s.min z1L
3 Z s.min z1L 可求得:lmin ( Z s.max ) / z1 I 2 Kk
为保证动作选择性,动作
时限按“阶梯原则”整定:
tIII1=Max{tIII2,tIII3,tIII4}+t
对定时限过流保护,当故障越靠近电源端时,此时短路电
流Id越大,但过流保护的动作时限反而越长 ——— 缺点 ∴ 定时限过流保护一般作为后备保护,但在电网的终端可以 作为主保护。

方向电流保护的应用特点

方向电流保护的应用特点

方向电流保护的应用特点
方向电流保护是一种用于保护电气设备的保护装置,它主要用于检测和阻止电流的逆向流动。

以下是方向电流保护的应用特点:
1. 防止电能盗窃:方向电流保护器可以阻止电能由装置的负载侧逆向流向电源侧,从而防止非法的电能盗窃行为。

2. 防止设备损坏:逆向电流可能会导致电气设备的损坏,方向电流保护器可以及时检测到逆向电流并切断电路,保护设备免受损坏。

3. 提高电网稳定性:逆向电流的存在可能会导致电网的不稳定性,方向电流保护器可以帮助维护电网的稳定运行。

4. 增强电路安全性:方向电流保护器能够检测到逆向电流,并立即切断电路,确保电路安全,减少电路故障的风险。

5. 降低能源浪费:逆向电流的流动会导致电能浪费,方向电流保护器可以避免逆向电流的产生,从而减少能源的浪费。

总之,方向电流保护具有防止电能盗窃、保护设备、提高电网稳定性、增强电路安全性以及降低能源浪费等重要应用特点。

方向电流保护的基本原理

方向电流保护的基本原理

方向电流保护的基本原理咱先说说电流保护。

电流保护其实就是根据电路里电流的大小来判断是不是出问题了。

你想啊,正常的时候电流就该在一个合适的范围里溜达,就像人正常走路速度是有个大概范围的。

要是电流突然变得老大或者老小,那可能就是电路里有啥故障了,比如说短路了电流就会突然变得特别大,像洪水猛兽一样。

这时候电流保护就该发挥作用啦,它就像个小警察,发现电流不正常就赶紧采取措施,比如切断电路,不让故障进一步扩大。

但是呢,单纯的电流保护有时候会有点迷糊。

为啥这么说呢?因为在一些复杂的电网里,电流的变化可能不是那么单纯的因为故障。

比如说有一些电流的分流啊之类的情况。

这时候就需要方向电流保护来帮忙啦。

方向电流保护呢,它除了看电流大小,还会看电流的方向。

这就好比小卫士不仅要看进来的人数量对不对,还要看这些人是从哪个方向来的。

在电路里,电流是有它正常的流向的。

当有故障的时候,电流的流向可能就会发生变化。

比如说在一条线路的某一处发生了短路故障,正常情况下电流从电源流向负载,这时候故障点就像个大磁铁,把电流吸引得往它那儿跑,电流的方向就改变了。

方向电流保护装置就能敏锐地察觉到这个电流方向的变化。

它里面有一些特殊的元件,就像小触角一样,能感受电流的方向。

如果电流的方向不符合正常的运行情况,再加上电流大小也不正常,那这个保护装置就会判定是发生了故障,然后果断地采取行动,比如把故障线路给断开,保护其他正常的线路和设备。

你可以想象成一个大的电路家族,每个线路都是家族里的一员。

方向电流保护就像是家族里的智慧长者,它时刻盯着电流这个小家伙的一举一动,既看它的数量,又看它的走向。

要是电流这个小家伙调皮捣蛋,乱跑乱闯,不符合家族的规矩,智慧长者就会出手,把这个捣乱的线路隔离开,让整个电路家族继续平稳地运行下去。

而且啊,方向电流保护还很有团队精神呢。

在一个大的电网里,有很多个方向电流保护装置分布在不同的地方。

它们就像一群小伙伴,各自守护着自己的小地盘。

电网的电流保护和方向性电流保护

电网的电流保护和方向性电流保护
段)的起动电流值。 过电流继电器I1的动作电流如何整定(计算)? 必须根据所保护范围内的短路故障电流来整定,即保证其保 护范围内所有地点发生短路,其都可以动作。
线路相间短路电流计算
a 三相短路电流计算
Id(3)

