熔化极气体保护焊

合集下载

熔化极气体保护焊

熔化极气体保护焊

熔化极气体保护焊概念:
熔化极气体保护焊概念:它是以熔化的金属焊丝作为电极,并由气体作为保护的电弧焊。

熔化的金属焊丝分为:实芯和药芯焊丝两种。

保护气体种类有:惰性气体-He,Ar,此类熔化极气体保护焊也叫MIG焊;氧化性混合气体
-Ar+C02,Ar+CO2+O2,此类熔化极气体保护焊也叫MAG焊;C02保护气体,CO2气体保护焊。

熔化极气保焊:利用焊丝和母材放电产生电弧热熔化焊丝和母材,形成熔池。

熔化焊丝进入母材与母材熔核冷凝后形成焊缝金属。

喷嘴向焊缝区域导出保护气体。

熔化极气体保护焊

熔化极气体保护焊

熔化极气体保护焊一、CO2电弧焊的特点和应用CO2电,以CO2气体作保护气体,依靠焊丝与焊件之间的电弧来熔化金属的气体保护焊的方法称CO2焊。

这种焊接法都采用焊丝自动送丝,敷化金属量大,生产效率高,质量稳定。

因此,在国内外获得广泛应用,与其它电弧焊相比有以下特点:1、生产效率高CO2电弧焊穿透力强,熔深大、而且焊丝熔化率高,所以熔敷速度快、生产效率可比手工电弧焊高3倍。

2、焊接成本低CO2焊的成本只有埋弧焊与手工电弧焊成本的40%-50%。

3、消耗能量低CO2电弧焊和药皮焊条相比3mm厚钢板对接焊缝,每米焊缝的用电降低30%,25mm 钢板对接焊缝时用电降低60% 。

4、适用范围宽不论何种位置都可以进行焊接,薄板可焊到1mm,最厚几乎不受限制(采用多层焊)。

而且焊接速度快、变形小。

5、抗锈能力强焊缝含氢量低抗裂性能强。

6、焊后不需清渣,引弧操作便于监视和控制,有利于实现焊接过程机械化和自动化。

我国在CO2焊接设备、焊接材料、焊接工艺方面已取得了很大的成就。

CO2电弧焊接在我国的造船、机车、汽车制造、石油化工、工程机械、农业机械中获得广泛应用。

二、焊机的型号和连接方法1、我公司CO2焊机型号(见文字说明表)2、面板上的旋钮作用与调节方法,(见说明书)3、连接方法水、电、气、焊枪(见说明书)4、焊枪的构造及软管、导电嘴、喷嘴。

