初中中考反比例函数应用题

合集下载

专题11 反比例函数及其应用(共65题)(学生版)

专题11 反比例函数及其应用(共65题)(学生版)

专题11反比例函数及其应用(65题)一、单选题1(2023·浙江·统考中考真题)如果100N的压力F作用于物体上,产生的压强P要大于1000Pa,则下列关于物体受力面积S m2的说法正确的是()A.S小于0.1m2B.S大于0.1m2C.S小于10m2D.S大于10m22(2023·内蒙古通辽·统考中考真题)已知点A x1,y1,B x2,y2在反比例函数y=-2x的图像上,且x1<0<x2,则下列结论一定正确的是()A.y1+y2<0B.y1+y2>0C.y1-y2<0D.y1-y2>03(2023·湖北宜昌·统考中考真题)某反比例函数图象上四个点的坐标分别为-3,y1,-2,3,1,y2, 2,y3,则,y1,y2,y3的大小关系为()A.y2<y1<y3B.y3<y2<y1C.y2<y3<y1D.y1<y3<y24(2023·浙江嘉兴·统考中考真题)已知点A-2,y1,B-1,y2,C1,y3均在反比例函数y=3x的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y15(2023·云南·统考中考真题)若点A1,3是反比例函数y=kx(k≠0)图象上一点,则常数k的值为()A.3B.-3C.32D.-326(2023·湖南永州·统考中考真题)已知点M2,a在反比例函数y=kx的图象上,其中a,k为常数,且k>0﹐则点M一定在()A.第一象限B.第二象限C.第三象限D.第四象限7(2023·天津·统考中考真题)若点A x1,-2,B x2,1,C(x3,2)都在反比例函数y=-2x的图象上,则x1,x2,x3的大小关系是()A.x3<x2<x1B.x2<x1<x3C.x1<x3<x2D.x2<x3<x18(2023·湖北随州·统考中考真题)已知蓄电池的电压为定值,使用某蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,则当电阻为6Ω时,电流为()A.3AB.4AC.6AD.8A9(2023·山西·统考中考真题)已知A(-2,a),B(-1,b),C(3,c)都在反比例函数y=4x的图象上,则a、b、c的关系是()A.a<b<cB.b<a<cC.c<b<aD.c<a<b10(2023·吉林长春·统考中考真题)如图,在平面直角坐标系中,点A、B在函数y=kx(k>0,x>0)的图象上,分别以A、B为圆心,1为半径作圆,当⊙A与x轴相切、⊙B与y轴相切时,连结AB,AB= 32,则k的值为()A.3B.32C.4D.611(2023·湖北·统考中考真题)在反比例函数y=4-kx的图象上有两点A x1,y1,B x2,y2,当x1<0<x2时,有y1<y2,则k的取值范围是()A.k<0B.k>0C.k<4D.k>412(2023·湖南·统考中考真题)如图,平面直角坐标系中,O是坐标原点,点A是反比例函数y=k xk≠0图像上的一点,过点A分别作AM⊥x轴于点M,AN⊥y轴于直N,若四边形AMON的面积为2.则k的值是()A.2B.-2C.1D.-113(2023·内蒙古·统考中考真题)如图,在平面直角坐标系中,△OAB三个顶点的坐标分别为O(0,0), A(23,0),B(3,1),△OA B与△OAB关于直线OB对称,反比例函数y=kx(k>0,x>0)的图象与A B 交于点C.若A C=BC,则k的值为()A.23B.332C.3D.3214(2023·湖南怀化·统考中考真题)如图,反比例函数y =kx(k >0)的图象与过点(-1,0)的直线AB 相交于A 、B 两点.已知点A 的坐标为(1,3),点C 为x 轴上任意一点.如果S △ABC =9,那么点C 的坐标为()A.(-3,0)B.(5,0)C.(-3,0)或(5,0)D.(3,0)或(-5,0)15(2023·湖南·统考中考真题)如图,矩形OABC 的顶点B 和正方形ADEF 的顶点E 都在反比例函数y =kxk ≠0 的图像上,点B 的坐标为2,4 ,则点E 的坐标为()A.4,4B.2,2C.2,4D.4,216(2023·广西·统考中考真题)如图,过y =kx(x >0)的图象上点A ,分别作x 轴,y 轴的平行线交y =-1x的图象于B ,D 两点,以AB ,AD 为邻边的矩形ABCD 被坐标轴分割成四个小矩形,面积分别记为S 1,S 2,S 3,S 4,若S 2+S 3+S 4=52,则k 的值为()A.4B.3C.2D.117(2023·福建·统考中考真题)如图,正方形四个顶点分别位于两个反比例函数y=3x和y=nx的图象的四个分支上,则实数n的值为()A.-3B.-13C.13D.318(2023·湖南张家界·统考中考真题)如图,矩形OABC的顶点A,C分别在y轴、x轴的正半轴上,点D在AB上,且AD=14AB,反比例函数y=kxk>0的图象经过点D及矩形OABC的对称中心M,连接OD,OM,DM.若△ODM的面积为3,则k的值为()A.2B.3C.4D.519(2023·黑龙江·统考中考真题)如图,△ABC是等腰三角形,AB过原点O,底边BC∥x轴,双曲线y=kx过A,B两点,过点C作CD∥y轴交双曲线于点D,若S△BCD=12,则k的值是()A.-6B.-12C.-92D.-920(2023·黑龙江绥化·统考中考真题)在平面直角坐标系中,点A 在y 轴的正半轴上,AC 平行于x 轴,点B ,C 的横坐标都是3,BC =2,点D 在AC 上,且其横坐标为1,若反比例函数y =kx(x >0)的图像经过点B ,D ,则k 的值是()A.1B.2C.3D.3221(2023·四川宜宾·统考中考真题)如图,在平面直角坐标系xOy 中,点A 、B 分别在y ,x 轴上,BC ⊥x 轴.点M 、N 分别在线段BC 、AC 上,BM =CM ,NC =2AN ,反比例函数y =kxx >0 的图象经过M 、N 两点,P 为x 正半轴上一点,且OP :BP =1:4,△APN 的面积为3,则k 的值为()A.454B.458C.14425D.7225二、填空题22(2023·广东·统考中考真题)某蓄电池的电压为48V ,使用此蓄电池时,电流I (单位:A )与电阻R (单位:Ω)的函数表达式为I =48R,当R =12Ω时,I 的值为A .23(2023·四川成都·统考中考真题)若点A -3,y 1 ,B -1,y 2 都在反比例函数y =6x的图象上,则y 1y 2(填“>”或“<”).24(2023·浙江温州·统考中考真题)在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,加压后气体对汽缸壁所产生的压强P (kPa )与汽缸内气体的体积V (mL )成反比例,P 关于V 的函数图象如图所示.若压强由75kPa 加压到100kPa ,则气体体积压缩了mL .25(2023·河北·统考中考真题)如图,已知点A (3,3),B (3,1),反比例函数y =kx(k ≠0)图像的一支与线段AB 有交点,写出一个符合条件的k 的数值:.26(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,直线y 1=k 1x +b 与双曲线y 2=k 2x(其中k 1⋅k 2≠0)相交于A -2,3 ,B m ,-2 两点,过点B 作BP ∥x 轴,交y 轴于点P ,则△ABP 的面积是.27(2023·新疆·统考中考真题)如图,在平面直角坐标系中,△OAB 为直角三角形,∠A =90°,∠AOB =30°,OB =4.若反比例函数y =kxk ≠0 的图象经过OA 的中点C ,交AB 于点D ,则k =.28(2023·浙江绍兴·统考中考真题)如图,在平面直角坐标系xOy 中,函数y =kx(k 为大于0的常数,x >0)图象上的两点A x 1,y 1 ,B x 2,y 2 ,满足x 2=2x 1.△ABC 的边AC ∥x 轴,边BC ∥y 轴,若△OAB 的面积为6,则△ABC 的面积是.29(2023·山东烟台·统考中考真题)如图,在直角坐标系中,⊙A 与x 轴相切于点B ,CB 为⊙A 的直径,点C 在函数y =kx(k >0,x >0)的图象上,D 为y 轴上一点,△ACD 的面积为6,则k 的值为.30(2023·山东枣庄·统考中考真题)如图,在反比例函数y =8x(x >0)的图象上有P 1,P 2,P 3,⋯P 2024等点,它们的横坐标依次为1,2,3,⋯,2024,分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为S 1,S 2,S 3,⋯,S 2023,则S 1+S 2+S 3+⋯+S 2023=.31(2023·四川内江·统考中考真题)如图,在平面直角坐标系中,O 为坐标原点,MN 垂直于x 轴,以MN 为对称轴作△ODE 的轴对称图形,对称轴MN 与线段DE 相交于点F ,点D 的对应点B 恰好落在反比例函数y =kx(x <0)的图象上,点O 、E 的对应点分别是点C 、A .若点A 为OE 的中点,且S △EAF =14,则k 的值为.32(2023·黑龙江齐齐哈尔·统考中考真题)如图,点A 在反比例函数y =kxk ≠0 图像的一支上,点B 在反比例函数y =-k2x图像的一支上,点C ,D 在x 轴上,若四边形ABCD 是面积为9的正方形,则实数k 的值为.33(2023·广东深圳·统考中考真题)如图,Rt △OAB 与Rt △OBC 位于平面直角坐标系中,∠AOB =∠BOC =30°,BA ⊥OA ,CB ⊥OB ,若AB =3,反比例函数y =kxk ≠0 恰好经过点C ,则k =.34(2023·江苏连云港·统考中考真题)如图,矩形OABC 的顶点A 在反比例函数y =kx(x <0)的图像上,顶点B 、C 在第一象限,对角线AC ∥x 轴,交y 轴于点D .若矩形OABC 的面积是6,cos ∠OAC =23,则k =.35(2023·浙江宁波·统考中考真题)如图,点A,B分别在函数y=ax(a>0)图象的两支上(A在第一象限),连接AB交x轴于点C.点D,E在函数y=bx(b<0,x<0)图象上,AE∥x轴,BD∥y轴,连接DE,BE.若AC=2BC,△ABE的面积为9,四边形ABDE的面积为14,则a-b的值为,a的值为.36(2023·湖北荆州·统考中考真题)如图,点A2,2在双曲线y=kx(x>0)上,将直线OA向上平移若干个单位长度交y轴于点B,交双曲线于点C.若BC=2,则点C的坐标是.三、解答题37(2023·浙江杭州·统考中考真题)在直角坐标系中,已知k1k2≠0,设函数y1=k1x与函数y2=k2x-2+5的图象交于点A和点B.已知点A的横坐标是2,点B的纵坐标是-4.(1)求k1,k2的值.(2)过点A作y轴的垂线,过点B作x轴的垂线,在第二象限交于点C;过点A作x轴的垂线,过点B作y 轴的垂线,在第四象限交于点D.求证:直线CD经过原点.38(2023·湖南常德·统考中考真题)如图所示,一次函数y1=-x+m与反比例函数y2=kx相交于点A和点B3,-1.(1)求m的值和反比例函数解析式;(2)当y1>y2时,求x的取值范围.39(2023·湖南·统考中考真题)如图,点A的坐标是-3,0,点B的坐标是(0,4),点C为OB中点,将△ABC绕着点B逆时针旋转90°得到△A BC .(1)反比例函数y=kx的图像经过点C,求该反比例函数的表达式;(2)一次函数图像经过A、A 两点,求该一次函数的表达式.40(2023·四川自贡·统考中考真题)如图,点A 2,4 在反比例函数y 1=mx图象上.一次函数y 2=kx +b 的图象经过点A ,分别交x 轴,y 轴于点B ,C ,且△OAC 与△OBC 的面积比为2:1.(1)求反比例函数和一次函数的解析式;(2)请直接写出y 1≥y 2时,x 的取值范围.41(2023·四川泸州·统考中考真题)如图,在平面直角坐标系xOy 中,直线l :y =kx +2与x ,y 轴分别相交于点A ,B ,与反比例函数y =mxx >0 的图象相交于点C ,已知OA =1,点C 的横坐标为2.(1)求k ,m 的值;(2)平行于y 轴的动直线与l 和反比例函数的图象分别交于点D ,E ,若以B ,D ,E ,O 为顶点的四边形为平行四边形,求点D 的坐标.42(2023·四川南充·统考中考真题)如图,一次函数图象与反比例函数图象交于点A-1,6,B3a ,a-3,与x轴交于点C,与y轴交于点D.(1)求反比例函数与一次函数的解析式;(2)点M在x轴上,若S△OAM=S△OAB,求点M的坐标.43(2023·四川宜宾·统考中考真题)如图,在平面直角坐标系xOy中,等腰直角三角形ABC的直角顶点C3,0,顶点A、B6,m恰好落在反比例函数y=kx第一象限的图象上.(1)分别求反比例函数的表达式和直线AB所对应的一次函数的表达式;(2)在x轴上是否存在一点P,使△ABP周长的值最小.若存在,求出最小值;若不存在,请说明理由.44(2023·四川广安·统考中考真题)如图,一次函数y =kx +94(k 为常数,k ≠0)的图象与反比例函数y =mx(m 为常数,m ≠0)的图象在第一象限交于点A 1,n ,与x 轴交于点B -3,0 .(1)求一次函数和反比例函数的解析式.(2)点P 在x 轴上,△ABP 是以AB 为腰的等腰三角形,请直接写出点P 的坐标.45(2023·四川遂宁·统考中考真题)如图,一次函数y =k 1x +b 的图像与反比例函数y =k 2x的图像交于A -4,1 ,B m ,4 两点.(k 1,k 2,b 为常数)(1)求一次函数和反比例函数的解析式;(2)根据图像直接写出不等式k 1x +b >k2x的解集;(3)P 为y 轴上一点,若△PAB 的面积为3,求P 点的坐标.46(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy中,直线y=kx+b与x轴交于点A4,0,与y轴交于点B0,2,与反比例函数y=mx在第四象限内的图象交于点C6,a.(1)求反比例函数的表达式:(2)当kx+b>mx时,直接写出x的取值范围;(3)在双曲线y=mx上是否存在点P,使△ABP是以点A为直角顶点的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.47(2023·江西·统考中考真题)如图,已知直线y=x+b与反比例函数y=kx(x>0)的图象交于点A(2,3),与y轴交于点B,过点B作x轴的平行线交反比例函数y=kx(x>0)的图象于点C.(1)求直线AB和反比例函数图象的表达式;(2)求△ABC的面积.48(2023·四川乐山·统考中考真题)如图,一次函数y=kx+b的图象与反比例函数y=4x的图象交于点A m,4,与x轴交于点B,与y轴交于点C0,3.(1)求m的值和一次函数的表达式;(2)已知P为反比例函数y=4x图象上的一点,S△OBP=2S△OAC,求点P的坐标.49(2023·湖南岳阳·统考中考真题)如图,反比例函数y=kx(k为常数,k≠0)与正比例函数y=mx(m为常数,m≠0)的图像交于A1,2,B两点.(1)求反比例函数和正比例函数的表达式;(2)若y轴上有一点C0,n,△ABC的面积为4,求点C的坐标.3x相交于点A.(1)求点A的坐标.(2)分别以点O、A为圆心,大于OA一半的长为半径作圆弧,两弧相交于点B和点C,作直线BC,交x轴于点D.求线段OD的长.x交于点A4,n.将点A沿x轴正方向平移m个单位长度得到点B,D为x轴正半轴上的点,点B的横坐标大于点D的横坐标,连接BD,BD的中点C在反比例函数y=kx(x>0)的图象上.(1)求n,k的值;(2)当m为何值时,AB⋅OD的值最大?最大值是多少?52(2023·山东东营·统考中考真题)如图,在平面直角坐标系中,一次函数y=ax+b a<0与反比例函数y=kxk≠0交于A-m,3m,B4,-3两点,与y轴交于点C,连接OA,OB.(1)求反比例函数和一次函数的表达式;(2)求△AOB的面积;(3)请根据图象直接写出不等式kx<ax+b的解集.53(2023·山东枣庄·统考中考真题)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=4x的图象交于A(m,1),B(-2,n)两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出这个一次函数的图象;(2)观察图象,直接写出不等式kx+b<4x的解集;(3)设直线AB与x轴交于点C,若P(0,a)为y轴上的一动点,连接AP,CP,当△APC的面积为52时,求点P的坐标.54(2023·山东滨州·统考中考真题)如图,直线y =kx +b (k ,b 为常数)与双曲线y =m x(m 为常数)相交于A 2,a ,B -1,2 两点.(1)求直线y =kx +b 的解析式;(2)在双曲线y =m x上任取两点M x 1,y 1 和N x 2,y 2 ,若x 1<x 2,试确定y 1和y 2的大小关系,并写出判断过程;(3)请直接写出关于x 的不等式kx +b >m x的解集.55(2023·四川内江·统考中考真题)如图,在平面直角坐标系中,一次函数y =mx +n 与反比例函数y =k x的图象在第一象限内交于A a ,4 和B 4,2 两点,直线AB 与x 轴相交于点C ,连接OA .(1)求一次函数与反比例函数的表达式;(2)当x >0时,请结合函数图象,直接写出关于x 的不等式mx +n ≥k x的解集;(3)过点B 作BD 平行于x 轴,交OA 于点D ,求梯形OCBD 的面积.56(2023·湖南·统考中考真题)如图所示,在平面直角坐标系xOy中,四边形OABC为正方形,其中点A、C分别在x轴负半轴,y轴负半轴上,点B在第三象限内,点A t,0,点P1,2在函数y=k xk>0,x>0的图像上(1)求k的值;(2)连接BP、CP,记△BCP的面积为S,设T=2S-2t2,求T的最大值.57(2023·湖北十堰·统考中考真题)函数y=kx+a的图象可以由函数y=kx的图象左右平移得到.(1)将函数y=1x的图象向右平移4个单位得到函数y=1x+a的图象,则a=;(2)下列关于函数y=1x+a的性质:①图象关于点-a,0对称;②y随x的增大而减小;③图象关于直线y=-x+a对称;④y的取值范围为y≠0.其中说法正确的是(填写序号);(3)根据(1)中a的值,写出不等式1x+a >1x的解集:.58(2023·甘肃兰州·统考中考真题)如图,反比例函数y=kxx<0与一次函数y=-2x+m的图象交于点A-1,4,BC⊥y轴于点D,分别交反比例函数与一次函数的图象于点B,C.(1)求反比例函数y=kx与一次函数y=-2x+m的表达式;(2)当OD=1时,求线段BC的长.59(2023·湖北黄冈·统考中考真题)如图,一次函数y1=kx+b(k≠0)与函数为y2=mx(x>0)的图象交于A(4,1),B12,a两点.(1)求这两个函数的解析式;(2)根据图象,直接写出满足y1-y2>0时x的取值范围;(3)点P在线段AB上,过点P作x轴的垂线,垂足为M,交函数y2的图象于点Q,若△POQ面积为3,求点P的坐标.60(2023·四川·统考中考真题)如图,已知一次函数y=kx+6的图象与反比例函数y=mxm>0的图象交于A3,4,B两点,与x轴交于点C,将直线AB沿y轴向上平移3个单位长度后与反比例函数图象交于点D,E.(1)求k,m的值及C点坐标;(2)连接AD,CD,求△ACD的面积.61(2023·山东聊城·统考中考真题)如图,一次函数y=kx+b的图像与反比例函数y=mx的图像相交于A-1,4,B a,-1两点.(1)求反比例函数和一次函数的表达式;(2)点P n,0在x轴负半轴上,连接AP,过点B作BQ∥AP,交y=mx的图像于点Q,连接PQ.当BQ=AP时,若四边形APQB的面积为36,求n的值.62(2023·山东·统考中考真题)如图,正比例函数y1=12x和反比例函数y2=kx(x>0)的图像交于点A m,2.(1)求反比例函数的解析式;(2)将直线OA向上平移3个单位后,与y轴交于点B,与y2=kx(x>0)的图像交于点C,连接AB,AC,求△ABC的面积.63(2023·山东·统考中考真题)如图,已知坐标轴上两点A0,4,连接AB,过点B作BC⊥,B2,0AB,交反比例函数y=kx在第一象限的图象于点C(a,1).(1)求反比例函数y=kx和直线OC的表达式;(2)将直线OC向上平移32个单位,得到直线l,求直线l与反比例函数图象的交点坐标.64(2023·河南·统考中考真题)小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数y =k x 图象上的点A 3,1 和点B 为顶点,分别作菱形AOCD 和菱形OBEF ,点D ,E 在x 轴上,以点O 为圆心,OA 长为半径作AC ,连接BF .(1)求k 的值;(2)求扇形AOC 的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.65(2023·四川成都·统考中考真题)如图,在平面直角坐标系xOy中,直线y=-x+5与y轴交于点A,与反比例函数y=kx的图象的一个交点为B(a,4),过点B作AB的垂线l.(1)求点A的坐标及反比例函数的表达式;(2)若点C在直线l上,且△ABC的面积为5,求点C的坐标;(3)P是直线l上一点,连接PA,以P为位似中心画△PDE,使它与△PAB位似,相似比为m.若点D,E 恰好都落在反比例函数图象上,求点P的坐标及m的值.·31·。