E ZS Zd
E - 系统等效电源的相电势
- Z短d路点至保护安装处的阻抗 -Z保S护安装处到系统等效电源之间的系统阻抗
返回系数
Kh

I h.J I dz.J
1
继电器的工作特性曲线
返回系数:
Kh

I h.J I dz.J
1
“继电特性”:继电器的动作是明确的,例如触点只 能处于闭合和断开位置。无论起动和返回,继电器 不可能停留在某一个中间位置。
电磁型电流继电器工作原理
电磁转矩 :
M dc

K1 2

K2
I
2 J
② 所以动电作流时Ⅰ限段整只定能值保护本线路首端一部分。
t2=0秒
电流速断保护(电流Ⅰ段)的起动(动作)电流整定值
以电流速断 保护2为例。
I dz.2 Kk Id.B.max , Id.B.max 是本线路末端B处最大短路电流
产生本线路末端B处最大短路电。流的条件:
① 系统处于最大运行方式
路AB全长,只能保护本线路AB首端一部分。
(2)电流速断保护(电流Ⅰ段)的整定原则
对上图中的电流 速断保护2进行整 定计算。
① 起动电流整定值 躲开本线路AB段末端(或相邻下一线路出口处)B处最大短路 电流。即大于本线路末端(即母线B处) 的最大短路电流。
I dz.2 Kk Id.B.max ,Kk 是电流Ⅰ段的可靠系数,取1.2~1.3

方向性电流保护

方向性电流保护

保护2、4、6只反映由右侧电源提供的短路电流,它们之间相互配合,
矛盾得以解决;
20
电流保护
+
功率方向判断元件
方向性电流保护
21
(4)方向性电流保护的原理接线
22
2. 功率方向继电器
23
功率方向继电器:用于判别短路功 率方向或测定电压电流间的夹角的 继电器,简称方向元件。由于正、 反向故障时短路功率方向不同,它 将使保护的动作具有一定的方向。
17
(3)原因分析
规定:短路功率的正方向为从母线流向线路
S EA A
k2
SB S
S
C

S
1
2 3 误动 4 5
S D EB 6
I k2 A
I k2B
结论:误动的保护,其短路电流的 方向总是为反方向。
18
(4)解决方法 —利用方向元件和电流元件结合 就构成了方向性电流保护; —由于元件动作具有一定的方向, 可在反向故障时把保护闭锁; —正方向故障时方向电流保护可 能动作,按正方向分组。
EA A
K1
B
K2
C
K3
D EB
1
2
3
4
5
6
1为正方向;1、3为正方向;1、3、5为正方向;
2、4、6为正方向 4、6为正方向 6为正方向 19
这样,双侧电源系统的保护系统转换为成针对两个单侧电源的子系统
EA A
B
C
D EB
1
2
3
4
5
6
A
EA A
B
2
C
4
+
B
C
6 D EB
D

方向电流保护

方向电流保护

WL1
WL1上K2点短路时, 保护1、2、4、6因短路功率由母线流向线路,故 都能启动, 其中按动作方向时限最短的保护1和2动作,跳开 断路器1、2,将故障线路WL1切除,保护4和6便 返回,从而保证了动作选择性。
2.方向过流保护装置
方向过流保护装置由三个主要元件组成,启动元件 (电流继电器),功率方向元件(功率方向继电器) 和时限元件(时间继电器)。
保t4 护取 6与时t1 0 保限 护长 4的t 、: 111 、.5 t14 2配0 2合.5 s: 2 s保t t 护8 8 8 与t t6 1 保3 护 6t 、t 1 32 1 配.5 合 0 :.0 5 .5 1 .3 5 s s
t6 t4 t 2 0 .5 2 .5 s 取时限长的: t8 3s
工作原理是方向元件KW和启动元件KA构成与门, 二者同时动作才能启动时间继电器KT。

QF
YR
QF
信 号
TV
KS
I﹥
P﹥
KA KW
KT
TA
图4-3 方向过流保护原理接线图
在双侧电源线路上,并不是所有过流保护装置中都 需要装设功率方向元件,只有在仅靠时限不能满足动 作选择性时,才需要装设功率方向元件。
在这种情况下,小电源一侧需要采用方向电流速 断保护,当保护背后发生短路时,利用功率方向元 件闭锁,使保护只根据小电源一侧的短路功率方向 来动作。
因此,这时小电源侧方向电流速断保护只需躲过 线路末端短路时通过该保护处的短路电流来整定即 可,从而大大提高了保护的灵敏性,满足保护范围 的要求。
方向电流保护是在电流保护基础上加装方向元件的保护。 在一般电流保护2和3上各加一个方向元件(功率方向继 电器), 它只有当短路功率由母线流向线路时,才允许保护 动作,这样就解决了电流保护的选择性问题。