5、焊机可能发生的故障及排除方法(见说明书)三、焊接材料1、CO2保护气体CO2有固态、液态、气态三种状态。

瓶装液态CO2是CO2焊接的主要保护气源。

液态CO2是无色液体,其密度随温度变化而变化。

当温度低于-11℃时密度比水大,当温度高于-11℃时则密度比水小。

由于CO2由液态变为气态的沸点很低为-78℃,所以工业焊接用CO2都是液态。

在常温下能自己气化。

CO2气瓶漆成黑色标有“CO2”黄色字样。

2、焊丝CO2气体保护焊对焊丝化学成分的要求:(1)焊丝必须含有足够数量的脱氧元素以减少焊缝金属中的含氧量和防止产生气体。

熔化极气体保护电弧焊

熔化极气体保护电弧焊
电压偏高时
• 弧长变长,飞溅颗粒变大 • 易产生气孔 • 焊道宽而平,熔深和余高变小
电弧电压
啪嗒!啪嗒!
母材
电压偏低时
• 焊丝插向母材,飞溅增加 • 焊道变窄,熔深和余高大
嘭!嘭!嘭!
母材
三.焊接工艺
焊接速度
在焊接电压和焊接电流一定的情况下:
焊接速度的选择应保证单位时间内给焊缝一定的热量.
焊接热量三要素:热量= I
•节拍要求-焊接速度-焊接电流电压 •飞溅
•压缩机三点焊接
•点焊时间,焊接电流,焊接角度
五.焊接缺陷
•飞溅粘附 •成形不良 •咬边 •收弧处缩孔 •气孔
六.松下MAG焊机 电源类型
晶闸管
逆变
全数字
体积更小,重量更轻,功能更多,性能更好
六.松下MAG焊机
晶闸管焊机
比亚迪培训教材
熔化极气体保护电弧焊
松下焊接(华南)技术应用中心 2010年12月29日
培训目录
一.焊接基础知识 二.熔滴过渡
三.焊接工艺参数
四.焊接缺陷 五.压缩机焊接工艺要点 六.松下MAG焊机介绍
一.焊接基础知识 焊接分类
熔化焊接
电弧焊 气焊 熔化极
手工焊 CO2
埋弧焊
压力焊
铝热焊 电渣焊
激光焊 电子束焊 非熔化极
焊接参数
焊接电流 电弧电压 焊接速度 干伸长度 电源极性 焊枪角度 焊丝直径 保护气体成分和流量 焊接接头形式与焊接位置 坡口形式
三.焊接工艺
选择依据:
焊接电流
根据焊接条件(板厚、焊接位置、焊接速度、材质等参数) 选定相应的焊接电流。
调电流实际上是在调整送丝速度。因此焊接电流必须与焊接 电压相匹配,即一定要保证送丝速度与焊接电压对焊丝的熔 化能力一致,以保证电弧长度的稳定。

熔化极气体保护焊

熔化极气体保护焊

2.送丝装置 送丝系统通常是由送丝机(包括电动机、减速器、 校直轮、送丝轮)、送丝软管、焊丝盘等组成。盘 绕在焊丝盘上的焊丝经过校直轮和送丝轮送往焊 枪。 根据送丝方式的不同,送丝系统可分为四种类型: 推丝式、拉丝式、推拉丝式、行星式(线式)。
3.焊枪 熔化极气体保护焊的焊枪分为半自动焊焊枪(手握 式)和自动焊焊枪(安装在机械装置上)。在焊枪内 部装有导电嘴(紫铜或铬铜等)。焊枪还有一个向 焊接区输送保护气体的通道和喷嘴。喷嘴和导电 嘴根据需要都可方便地更换。此外,焊接电流通 过导电嘴等部件时产生的电阻热和电弧辐射热一 起,会使焊枪发热,故需要采取一定的措施冷却 焊枪。

4、适用的焊材 适用于焊接大多数金属和合金,最适于焊接碳钢和 低合金钢、不锈钢、耐热合金、铝及铝合金、铜 及铜合金及镁合金。
对于高强度钢、超强铝合金、锌含量高的铜合金、 铸铁、奥氏体锰钢、钛和钛合金及高熔点金属, 熔化极气体保护焊要求将母材预热和焊后热处理, 采用特制的焊丝,控制保护气体要比正常情况更 加严格。
4.焊枪角度
50~70度,需依据现场情形及工件焊接工艺要求来定!
5.焊丝干伸长度 焊接时,焊丝端头距导电嘴端部的距离。 根据气体的保护性,飞溅物在喷嘴处的附着情况和不 同的焊接电流来设定焊丝的干伸长度。 焊丝的干伸长度过长时: (1) 焊机上的电压计出现偏移,电流减少,这是因为由于 焊丝伸出部分的阻抗发热使 电压降加大 ,导致电流减少。 (2) 与相同的电流时的情况比较,焊丝的熔化量增加。 (3) 气体的保护作用下降,这是因为喷嘴与母材之间的 距离变大。
熔化极气体保护焊
班级:材加10A 姓名:李青荃
A.熔化极气体保护焊的原理及分类 B.熔化极气体保护焊设备的主要构成 C.影响焊接施工的因素

