数学人教版七年级上册正数和负数的概念

合集下载

七年级上册数学知识点总结

七年级上册数学知识点总结

初中资料吧人教版七年级数学知识点总结第一章有理数1.1正数和负数知识点一正数和负数的概念像3,1.8%,3.5这样大于0的数叫做正数。

像-3,-2.7%,-4.5,-1.2这样在正数前加上符号“-”(负)的数叫做负数。

有时,为了明确表达意义,在正数前面也加上“+”(正)号。

例如,+3,+2,+0.5,...就是3,2,0.5,...知识点二0的意义0即不是正数,也不是负数。

温馨提示:(1)一个数前面的“+”“_”叫做它的符号,其中,正数前的“+”号有时可以省略,省略了“+”号后仍表示正数,而“-”号是绝对不能省略的。

(2)正数和0称为非负数,负数和0称为非正数。

知识点三具有相反意义的量在实际生活习惯中,常把零上的温度、上升的高度、收人的钱、买人物品等规定为正的,而把与它们意义相反的量规定为负的,用负数表示,而且引入负数之后,“0”不再仅仅表示没有了,而是正、负数的分界“基准”,它既不是正数,也不是负数,有初始位置的意义。

温馨提示:对于相反意义的量可以从以下几方面去理解:(1)相反意义的量既要意义相反,又要有数量;(2)相反意义的量是成对出现的,单独一个量不是相反意义的量;(3)互为相反意义的两个量在数量上可以不同;(4)具有相反意义的量必是同类量,在表示相反意义的量时要写明单位有理数。

初中资料吧1.2整数包括正整数、零、负整数。

分数包括正分数、负分数。

整数和分数统称为有理数。

引入负数后,数扩充到了有理数,有理数可以用以下两种方法来分类:(1)按有理数的定义进行分类:(2)按有理数的性质符号进行分类:正整数正整数整数0正有理数负整数正分数有理数有理数0正分数负整数分数负有理数负分数负分数数轴包含三层含义:○1数轴是一条可以向两端无限延伸的直线:○2数轴有三要素:原点、正方向、单位长度;○3注意“规定”二字,是说原点的位置、正方向的选取、单位长度大小的确定,都是根据实际需要规定的.2.画数轴的步骤:一画:画一条直线(通常画成水平直线);二取:在这一条直线上任取一点作为原点,并用这个点表示数0;初中资料吧三定:确定正方向(一般规定从原点向右为正方向).画上箭头,从原点向左为负方向;四标数:选取适当的长度作为单位长度,直线上从原点向右,每隔一个单位长度取一点,依次标上1,2,3,...从原点向左,每隔一个单位长度取一点,依次标上-1,-2,-3,...,如图所示一般地,设a 是一个正数,则数轴上表示数a 的点在原点的右侧,与原点的距离是a 个单位长度;表示数-a 的点在原点的左侧,与原点的距离也是a 个单位长度.提示:数轴的引入使数与直线上的点联系起来,是数与形的初步结合1.2.3相反数1.相反数的定义:像2和-2,5和-5这样,只有符号不同的两个数叫做互为相反数。

人教版七年级数学上册第一章 有理数 正数和负数

人教版七年级数学上册第一章 有理数 正数和负数
量比上年增长-2.7%.
探究新知
问题1:说一说上面用到的各数的含义.
(1)天气预报中的3,电梯按钮中的1~10,新闻报道中的
1.8%;
(2)天气预报中的-3,电梯按钮中的-1,-2,新闻
报道中的-2.7%.
问题2:上面这两类数,分别属于什么数?
探究新知
像1、2、3、1.8%这样大于0的数
叫做正数.
A. 0℃表示没有温度
B. 0表示什么也没有
C. 0是非正数
D. 0既可以看作是正数又可
以看作是负数
巩固练习
解释图中的正数和负数的含义.
10℃表示白天温度为零上10℃
-5℃表示晚上温度为零下5℃
它们以什么为基准?
0℃
巩固练习
下面是某存折中记录的支出、存入信息,试着说说其中“
支出或存入”那一栏的数字表示什么含义.
存折中的正数表示存入,反
之,负数表示支出.
连接中考
1. 如果把收入100元记作+100元,那么支出80元记作( D )
A.+20元
B.+100元 C.+80元 D.﹣80

2. 如果电梯上升5层记为+5.那么电梯下降2层应记为


A.+2
B.﹣2
C.+5
D.﹣5
B
课堂检测
示一个物体向西运动4米,那么+2米表示什么?物
体原地不动记为什么?
+2米表示一个物体向东运动2米;
物体原地不动记为0米.
探究新知
例2(1)一个月内,小明体重增加2kg,小华体重减
少1kg,小强体重无变化,写出他们这个月的体重增长
值;