初中中考反比例函数应用题

初中中考反比例函数应用题

初中中考反比例函数应用(Yong)题一(Yi)、选择1.已知反比例(Li)函数的图象经(Jing)过点(Dian)P(一(Yi)l ,2),则这(Zhe)个函数的图象位于A .第(Di)二、三象限B .第一、三象限C .第三、四象限D .第二、四象限2.反比例函数x k y =在第一象限的图象如图所示,则x k y =的值可能是( ) A .1B .2C .3D .43.如图5,A 、B 是函数x ky =的图象上关于原点对称的任意两点, BC ∥x k y =轴,AC ∥x k y =轴,△ABC 的面积记为x k y =,则( ) A .x k y = B . x k y = C .x k y = D .x k y =4.市一小数学课外兴趣小组的同学每人制作一个面积为200cm 2的矩形学具进行展示. 设矩形的宽为x cm ,长为y cm ,那么这些同学所制作的矩形长y (cm )与宽x (cm )之间的函数关系的图象大致是 ( )【关键词】反比例函数5.一次函数y =kx +b 与反比例函数y =kx 的图象如图5所示,则下列说法正确的是( )A .它们的函数值y 随着x 的增大而增大B .它们的函数值y 随着x 的增大而减小C .k <0D .它们的自变量x 的取值为全体实数6.如(Ru)图,点(Dian)x k y =在反比(Bi)例函数x ky =(x > 0)的(De)图(Tu)象上,且横坐标为(Wei)2. 若(Ruo)将点x ky =先(Xian)向右平移两个单位,再向上平移一个单位后所得的像为点x k y =.则在第一象限内,经过点x k y =的反比例函数图象的解析式是 A .x k y = B .x k y = C . x k y = D . x k y =7.一张正方形的纸片,剪去两个一样的小矩形得到一个“x ky =”图案,如图所示,设小矩形的长和宽分别为x k y =、x k y =,剪去部分的面积为20,若x k y =,则x k y =与x k y =的函数图象是( )8.在反比例函数x k y =的图象的每一条曲线上,x k y =的增大而增大,则x k y =的值可以是( )A .x k y =B .0C .1D .2 【关键词】反比例函数9.如图,直线y=mx 与双曲线y=x ky =交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM,若x k y ==2,则k 的值是( ) A .2 B 、m-2 C 、m D 、4【关键词】一次函数与反比例函数的综合应用10.如图,双曲(Qu)线x ky =经(Jing)过矩形(Xing)QABC 的(De)边(Bian)BC 的(De)中点(Dian)E ,交(Jiao)AB 于点D 。