第三章 熔化极气体保护焊

第三章 熔化极气体保护焊

①焊丝中脱氧元素含量不足:当焊丝金属中含脱氧元素不足时,
焊接过程中就会有较多的FeO溶于熔池金属中。随后在熔池冷凝时 就会发生如下的化学反应: FeO+CFe+CO↑
第四节 CO2气体保护焊
②气体保护作用不良:在CO2气体保护焊过程中,如果因工艺参 数选择不当等原因而使保护作用变坏,或者CO2气体纯度不高, 在电弧高温下空气中的氮会溶到熔池金属中。当熔池金属冷凝时,
3. MIG焊常用焊接工艺举例 就MIG焊的应用范围而言, 它几乎可用于所有金属的焊接, 但 对低碳钢和低合金钢的焊接, 使用纯惰性气体保护成本较高,而且 焊接质量也不理想, 因此一般情况下不采用。
(1) 短路过渡焊接工艺 厚度为1~2mm薄板的对接、搭接、角接及
卷边接头等,可以采用短路过渡方式进行焊接。
图3-10 用三种不同气体焊接时焊缝剖面形状
第三节 熔化极活性混合气体保护焊
表3-6 焊接用保护气体及适用范围
第三节 熔化极活性混合气体保护焊
表3-6 焊接用保护气体及适用范围
2. 用于焊接低碳钢、低合金钢的Ar+O2及Ar+CO2混合气体中,其A r可用粗氩,不必用高纯度的Ar。
第三节 熔化极活性混合气体保护焊
丝伸出长度、焊丝倾角、焊丝直径、焊接位臵、极性、保护气体的 种类和流量大小等。 (1) 焊接电流和电弧电压 通常是先根据工件的厚度选择焊丝直径, 然后再确定焊接电流和熔滴过渡类型。
表3-3 不同材料和不同直径焊丝的临界电流参考值
第二节 熔化极惰性气体保护焊
(2) 焊接速度 单道焊的焊接速度是焊枪沿接头中心线方向的相对 移动速度。
三、熔化极活性混合气体保护焊工艺
MAG焊的工艺内容和工艺参数的选择原则与MIG焊相似。其不 同之处是在Ar气中加入了一定量的具有脱氧去氢能力的活性气体, 因而焊前清理就没有MIG焊要求那么严格。