1-1-1正数和负数的概念 22-23学年七年级上学期数学人教版

1-1-1正数和负数的概念    22-23学年七年级上学期数学人教版

(3)1,-1,1,-1,…的前100个数的和是____0____;
(4)1,-3,5,-7,9,…,第10个数是__-_1_9____;
(5)-2,4,-6,8,…,第10 个数是____2_0___.
课堂小结
总结一:大于0的数叫做正数;在正数前面加上符号“-”(负)的数叫做负数 ;有时,在正数前面也加上“+”(正)号.一个数前面的“+”“-”号叫做它的符 号. 0既不是正数,也不是负数.
-3 读作:负3
2.某年,我国花生产量比上一年增长1.8%,油菜籽产量比上一年 增长-2.7%。“增长-2.7%”表示什么意思?
-2.7% 读作:负2.7%
负数的概念
像-3, -2.7%, 这样的数(即在以前学过的0以外的数前 面加上负号“-”的数)叫做负数.
以前学过的0以外的数叫做正数.
在正数前面加上负号“-”的数叫做负数
如果一个问题中出现相反意义的量,我们可以用 正数 和 负数 分别表示它们.如: (1)天气预报说某地12月份某天的最高温度是零上5 °C,最低温度是零下3 °C.若规定
零上温度为正,则零上5 °C可记作 +5 °C,零下3 °C可记作 -3 °C
(2)如果小明前进了10 m记为+10m,那么小明后退8 m记为 -8m
你认为0应该放在什么地方?
0即不是正数,也不是负数,是正数与负
数的分界.
你能把它们分类吗?
所学 过的
正0 数正 正分 整数 数


负数
负整数 负分数
正整数
所学 过的
整数0
负整数

分数
正分数 负分数
牛刀小试
1、下列各数中:-11,0,0.2,3,+71 ,32 ,1,-1, 正数一共有( A )

数学人教版七年级上册知识点归纳

数学人教版七年级上册知识点归纳

数学人教版七年级上册知识点归纳数学人教版七年级上册知识点归纳下面为大家精心归纳了数学人教版七年级上册的知识点,希望能够帮助大家更好地掌握数学知识。

1.正数与负数①正数:大于0的数叫做正数。

(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的数前面加上负号“—”的数叫做负数。

与正数具有相反的意义。

③ 0既不是正数也不是负数,是正数和负数的分界,是唯一的中性数。

注意要搞清相反意义的量:南北、东西、上下、左右、上升下降、增长减少等。

2.有理数①整数:正整数、0、负整数统称整数。

②分数:正分数和负分数统称分数。

③有理数:整数和分数统称有理数。

④数轴:通常用一条直线上的点表示数,这条直线叫做数轴。

⑤数轴三要素:原点、正方向、单位长度。

⑥原点:在直线上任取一个点表示数,这个点叫做原点。

⑦数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点不全表示有理数。

3.相反数只有符号不同的两个数互为相反数。

(如2的相反数是-2,0的相反数是0)4.绝对值①数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

②一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.两个负数,绝对值大的反而小。

5.有理数的加减法有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加。

②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0.③一个数同0相加,仍得这个数。

加法的交换律和结合律。

有理数减法法则:减去一个数,等于加这个数的相反数。

6.有理数的乘除法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0.乘积是1的两个数互为倒数。

乘法交换律、结合律、分配律。

有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;除以任何一个不等于0的数,都得。

人教版数学七年级上册定义汇总

人教版数学七年级上册定义汇总

数学七年级上册定义第一章有理数1.正数:像3、1.8、2%这样大于0的数叫做正数。

2.负数:像-3、-2、-1.3%这样,在正数前面加上负号的数叫做负数。

3.有理数:整数可以看做分母为1的分数,正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

4.数轴:通常用一条直线上的点表示数,这条直线叫做数轴。

它满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点。

(2)通常规定直线上从原点向右(或向上)为正方向,从原点向左(或向下)为负方向。

(3)任取适当的长度或单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1、2、3、4、5……;从原点向左,用类似的方法表示-1、-2、-3……。

5.正数可以用原点右边的点表示,反过来原点右边的点都表示正数;负数可以用原点左边的点表示,反过来原点左边的点都表示负数;0用原点表示,反过来原点表示0.6.相反数:像2和-2、3和-3、95和-95这样,只有符号不同的两个相等的数叫做互为相反数。

7.绝对值:一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

8.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.9.有理数加法法则:1)同号两数相加,取相同的符号并把绝对值相加.2)绝对值不相等的异号两数相加取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.3)一个数同0相加,仍得这个数。

10.有理数减法法则:减去一个数,等于加上这个数的相反数。

11.有理数乘法法则:1)两数相乘,同号得正,异号得负,并把绝对值相乘,2)任何数同0相乘都得0.12.乘积是1的两个数互为倒数.13.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.14.乘法交换律:一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