(中考)反比例函数综合应用题

(中考)反比例函数综合应用题

反比例函数综合应用题如图,A 、B 两点在函数()0m y x x=>的图象上.(1)求m 的值及直线AB 的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数。

2、如图,点P 是双曲线11(00)k y k x x=<<,上一动点,过点P 作x 轴、y 轴的垂线,分别交x 轴、y 轴于A 、B 两点,交双曲线y =xk 2(0<k 2<|k 1|)于E 、F 两点. (1)图1中,四边形PEOF 的面积S 1= (用含k 1、k 2的式子表示);(3分) (2)图2中,设P 点坐标为(-4,3).①判断EF 与AB 的位置关系,并证明你的结论;(4分) ②记2PEF OEF S S S ∆∆=-,S 2是否有最小值?若有,求出其最小值;若没有,请说明理由.(5分)3、如图11,已知正比例函数和反比例函数的图像都经过点M (-2,1-),且P (1-,-2)为双曲线上的一点,Q 为坐标平面上一动点,P A 垂直于x 轴,QB 垂直于y 轴,垂足分别是A 、B . (1)写出正比例函数和反比例函数的关系式;(2)当点Q 在直线MO 上运动时,直线MO 上是否存在这样的点Q ,使得△OBQ 与△OAP 面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图12,当点Q 在第一象限中的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,求平行四边形OPCQ 周长的最小值.4、已知:如图,正比例函数y ax =的图象与反比例函数k y x=的图象交于点()32A ,.(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值? (3)()M m n ,是反比例函数图象上的一动点,其中03m <<,过点M 作直线MN x ∥轴,交y 轴于点B ;过点A 作直线AC y ∥轴(第7题图)交x 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由.一次函数y ax b =+的图象分别与x 轴、y 轴交于点,M N ,与反比例函数k y x=的图象相交于点,A B .过点A 分别作AC x ⊥轴,AE y ⊥轴,垂足分别为,C E ;过点B 分别作BF x ⊥轴,,与交于点,连接. (1)若点A B ,在反比例函数ky x=的图象的同一分支上, 如图1,试证明: ①AEDK CFBK S S =四边形四边形;②AN BM =.(2)若点A B ,分别在反比例函数ky x =6已知点A 、B 分别是x 轴、y 轴上的动点,点C 、D 是某个函数图像上的点,当四边形ABCD (A 、B 、C 、D 各点依次排列)为正方形时,称这个正方形为此函数图像的伴侣正方形。

反比例函数中考专题

反比例函数中考专题

反比例函数中考专题1、如图,在平面直角坐标系中,第二象限内的点E (−3,m )、F (−2,n),若OE=OF ,点E 、F 都在反比例函数y =kx 的图像上,则k=( )A. -4B. -6C. -8D. -102、若函数y =m+2x的图像在其所在的第一象限内,函数值y 随自变量x 的增大而减小,则m的取值范围是( )A.m<-2B.m<0C.m>-2D.m>03、若点A(1,1x )、B(2,2-x )、C(3,3-x )在反比例函数xk y 12+-=的图象上,则321x x x 、、的大小关系是( )A. 321x x x <<B. 231x x x <<C. 213x x x <<D. 312x x x << 4、已知点A(m ,y 1)、B(m +1,y 2)均在函数1y x=-的图像上,若y 1>y 2,则( ) A. m <-1 B. -1<m <0 C. m >0 D. m >-15、已知点(a +2,3)在第一象限,A(a +2,y 1)、B(3+2a ,y 2)是反比例函数y =|t|+1x (为常数)图象上两点,若y 1>y 2,则a 的取值范围为( )A. a >-1B.-1.5<a <-1C.-2<a <-1.5或a >-1D.-2<a <-1 6、若直线y 1=mx +n 与双曲线y 2=kx 交于A(a -4,a +3)、B(a ,a -5)两点,则y 1>y 2时,x 的取值范围是( )A. x <-1或0<x <3B. x >3或x <-1C. x >3或-1<x <0D. x <-2或0<x <6.7、若点A (-1+a ,y 1),B (1+a ,y 2),C (3+a ,y 3)在反比例函数y =x3-的图象上,若-1<a <0,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 2<y 1D .y 2<y 1<y 38、在平面直角坐标系中,若一个正比例函数y =kx 的图象经过A(a ,1),B(1,b)两点,反比例函数y =2m x m +的图象经过点(a ,b),则m -1m的值为( )A .-1B .1C .±1D .-29、在平面直角坐标系中,点),(P b a 是函数x3y =与1y -=x 的图象的一个交点,则abb a 22+的值为( ) A. 334+B. 232+C. 332+D. 234+10、已知反比例函数xy 23-=,直线42+-=x y 交于P (a ,b )、Q (m ,n )两点,则代数式nb a m 33+++的值是( ) A.2B.-2C.4D. - 411、若点A (x 1,-2),B (x 2,-3),C (x 3,2)在反比例函数xm y 12--=(m 是常数)的图像上,则x 1,x 2,x 3的大小关系是 A .x 1>x 2>x 3 B .x 1>x 3>x 2C .x 3>x 1>x 2D .x 2>x 1>x 312、平面直角坐标系中,函数xy 3-=(x <0)与4+=x y 的图象交于点P (a ,b ),则代数式ba 11-的值是( ) A. 334- B.334 C. 33-D.3313、方程x 2+ 2x - 1 = 0的根可视为直线y = x + 2与双曲线xy 1=交点的横坐标,根据此法可推断方程x 3+ 3x - 2 = 0的实根x 0所在的范围是( ) A.0 < x 0 < 1 B.1 < x 0 < 2 C.2 < x 0 < 3 D.3 < x 0 < 414、已知a 是方程x 2+ x - 2021 = 0的一个根,则aa a ---22112的值为( ) A.2020 B.2021C. 12020D. 1202115、关于反比例函数y =−4x的下列说法不正确的是( )①该函数的图象在第二、四象限;②A(x 1,y 1),B(x 2,y 2)两点在该函数图象上,若x 1<x 2,则y 1<y 2;③当y >﹣2时,x >2; ④若反比例函数y =−4x 与一次函数y =x +b 的图象无交点,则b 的范围是﹣4<b <4. A .①③ B .①③④C .②③D .②④16、若点A (2,1-x ),B (1,2x ),c (3,3x )在反比例函数xa y 22+=(a 为常数)的图象上,则321,,x x x 的大小关系是( )A.321x x x <<B.231x x x <<C.312x x x <<D.132x x x <<17、已知MA(11,y x ),N(22,y x ),R(33,y x )是反比例函数x k y 12+=图象上三点,若321x x x <<,3120y y y <<<,则下列关系式不正确的是( )A.021<x xB.031<x xC.032<x xD.021<+x x18、若a 是一元二次方程x 2-3x +1=0的一个根,则代数式2421a a a ++的值是( )A .17B .18C .19B .11019、已知关于x 的一元三次方程ax 3+bx 2+cx -k 2=0的解为x 1=-3,x 2=1,x 3=2.请运用函数的图象,数形结合的思想方法,判断关于x 的不等式ax 3+bx 2+cx >k 2的解集是 A. x <-3或 1<x <2 B. -3<x <0或 1<x <2 C. x <-3或 0<x <1或 x >2 D. -3<x <1或 x >220、 在平面直角坐标系中,函数y =x ﹣6与y =−1x的图象交于一点(m ,n ),则代数式m 2﹣4m 2121mnm -+的值为( ) A. 13B. 11C. 7D. 521、在平面直角坐标系中,函数2022y x=与y =2x +6的图象交于点(x 1,y 1)、(x 2,y 2),则代数式(x 1+y 2)(x 2+y 1)=( ) A .-1011B .1011C .2022D .-2022。

2024年九年级数学中考复习——反比例函数-动态几何问题(含答案)

2024年九年级数学中考复习——反比例函数-动态几何问题(含答案)