熔化极气体保护焊工艺参数

熔化极气体保护焊工艺参数

熔化极气体保护焊工艺参数熔化极气体保护焊(Metal Inert Gas Welding,MIG焊)是一种常见的电弧焊接方法,广泛应用于各种金属的焊接工艺中。

这种焊接方法使用熔化极气体保护焊工艺参数,以保证焊接过程中的焊缝质量和焊接效率。

首先,焊接电流是控制熔化极气体保护焊焊接热量的关键参数之一、正确选择合适的焊接电流能够保证焊接热量与焊材相匹配,从而保证焊缝质量和焊接速度。

通常情况下,焊缝的宽度与焊接电流成正比,因此,较宽的焊缝需要较高的焊接电流,而较薄的焊缝则需要较低的焊接电流。

其次,焊接电压是熔化极气体保护焊另一个重要的参数。

焊接电压直接影响电弧的稳定性和剩余气体的排除能力。

选择适当的焊接电压可以获得稳定的焊接过程和良好的焊缝质量。

一般情况下,焊接电压与焊接电流成正比,因此,较高的焊接电流需要较高的焊接电压。

此外,焊丝直径也是熔化极气体保护焊的关键参数之一、焊丝直径与焊接电流、焊缝的宽度和深度以及焊接速度密切相关。

较粗的焊丝适用于较大的焊缝,而较细的焊丝适用于较小的焊缝。

选择合适焊丝直径可以保证焊缝形貌良好,焊接效率高。

最后,焊接速度也是熔化极气体保护焊的重要参数之一、适当的焊接速度能够控制焊接过程中的热输入和熔深,保证焊缝的质量和美观。

过快的焊接速度可能导致熔深不够、焊缝孔洞等缺陷,而过慢的焊接速度则可能导致过高的热输入,使焊缝产生气孔、烧穿等缺陷。

因此,在实际焊接过程中,需要根据焊接材料的板厚、焊丝直径和焊接质量要求来选择合适的焊接速度。

总之,熔化极气体保护焊的工艺参数有焊接电流、焊接电压、焊丝直径和焊接速度等。

正确选择和控制这些参数可以保证焊缝的质量和焊接效率。

在实际操作中,焊工需要结合焊接材料的特点和焊接要求,灵活调整这些参数,以获得满意的焊接结果。

熔化极气体保护焊

熔化极气体保护焊

PPT学习交流
11
1.影响熔滴过渡的因素
(1)电弧长度的影响:同样在小电流条件下,熔滴过渡可 能是颗粒过渡、短路过渡,颗粒过渡需要长电弧,短路过 渡需要短电弧。
PPT学习交流
12
1.影响熔滴过渡的因素
(2)电流的影响:
小于临界电流I1,颗粒过渡,过渡频率低 ;大于临界电流 I1,喷射过渡,过渡频率高 。
PPT学习交流
13
1.影响熔滴过渡的因素
PPT学习交流
14
1.影响熔滴过渡的因素
气体介质:
➢ 在Ar中加入少量的O2,表面张 力降低,减小了熔滴过渡阻力, 喷射临界电流减小;
➢ 但是过多的O2会因O2的电离使 电弧收缩,临界电流提高;
➢ 加入CO2使得喷射临界电流提 高
临界电流:产生跳弧的最小电流
似,活性气体的量一般小于30%
MAG焊可消除指状熔深
MAG焊由于氧化性气体的存在金属的氧化是不可避免的, 在选择焊丝时应注意在成分上给与补充。
MAG焊主要用于高强钢及高合金钢的焊接。
PPT学习交流
7
5.MIG焊的保护气体及焊丝
1 保护气体 1)单一气体 Ar或者He 2)混合气体Ar+He 2 对气体的要求
PPT学习交流
5
3.MIG/MAG焊的应用
• 50年代初应用于铝及铝合金,以后扩展到铜及铜合金的焊接 • 实际上适用于几乎所有的材料 • 但是成本高,所以一般用在有色金属及其合金的焊接,不锈钢的焊接中
PPT学习交流
6
4. MIG/MAG焊的对比
MIG以Ar或He作为保护气体
MAG在Ar或He中加入活性气体,如O2,CO2 MAG焊在电弧形态、熔滴过渡、电弧特性等方面与氩弧相

熔化极气体保护焊电流调节

熔化极气体保护焊电流调节

熔化极气体保护焊电流调节
熔化极气体保护焊是一种常见的焊接方法,它利用气体保护焊接电弧来熔化工件和焊条,形成焊缝。

在进行熔化极气体保护焊时,电流的调节是非常重要的一环,它直接影响到焊接质量和效率。

电流是焊接过程中最重要的参数之一,它决定了焊接熔化池的温度和大小。

电流过小会导致焊缝无法完全熔化,焊接质量不达标;电流过大则会造成焊缝过宽、焊接熔化池过大,甚至引起焊接变形和裂纹。

因此,在熔化极气体保护焊中,电流的调节是非常关键的。

在调节熔化极气体保护焊电流时,首先需要根据焊接材料和焊接件的要求确定合适的电流范围。

一般来说,焊接薄板时,电流较小;焊接厚板时,电流较大。

此外,还需要考虑焊接位置、焊接速度等因素。

在实际操作中,可以通过试焊来确定最佳的电流参数。

试焊时,可以根据焊接材料和焊接件的要求,选择一组初始电流参数进行试焊,然后根据试焊结果进行调整。

如果焊缝出现不完全熔化现象,则需要增加电流;如果焊缝出现过熔化现象,则需要减小电流。

通过多次试焊和调整,最终确定最佳的电流参数。

除了试焊确定电流参数外,还可以根据焊接前的准备工作来调节电流。

例如,对于焊接位置较窄的工件,可以适当增加电流,以提高焊接速度和效率;对于焊接位置较宽的工件,可以适当减小电流,以避免焊缝过宽。

总之,熔化极气体保护焊电流的调节是焊接过程中非常重要的一环。

合理调节电流可以提高焊接质量和效率,减少焊接缺陷的发生。

通过试焊和根据焊接前的准备工作,可以确定最佳的电流参数。

同时,需要根据实际情况进行调整,以达到最佳的焊接效果。

第二章 熔化极气体保护焊

第二章 熔化极气体保护焊

第二章熔化极气体保护焊2.1熔化极气体保护焊方法的原理熔化极气体保护焊(英文简称GMA W)采用可熔化的焊丝与被焊工件之间的电弧作为热源来熔化焊丝与母材金属,并向焊接区输送保护气体,使电弧、熔化的焊丝、熔池及附近的母材金属免受周围空气的有害作用。