人教版七年级上册数学作业课件第一章 正数和负数

人教版七年级上册数学作业课件第一章 正数和负数

提示:点击 进入习题
1A
5
(1)× (2)× (3)× (4)√ (5)√
2B
6
详细答案 点击题序
3
(1)支出 (2)上升 (3)向右
4
(1)-7 (2)+6 0米
1.下列各数中是正数的是( A ) A.3 B.-1 C.0 D.-0.3
3 2.如果收入 80 元记作+80 元,那么支出 20 元记 作( B ) A.+20 元 B.-20 元 C.+100 元 D.-100 元
家庭
支出 变化
小刚 家
减少
2%
小青 家
增加
1.5%
小英 家
减少
3.1%
小明 家
增加
3.8%
小红 家
增加
2%小春家与上月 相同 Nhomakorabea(1)分别用正、负数表示出这几家该月支出相对于 上月支出的增长率;
(2)若小颖家该月支出相对于上月支出的增长率为 -2%,请说出小颖家支出变化的情况. 分析:“增加”与“减少”具有相反意义,“负”
5.判断正误(对的打“√”,错的打“×”):
(1)一个数不是正数就是负数.
(×)
(2)0 ℃表示没有温度.
(×)
(3)0 前面加上“+”是正数,加上“-”是负数.( × )
(4)-1008 是一个负数.
(√)
(5)同一问题中,“增加-10%”与“减少 10%”意义
相同.
(√)
6.指出下列各数中,哪些是正数,哪些是负数. +1,-2.5,+ 4 ,0,120,-60%.
知识要点1 正数和负数
正负数的概念:像3,1.8%,+3.5这样大于 0 的 数叫做正数.正数前面的正号可省略不写.像-3, -2.7%,-4.5,-1.2这样在正数前面加上符号 “ - ”( 负 )的数叫做负数.

【人教版】数学七年级上册教学课件第1章有理数1.1.1正数和负数

【人教版】数学七年级上册教学课件第1章有理数1.1.1正数和负数

探究新知
我们把像3,1.8%,3.5这样大于0的数叫 做正数. 像-3,-2.7%,-4.5,-1.2这样在正数 前加上符号“-”(负)的数叫做负数.
用正、负数表示实际问题中具有相反意 义的量,而相反意义的量包含两个要素:一是 它们的意义相反,如向东与向西、收入与支 出;二是它们都是数量,而且是同类的量.
化记作 m,
0
水4.月位球不表升面不的降白时天水平位均变温化度记零作上126 m℃. ,
记作 +126 ℃,夜间平均温度零下150 ℃,
记作 -150 ℃.
课堂小结
谈谈你对正、负数及0的认识. 1.正、负数表示具有相反意义的量, 一是它们的意义相反,
二是它们都是数量,且是同类量.
2.0的意义已不仅表示“没有”, 在实际问题中它有着特有的意义.
问题2:正、负数在实际中的应用
1.你能举例说明正、负数在实际中的应用吗 ?
零上温度与零下温度,建筑的地上部分 与地下部分,盈利与亏损等.
探究新知
下面图中的正数和负数的含义是什么? 存入
2 300元
探究新知
2.在地形图上表示某地的高度时,需要以海 平面为基准(规定海平面的海拔高度为0 m). 通常用正数表示高于海平面的某地的海拔高 度,用负数表示低于海平面的的某地的海拔 高度,珠穆朗玛峰的海拔高度为8 844.43 m, 它表示什么含义?吐鲁番盆地的海拔高度为 -155 m,它表示什么含义?
探究新知
8 844.43 m表示珠穆朗玛峰的海拔高于 海平面8 844.43 m; -155 m表示吐鲁番盆地的海拔低于海平 面155 m.
探究新知
3.记账时,通常用正数表示收入款额, 用负数表示支出款额,则收入254元可 记为多少元?支出56元可记为多少元?

七年级上册数学知识点整理

七年级上册数学知识点整理

七年级上册数学知识点整理人教版七年级上册数学知识点整理第一章有理数1.1.1 正数和负数①大于零的数叫做正数,小于零的数叫做负数。

② 1 是最小的自然数。

③ 0 是正数和负数的分界线。

④ 0 既不是正数也不是负数。

⑤在一些问题中,表示什么都没有,在另一些问题中,可视为标准量。

⑥相反意义的量必须包含两层意思,一是具有相反的意义;二是具有一定的量,但这个量可以不必要相等。

1.2.1 有理数①整数和分数统称为有理数。

②有理数的分类:有理数整数有理数整数正整数分数有限小数无限循环小数负整数分数正分数负分数1.2.2 数轴①规定了原点、正方向和单位长度的直线叫做数轴。

②数轴的三要素:原点、正方向、单位长度。

③数轴上的数从左至右依次增大。

即右边的点表示的数总比左边的点表示的数大。

④所有的有理数都可以用数轴上的点表示,但并不是所有数轴上的点都表示有理数。

1.2.3 相反数①只有符号不同的两个数叫做互为相反数。

② 0 的相反数是 0.③相反数的定义分析:1.相反数是成对出现的;2.互为相反数的两个数除了符号不同外,其余部分都相同;3.互为相反数的两个数可视为在原点两侧,到原点距离相同的两个点所表示的数。

1.2.4 绝对值①数轴上表示数 a 的点与原点的距离叫做 a 的绝对值,记作 |a|,读作 a 的绝对值。

②一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是 0.a,a>0 丨a丨= a,a=0 -a,a<0 丨a丨= -a③正数大于负数,正数大于负数的绝对值。