2024年九年级数学中考复习——反比例函数-动态几何问题1.如图,在矩形ABCD 中,已知点A (2,1),且AB =4,AD =3,把矩形ABCD 的内部及边上,横、纵坐标均为整数的点称为靓点,反比例函数y=(x >0)的图象为曲线L .(1)若曲线L 过AB 的中点.①求k 的值.②求该曲线L 下方(包括边界)的靓点坐标.(2)若分布在曲线L 上方与下方的靓点个数相同,求k 的取值范围.2.如图,在平面直角坐标系中,一次函数 与反比例函数 相交于点 ,与 轴相交于点 ,点 的横坐标为-2.(1)求 的值;(2)直接写出当 且 时, 的取值范围;(3)设点 是直线AB 上的一点,过点 作 轴,交反比例函数 的图象于点 .若以A ,O ,M ,N 为顶点的四边形为平行四边形,求点 的坐标.k x12y x =-+2(0)k y x x=<B x A B k 0x <12y y <x M M //MN x 2(0)k y x x=<N M3.如图,在平面直角坐标系中,OA ⊥OB ,AB ⊥x 轴于点C ,点A (,1)在反比例函数y = 的图象上.(1)求反比例函数y = 的表达式; (2)在x 轴上是否存在一点P ,使得S △AOP =S △AOB ,若存在,求所有符合条件点P 的坐标;若不存在,简述你的理由.4.如图,点 , 在 轴上,以 为边的正方形 在 轴上方,点 的坐标为 ,反比例函数 的图象经过 的中点 , 是 上的一个动点,将 沿 所在直线折叠得到 .(1)求反比例函数 的表达式; (2)若点 落在 轴上,求线段 的长及点 的坐标.k x k x12A B x AB ABCD x C (14),(0)k y k x=≠CD E F AD DEF EF GEF (0)k y k x=≠G y OG F5.如图,已知反比例函数y=(x >0)的图象经过点A (4,2),过A 作AC ⊥y 轴于点C .点B 为反比例函数图象上的一动点,过点B 作BD ⊥x 轴于点D ,连接AD .直线BC 与x 轴的负半轴交于点E .(1)求k 的值;(2)连接CD ,求△ACD 的面积;(3)若BD =3OC ,求四边形ACED 的面积.6.已知:如图1,点是反比例函数图象上的一点.(1)求的值和直线的解析式;(2)如图2,将反比例函数的图象绕原点逆时针旋转后,与轴交于点,求线段的长度;(3)如图3,将直线绕原点逆时针旋转,与反比例函数的图象交于点,求点的坐标.k x(4)A n ,8(0)y x x=>n OA 8(0)y x x =>O 45︒y M OM OA O 45︒8(0)y x x=>B B7.已知:反比例函数的图像过点A ( , ),B ( , )且 (1)求m 的值;(2)点C 在x 轴上,且 ,求C 点的坐标;(3)点Q 是第一象限内反比例函数图象上的动点,且在直线AB 的右侧,设直线QA ,QB 与y 轴分别交于点E 、D ,试判断DE 的长度是否变化,若变化请说明理由,若不变,请求出长度.8.规定:在平面直角坐标系中,横坐标与纵坐标均为整数的点,叫做整点,点,在反比例函数的图象上;(1)m= ;(2)已知,过点、D 点作直线交双曲线于E 点,连接OB ,若阴影区域(不包括边界)内有4个整点,求b 的取值范围.m y x =1x 121m --2x 45m-120x x +=16ABC s ∆=()22A ,()1B m ,()0k y x x=>0b >()40C b -,()0b ,()0k y x x=>9.已知,矩形OCBA 在平面直角坐标系中的位置如图所示,点C 在x 轴的正半轴上,点A 在y 轴的正半轴上,已知点B 坐标为(3,6),反比例函数的图象经过AB 的中点D ,且与BC 交于点E ,顺次连接O ,D ,E .(1)求m 的值及点E 的坐标;(2)点M 为y 轴正半轴上一点,若△MBO 的面积等于△ODE 的面积,求点M 的坐标;(3)平面直角坐标系中是否存在一点N ,使得O ,D ,E ,N 四点顺次连接构成平行四边形?若存在,请直接写出N 的坐标;若不存在,请说明理由.10.如图,点P 为函数与函数图象的交点,点P 的纵坐标为4,轴,垂足为点B .(1)求m 的值;(2)点M 是函数图象上一动点,过点M 作于点D ,若,求点M的坐标.m y x=1y x =+()0m y x x=>PB x ⊥()0m y x x =>MD BP ⊥12tan PMD ∠=11.如图,在平面直角坐标系中,直线与轴、轴分别交于点、,与双曲线交于点,直线分别与直线和双曲线交于点、.(1)求和的值;(2)当点在线段上时,如果,求的值;(3)点是轴上一点,如果四边形是菱形,求点的坐标.12.如图,等边和等边的一边都在x 轴上,双曲线经过的中点C 和的中点D .已知等边的边长为4.(1)求k 的值;(2)求等边的边长;(3)将等边绕点A 任意旋转,得到等边,P 是的中点(如图2所示),连结,直接写出的最大值.xOy 34l y x b =+:x y A B x k H y =:922P ⎛⎫ ⎪⎝⎭,x m =H E D k b E AB ED BO =m C y BCDE C OAB AEF ()0k y k x=>OB AE OAB AEF AEF AE F '' E F ''BP BP13.如图,点A 、B 是反比例函数y = 的图象上的两个动点,过A 、B 分别作AC ⊥x 轴、BD ⊥x 轴,分别交反比例函数y =- 的图象于点C 、D ,四边形ACBD 是平行四边形. (1)若点A 的横坐标为-4.①直接写出线段AC 的长度;②求出点B 的坐标;(2)当点A 、B 不断运动时,下列关于□ACBD 的结论:①□ACBD 可能是矩形;②□ACBD 可能是菱形;③□ACBD 可能是正方形;④□ACBD 的周长始终不变;⑤□ACBD 的面积始终不变.其中所有正确结论的序号是 .8x2x14.在平面直角坐标系 中,正比例函数 与反比例函数 的图象相交于点 与点Q . (1)求点Q 的坐标;(2)若存在点 ,使得 ,求c 的值; (3)过点 平行于x 轴的直线,分别与第一象限内的正比例函数 、反比例函数数 的图象相交于点 、点 ,当 时,请直接写出a 的取值范围.15.在平面直角坐标系中,直线y=x+2与x 轴交于点A ,与y 轴交于点B ,并与反比例函数y=(k≠0)的图象在第一象限相交于点C ,且点B 是AC 的中点xOy ()1110y k x k =≠()2220k y k x=≠(11)P ,(0)C c ,2PQC S = (0)M a ,()1110y k x k =≠()2220k y k x =≠()11A x y ,()22B x y ,1252x x +≤kx(1)如图1,求反比例函数y=(k≠0)的解析式;(2)如图2,若矩形FEHG 的顶点E 在直线AB 上,顶点F 在点C 右侧的反比例函数y=(k≠0)图象上,顶点H ,G 在x 轴上,且EF=4.①求点F 的坐标;②若点M 是反比例函数的图象第一象限上的动点,且在点F 的左侧,连结MG ,并在MG 左侧作正方形GMNP .当顶点N 或顶点P 恰好落在直线AB 上,直接写出对应的点M 的横坐标.16.如图,动点P 在函数y (x >0)的图象上,过点P 分别作x 轴和y 轴的平行线,交函数y 的图象于点A 、B ,连接AB 、OA 、OB .设点P 横坐标为a .(1)直接写出点P 、A 、B 的坐标(用a 的代数式表示);(2)点P 在运动的过程中,△AOB 的面积是否为定值?若是,求出此定值;若不是,请说明理由;(3)在平面内有一点Q (,1),且点Q 始终在△PAB 的内部(不包含边),求a 的取值范围.k xk x 3x =1x =-1317.如图1,一次函数y =kx ﹣3(k≠0)的图象与y 轴交于点B ,与反比例函数y=(x >0)的图象交于点A (8,1).(1)求出一次函数与反比例函数的解析式;(2)点C 是线段AB 上一点(不与A ,B 重合),过点C 作y 轴的平行线与该反比例函数的图象交于点D ,连接OC ,OD ,AD ,当CD 等于6时,求点C 的坐标和△ACD 的面积;(3)在(2)的前提下,将△OCD 沿射线BA 方向平移一定的距离后,得到△O'CD',若点O 的对应点O'恰好落在该反比例函数图象上(如图2),求出点O',D'的坐标.18.如图1所示,已知 图象上一点 轴于点 ,点 ,动点 是 轴正半轴点 上方的点,动点 在射线AP 上,过点 作AB 的垂线,交射线AP 于点 ,交直线MN 于点 ,连结AQ ,取AQ 的中点 . m x6(0)y x x=>P PA x ⊥,(0)A a ,(0)(0)B b b >,M y B N B D Q C(1)如图2,连结BP ,求 的面积;(2)当点 在线段BD 上时,若四边形BQNC 是菱形,面积为 .①求此时点Q ,P 的坐标;②此时在y 轴上找到一点E ,求使|EQ-EP|最大时的点E 的坐标.19.已知反比例函数y=的图象经过点A (6,1).(1)求该反比例函数的表达式;(2)如图,在反比例函数y=在第一象限的图象上点A 的左侧取点C ,过点A 作x 轴的垂线交x 轴于点H ,过点C 作y 轴的垂线CE ,垂足为点E ,交直线AH 于点D .①过点A 、点C 分别作y 轴、x 轴的垂线,两条垂线相交于点B ,求证:O 、B 、D 三点共线;②若AC=2CO ,求证:∠OCE=3∠CDO .PAB Q k xk x20.如图,一次函数与反比例函数的图象交于点和,与y 轴交于点C .(1) , ;(2)过点A 作轴于点D ,点P 是反比例函数在第一象限的图象上一点,设直线与线段交于点E ,当时,求点P 的坐标.(3)点M 是坐标轴上的一个动点,点N 是平面内的任意一点,当四边形是矩形时,求出点M 的坐标.21.如图1,将函数的图象T 1向左平移4个单位得到函数的图象T 2,T 2与y 轴交于点.(1)若,求k 的值(2)如图2,B 为x 轴正半轴上一点,以AB 为边,向上作正方形ABCD ,若D 、C 恰好落在T 1上,线段BC 与T 2相交于点E①求正方形ABCD 的面积;②直接写出点E 的坐标.114y k x =+22k y x=()2A m ,()62B --,1k =2k =AD x ⊥OP AD Δ41ODE ODAC S S =四边形::ABMN ()0k y x x =>()44k y x x =>-+()0A a ,3a =22.如图1,直线的图像与x 轴、y 轴分别交于A 、B 两点,点D 是线段AB 上一点,过D 点分别作OA 、OB 的垂线,垂足分别是C 、E ,矩形OCDE 的面积为4,且.(1)求D 点坐标;(2)将矩形OCDE 以1个单位/秒的速度向右平移,平移后记为矩形MNPQ ,记平移时间为t 秒.①如图2,当矩形MNPQ 的面积被直线AB 平分时,求t 的值;②如图3,当矩形MNPQ 的边与反比例函数的图像有两个交点,记为T 、K ,若直线TK 把矩形面积分成1:7两部分,请直接写出t 的值.23.如图1,在平面直角坐标系中,点,点,直线与反比例函数的图象在第一象限相交于点,26y x =-+CD DE >12y x=()40A -,()04B ,AB ()0k y k x=≠()6C a ,(1)求反比例函数的解析式;(2)如图2,点是反比例函数图象上一点,连接,试问在x 轴上是否存在一点D ,使的面积与的面积相等,若存在,请求点D 的坐标;若不存在,请说明理由;(3)新定义:如图3,在平面内,如果三角形的一边等于另一边的3倍,这两条边中较长的边称为“麒麟边”,两条边所夹的角称为“麒麟角”,则称该三角形为“麒麟三角形”,如图所示,在平面直角坐标系中,为“麒麟三角形”, 为“麒麟边”, 为“麒麟角”,其中A ,B 两点在反比例函数 图象上,且A 点横坐标为,点C 坐标为,当为直角三角形时,求n 的值.24.如图1,已知点A (a ,0),B (0,b ),且a 、b 满足 +(a +b +3)2=0,平等四边形ABCD的边AD 与y 轴交于点E ,且E 为AD 中点,双曲线y =经过C 、D 两点. (1)a = ,b = ;(2)求D 点的坐标;(3)点P 在双曲线y = 上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,试求满足要求的所有点Q 的坐标;(4)以线段AB 为对角线作正方形AFBH (如图3),点T 是边AF 上一动点,M 是HT 的中点,MN ⊥HT ,交AB 于N ,当T 在AF 上运动时, 的值是否发生改变?若改变,求出其变化范围;若()6E m ,()0k y k x=≠CE AE ,ACD ACE ABC AB BAC ∠n y x=1-()02,ABC k x k xMN HT不改变,请求出其值,并给出你的证明.25.在平面直角坐标系中,已知点,点.(1)若将沿轴向右平移个单位,此时点恰好落在反比例函数的图象上,求的值;(2)若绕点按逆时针方向旋转度.①当时,点恰好落在反比例函数图象上,求的值;②问点能否同时落在(1)中的反比例函数的图象上?若能,直接写出的值;若不能,请说明理由.26.如图,已知直线与双曲线交第一象限于点.(1)求点的坐标和反比例函数的解析式;(2)将点绕点逆时针旋转至点,求直线的函数解析式;(3)在(2)的条件下,若点C 是射线上的一个动点,过点作轴的平行线,交双曲线xOy ()A -()60B -,OAB x m A y =m OAB O α()0α180<<α30= B k y x=k A B ,α2y x =(0)k y k x=≠(4)A m ,A O A 90︒B OB OB C y的图像于点,交轴于点,且,求点的坐标.27.如图,一次函数的图象与反比例函数的图象交于点,与y 轴交于点B .(1)求a ,k 的值;(2)直线CD 过点A ,与反比例函数图象交于点C ,与x 轴交于点D ,AC =AD ,连接CB .①求△ABC 的面积;②点P 在反比例函数的图象上,点Q 在x 轴上,若以点A ,B ,P ,Q 为顶点的四边形是平行四边形,请求出所有符合条件的点P 坐标.28.如图1,反比例函数与一次函数的图象交于两点,已知.(1)求反比例函数和一次函数的表达式;(2)一次函数的图象与轴交于点,点(未在图中画出)是反比例函数图象上的一个动点,若,求点的坐标:(0)k y k x=≠D x E 23DCO DEO S S = ::C 112y x =+()0k y x x =>()3A a ,k y x=y x b =+A B ,()23B ,y x b =+x C D 3OCD S = D(3)若点是坐标轴上一点,点是平面内一点,是否存在点,使得四边形是矩形?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.29.如图,已知直线y=-2x 与双曲线y=(k<0)上交于A 、B 两点,且点A 的纵坐标为-2 (1)求k 的值;(2)若双曲线y= (k<0)上一点C 的纵坐标为 ,求△BOC 的面积;(3)若A 、B 、P 、Q 为顶点组成的四边形为正方形,直接写出过点P 的反比例函数解析式。

反比例函数-中考题目汇总

反比例函数-中考题目汇总
(1)求k的值;
(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、MA′BC.设线段MC′、NA′分别与函数 (x>0)的图象交于点E、F,求线段EF所在直线的解析式.
4.如图,已知正比例函数y=ax(a≠0)的图象与反比例函致 (k≠0)的图象的一个交点为A(-1,2-k2),另—个交点为B,且A、B关于原点O对称,D为OB的中点,过点D的线段OB的垂直平分线与x轴、y轴分别交于C、E.(1)写出反比例函数和正比例函数的解析式;
∴满足条件的点P有三个,坐标分别是(2,-2),(4,4),(-4,-4).------10分
(2010年常州)2.函数 的图像经过的点是
A. B. C. D.
(2010称点在一次函数 的图象上,求此反比例函数的解析式。
1.如图13,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N.
(玉溪市2010)5.如图2,所示的计算程序中,y与x之间的函数关系对应的图象所在的象限是 ()
A.第一象限B.第一、三象限C.第二、四象限D.第一、四象限
7.若反比例函数 的图象经过点(-3,2),则 的值为().
A.-6B.6C.-5D.5
8.函数y= + 中自变量x的取值范围是
A.x≤2B.x=3C.x<2且x≠3D.x≤2且x≠3
(2)试计算△COE的面积是△ODE面积的多少倍.
2.(2010,浙江义乌)如图,一次函数 的图象与反比例函数 的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交 轴、 轴于点C、D,
且S△PBD=4, .