连续送进的焊丝金属不断熔化并过度到熔池,与熔化的母材金属融合形成焊缝金属,从而使工件相互连接起来,如图2.1所示。

图2.1 熔化极气体保护焊的工作原理2.2熔化极气体保护焊的分类熔化极气体保护焊根据保护气体的种类不同可分为:熔化极惰性气体保护焊(英文简称MIG)、熔化极氧化性混合气体保护焊(英文简称MAG)和CO2气体保护电弧焊三种。

1.熔化极惰性气体保护焊(MIG):保护气体采用氩气、氦气或氩气与氦气的混合气体,它们不与液态金属发生冶金反应,只起保护焊接区使之与空气隔离的作用。

因此电弧燃烧稳定,熔滴过度平稳、安定,无激烈飞溅。

这种方法特别适用于铝、铜、钛等有色金属的焊接。

2.熔化极氧化性混合气体保护焊(MAG):保护气体由惰性气体和少量氧化性气体混合而成。

由于保护气体具有氧化性,常用于黑色金属的焊接。

在惰性气体中混入少量氧化性气体的目的是在基本不改变惰性气体电弧特性的条件下,进一步提高电弧的稳定性,改善焊缝成型,降低电弧辐射强度。

3.二氧化碳气体保护电弧焊(CO2):保护气体是CO2,有时采用CO2+O2的混合气体。

由于保护气体的价格低廉,采用短路过度时焊缝成型良好,加上使用含脱氧剂的焊丝可获得无内部焊接缺陷的高质量焊接接头,因此这种方法已成为黑色金属材料的最重要的焊接方法之一。

2.3熔化极气体保护焊设备的主要构成熔化极气体保护焊设备主要由下部分构成:1.焊接电源及控制装置2.送丝装置3.焊枪4.气体流量调整器5.连接电缆和软管其中,控制装置和焊接电源一般是做成一体的。

2.3.1焊接电源有关焊接电源的内容将在下面各种焊接方法中分别介绍。

2.3.2送丝装置送丝装置由下列部分构成:①.焊丝送进电机②.保护气体开关电磁阀③.送丝滚轮焊丝供给装置是专门向焊枪供给焊丝的,在机器人焊接中主要采用推丝式单滚轮送丝方式。

第四章 熔化极气体保护焊

第四章 熔化极气体保护焊
位置:全位置; 结构:车辆、船舶、机械、容器等。
4.2 熔化极气体保护焊设备
熔化极气体保护焊设备主要由焊接电源、送丝系 统、焊枪、行走台车(自动焊)、供气系统和水 冷系统、控制系统等部分组成。
4.2 熔化极气体保护焊设备
一、焊接电源:直流电源 1、平特性电源——用于(短路过渡)0.8~1.6mm细丝焊接, 配用等速送丝系统; 2、下降特性电源——用于2mm粗丝焊接,配用变速送丝系统;
4.3 CO2气体保护焊
4.3.5 CO2焊冶金特点: 1.合金元素的氧化与脱氧 作为焊接保护气体, CO2表现出很强的氧化性 CO2 → CO + O + + Mn=MnO+CO↑ Mn=MnO 结果:①Mn、Si等合金元素烧损; ②FeO 能大量溶于熔池金属中,易使焊 缝金属产生气孔及夹渣等缺陷。③生成的CO气体体积极具膨胀,造成飞溅,并 且,由于CO不溶于金属,由于粘度和表面张力,就会形成CO气孔。 解决之道:冶金脱氧 对脱氧剂的要求(能脱氧但不能带来如夹渣、气孔等副作用) Mn-Si联合脱氧,有些牌号的焊丝中还添加了Al 和Ti 等较活 泼元素 CO2焊专用焊丝H08Mn2Si&H08Mn2SiA 脱氧剩下的Mn、Si用于补充碳和合金元素的损失 2. 关于CO2焊的气孔问题 正常焊接条件下, CO2焊并不容易产生气孔。相反,由于CO2气氛的氧化 性,其抗氢气孔能力较强,此外,如果CO2保护气氛被破坏,就容易出现N2气孔
4.3 CO2气体保护焊
4.3 CO2气体保护焊
基本电流段(T0~T1):短路前的电流,稳定在基本电流之间; 短路形成段(T1~T2):在刚短路时,弧压感测器给出“电弧短路”的信 号,基本电流在约0.75毫秒内迅速降低至10A;