④两个负数比较大小,绝对值大的反而小。

1.3.1 有理数的加法①同号两数相加,取相同的符号,并把绝对值相加。

②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加和为 0.③一个数同 0 相加,仍得这个数。

④有理数的加法交换律:两个数相加,交换加数的位置,和不变。

七年级数学上册正数和负数知识梳理人教版

七年级数学上册正数和负数知识梳理人教版

【知识梳理】1、负数的引入在现实生活中,常会遇到这样一些问题: (1)温度是零上10℃或零下5℃; (2)运进80筐梨和运出50筐梨; (3)盈利400元和亏损300元;在这里出现的每一对量,虽然有不同的具体内容,但都有一个共同特点:它们都是具有相反意义的量.2、负数的表示方法:用我们小学学过的数就不容易来区分这样相反意义的量了.比如,零上5℃和零下5℃都用数字5来表示就会产生误会.也就是说,我们原来学的数不够用了.大家知道,在天气预报中,零下5℃是用-5℃来表示的,“-5℃”读作负5摄氏度.这样我们就引入了负数.像5,,21,500,……这样的数叫做 正数,它们比0大. 在正数前面加上“-”号的数叫做 负数,如-10,-3,-21,-0.3145,……它们比0小.0既不是正数,也不是负数.为了突出数的符号,也可以在正数前面加“+”号,如+5,+,+21,+500,…… 有了正数和负数就可以表示相反意义的量了: 3、有理数的概念:引进了负数,我们学过的数可以分为:⎪⎩⎪⎨⎧负整数零正整数整数和⎩⎨⎧负分数正分数分数整数和分数统称为 有理数. 4、有理数的分类可有两种方式:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(2)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数注意,0是一个特别的数,它既不是正数,也不是负数,它是一个整数,也是我们在分类时很容易漏掉的数,在学习这节时要特别注意.5、到现在为止,我们学过的数有:正整数(也叫自然数),如1,2,3,…;零,0;负整数,如-1,-2,-3,…;正分数,如1/2,5.3,2/3,…;负分数,如-1/2,-3.6,-6/7,…。

正整数、0、负整数统称整数,正分数、负分数统称分数。

整数和分数统称有理数。

【重点和难点】重点:正负数的意义,有理数的分类。

难点:正、负数的意义以及在表示相反意义的量中的应用。

最新人教版七年级上册数学知识点总结归纳

最新人教版七年级上册数学知识点总结归纳

最新人教版七年级上册数学知识点总结归纳1.正数和负数的概念负数是比0更小的数,正数是比0更大的数。

如果a表示正数,那么-a就是负数;如果a表示负数,那么-a就是正数。

同时,0既不是正数也不是负数,而且无论a是什么,-a仍为0.2.具有相反意义的量如果正数表示某种含义的量,那么负数就可以表示具有相反含义的量。

例如,零上8℃可以表示为+8℃,而零下8℃可以表示为-8℃。

3.0表示的意义0既可以表示“没有”,也可以表示一个确切的量,例如温度的零点。

同时,0也是正数和负数的分界线。

4.有理数的概念有理数指的是可以写成分数形式的数,包括正整数、负整数、正分数、负分数和0.无限不循环小数如π不是有理数,而有限小数和无限循环小数都可以化成分数,因此是有理数。

5.有理数的分类按照有理数的意义可以分为整数和分数,按照正负可以分为正有理数、负有理数和0.其中,正整数和0统称为非负整数,负整数和0统称为非正整数,正有理数和0统称为非负有理数,负有理数和0统称为非正有理数。

6.数轴的概念数轴是一条向两端无限延伸的直线,规定了原点、正方向和单位长度。

7.数轴上的点与有理数的关系所有的有理数都可以用数轴上的点来表示,正有理数表示为原点右边的点,负有理数表示为原点左边的点,0表示为原点。

同时,数轴的三要素包括原点、正方向和单位长度,必须同时存在。

一般地,如果a≥0,那么|a|=a;如果a<0,那么|a|=-a.3.绝对值的性质⑴|a|≥0,且|a|=0的充分必要条件是a=0;⑵|ab|=|a||b|,其中a,b是任意有理数;⑶|a+b|≤|a|+|b|,其中a,b是任意有理数,等号成立的充分必要条件是a,b同号或其中至少一个数为0.4.绝对值的意义绝对值表示一个数到原点的距离,因此绝对值越小,这个数离原点越近;绝对值越大,这个数离原点越远.绝对值还可以表示一个数的大小,而不考虑它的符号.1.绝对值的定义和表示方法一个数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,可以用符号表示:如果a>0,则|a|=a;如果a<0,则|a|=-a;如果a=0,则|a|=0.可以归纳为两个式子:a≥0,等价于|a|=a;a≤0,等价于|a|=-a。