电网相间短路的方向电流保护

电网相间短路的方向电流保护

dI
4I
X
DL4
I5
X
DL5
6I
N
X~
DL6
d2点短路:保护1、2、4、6起动,t2 <t4 <t6 ,故保护1 和2起动,保护4、6返回。
d2
M
I1
~X
DL1
2I
X
DL2
I3
X
DL3
4I
X
DL4
I5
X
DL5
6I
N
X~
DL6
装设方向元件———功率方向继电器
功率方向继电器:具有判别短路功率正负的能力, 并且在功率为正时动作,并且在功率为负时不动 作。
缺点: 在保护安装地点附近发生三相短路时,有“死区”, 接线复杂。
四、双侧电源网络中电流保护整定的特点
• 瞬时电流速断: 保护的整定值大于反方向故障时流过保护的短路电流,
可以不加方向元件; • 定时限过电流保护:
保护的动作时限大于同一线路上其它保护的动作时限, 可以不加方向元件; • 其它情况均应配置方向元件。
幅值比较原理和相位比较原理之间的关系可以用平行四边 形和菱形定则加以说明。若以比较相位的两个电气量组成一个 平行四边形,则比较幅值的两个电气量就是平行四边形的两条 对角线,两两电气量之间有三种情况。
(2)幅值比较式功率方向继电器的构成框图

.
.
UJ

A


.
.
回B
IJ

幅值比较回路
.
整流滤波 A
比较 回路 整流滤波
第二节 电网相间短路的方向电流保护
一、方向性电流保护的基本原理
1.问题的提出
d1点短路 d2点短路

电力系统继电保护——22电网相间短路的方向性电流保护

电力系统继电保护——22电网相间短路的方向性电流保护
EBC
EC UC
U KC U KB
IB EB UB
B相继电器动作行为分析
EA UA IC
30 30
U CA
U AB EBC
k
EC UC
U KC U KB
IB EB UB
ImB IB ,UmB ECA ,mB k 1200
UCAIB cos(k 1200 a) 0 300 a 1200
反方向短路时电压电流相位关系
U
K2
EI
1
K1
Ir
2
EII
Ik1 Ik 2
U
k 2
mA
Ik2
arg UmA ImA
arg
UA Ik 2A
1800
k 2
Im Ik2
180 k 2
1800 1800 k2 2700
UmAImA cosmA U AIk 2A cos(1800 k 2 ) 0
a) 0度接线方式 b) 90度接线方式
功率方向继电器的基本要求
a) 具有明确的方向性,故障类型,故障点的位置都
不影响功率方向继电器的动作特性;
b) 故障时,继电器具有足够的灵敏度
90度接线方式
90°接线方式是指在三相对称且功率因数cos 1 的
情况下,Im 超前 Um90 的接线方式。
UA
AB C
KW
EA
EC
EB
IB
K
IC
ZS
ZS
ZK
Zd
正方向远处BC两相短路向量图
IB

IC

EB EC 2(Zk ZS
)
EA UA IC

电网的电流保护和方向电流保护

电网的电流保护和方向电流保护

动作
不可能停留在某一中间
位置,这种特性称为“继
返回
电特性”。
I I re I op
*继电器的动作电流:使继电器动作的最小电流;
*继电器的返回电流:使继电器返回的最大电流;
* 返回系数:
2020/1/8
K re

I re I op
1 (0.85~0.9)
4
2.1 单侧电源网络的相间电流保护
2020/1/8
k1
2020/1/8
37
3.灵敏性的校验 (1)作为近后备时
采用最小运行方式下本线路末端两相短路时的 电流来校验;
2020/1/8
38
3.灵敏性的校验 (1)作为远后备时
采用最小运行方式下相邻线路末端两相短路时 的电流来校验;
2020/1/8
39
在各个过电流保护之间,要求灵敏系数互相配合;
对同一故障点而言,要求越靠近故障点的保护灵敏 系数越高;
15
3、电流速断保护的构成
无时限电流速断保护的单相原理接线图
2020/1/8
16
4、评价
优点:动作速度快,接线简单; 缺点:不能保护线路全长,保护范围受运 行方式的影响,保护线路长度不同,保护 范围也不同。
2020/1/8
II se t.2
运行方式变化对电流速断保护范围的影响
17
4、评价
优点:动作速度快,接线简单; 缺点:不能保护线路全长,保护范围受运 行方式的影响,保护线路长度不同,保护 范围也不同。
2020/1/8
45
阶段式电流保护的配合及应用
㈡阶段式电流保护的配合关系
过电流保护
过电流保护靠时间元件逐级配合满足选择性要求 过电流保护的电流元件不具备选择性