熔化极气体保护焊接理论培训

熔化极气体保护焊接理论培训

1、什么是熔化极气体保护焊?答:熔化极气体保护焊是以可熔化的金属焊丝作电极,并由气体作保护的电弧焊。

其基本原理是利用焊丝和母材间的电弧来熔化焊丝和母材形成熔池,熔化的焊丝作为填充金属进入熔池与熔化的母材融合,冷凝后为焊缝金属。

另一方面从喷嘴喷出的气体作为保护气保护熔池和高温熔化的焊丝及焊接区域处于保护范围内。

使用惰性气体作为保护气的(如氩、氦等)称为MIG焊。

使用非惰性气体作为保护气的(如、CO2+Ar、Ar+O2等)称为MAG焊。

2、什么是药芯焊丝气体保护焊(FCAW)?答:在焊丝内部装有粉状焊剂,通过调整焊剂的各种合金元素的含量,可以达到改善焊接工艺性能、提高焊缝的力学性能和接头的内外质量,并采用气体保护的焊接方法。

目前是焊接黑色金属材料的重要焊接方法。

3、CO2气体保护焊的特点及应用答:CO2气体保护焊是利用CO2气体作为保护气体的焊接方法。

因CO2具有氧化性,其为MAG焊的一种。

其主要特点为,因其电流密度大故熔敷速度高,并且不必更换焊丝和清渣故生产效率高;对油锈不敏感,因CO2气体焊接过程中分解,氧化性强,故对油锈敏感性小,故对焊前清理要求不高;因电流密度大热量集中故变形小;另外其因含氢量低故冷裂倾向小;另外其操作简单和成本较低。