人教版七年级数学上册教学课件 第1讲 正数和负数

人教版七年级数学上册教学课件 第1讲 正数和负数

(2)某年,我国花生产量比上一年增长1.8%,油菜籽产量比上一 年增长-2.7%. “增长-2.7%”表示什么意思?
减少了2.7%
(3)某同学通过捡、卖废品,既保护了环境,又积攒了零 花钱.下表是他某个月的部分收支情况.
收支情况表
年月
日期 收入(+) 或支出(-)
2日
3.50
8日
-4.50
12日
写出这些国家这一年商品进出口总额的增长率.
解:六个国家这一年商品进出口总额
的增长率是: 美国-6.4%, 德国1.3%,
什么情况 下增长率是0?
法国-2.4%, 英国-3.Fra bibliotek%, 与上年相比没有变化, 意大利0.2%, 中国7.5%. 或者说没有变化。
正数和负数
归纳:如果一个问题中出现相反意义的量,我们可 以用正数和负数分别表示它们.
你能再举些生活中存在的有关正数、 负数的例子吗?并将例子中的相关数 据的意义给与解释.
练习
正数和负数
1.下面各数 1 ,0.5, 20,0,2 019, 3 5 . -1.5
3
2 020
7
正数有 0.5, 2 019 ; 2 020
负数有 1 , 20, 3 5
3
7
-1.5
正数和负数
2. 下列判断正确的个数是( C )
5、电话号码17160284600; 6、支付65000元
正数和负数
例1:一个月内,小明体重增加2 kg,小华体重减少1 kg, 小强体重无变化,写出他们这个月的体重增长值;
解:这个月小明体重增长2kg
小华 增长-1 kg 小强体重增长0kg
“负”与“正”相对.增 长-1,就是减少1

人教版数学七年级上册知识点汇总

人教版数学七年级上册知识点汇总

第一章有理数1.1正数和负数1.正数:大于0的数.2.负数:小于0的数.3.0即不是正数,也不是负数.4.正数大于0,负数小于0,正数大于负数.1.2有理数及其大小比较1.整数:正整数、0、负整数,统称整数.2.有理数:可以写成分数形式的数.(1)正有理数:可以写成正分数形式的数.(2)负有理数:可以写成负分数形式的数.3.数轴(1)定义:用直线上的点表示数,这条直线叫做数轴.(在直线上任取一个点表示数0,这个点叫作原点;规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度.)(2)数轴的三要素:原点、正方向、单位长度.(3)原点将数轴(原点除外)分成两部分,其中正方向一侧的部分叫作数轴的正半轴;另一侧的部分叫作数轴的负半轴.(4)数轴上特殊的最大(小)数①最小的自然数是0,无最大的自然数;②最小的正整数是1,无最大的正整数;③最大的负整数是-1,无最小的负整数.4.相反数:只有符号不同的两个数叫做互为相反数.(1)任何数都有相反数,且只有一个;(2)0的相反数是0;(3)互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0.5.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0.6.有理数的大小比较(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.第二章有理数的运算2.1有理数的加法与减法1.有理数加法法则(1)同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.(2)绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差,互为相反数的两个数相加得0.(3)一个数与0相加,仍得这个数.2.有理数加法运算律(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c=a+(b+c)3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).2.2有理数的乘法与除法1.有理数的乘法法则(1)两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.(2)任何数与0相乘,都得0.2.倒数:乘积为1的两个数互为倒数;但0没有倒数.3.有理数乘法的运算律(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.4.有理数除法法则:除以一个数等于乘以这个数的倒数.(注意:0不能做除数)(1)两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.(2)0除以任何一个不等于0的数,都得0.2.3有理数的乘方1.乘方:求n个相同乘数的积的运算.(1)乘方的结果叫作幂.(2)在a n中,a叫作底数,n叫作指数.(3)负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.2.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1,整数位数=10的指数+1.第三章代数式3.1列代数式表示数量关系1.代数式:用运算符号把数或表示数的字母连接起来的式子.(1)单独的一个数或字母也是代数式.(2)列代数式应注意:若式子后面有单位且式子是和或差的形式,式子应用小括号括起来.2.反比例(1)两个相关联的量,一个量变化,另一个量也随着变化,且这两个量的乘积一定,这两个量就叫作成反比例的量,它们之间的关系叫作反比例关系.(2)反比例关系可以用xy=k或kyx来表示,其中k叫作比例系数.(k≠0)3.2代数式的值1.代数式的值:一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果.2.求代数式的一般步骤(1)代入:用指定的字母的数值代替代数式里的字母,其他的运算符号和原来的数值都不能改变;(2)计算:按照代数式指明的运算,根据有理数的运算方法进行计算.第四章整式的加减4.1整式1.整式(1)定义:单项式和多项式的统称.(2)单项式:数与字母的乘积组成的式子叫单项式.单独的一个数或一个字母也是单项式.(3)系数;一个单项式中,数字因数叫做这个单项式的系数.(4)次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.(5)多项式:几个单项式的和.(6)项:组成多项式的每个单项式.(7)常数项:不含字母的项.(8)多项式的次数:多项式中,次数最高的项的次数.4.2整式的加法与减法1.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项.2.合并同类项:把多项式中的同类项合并成一项.3.合并同类项后,所得项的系数是合并前各同类项的系数的和,字母连同它的指数不变.4.整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项.(1)步骤:①列出代数式;②去括号;③合并同类项.(2)去括号的法则①括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;②括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项的符号都要改变.第五章一元一次方程5.1方程1.等式:用“=”号连接而成的式子.2.等式的性质(1)等式两边都加上(或减去)同一个数(或式子),结果仍相等;如果a=b,那么a±c=b±c.(2)等式两边都乘以(或除以)同一个不为零的数,结果仍相等.如果a=b,那么ac=bc;如果a=b,(c≠0),那么a/c=b/c.3.方程:含未知数的等式(方程是含有未知数的等式,但等式不一定是方程).4.方程的解:使等式左右两边相等的未知数的值.5.一元一次方程(1)概念:只含有一个未知数(元)且未知数的指数是1(次)的方程.(2)一般形式:ax+b=0(a≠0)5.2解一元一次方程1.移项:把等式一边的某项变号后移到另一边.2.解一元一次方程的一般步骤化简方程——分数基本性质去分母——同乘(不漏乘)最简公分母去括号——注意符号变化移项——变号(留下靠前)合并同类项——合并后符号系数化为1——除前面5.3实际问题与一元一次方程1.用方程解决问题(1)行程问题:路程=时间×速度(2)利润问题:利润=售价-进价,售价=标价×(1-折扣)(3)等积变形问题:长方体的体积=长×宽×高;圆柱的体积=底面积×高;(4)利息问题:本息和=本金+利息;利息=本金×利率(5)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度第六章几何图形初步6.1几何图形1.几何图形:把从实物中抽象出来的各种图形的统称.2.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形.(棱柱、棱锥、圆柱、圆锥、球等)3.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形.(三角形、四边形、圆、多边形等)4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.5.点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.6.2直线、射线、线段1.直线、线段、射线(1)线段:线段有两个端点.(2)射线:将线段向一个方向无限延长就形成了射线.射线只有一个端点.(3)直线:将线段的两端无限延长就形成了直线.直线没有端点.(4)两点确定一条直线:经过两点有一条直线,并且只有一条直线.(5)相交:两条直线有一个公共点时,称这两条直线相交.(6)两条直线相交有一个公共点,这个公共点叫交点.(7)中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.(8)线段的性质:两点的所有连线中,线段最短.(两点之间,线段最短)(9)距离:连接两点间的线段的长度,叫做这两点的距离.2.尺规作图:在数学中,我们常限定用无刻度的直尺和圆规作图.6.3角1.角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边.或:角也可以看成是一条射线绕着它的端点旋转而成的.2.平角和周角(1)平角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角.(2)周角:终边继续旋转,当它又和始边重合时,所形成的角.3.角的表示(1)用数字表示单独的角,如∠1,∠2,∠3等.(2)用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等.(3)用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等.(4)用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等.注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧.4.角的度量单位及换算(60进制)(1)角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”.(2)换算1°=60',1'=60”把1°的角60等分,每一份叫做1分的角,1分记作“1'”.把1'的角60等分,每一份叫做1秒的角,1秒记作“1''”.5.角的分类6.角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.7.余角和补角(1)余角:两个角的和等于90度,这两个角互为余角.即其中每一个是另一个角的余角.(2)补角:两个角的和等于180度,这两个角互为补角.即其中一个是另一个角的补角.(3)补角的性质:等角的补角相等.(4)余角的性质:等角的余角相等.。