中考反比例函数解答题典型题型(含答案)

中考反比例函数解答题典型题型(含答案)

中考反比例函数典型题型(含答案)1.如图,在平面直角坐标系内,一次函数y=kx+m(k,m是常数,k≠0)的图象与反比例函数y=(n是常数,n≠0,x>0)的图象相交于A(1,4)、B(a,b)两点,其中a>1.过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,连接AD、DC、CB.(1)求n的值;(2)若△ABD的面积为6,求一次函数y=kx+m的关系式.2.如图,一次函数y=x﹣2的图象分别交x轴、y轴于A、B,P为AB上一点且PC为△AOB的中位线,PC的延长线交反比例函数y=(k>0)的图象于Q,S△OQC=,(1)求A点和B点的坐标;(2)求k的值和Q点的坐标.3.如图,反比例函数(x>0)的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,点B的坐标为(2,0),tan∠AOB=.(1)求k的值;(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数(x>0)的图象恰好经过DC的中点E,求直线AE的函数表达式;(3)若直线AE与x轴交于点M、与y轴交于点N,请你探索线段AN与线段ME的大小关系,写出你的结论并说明理由.4.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).(1)直接写出B、C、D三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.5.如图,在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,点C坐标为(﹣1,0),tan∠ACO=2.一次函数y=kx+b的图象经过点B、C,反比例函数y=的图象经过点B.(1)求一次函数和反比例函数的关系式;(2)直接写出当x<0时,kx+b﹣<0的解集;(3)在x轴上找一点M,使得AM+BM的值最小,并求出点M的坐标和AM+BM的最小值.6.如图,一次函数y=k1x+b的图象过点A(0,3),且与反比例函数(x>O)的图象相交于B、C两点.(1)若B(1,2),求k1•k2的值;(2)若AB=BC,则k1•k2的值是否为定值?若是,请求出该定值;若不是,请说明理由.7.如图,点A(3,4),B(m,2)都在反比例函数的图象上.(1)求k和m的值.(2)如果点C、D分别在x轴和y轴的正半轴上,以A、B、C、D为顶点的四边形是平行四边形,请直接写出直线CD的函数关系式.8.如图,已知反比例函数的图象经过点(,8),直线y=﹣x+b经过该反比例函数图象上的点Q(4,m).(1)求上述反比例函数和直线的函数表达式;(2)设该直线与x轴、y轴分别相交于A、B两点,与反比例函数图象的另一个交点为P,连接0P、OQ,求△OPQ的面积.9.已知:如图,等边三角形AOB的顶点A在反比例函数y=(x>0)的图象上,点B在x轴上.(1)求点B的坐标;(2)求直线AB的函数表示式;(3)在y轴上是否存在点P,使△OAP是等腰三角形?若存在,直接把符合条件的点P的坐标都写出来;若不存在,请说明理由.10.如图,在平面直角坐标系中,直线AB与Y轴和X轴分别交于点A、点B,与反比例函数在第一象限的图象交于点c(1,6)、点D(3,n).过点C作CE上y轴于E,过点D作DF上x轴于F.(1)求m,n的值;(2)求直线AB的函数解析式;(3)求证:△AEC≌△DFB.1. 解:(1)将A(1,4)代入y=,得n=4.(2分)(2)∵A(1,4)、B(a,b)在反比例函数图象上,∴ab=4.(3分)∴S△ABD=a(4﹣b)=2a﹣ab=2a﹣2=6.(4分)∴a=4,B点坐标为(4,1).(5分)将A(1,4)、B(4,1)代入y=kx+m得(6分)解得(7分)∴一次函数的关系式为y=﹣x+5.(8分)2. 解:(1)设A点的坐标为(a,0),B点坐标为(0,b),分别代入,解方程得a=4,b=﹣2,∴A(4,0),B(0,﹣2);(6分)(2)∵PC是△AOB的中位线,∴PC⊥x轴,即QC⊥OC,又Q在反比例函数的图象上,∴2S△OQC=k,∴,(9分)∵PC是△AOB的中位线,∴C(2,0),可设Q(2,q)∵Q在反比例函数的图象上,∴,∴点Q的坐标为.(12分)3.解:(1)由已知条件得,在Rt△OAB中,OB=2,tan∠AOB=,∴=,∴AB=3,∴A点的坐标为(2,3)…(1分)∴k=xy=6…(2分)(2)∵DC由AB平移得到,点E为DC的中点,∴点E的纵坐标为,…(3分)又∵点E在双曲线上,∴点E的坐标为(4,)…(4分)设直线MN的函数表达式为y=k1x+b,则,解得,∴直线MN的函数表达式为.…(5分)(3)结论:AN=ME…(6分)理由:在表达式中,令y=0可得x=6,令x=0可得y=,∴点M(6,0),N(0,)…(7分)解法一:延长DA交y轴于点F,则AF⊥ON,且AF=2,OF=3,∴NF=ON﹣OF=,∴根据勾股定理可得AN=…(8分)∵CM=6﹣4=2,EC=∴根据勾股定理可得EM=∴AN=ME…(9分)解法二:连接OE,延长DA交y轴于点F,则AF⊥ON,且AF=2,∵S△EOM=,S△AON=…(8分)∴S△EOM=S△AON,∵AN和ME边上的高相等,∴AN=ME…(9分)4. 解:(1)∵四边形ABCD是矩形,平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).∴AB=CD=2,AD=BC=4,∴B(2,4),C(6,4),D(6,6);(2)A、C落在反比例函数的图象上,设矩形平移后A的坐标是(2,6﹣x),C的坐标是(6,4﹣x),∵A、C落在反比例函数的图象上,∴k=2(6﹣x)=6(4﹣x),x=3,即矩形平移后A的坐标是(2,3),代入反比例函数的解析式得:k=2×3=6,即A、C落在反比例函数的图象上,矩形的平移距离是3,反比例函数的解析式是y=.5.解:(1)过点B作BF⊥x轴于点F,在Rt△AOC中,AC==,则sin∠CAO==,∵∠BCA=90°,∴∠BCF+∠ACO=90°,又∵∠CAO+∠ACO=90°,∴∠BCF=∠CAO,∴sin∠BCF=sin∠CAO==,∴BF=1,∴CF==2,∴点B的坐标为(﹣3,1),将点B的坐标代入反比例函数解析式可得:1=,解得:k=﹣3,故可得反比例函数解析式为y=﹣;将点B、C的坐标代入一次函数解析式可得:,解得:.故可得一次函数解析式为y=﹣x﹣.(2)结合点B的坐标及图象,可得当x<0时,kx+b﹣<0的解集为:﹣3<x<0;(3)作点A关于x轴的对称点A′,连接B A′与x轴的交点即为点M,设直线BA'的解析式为y=ax+b,将点A'及点B的坐标代入可得:,解得:.故直线BA'的解析式为y=﹣x﹣2,令y=0,可得﹣x﹣2=0,解得:x=﹣2,故点M 的坐标为(﹣2,0),AM+BM=BM+MA′=BA′==3.综上可得:点M的坐标为(﹣2,0),AM+BM的最小值为3.,解得)在反比例函数图象上,∴=2,x+3=,整理得﹣,,∴﹣(﹣)代入得y=)分别代入得,解得x+6=AB=CD=x+n点坐标为(n)把点()代入反比例函数,得×y=)联立,解得或××的面积为,,)﹣b=2x+2.)))),)y=0y=2 2,解得,解得)由题意得,解得。

2024年人教版九年级数学中考专题训练:反比例函数(含解析)

2024年人教版九年级数学中考专题训练:反比例函数(含解析)