缺点是飞溅大、弧光强、不够灵活、对抗风要求高。

4、CO2气体保护焊时采取如何措施降低CO2气体中水分答:1、将新灌气瓶倒置1-2h后,打开阀门,可排出沉积在下面的自由状态的水。

2、更换新气时,先放气2-3min,以排除装瓶时混入的空气和和水分和瓶口垃圾。

3、在气路中设置高压干燥器和低压干燥器,并且预热器接通电源防止冻结。

4、气瓶中的压力降到1Mpa时,停止用气。

5、CO2气体保护焊的焊接设备有几部分组成?答:1、供气系统。

由气瓶,减压流量调节器及管道组成,有时还串联高低压干燥器。

2、焊接电源。

一般电源外特性具有平特性的曲线。

3、送丝机构。

该机构是送丝的动力,包括机架、送丝电机、焊丝矫正轮、压紧轮和送丝轮等。

气体保护焊

气体保护焊
短路过度形式的不足 短路过渡的形式,电弧核查成形控制容易,适合于全位置 焊接,应用广泛。特别在管子、薄板焊接时。但是焊接生产 效率较低,最主要的问题是,熔深较浅。所以在AWS D1.1、 船级社等规范中,限制规定较多。 熔滴的混合过渡 在一定条件下,熔滴过渡不是单一形式,而是自由过渡与 短路过渡的混合形,这就称为熔滴的混合过渡。 例如,管状焊丝气体保护电弧焊及大电流CO2气体保护电弧 焊时,焊丝金属有时就是以混合过渡的形式向熔池过渡。
2012-12-19 21
2012-12-19 7
熔化极气体保护焊焊丝直径的选择
。 焊丝直径的选择,要多方面加以考虑。 从焊接熔敷效率的角度考虑,应根据焊接电流,电流密度, 选择焊丝直径。在许可的范围内,尽可能地选用大直径的焊丝, 大的焊接电流,以获得尽可能高的的生产效率。 从产品结构,焊缝尺寸的角度考虑,应根据结构特点,焊接 位置,焊缝尺寸,选择适当的焊丝直径。如全位置的焊接,就应 该使用较细的焊丝直径, 特别要注意,由于轻型结构钢板较薄,焊接尺寸较小,作为 轻型结构制作的主要问题,为了控制焊接变形,要避免使用过大 的焊丝直径。 由于对轻轻型结构的认识不够,根据重钢制作的经验,采用 过大的焊丝直径,去焊较小的焊脚,结果肯定是不理想的。
2012-12-19 16
滴状过渡形式
滴状过渡有轴向和非轴向两种形式:
手弧焊、富氩混合气体保护焊时,熔滴在脱 离焊条(丝)前处于轴向(下垂)位置(平焊 时),脱离焊条(丝)后也沿焊条(丝)轴向 落入熔池的过渡形式称为轴向滴状过渡。

在多原子气氛中(CO2、N2、H2),阻碍熔 滴过渡的力大于熔滴的重力,熔滴在脱离焊丝 之前就偏离焊丝轴线,甚至上翘,在脱离焊丝 之后,熔滴不沿焊丝轴向过渡,形成飞溅,称 为熔滴非轴向滴状过渡。

熔化极气体保护焊

熔化极气体保护焊

缺点
(4)应用
适用材料 板厚
• ②成本高 • ③不适用于狭小空间 • ④焊接过程受环境制约
•熔化极气体保护焊适用于大多数金属和合金, 最适于非合金钢和低合金钢、不锈钢、耐热合 金、铝及铝合金、铜及铜合金及镁合金。 •熔化极气体保护焊可焊接的金属厚度范围很广, 最薄约为1mm,最厚几乎没有限制。 •熔化极气体保护焊适应性较强,可进行全位置 焊接,平焊和横焊时焊接效率最高。
3.CO2焊的焊接材料
(1) CO2气体 ①气体的性质 无色、无味 比空气重0.5倍 压缩才能液化 高温下会分解 灰色标准钢瓶装(40L/25kg),允许使用的最高环境温度≤40℃;压 力表指示瓶内CO2饱和蒸气压(与液态多少无关)指针下降即应换气! ②提高气体纯度的措施 主要杂质:水(减压器中预热装置乃防止水分冻结堵塞管路) 去除水分的办法: a.倒置排水 b.正置后使用前再预排气 c.使用干燥器(现已少见)d.瓶内气压低至1MPa即停止使用
CO气孔 氮气孔 氢气孔
(1)合金元素的氧化
(3) CO2焊的飞溅
①飞溅产生 的原因
a.气体爆破引起
②减少金属 飞溅的措施
a.正确选择焊接 参数
b.电弧斑点压力 引起
b.细滴过渡时在 CO2中加入Ar气
c.焊接参数不当 引起
c.短路过渡时限 制金属液桥爆破 能量
d.短路过渡引起
d.采用低飞溅率 焊丝
1.MIG焊的原理、分类、特点和应用 (1)原理 熔化极气体保护焊采用可熔化的焊丝与焊件之间的电弧 作为热源来熔化焊丝与母材金属,并向焊接区输送保护气体, 使电弧、熔化的焊丝、熔池及附近的母材金属免受周围空气 的有害作用。 (2)分类
(3)特点
• ①焊接生产率高
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

熔化极气体保护焊
焊工岗位职责标准
编制版本A/0
审核发放号
批准受控状态
2016-00-00发布2016-00-00实施
目录
1.适用范围 (3)
2.基本职责 (3)
3.岗位人员要求 (3)
4.本岗位相关的标准 (3)
5.岗位基本要求 (3)
6.岗位作业要求 (4)
7.安全工作内容与要求 (4)
8.检查和考核 (5)
9.附录:焊工岗位绩效考核表 (6)
1.适用范围
本标准规定了本公司熔化极气体保护焊焊工的岗位职责、人员基本要求、工作范畴、检查与考核等内容。