人教版七年级上册数学知识点总结归纳(最新最全)

人教版七年级上册数学知识点总结归纳(最新最全)

人教版七年级上册数学知识点总结归纳(最新最全)七年级数学上册知识点总结第一章有理数1.1 正数和负数1.正数和负数的概念正数是比零大的数,负数是比零小的数,而0既不是正数,也不是负数。

注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0.(例如,带正号的数不一定是正数,带负号的数也不一定是负数,例如+a和-a都有可能是正数或负数)②正数有时可以在前面加“+”,有时“+”省略不写。

省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,例如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴表示“没有”,例如教室里有个人,就是说教室里没有人;⑵是正数和负数的分界线,既不是正数,也不是负数。

⑶表示一个确切的量。

例如,℃以及有些题目中的基准,比如以海平面为基准,则米就表示海平面。

1.2 有理数1.有理数的概念⑴正整数、负整数统称为整数(和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

例如,π是无限不循环小数,不能写成分数形式,不是有理数。

有限小数和无限循环小数都可化成分数,都是有理数。

整数也能化成分数,也是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,例如-2、-4、-6、-8…也是偶数,-1、-3、-5…也是奇数。

2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数正有理数负整数正分数有理数有理数(不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数统称为非负整数(也叫自然数)②负整数统称为非正整数③正有理数统称为非负有理数④负有理数统称为非正有理数3.数轴1.数轴的概念规定了原点、正方向、单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