2024年人教版九年级数学中考专题训练:反比例函数1.如图,在平面直角坐标系中,一次函数y =﹣x+m 的图象与反比例函数y=(x >0)的图象交于A 、B 两点,已知A (1,2)(1)求一次函数和反比例函数的解析式;(2)连接AO 、BO ,求△AOB 的面积.2.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压是气体体积的反比例函数.已知当时,.(1)求出这个函数的表达式;(2)当气球内的气压大于时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?3.如图,反比例函数与一次函数的图像在第一象限交于、两点.(1)则 ,  , (2)观察图像,请直接写出满足的取值范围.(3)若Q 为y 轴上的一点,使最小,求点Q 的坐标.4.如图,在平面直角坐标系中,一次函数的图象分别交x 轴,y 轴正半轴于点A ,B ,内切于,反比例函数的图象经过点P ,交直线于点C ,D (C 在点D 的左侧).kx()P kPa ()3mV 30.8m V =120kPa P =128kPa ()10ky k x=≠2y x b =-+()13A ,()3B n ,k =b =n =12y y ≥QA QB +364y x =-+P ABO ()0ky x x=>AB(1)求反比例函数的解析式;(2)过点C ,D 分别作x 轴,y 轴的平行线交于点E ,求的面积.5.如图1,点A (1,0),B (0,m )都在直线y =﹣2x+b 上,四边形ABCD 为平行四边形,点D 在x轴上,AD=3,反比例函数(x>0)的图象经过点C .(1)求k 的值;(2)将图1的线段CD 向右平移n 个单位长度(n≥0),得到对应线段EF ,线段EF 和反比例函数(x>0)的图象交于点M .①在平移过程中,如图2,若点M 为EF 的中点,求△ACM 的面积;②在平移过程中,如图3,若AM ⊥EF ,求n 的值.6.如图,点A 是反比例函数图象上的点,AB 平行于y 轴,且交x 轴于点,点C 的坐标为,AC 交y 轴于点D ,连接BD ,(1)求反比例函数的表达式;(2)设点P 是反比例函数图象上一点,点Q 是直线AC 上一点,若以点O ,P ,D ,Q CDE ky x=ky x=()0ky k x=>()10B ,()10-,AD =()0ky x x=>为顶点的四边形是平行四边形,求点Q 的坐标; (3)若点是该反比例函数图象上的点,且满足∠MDB>∠BDC ,请直接写a 的取值范围.7.某种商品上市之初采用了大量的广告宣传,其销售量与上市的天数之间成正比,当广告停止后,销售量与上市的天数之间成反比(如图),现已知上市30天时,当日销售量为120万件.(1)写出该商品上市以后销售量y (万件)与时间x (天数)之间的表达式;(2)求上市至第100天(含第100天),日销售量在36万件以下(不含36万件)的天数;(3)广告合同约定,当销售量不低于100万件,并且持续天数不少于12天时,广告设计师就可以拿到“特殊贡献奖”,那么本次广告策划,设计师能否拿到“特殊贡献奖”?8.在学习反比例函数后,小华在同一个平面直角坐标系中画出了(x>0)和的图象,两个函数图象交于A (x 1,y 2),B (x 2,y 2)两点,在线段AB 上选取一点P ,过点P 作y 轴的平行线交反比例函数图象于点 O (如图1).在点P 移动的过程中,发现PO 的长度随着点P 的运动而变化.为了进一步研究 PO 的长度与点P 的横坐标之间的关系,小华提出了下列问题∶(1)设点P 的横坐标为x ,PQ 的长度为y ,则y 与x 之间的函数关系式为 (x 1<x<x 2);(2)为了进一步的研究(1)中的函数关系,决定运用列表,描点,连线的方法绘制函数的图象;①列表∶()M a b ,ky x=1y x=5y x =-+x 1234ym3n表中 m = ,n =;②描点∶根据上表中的数据,在图2中描出各点;③连线∶请在图2中画出该函数的图象.观察函数图象,当x =时,y 的最大值为;(3)应用∶已知某矩形的一组邻边长分别为m ,n ,且该矩形的周长 W 与n 存在函数关系,求 m 取最大值时矩形的对角线长.9.如图,点P 为函数与函数图象的交点,点P 的纵坐标为4,轴,垂足为点B .(1)求m 的值;(2)点M 是函数图象上一动点,过点M 作于点D ,若,求点M 的坐标.10.若关于x 的函数y ,当时,函数y 的最大值为M ,最小值为N ,令函数,我们不妨把函数h 称之为函数y 的“共同体函数”.(1)①若函数,当时,求函数y 的“共同体函数”h 的值;②若函数(,k ,b 为常数),求函数y 的“共同体函数”h 的解析式;(2)若函数,求函数y 的“共同体函数”h 的最大值;(3)若函数,是否存在实数k ,使得函数y 的最大值等于函数y 的“共同体函数”h 的最小值.若存在,求出k 的值;若不存在,请说明理由.11.已知一块矩形草坪的两边长分别是2米与3米,现在要把这个矩形按照如图1的方式扩大到面积为1x 13122x 535234220W n=-+1y x =+()0my x x=>PB x ⊥()0m y x x =>MD BP ⊥12tan PMD ∠=1122t x t -≤≤+2M Nh -=4044y x =1t =y kx b =+0k ≠21y x x=≥()24y x x k =-++原来的2倍,设原矩形的一边加长a 米,另一边长加长b 米,可得a 与b 之间的函数关系式b=﹣2.某班“数学兴趣小组”对此函数进一步推广,得到更一般的函数y =﹣2,现对这个函数的图象和性质进行了探究,研究过程如下,请补充完整:(1)类比反比例函数可知,函数y =﹣2的自变量x 的取值范围是 ,这个函数值y 的取值范围是  .(2)“数学兴趣小组”进一步思考函数y =|﹣2|的图象和性质,请根据函数y =﹣2的图象,画出函数y =|﹣2|的图象;(3)结合函数y =|﹣2|的图象解答下列问题:①求出方程|﹣2|=0的根;②如果方程|﹣2|=a 有2个实数根,请直接写出a 的取值范围.12.如图,抛物线与x 轴交于两点(在的左边),与y 轴交于C ,;双曲线经过抛物线的顶点,点的横坐标为1.123a +123x +123x +123x +123x +123x +123x +123x +123x +23y ax bx =++A B 、A B 3tan CAB ∠=(0)ky k x=≠23y ax bx =++D D(1)求抛物线和双曲线的解析式.(2)点P 为抛物线上一动点,且在第一象限,连接,求当四边形取得最大值时,点P 的坐标,并求出这个最大值.(3)若在此抛物线和双曲线上存在点Q ,使得,请求出点Q 的坐标.13.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于,两点.(1)分别求一次函数及反比例函数的表达式;(2)在第三象限内的B 点右侧的反比例函数图象上取一点P ,连接且满足.i )求点P 的坐标;ii )过点A 作直线,在直线l 上取一点Q ,且点Q 位于点A 的左侧,连接,试问:能否与相似?若能,求出此时点Q 的坐标;若不能,请说明理由.14.定义:函数图象上到两坐标轴的距离都不大于的点叫做这个函数图象的“n 阶方点”.例如,点是函数图像的“阶方点”;点是函数图像的“2阶方点”.(1)在①;②;③三点中,是反比例函数图像的“1阶方点”的有 (填序号);(2)若y 关于x 的一次函数图像的“2阶方点”有且只有一个,求a 的值;(3)若y 关于x 的二次函数图像的“n 阶方点”一定存在,请直接写出n 的取值范围.15.如图1,已知反比例函数的图象与一次函数的图象相交于A (2,a ),B 两点.BP CP 、ABPC QB QC =xOy y kx b =+my x=(14)A ,(4)B n -,PA PB ,15PAB S = l PB BQ QAB ABP (0)n n ≥1133⎛⎫⎪⎝⎭,y x =12(21),2y x =122⎛⎫-- ⎪⎝⎭,(11)--,(11),1y x=31y ax a =-+2()21y x n n =---+(0)ky k x=≠1y x =-(1)求反比例函数的表达式及A ,B 两点的坐标;(2)M 是x 轴上一点,N 是y 轴上一点,若以A ,B ,M ,N 为顶点的四边形是以为边的平行四边形,求点M 的坐标;(3)如图2,反比例函数的图象上有P ,Q 两点,点P 的横坐标为,点Q 的横坐标与点P 的横坐标互为相反数,连接,,,.若的面积是的面积的3倍,求m 的值.16.如图,直线AC 与双曲线交于A (m ,6),B (3,n )两点,与x 轴交于点C ,直线AD 与x 轴交于点D (-11,0),(1)请直接写出m ,n 的值;(2)若点E 在x 轴上,若点F 在y 轴上,求的最小值;(3)P 是直线AD 上一点,Q 是双曲线上一点,是否存在点P ,Q ,使得四边形ACQP 是正方形?若存在,求出点P ,Q 的坐标;若不存在,请说明理由.17.在平面直角坐标系中,将一点(横坐标与纵坐标不相等)横坐标与纵坐标互换后得到的点叫这一点的“H 点”,如(2,-3)与(-3,2)是一对“H 点”.(1)点 和它的“H 点”均在直线 上,求k 的值;AB ky x=(2)m m >AP AQ BP BQ ABQ ABP ()60y k x=≠AF EF BE ++()m n ,y kx a =+(2)若直线 经过的A ,B 两点恰好是一对“H 点”,其中点A 还在反比例函数 的图象上,一条抛物线 也经过A ,B 两点,求该抛物线的解析式;(3)已知 ,B 为抛物线 上的一对“H 点”,且满足:, ,点P 为抛物线上一动点,若该抛物线上有且仅存在3个点P 满足△PAB 的面积为16,求 的值.18.已知:如图,一次函数y =-2x+10的图象与反比例函数y=的图象相交于A 、B 两点(A 在B 的右侧),点A 横坐标为4.(1)求反比例函数解析式及点B 的坐标;(2)观察图象,直接写出关于x 的不等式-2x+10->0的解集;(3)反比例函数图象的另一支上是否存在一点P ,使△PAB 是以AB 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由.19.如图,反比例函数与一次函数相交于点A (1,4)和点B (4,1),直线 的图象与y 轴和x 轴分别相交于点C 和点D ;(1)请直接写出当时自变量x 的取值范围;(2)将一次函数向下平移8个单位长度得到直线EF ,直线EF 与x 和y 轴分别交于点E 和点F ,抛物线过点A 、D 、E 三点,求该抛物线的函数解析式(也称函数表达式);3y kx =+2y x=2y x bx c =++()()A m n m n <,()20y ax bx c a =++≠2m n +=3mn =-a b c ++kxkx()110k y x x=>22y k x n =+2y 12y y ≥22y k x n =+2y ax bx c =++(3)在(2)抛物线的对称轴上是否存在一点P ,使得△PBF 是以BF 为斜边的直角三角形,若存在,请用尺规作图(圆规和无刻度直尺)画出点P 所在位置,保留作图痕迹,并直接写出点P 的坐标;若不存在,请说明理由.20.如图1,平面直角坐标系中,,反比例函数的图象分别交矩形的两边、于E 、F (E 、F 不与A 重合),沿着将矩形折叠使A 、D 重合.(1)当点E 为中点时,求点F 的坐标,并直接写出与对角线的关系;(2)如图2,连接.①的周长是否有最小值,若有,请求出最小值;若没有,请说明理由;②当平分时,直接写出k 的值.21.如图1,四边形为正方形,点A 在y 轴上,点B 在x 轴上,且,,反比例函数在第一象限的图象经过正方形的顶点C .(1)求点C 的坐标和反比例函数的关系式;(2)如图,将正方形沿x 轴向右平移m 个单位长度得到正方形A ′B ′C ′D ′,点A ′恰好落在反比例函数的图象上,求n 值.(3)在(2)的条件下,坐标系内是否存在点P ,使以点O ,A ′,B ′,P 为顶点的四边形为平行四边形,若存在,请直接写出点P的坐标,若不存在,请说明理由.xOy (43)A -,(0)ky k x=<ABOC AC AB EF ABOC AC EF BC CD CDE CD ACO ∠ABCD 4OA =2OB =()0ky k x=≠2ABCD22.如图,在平面直角坐标系中,A (8,0)、B (0,6)是矩形OACB 的两个顶点,双曲线y=(k≠0,x >0)经过AC 的中点D ,点E 是矩形OACB 与双曲线y =的另一个交点.(1)点D 的坐标为 ,点E 的坐标为 ;(2)动点P 在第一象限内,且满足S △PBO =S △ODE .①若点P 在这个反比例函数的图象上,求点P 的坐标;②若点Q 是平面内一点,使得以A 、C 、P 、Q 为顶点的四边形是菱形,请你直接写出满足条件的所有点Q 的坐标.23.如图,一次函数的图像与反比例函数的图像交于,两点.(,,为常数)(1)求一次函数和反比例函数的解析式;(2)将一次函数向下平移个单位后与反比例函数的图像有且只有一个公共点,求的值;(3)为轴上一点,若的面积为,求点的坐标.24.如图,一次函数的图象与反比例函数(k 为常数且)的图象交于A ,B 两点,其中,直线与y 轴、x 轴分别交于C ,D 两点.kxkx561y k x b =+2k y x=()41A -,()4B m ,1k 2k b 1y k x b =+m 2k y x=m P y PAB 3P 4y x =+ky x=0k ≠()13A -,4y x =+(1)求反比例函数的表达式;(2)在x 轴上找一点P ,使的值最小,并求满足条件的点P 的坐标;(3)在坐标平面中是否存在点Q ,使得以Q ,A ,B 为顶点的三角形与相似?如果存在,请直接写出所有满足条件的点Q的坐标.PA PB COD答案解析部分1.【答案】(1)解:把点A (1,2)代入y =-x+m ,得-1+m =2,∴m =3,∴一次函数解析式为y =﹣x+3;把点A (1,2)代入y =,∴k =1×2=2,∴反比例函数解析式为y =;(2)解:联立方程组{y =−x +3y =2x , 解得或,∴B (2,1),设直线y =﹣x+3与y 轴的交点为C ,∴C (0,3),∴S △AOB =S △COB -S △COA =×3×2-×3×1=1.5.【解析】【分析】(1)利用待定系数法求出一次函数的解析式和反比例函数的解析式即可;(2)先求出点B 的坐标,再求出直线与y 轴的交点C 的坐标,再利用S △AOB =S △COB -S △COA ,根据三角形的面积公式进行计算即可.2.【答案】(1)解:设P 与V 之间的函数表达式为,当时,,所以,∴,∴P 与V 之间的函数表达式为;(2)解:当时,,∴,∴为确保气球不爆炸,气球的体积应不小于.【解析】【分析】(1)由题意可设,把V=0.8,P=120代入解析式计算可求得F 的值,则解析式可k x 2x12x y =⎧⎨=⎩21x y =⎧⎨=⎩1212F P V=0.8V =120P =1200.8F =96F =96P V =128P ≤96128V ≤0.75V ≥30.75m F P V=求解;(2)由题意可得关于V 的不等式,解这个不等式可求解.3.【答案】(1)3;4;1(2)解:0<x≤1或x≥3(3)解:作A 关于y 轴的对称点,连接,如图,∵,∴A 关于y 轴的对称点A ′(−1,3).设直线的解析式为,将A ′(−1,3),代入可得:∴,解得:.∴直线的解析式为,令,则,∴.【解析】【解答】(1)解:∵反比例函数与一次函数的图像在第一象限交于、两点,∴,,∴,,∴反比例函数和一次函数的表达式分别为:,;将点代入得;故答案为:3,4,1(2)解:由图像可得:满足的取值范围是或;A 'A B '()13A ,A B 'y ax c =+()31B ,331a c a c -+=⎧⎨+=⎩1252a c ⎧=-⎪⎪⎨⎪=⎪⎩A B '1522y x =-+0x =52y =502Q ⎛⎫ ⎪⎝⎭,()10k y k x=≠2y x b =-+()13A ,()3B n ,3k =31b =-+3k =4b =13y x =24y x =-+()3B n ,13y x=1n =12y y ≥01x <≤3x ≥【分析】(1)将点A 、B 的坐标代入求出k 、n 的值,再将点A 的坐标代入求出b 的值即可; (2)结合函数图象,利用函数值大的图象在上方的原则求解即可;(3)作A 关于y 轴的对称点,连接,利用待定系数法求出直线的解析式,再将代入解析式求出y 的值,可得点Q 的坐标。