2.基本职责
2.1在班长的领导下,按照施工技术交底和焊工操作规程完成产品的焊接工作;
2.2对与焊接有关的安全工作和产品焊接质量负责;
2.3执行公司生产进度安排指令,配合质检人员的质量检测、检查工作,对质检和生产技术人员提出的整改要求及时整改并反馈;
2.4妥善使用、保管、维护好焊接设备以及工机具;
2.5树立节约能源、资源意识,合理有效使用作业用具、水、电、气等资源;
2.6对玩忽职守、违反工艺程序和安全操作规程行为有权制止;
2.7对本岗位的负责人进行考核评价、提出工作建议并有权提出本岗位的合理化建议;3.岗位人员要求
3.1具有初中以上教育经历,取得特种作业人员操作证,并根据行业要求取得相应行业的作业人员证;
3.2熟悉焊接设备及所使用的辅助工具的性能;
3.3具备比较细致、认真的工作作风。

4.本岗位有关的标准
4.1与本岗位有关的主要标准包括:《焊接操作规程》、《焊接质量控制程序》、《标识和可追溯性控制程序》、《产品防护控制程序》、《应急准备与响应控制程序》、《不合格品控制程序》、《健康安全环境不符合控制程序》及企业、行业有关标准规范。

5.岗位基本要求
5.1应熟知常用材料的规格,并能了解常用焊丝的牌号、型号及使用要求;掌握一定焊接工艺,并具有焊缝表面质量的识别能力;
5.2根据不同材质正确选择焊机,熟悉送丝机构的日常维护;
5.3熟悉结构件焊接工艺、焊接接头及焊缝形式知识,选择施焊方法;
5.4熟悉各类焊接缺陷及产生原因;
5.5能领悟焊接工艺文件(如WPS等)要求,正确填写操作记录;
5.6具有一定机械图纸的识图能力;
5.7具有一定的焊接方面的安全技能和自我保护能力。

6.岗位作业要求
6.1具有掌握焊接接头的基本型式、尺寸要求和全位置焊接的施焊能力;
6.2具有一定的焊接冶金过程的基本知识,对金属的焊接性,焊接接头强度及应力变形类别和防止措施有一定了解;
6.3掌握熔化极气体保护焊的特点,操作熟练,了解缺陷产生原因并具有有效防止的能力;
6.4对焊接方面国家标准、行业标准有一定的了解;
6.5对压力容器及非标设备的焊接施工有一定了解;。

6.6焊工必须考取合格证且按照所持合格证上的合格项目进行焊接作业,合格证上没有所施焊项目相对应的合格项目,焊工不得上岗施焊;
6.7焊工在施焊前应认真阅读焊接工艺的步骤、内容及要求必须严格按照焊接工艺进行施焊;
6.8焊工应在本人施焊的焊缝附近按《焊接质量控制程序》和工艺文件的规定进行标识,对自己施焊的焊缝质量负责;
6.9焊工应配合检验员做好施焊焊接记录;
6.10焊工有权拒绝不按图纸要求和焊接工艺及违犯《焊接操作规程》的施焊;
6.11维护保养自己操作的焊接设备及仪器、仪表、工具等。

7.安全工作内容与要求
7.1严格执行本工种安全操作规程和公司岗位作业指导书;
7.2正确穿戴劳动保护用品;
7.3使用焊接设备要有良好的接地和安全可行的漏电保护器,焊枪等设备要完好无损;
7.4严禁在带压容器、管道、转动机械、易燃易爆地方进行焊接;
7.5要及时办理动火手续,合格后方可施焊;
7.6容器内作业要执行罐内作业安全技术要求,不得与气焊同时作业;
7.7要做好防触电、防灼伤、防烫伤等工作,夜间作业要有足够的照明,特殊施工区域要有相应的应急预案措施。

8.检查和考核
8.1本标准执行情况,由本公司焊接监督为主、班组长为辅负责检查与考核;
8.2考核内容为本标准规定的职责、工作内容与要求部分;
8.3考核结果与公司《员工绩效评价管理规定》挂钩。

为待改进,59分以下为差。

相关文档
最新文档