人教版数学七年级上册知识点总结

人教版数学七年级上册知识点总结

人教版数学七年级上册知识点总结第一章有理数知识点总结正数: 大于0的数叫做正数。

1.概念负数: 在正数前面加上负号“—”的数叫做负数。

注: 0既不是正数也不是负数, 是正数和负数的分界线, 是整数, 一、正数和负数自然数, 有理数。

(不是带“—”号的数都是负数, 而是在正数前加“—”的数。

)2.意义: 在同一个问题上, 用正数和负数表示具有相反意义的量。

有理数: 整数和分数统称有理数。

1.概念整数: 正整数、0、负整数统称为整数。

分数: 正分数、负分数统称分数。

(有限小数与无限循环小数都是有理数。

)注: 正数和零统称为非负数, 负数和零统称为非正数, 正整数和零统称为非负整数, 负整数和零统称为非正整数。

2.分类: 两种二、有理数⑴按正、负性质分类: ⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数3.数集内容了解1.概念: 规定了原点、正方向、单位长度的直线叫做数轴。

三要素: 原点、正方向、单位长度2.对应关系: 数轴上的点和有理数是一一对应的。

三、数轴比较大小: 在数轴上, 右边的数总比左边的数大。

3.应用求两点之间的距离: 两点在原点的同侧作减法, 在原点的两侧作加法。

(注意不带“+”“—”号)代数: 只有符号不同的两个数叫做相反数。

1.概念(0的相反数是0)几何: 在数轴上, 离原点的距离相等的两个点所表示的数叫做相反数。

2.性质: 若a与b互为相反数, 则a+b=0, 即a=-b;反之,若a+b=0, 则a与b互为相反数。

四、相反数两个符号: 符号相同是正数, 符号不同是负数。

3.多重符号的化简多个符号: 三个或三个以上的符号的化简, 看负号的个数, 当“—”号的个数是偶数个时, 结果取正号当“—”号的个数是奇数个时, 结果取负号1.概念: 乘积为1的两个数互为倒数。

(倒数是它本身的数是±1;0没有倒数)五、倒数2.性质若a与b互为倒数, 则a·b=1;反之, 若a·b=1, 则a与b互为倒数。

七年级全套数学知识点总结-人教版

七年级全套数学知识点总结-人教版

七年级全册数学知识要点汇总七年级数学(上册)知识点第一章 有理数1.有理数(1).正数和负数的概念正数:大于0的数叫正数。

(负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

0既不是正数也不是负数。

0是正数和负数的分界。

(3)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).9. 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.(3)任何数同零相乘都得零;10.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,a.无意义即11.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-a n 或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =a n 或(a-b)n=(b-a)n .12.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;13.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.14.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.15.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.第二章整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

人教版七年级数学上册课件:1.1.1正数和负数(共20张PPT)

人教版七年级数学上册课件:1.1.1正数和负数(共20张PPT)

在潜水艇下方 20 m 处,则鲨鱼所在的海拔高度为( A ). 2 %,
中国 7.
例1 一个月内,小明体重增加 2 kg,小华体重减少 1 kg,小强体重无变化,写出他们这个月的体重增长值.
因此“-3”的含义是这天的最低温度为零下 3 ℃,这一天北京的温差是 6 ℃.
A.-70 m 写出这些国家这一年商品进出口总额的增长率.
A. 0 个 B. 1 个 C. 2 个 D. 3 个
8.一艘潜水艇所在的海拔高度为 -50 m ,若一条鲨鱼在潜水艇下方 20 m 处,则鲨鱼所在的海拔高度为( ).
8%,油菜籽产量比上一年增长-2.
A.0
B.-2
C.1
8.D. 一艘潜水艇所在的海拔高度为 -50 m ,若一条鲨鱼
2,8,-1 , ,30 %.
④ 0 ℃表示没有温度,其中正确的有(
). A.0
B.-2
C.1
1 D.
举出身边具有相反意义的量的例子
2.下列各数Biblioteka 是负数的为( ).2 %,
中国 7.
2 3.在 -1,0,1,2 这四个数中,既不是正数也不是负
2,8,-1 , ,30 %.
数的是 ___0_____. 7%”表示油菜籽产量比上一年减少 2.
思考:你知道下面图片中数字的含义吗? 2这样在正数前面加上符号“-”(负)的数叫做负数.
B.-50 m C.20 m
D.-20 m
五、作业
1.教科书习题 1.1 第 1,2,3 题. 2.查阅资料,了解数的发展历史.
那么应该怎么表示呢?
一、新知导入
例题: (1)天气预报北京冬季里某天的气温为-3 ℃~ 3 ℃, -3 的确切含义是什么?这一天北京的温差是多少? 解:这天的最高温度是零上 3 ℃,最低温度是零下 3 ℃. 温差是最高温度与最低温度的差. 因此“-3”的含义是这天 的最低温度为零下 3 ℃,这一天北京的温差是 6 ℃. (2)某年,我国花生产量比上一年增长 1.8%,油菜籽 产量比上一年增长-2.7%. “增长-2.7%”表示什么意思? 解:“增长-2.7%”表示油菜籽产量比上一年减少 2.7%.