中考数学反比例函数-经典压轴题附答案

中考数学反比例函数-经典压轴题附答案

中考数学反比例函数-经典压轴题附答案一、反比例函数1.如图,反比例函数y= 的图象与一次函数y=kx+b的图象交于A、B两点,点A的坐标为(2,3n),点B的坐标为(5n+2,1).(1)求反比例函数与一次函数的表达式;(2)将一次函数y=kx+b的图象沿y轴向下平移a个单位,使平移后的图象与反比例函数y= 的图象有且只有一个交点,求a的值;(3)点E为y轴上一个动点,若S△AEB=5,则点E的坐标为________.【答案】(1)解:∵A、B在反比例函数的图象上,∴2×3n=(5n+2)×1=m,∴n=2,m=12,∴A(2,6),B(12,1),∵一次函数y=kx+b的图象经过A、B两点,∴,解得,∴反比例函数与一次函数的表达式分别为y= ,y=﹣ x+7.(2)解:设平移后的一次函数的解析式为y=﹣ x+7﹣a,由,消去y得到x2+(2a﹣14)x+24=0,由题意,△=0,(21a﹣14)2﹣4×24=0,解得a=7±2 .(3)(0,6)或(0,8)【解析】【解答】(3)设直线AB交y轴于K,则K(0,7),设E(0,m),由题意,PE=|m﹣7|.∵S△AEB=S△BEP﹣S△AEP=5,∴ ×|m﹣7|×(12﹣2)=5.∴|m﹣7|=1.∴m1=6,m2=8.∴点E的坐标为(0,6)或(0,8).故答案为(0,6)或(0,8).【分析】(1)由A、B在反比例函数的图象上,得到n,m的值和A、B的坐标,用待定系数法求出反比例函数与一次函数的表达式;(2)由将一次函数y=kx+b的图象沿y轴向下平移a个单位,得到平移后的一次函数的解析式,由平移后的图象与反比例函数的图象有且只有一个交点,得到方程组求出a的值;(3)由点E为y轴上一个动点和S△AEB=5,求出点E的坐标.2.如图1,经过原点的抛物线y=ax2+bx+c与x轴的另一个交点为点C;与双曲线y= 相交于点A,B;直线AB与分别与x轴、y轴交于点D,E.已知点A的坐标为(﹣1,4),点B在第四象限内且到x轴、y轴的距离相等.(1)求双曲线和抛物线的解析式;(2)计算△ABC的面积;(3)如图2,将抛物线平移至顶点在原点上时,直线AB随之平移,试判断:在y轴的负半轴上是否存在点P,使△PAB的内切圆的圆心在y轴上?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)解:把点A的坐标代入双曲线的解析式得:k=﹣1×4=﹣4.所以双曲线的解析式为y=﹣.设点B的坐标为(m,﹣m).∵点B在双曲线上,∴﹣m2=﹣4,解得m=2或m=﹣2.∵点B在第四象限,∴m=2.∴B(2,﹣2).将点A、B、C的坐标代入得:,解得:.∴抛物线的解析式为y=x2﹣3x.(2)解:如图1,连接AC、BC.令y=0,则x2﹣3x=0,∴x=0或x=3,∴C(3,0),∵A(﹣1,4),B(2,﹣2),∴直线AB的解析式为y=﹣2x+2,∵点D是直线AB与x轴的交点,∴D(1,0),∴S△ABC=S△ADC+S△BDC= ×2×4+ ×2×2=6;(3)解:存在,理由:如图2,由原抛物线的解析式为y=x2﹣3x=(x﹣)2﹣,∴原抛物线的顶点坐标为(,﹣),∴抛物线向左平移个单位,再向上平移个单位,而平移前A(﹣1,4),B(2,﹣2),∴平移后点A(﹣,),B(,),∴点A关于y轴的对称点A'(,),连接A'B并延长交y轴于点P,连接AP,由对称性知,∠APE=∠BPE,∴△APB的内切圆的圆心在y轴上,∵B(,),A'(,),∴直线A'B的解析式为y=3x﹣,∴P(0,﹣).【解析】【分析】(1)首先将点A的坐标代入反比例函数的解析式求得k的值,然后再求得B的值,最后根据点A的坐标求出双曲线的解析式,进而得出点B的坐标,最后,将点A、B、O三点的坐标代入抛物线的解析式,求得a、b、c的值即可;(2)由点A和点B的坐标可求得直线AB的解析式,然后将y=0可求得点D的横坐标,最后用三角形的面积和求解即可;(3)先确定出平移后点A,B的坐标,进而求出点A关于y轴的对称点的坐标,求出直线BA'的解析式即可得出点P的坐标.3.如图,在平面直角坐标系中,平行四边形的边,顶点坐标为,点坐标为 .(1)点的坐标是________,点的坐标是________(用表示);(2)若双曲线过平行四边形的顶点和,求该双曲线的表达式;(3)若平行四边形与双曲线总有公共点,求的取值范围.【答案】(1);(2)解:∵双曲线过点和点,∴,解得,∴点的坐标为,点的坐标为,把点的坐标代入,解得,∴双曲线表达式为(3)解:∵平行四边形与双曲线总有公共点,∴当点在双曲线,得到,当点在双曲线,得到,∴的取值范围 .【解析】【分析】(1)由四边形ABCD为平行四边形,得到A与B纵坐标相同,C与D纵坐标相同,横坐标相差2,得出B、C坐标即可;(2)根据B与D在反比例图象上,得到C与D横纵坐标乘积相等,求出b的值确定出B坐标,进而求出k的值,确定出双曲线解析式;(3)抓住两个关键点,将A坐标代入双曲线解析式求出b的值;将C坐标代入双曲线解析式求出b的值,即可确定出平行四边形与双曲线总有公共点时b的范围.4.如图,过原点O的直线与双曲线交于上A(m,n)、B,过点A的直线交x轴正半轴于点D,交y轴负半轴于点E,交双曲线于点P.(1)当m=2时,求n的值;(2)当OD:OE=1:2,且m=3时,求点P的坐标;(3)若AD=DE,连接BE,BP,求△PBE的面积.【答案】(1)解:∵点A(m,n)在双曲线y=上,∴mn=6,∵m=2,∴n=3;(2)解:由(1)知,mn=6,∵m=3,∴n=2,∴A(3,2),∵OD:OE=1:2,设OD=a,则OE=2a,∵点D在x轴坐标轴上,点E在y轴负半轴上,∴D(a,0),E(0,﹣2a),∴直线DE的解析式为y=2x﹣2a,∵点A(3,2)在直线y=2x﹣2a上,∴6﹣2a=2,∴a=2,∴直线DE的解析式为y=2x﹣4①,∵双曲线的解析式为y=②,联立①②解得,(点A的横纵坐标,所以舍去)或,∴P(﹣2,﹣3);(3)解:∵AD=DE,点D在x轴坐标轴上,点E在y轴负半轴上,A(m,n),∴E(0,﹣n),D( m,0),∴直线DE的解析式为y= x﹣n,∵mn=6,∴m=,∴y= x﹣n③,∵双曲线的解析式为y=④,联立③④解得,∴(点A的横纵坐标,所以舍去)或,∴P(﹣2m,﹣2n),∵A(m,n),∴直线AB的解析式为y=x⑤.联立④⑤解得,(点A的横纵坐标,所以舍去)或∴B(﹣m,﹣n),∵E(0,﹣n),∴BE∥x轴,∴S△PBE= BE×|y E﹣y P|= ×m×|﹣n﹣(﹣2n)|= mn=3.【解析】【分析】(1)把A(2,n)代入解析式即可求出n;(2)先求出A点坐标,设OD=a,则OE=2a,得D(a,0),E(0,﹣2a),直线DE的解析式为y=2x﹣2a,把点A(3,2)代入求出a,再联立两函数即可求出交点P;(3)由AD=DE,点D在x轴坐标轴上,点E在y轴负半轴上,故A(m,n),E(0,﹣n),D( m,0),求得直线DE 的解析式为y= x﹣n,又mn=6,得y= x﹣n,与y=联立得,即为P点坐标,由直线AB的解析式为y= x与双曲线联立解得B (﹣m,﹣n),再根据S△PBE= BE×|y E﹣y P|= ×m×|﹣n﹣(﹣2n)|求出等于3.5.如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.【答案】(1)解:设反比例函数解析式为y= ,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,∴反比例函数解析式为y= ;把A(3,m)代入y= ,可得3m=6,即m=2,∴A(3,2),设直线AB 的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得,解得,∴直线AB 的解析式为y=x﹣1(2)解:由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方(3)解:存在点C.如图所示,延长AO交双曲线于点C1,∵点A与点C1关于原点对称,∴AO=C1O,∴△OBC1的面积等于△OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,∴△OBC2的面积等于△OAB的面积,由B(﹣2,﹣3)可得OB的解析式为y= x,可设直线C1C2的解析式为y= x+b',把C1(﹣3,﹣2)代入,可得﹣2= ×(﹣3)+b',解得b'= ,∴直线C1C2的解析式为y= x+ ,解方程组,可得C2();如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,设直线AC3的解析式为y= x+ ,把A(3,2)代入,可得2= ×3+ ,解得 =﹣,∴直线AC3的解析式为y= x﹣,解方程组,可得C3();综上所述,点C的坐标为(﹣3,﹣2),(()).【解析】【分析】(1)用待定系数法求出反比例函数解析式,一次函数解析式,将已知的点A,B的坐标代入设的函数解析式列出关于待定系数的方程(组)求出系数,再回代到解析式(2)结合图像判断直线AB在双曲线的交点坐标为A,B,X取值范围为双曲线所在象限交点的横坐标,第一象限为为小于横坐标大于零,第三象限为小于横坐标(3)结合已知条件根据同底等高、等底同高作出与原三角形面积相等的三角形,再结合已知条件用待定系数法求出与双曲线有交点的直线的解析式,得出点的坐标,注意要考虑满足条件的所有点C的坐标。