方向电流保护

方向电流保护

一、方向性电流保护的工作原理
为满足选择性,在电流保护中增加功率方 向元件用以判别短路功率方向。
方向电流保护的定义:附加判断短路功率 方向元件的电流保护。
功率方向元件作用:判别短路功率方向, 功率方向为正时动作,反之不动作。
等效
一、方向电流保护的原理接线图
一、方向电流保护的原理
组成:
一、方向性电流保护的工作原理
规定短路功率方向:母线流向线路为正,
反之为负.
一、方向性电流保护的工作原理
原因分析:反方向故障时对侧电源提供 的短路电流引起保护误动。 不同地点短路时,该动的近故障点保护功率
方向为正,不该动的保护功率方向为负。
解决办法:利用方向元件与电流元件结 合就构成了方向电流保护。
不同之处:按正方向下一级电流Ⅰ配合;
方向过电流保护:动作电流:按躲开线路最大负
荷电流整定;动作时限:同方向过电流按阶梯原
则确定。
方向过电流保护的动作时限配合
电流保护加装方向元件后,只要同方向的过电 流动作时限需按阶梯形原则配合。
方向过电流保护方向元件装设原则 同一母线两侧保护:
动作时限短者必须加方向元件;
引性要求保护3 跳闸,保护2不应动作,t2> t3;
保护4、5起动,选择性要求保护4跳闸,保护 5不应动作,t5> t4
引入:方向电流保护
K2短路:保护2、3均起动,选择性要求保护2 跳闸,保护3不应动作,t3> t2; 可见,不同地点短路,为满足选择性,对保护2 和保护3的动作时限要求不同,是矛盾的。如何 解决?
(1)电流继电器:起动元件,用以判
断线路是否短路;
(2)功率方向继电器:方向元件,用
以判断线路的短路功率方向。 起动条件:正方向范围内故障,即电流 继电器和功率方向继电器均动作。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n% 1 ( ZAB
3 ES 2 IoIp.1Leabharlann ZS.ma)x2 ba
要求 lmin %( 15~20) %
l
I
I op.1
lmin lmax
Ik.B .max
l
8
3.电流速断保护的构成
TQ QF
KA
KM
I
TA
信号 KS
9
(二)限时电流速断保护
用来切除本线路上速断保护范围以外的故 障,同时也能作为速断保护的后备,它是 三段式电流保护的第 II 段
35
(一)问题的提出及解决办法
1.问题的提出
A
B
k1
C
D
QF1
QF2 QF3
QF4 QF5
QF6
I k1
对QF2的电流速断保护:IoIp.2
K I I rel k.A.max
当k1点短路时,若
Ik1
II op.2
则保护2误动
36
A
k2
B
QF1
QF2 QF3
I k2
C
QF4 QF5
D
QF6
对QF3电流速断保护:
(1)大于流过该线路的最大负荷电流 I L .m a x
IoIIpI KrIeIlIIL. max
式中 KrIIeIl1.15~1.25
(2)外部故障切除后电动机自起动时,应可靠返回
IMs .maxKMIsL.max
I III re rel
KMsIL.max
IoIIpIKIrree
KrIIeIK l MIsL.max Kre
5
A
QF1
k1 B k2
QF2
k3 C k4
QF3
6
1.起动电流的整定
A
k1 B k2
C
QF1
Ik
1 2
QF2
QF3
IoIp.1KrIeIl k .B .m ax
式中 KrIel1.2~1.3
I
I op.1
Ik.B .max
l
7
2.最小保护范围校验
A
k1 B k2
C
QF1
QF2
QF3
Ik
1
lmi l
(2)作为远后备时
采用最小运行方式下相邻线路末端两相短路时 的电流来校验,要求 Ksen1.2
19
4.过电流保护的构成
TQ QF
KA
I
KT
t
TA
信号 KS
20
二、电流保护的接线方式
21
(一)两种常用的接线方式 (二)两种接线方式在各种故障时
的性能分析
22
(一)两种常用的接线方式
电流保护的接线方式是指保护中电流继电器与电 流互感器之间的连接方式
电网相间短路的电流保护 及方向电流保护
1
一、三段式电流保护的工作原理 二、电流保护的接线方式 三、方向电流保护的工作原理