1.1 正数和负数课件(22张PPT)人教版数学七年级上册

1.1 正数和负数课件(22张PPT)人教版数学七年级上册
1.在下列各对关系中,不是具有相反意义的量的是( C )
A.运进货物3 t与运出货物2 t B.增加100 t与减少200 t C. 升温与降温 D.胜3局与负4局
随堂训练
2.下列说法中,正确的是( C )
A.加正号的数是正数,加负号的数是负数 B.0是最小的正数 C.字母a既可以是正数,也可以是负数,也可以是0 D.任意一个数,不是正数就是负数
(2)如果一个数不是正数就是负数,对吗? 不对.0既不是正数,也不是负数. 0是正数与负数的分界.
知识讲解
2.用正数、负数表示具有相反意义的量
汽车先向东行驶3km, 超市早上购进苹果100kg,
然后又向西行驶1km.
中午售出苹果20kg.
它们都表示相反的意义. 你会用正数、负数来表示它们吗?
知识讲解
正数集合:{ 20,4,0.21,25%,3.141,0.62 …};
负数集合:{ -27, 3 , 3 1 , -3.7% …}.
5
2
随堂训练
7.某银行一天内接待了四笔业务,存款30000元,取款5000元,存 款30万元,取款70万元.若存款为正,请你用正、负数表示这四笔 款项. 解:﹢30 000元,﹣5 000元,﹢30万元,﹣70 万元
1.0是正数与负数的分界; 2.温度中的0℃; 3.海平面的高度; 4.标准水位; 5.表示起点; ……
0可以用来表示基准, 一般地,高于基准的 量用正数表示,低于 基准的量用负数表示
知识讲解
例4:某女排队员的平均身高为187厘米,如果以平均身 高为标准,超过部分记为正数,不足部分记为负数,有5名队 员分别记为+10,-5,0,+7,-2,则她们的实际身高应是 _1_9_7_厘米、_1_8_2_厘__米__、187厘米 、19_4_厘_米__、__1_8_5_厘__米___.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课堂教学目标
课题:☆正数与负数(一)学习水平
教学要点
(知识、能力、思想、情感)




运评价


熟练
掌握






1、了解正数,负数是怎样产生的
2、理解数0表示的意义,知道什么是正数和负数.
3、初步会用正数,负数表示具有相反意义的量.




教学重点理解数0、正数和负数的意义.会用正数,负数表示具有相反意义的量.
教学难点理解数0、正数和负数的意义
课型新授课教具无教法讲练结合板书设计:
教学过
程及
时间
教学内容及达标措施
教师活动学生活动
一、复习提问:
1.小学数学里学过哪些数?
2.是否有比0还小的数.
学生回忆,口答
二、新授:
1.引入:⑴气温:今天零上28℃,1月5号的气温是零下3℃.
⑵山高:珠穆朗玛峰海拔8848米,吐鲁番盆地比海平面低155
米.(规定海平面高0米)
⑶某人在一直线的路上向东走5米,另一人向西走10米.
学生阅读分析理

2.观察:⑴具有相反意义的两个量:零上,零下;海拔高,低;东,
西;
⑵记作:⑴+28℃,-3℃;⑵+8848米,-155米;⑶规定向东
为正,向西为负:+5米,-10米
观察,理解
3.定义:⑴正数:如+28℃,+8848米,+5米,,0.3,
2
1
,3…⑵负
数:如-3℃,-155米,-10米, -
7
18
,-0.6…
大于零的数叫正数,在正数前加一个“-”号为负数.0既不是
负数,也不是正数.
教师归纳
小结:正,负数表示两个具有相反意义的量.如:收入,支出;
盈,亏;上升,下降;零上,零下;高,低;南,北;大于,小于等. 小结
例1. 一个物体向东,西两个方向运动,用正,负数表示它的运动.
⑴如果向东运动4m,记作+4m,那么向西运动5m 记作什么? ⑵如果-7m 表示物体向西运动7m,那么6m 表示物体作什么运动?
⑶0m 表示物体作什么运动?
学生理解,口答
例2.回答下列问题,并说出数0表示的意义:
⑴如果-30表示亏损30元,那么盈余50元怎么表示? ⑵如果上升5m 记作+5m,那么下降7m 表示成什么?
⑶如果收入500元记作500元,那么支出200元怎么表示?0表示什么?
⑷一种零件的内径尺寸在图纸上是10±0.05(mm),表示零件标准尺寸为kmm,加工要求最大不超过_______,最小不超过___________.
学生思考并回答
例3. 用正,负数表示下列问题中的数量,并说出数0表示的意义:
⑴出门向西走300米,出门向东走200米. ⑵某单位去年亏损3000元,今年盈利5000元. ⑶收入300元,支出200元.
学生理解并解答
例4.所有的正数组成正数集合,所有的负数组成负数集合,把下列各数中的正数和负数分别填在正数集合和负数集合的大括号
内:-11 4.8 73 -2.7 61
-8.12 -43 -π 0
正数集合{ } 负数集合{ }
正分数集合{ } 整数集合{ } 非负数集合{ } 负分数集合{ }
师生共作
三、巩固练习P18. 1,2,3,4 P20. 1,2,3 学生练习 四、小结作业:P20 1-4
后记:。

相关文档
最新文档