2
一、三段式电流保护的工作原理
3
(一)电流速断保护 (二)限时电流速断保护 (三)过电流保护
4
(一)电流速断保护
对于仅反应于电流增大而瞬时动作的电流 保护,称为电流速断保护,它是三段式电 流保护的第Ⅰ段
14
4.限时电流速断保护的构成
TQ QF
信号
KA
KT
KS
I
t
TA
15
(三)过电流保护
过电流保护是指其起动电流按躲最大负荷电流 来整定的保护,它是三段式电流保护的第 Ⅲ段。该 保护不仅能保护本线路全长,且能保护相邻线路的 全长。可作为本线路主保护的近后备保护以及相邻 下一线路保护的远后备保护
16
1.起动电流的整定
1. 各种相间短路
相同之处:两种接线方式均能正确反应 不同之处:
• 三相星形接线在各种两相短路时均有两 个继电器动作
• 两相星形接线在AB、BC两相短路时仅 有一个继电器动作
25
2. 中性点直接接地系统的单相接地短路
三相星形接线可反应各种单相接地故障 两相星形接线不能反应B相接地故障
26
3.中性点非直接接地系统中的异地 两点接地短路
17
2.动作时限的选择
按阶梯原则选择
A
B
QF5 QF4
QF3
t
t
III 5
t
QF6
t
III 4
t
t
III 3
C
QF2
t
t
III 2
D
D
QF1
t
l
18
3.灵敏性的校验
K sen
I k.min
I
III op
(1)作为近后备时
采用最小运行方式下本线路末端两相短路时的 电流来校验,要求 Kse n1.3~1.5
A
A
B
B
C
C
I KAa I KAb I KAc
I KAa I KAc
三相星形接线方式
两相星形接线方式
23
当保护装置的一次动作电流为 I op 时,则反应 到继电器上的动作电流应为
式中
Iop.r
Kc on
Iop nTA
Iop.r 继电器的动作电流
Kcon 接线系数
nTA 电流互感器变比
24
(二)两种接线方式在各种故障时 的性能分析
(1)异地两点接地发生在相互串联的两条线路上 采用三相星形接线时: 100%有选择地切除XL2 采用两相星形接线时: 有2/3的机会有选择地切除XL2
27
XL1
XL2
28
(2)异地两点接地发生在同一母线的两条线路上 采用三相星形接线时: 将同时切除两条线路 采用两相星形接线时: 有2/3的机会仅切除一条线路
KAb
I
I
I
IAΥ IBΥ ICΥ
32
5.两种接线方式的应用
三相星形接线广泛应用于发电机、变压器的 后备保护中;两相星形接线被广泛应用在中性点 非直接接地系统中,作为相间短路电流保护的接 线方式
33
三、方向电流保护的工作原理
34
(一)问题的提出及解决办法 (二)功率方向继电器 (三)功率方向继电器的接线方式
按系统最小运行方式下,线路末端发生两相短
路时的短路电流进行校验
Ksen
Ik.B.min I oIpI .1
要求 Ksen 1.3
13
当灵敏度不满足要求时,可与下一条线路的 限时电流速断保护配合
起动电流:IoIIp.1KrIIeIloIIp.2 式中 KrIIel1.1~1.2
动作时限: t1IIt2IIt
10
1.起动电流的整定
A
B
QF1
QF2
Ik
I
I op.1
I
II op.1
I
I op.2
C
QF3
IoIIp.1KrIIeIl oI p.2 式中
KrIIel1.1~1.2
l
11
2.动作时限的选择
应比下一条线路速断保护的动作时限高出一个 时间阶梯Δt
t1II t2I t
t 通常取为0.5s
12
3.灵敏性的校验
I K I I o p.3
I re l k .C .m ax
当k2点短路时,若
Ik2
II op.3
则保护3误动
37
对过电流保护:
A
B
k1
C
D
QF1
QF2 QF3
QF4 QF5
29
XL1 XL2
30
4.在Y,d11接线的变压器后两相短路时
IAΥ
IAΔ
K
IBΥ
IBΔ
ICΥ
ICΔ
I A ΔI B Δ, I C Δ0
I aI c 13I A Ib 32 IA
IBΔ
Ib
IBY
I B Y2I A Y2I C Y
Ia Ic IAΔ
IAY ICY
31
IAΔ IBΔ
*
*
*
*
KAa KAc
相关文档
最新文档