中考数学反比例函数-经典压轴题附答案解析

中考数学反比例函数-经典压轴题附答案解析

中考数学反比例函数 -经典压轴题附答案解析一、反比例函数1.如图,矩形 OABC 的顶点 A 、 C 分别在 x 、y 轴的正半轴上,点 D 为 BC 边上的点,反比2)将矩形 OABC 的进行折叠,使点 O 于点 D 重合,折痕分别与 x 轴、 y 轴正半轴交于点 F ,G ,求折痕 FG 所在直线的函数关系式. 【答案】 (1)∵反比例函数 y= (k ≠0)在第一象限内的图象经过点E (3, ), ∴反比例函数的表达式为 y= .又∵点 D (m ,2)在反比例函数 y= 的图象上, ∴2m=2 ,解得: m=1(2)解:设 OG=x ,则 CG=OC ﹣OG=2﹣x ,∵点 D ( 1, 2), ∴CD=1.在 Rt △CDG 中,∠DCG=9°0,CG=2﹣x ,CD=1,DG=OG=x , ∴CD 2+CG 2=DG 2 ,即 1+( 2﹣ x ) 2=x 2 ,解得: x= ,∴点 G (0, ).过点 F 作 FH ⊥ CB 于点 H ,如图所示.D (m ,2)和 AB 边上的点E (3,由折叠的特性可知: ∠GDF=∠GOF=9°0 ,OG=DG ,OF=DF . ∵∠ CGD+∠CDG=90 ,°∠CDG+∠ HDF=90 ,° ∴∠ CGD=∠HDF ,∵∠ DCG=∠ FHD=90 ,°∴△ GCD ∽△DHF ,∴ =2 ,∴DF=2GD= ,∴点 F 的坐标为( ,0).设折痕 FG 所在直线的函数关系式为 y=ax+b ,∴折痕 FG 所在直线的函数关系式为 y=﹣ x+【解析】 【分析】( 1)由点 E 的坐标利用反比例函数图象上点的坐标特征即可求出 k 值, 再由点 B 在反比例函数图象上,代入即可求出 m 值;( 2)设 OG=x ,利用勾股定理即可得 出关于 x 的一元二次方程,解方程即可求出 x 值,从而得出点 G 的坐标.再过点 F 作 FH ⊥CB 于点 H ,由此可得出 △GCD ∽△DHF ,根据相似三角形的性质即可求出线段 DF 的长 度,从而得出点 F 的坐标,结合点 G 、 F 的坐标利用待定系数法即可求出结论.∴有 ,解得:2.如图,一次函数y=kx+b 的图象交反比例函数y= (x> 0)的图象于A(4,-8)、 B (m,-2)两点,交x 轴于点C.(1)求反比例函数与一次函数的关系式;(2)根据图象回答:当x 为何值时,一次函数的值大于反比例函数的值?(3)以O、A、B、P为顶点作平行四边形,请直接写出点P 的坐标.【答案】(1)解:∵反比例函数y= (x>0)的图象于A(4,-8),∴k=4 ×(-8)=-32.∵双曲线y= 过点B(m,-2),∴m=16 .由直线y=kx+b 过点 A , B 得:,解得,反比例函数关系式为,一次函数关系式为(2)解:观察图象可知,当0<x<4或x>16时,一次函数的值大于反比例函数的值(3)解:∵ O(0,0),A(4,-8)、B(16,-2),分三种情况:① 若OB∥AP,OA∥ BP,∵O(0,0),A(4,-8),∴由平移规律,点B(16,-2)向右平移 4 个单位,向下平移8 个单位得到P 点坐标为(20,-10);② 若OP∥ AB,OA∥ BP,∵A(4,-8),B(16,-2),∴由平移规律,点O(0,0)向右平移12 个单位,向上平移 6 个单位得到P 点坐标为(12,6);③ 若OB∥ AP,OP∥AB,∵B(16,-2),A(4,-8),∴由平移规律,点O(0,0)向左平移12 个单位,向下平移 6 个单位得到P 点坐标为(- 12,-6);∴以O,A,B,P为顶点作平行四边形,第四个顶点P的坐标为(12,6)或(-12,-6)或(20,-10)【解析】【分析】(1)将点A(4,-8),B(m ,-2)代入反比例函数y= (x> 0)中,可求k、a;再将点A(4,-8),B(m,-2)代入y=kx+b 中,列方程组求k、b 即可;(2)根据两函数图象的交点,图象的位置可确定一次函数的值大于反比例函数的值时x 的范围;(3)根据平行四边形的性质,即可直接写出.3.如图,已知A(3,m),B(﹣2,﹣3)是直线AB 和某反比例函数的图象的两个交点.(1)求直线AB 和反比例函数的解析式;(2)观察图象,直接写出当x 满足什么范围时,直线AB 在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC 的面积等于△OAB 的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点 C 的坐标.【答案】(1)解:设反比例函数解析式为y= ,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣ 3 )=6,∴反比例函数解析式为y= ;把A(3,m)代入y= ,可得3m=6,即m=2 ,∴A(3,2),设直线AB 的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得解得,∴直线AB 的解析式为y=x﹣1(2)解:由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方(3)解:存在点C.如图所示,延长AO 交双曲线于点C1 ,∵点 A 与点C1 关于原点对称,∴AO=C1O,∴△ OBC1的面积等于△ OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2 ,则△OBC2的面积等于△ OBC1的面积,∴△ OBC2的面积等于△ OAB的面积,由B(﹣2,﹣3)可得OB 的解析式为y= x ,可设直线C1C2 的解析式为y= x+b',把C1(﹣3,﹣2)代入,可得﹣2= ×(﹣3)+b',解得b'= ,∴直线C1C2 的解析式为y= x+ ,解方程组,可得C2();如图,过 A 作OB的平行线,交双曲线于点C3 ,则△OBC3 的面积等于△ OBA的面积,设直线AC3 的解析式为y= x+ ,把A(3,2)代入,可得2= ×3+ ,解得=﹣,∴直线AC3 的解析式为y= x﹣,解方程组,可得C3();综上所述,点C的坐标为(﹣3,﹣2),(()).【解析】【分析】(1)用待定系数法求出反比例函数解析式,一次函数解析式,将已知的点A,B 的坐标代入设的函数解析式列出关于待定系数的方程(组)求出系数,再回代到解析式(2)结合图像判断直线AB 在双曲线的交点坐标为A,B,X 取值范围为双曲线所在象限交点的横坐标,第一象限为为小于横坐标大于零,第三象限为小于横坐标(3)结合已知条件根据同底等高、等底同高作出与原三角形面积相等的三角形,再结合已知条件用待定系数法求出与双曲线有交点的直线的解析式,得出点的坐标,注意要考虑满足条件的所有点 C 的坐标。

中考数学反比例函数综合经典题及答案

中考数学反比例函数综合经典题及答案

中考数学反比例函数综合经典题及答案一、反比例函数1.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.2.如图,一次函数y=kx+b的图象分别与反比例函数y= 的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y= 的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.【答案】(1)解:把点A(4,3)代入函数y= 得:a=3×4=12,∴y= .OA= =5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)解:∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).【解析】【分析】(1)先求反比例函数关系式,由OA=OB,可求出B坐标,再代入一次函数解析式中求出解析式;(2)M点的纵坐标可用x 的式子表示出来,可套两点间距离公式,表示出MB、MC,令二者相等,可求出x .3.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y= 与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.【答案】(1)解:如图1,新函数的性质:1.函数的最小值为0;2.函数图象的对称轴为直线x=3.由题意得,点A的坐标为(-3,0),分两种情况:①当x-3时,y=x+3;②当x<-3时,设函数解析式为y=kx+b,在直线y=x+3中,当x=-4时,y=-1,则点(-4,-1)关于x轴的对称点为(-4,1),把点(-4,1),(-3,0),代入y=kx+b中,得:,解得:,∴y=-x-3.综上,新函数的解析式为y=.(2)解:如图2,①∵点C(1,a)在直线y=x+3上,∴a=4,∵点C(1,4)在反比例函数y=上,∴k=4,∴反比例函数的解析式为y=.∵点D是线段AC上一动点,∴设点D的坐标为(m,m+3),且-3<m<1,∵DP∥x轴,且点P在双曲线上,∴点P的坐标为(,m+3),∴PD=-m,∴S△PAD=(-m)(m+3)=m2-m+2=(m+)2+,∵a=<0,∴当m=时,S有最大值,最大值为,又∵-3<<1,∴△PAD的面积的最大值为.②在点D的运动的过程中,四边形PAEC不能为平行四边形,理由如下:当点D为AC的中点时,其坐标为(-1,2),此时点P的坐标为(2,2),点E的坐标为(-5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.【解析】【分析】(1)根据一次函数的性质,结合函数图象写出新函数的两条性质;利用待定系数法求新函数解析式,注意分两种情况讨论;(2)①先求出点C的坐标,再利用待定系数法求出反比例函数解析式,设出点D的坐标,进而得到点P的坐标,再根据三角形的面积公式得出函数解析式,利用二次函数的性质求解即可;②先求出A的中点D的坐标,再计算DP、DE的长度,如果对角线互相平分,则能成为平行四边形,如若对角线不互相平分,则不能成为平行四边形.4.如图,一次函数y=﹣x+3的图象与反比例y= (k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【答案】(1)解:∵点A(1,a)在一次函数y=﹣x+3的图象上,∴a=﹣1+3=2,∴点A(1,2).∵点A(1,2)在反比例y= (k为常数,且k≠0)的图象上,∴k=1×2=2,∴反比例函数的表达式为y= .联立一次函数与反比例函数关系式成方程组,得:,解得:,,∴点B(2,1)(2)解:作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,如图所示.∵点B、B′关于x轴对称,∴PB=PB′.∵点A、P、B′三点共线,∴此时PA+PB取最小值.设直线AB′的函数表达式为y=mx+n(m≠0),将A(1,2)、B(2,﹣1)代入y=mx+n,,解得:,∴直线AB′的函数表达式为y=﹣3x+5.当y=﹣3x+5=0时,x= ,∴满足条件的点P的坐标为(,0).【解析】【分析】(1)将x=1代入直线AB的函数表达式中即可求出点A的坐标,由点A 的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式,联立两函数表达式成方程组,通过解方程组即可求出点B的坐标;(2)作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,由两点之间线段最短可得出此时PA+PB 取最小值,根据点A、B′的坐标利用待定系数法可求出直线AB′的函数表达式,再利用一次函数图象上点的坐标特征即可求出点P的坐标.5.【阅读理解】我们知道,当a>0且b>0时,(﹣)2≥0,所以a﹣2 +≥0,从而a+b≥2 (当a=b时取等号),【获得结论】设函数y=x+ (a>0,x>0),由上述结论可知:当x= 即x= 时,函数y有最小值为2(1)【直接应用】若y1=x(x>0)与y2= (x>0),则当x=________时,y1+y2取得最小值为________.(2)【变形应用】若y1=x+1(x>﹣1)与y2=(x+1)2+4(x>﹣1),则的最小值是________(3)【探索应用】在平面直角坐标系中,点A(﹣3,0),点B(0,﹣2),点P是函数y= 在第一象限内图象上的一个动点,过P点作PC⊥x轴于点C,PD⊥y轴于点D,设点P的横坐标为x,四边形ABCD的面积为S①求S与x之间的函数关系式;②求S的最小值,判断取得最小值时的四边形ABCD的形状,并说明理由.【答案】(1)1;2(2)4(3)解:①设P(x,),则C(x,0),D(0,),∴AC=x+3,BD= +2,∴S= AC•BD= (x+3)( +2)=6+x+ ;②∵x>0,∴x+ ≥2 =6,∴当x= 时,即x=3时,x+ 有最小值6,∴此时S=6+x+ 有最小值12,∵x=3,∴P(3,2),C(3,0),D(0,2),∴A、C关于x轴对称,D、B关于y轴对称,即四边形ABCD的对角线互相垂直平分,∴四边形ABCD为菱形.【解析】【解答】解:(1)∵x>0,∴y1+y2=x+ ≥2 =2,∴当x= 时,即x=1时,y1+y2有最小值2,故答案为:1;2;(2)∵x>﹣1,∴x+1>0,∴ = =(x+1)+ ≥2 =4,∴当x+1= 时,即x=1时,有最小值4,故答案为:4;【分析】(1)直接由结论可求得其取得最小值,及其对应的x的值;(2)可把x+1看成一个整体,再利用结论可求得答案;(3)①可设P(x,),则可表示出C、D的坐标,从而可表示出AC和BD,再利用面积公式可表示出四边形ABCD的面积,从而可得到S 与x的函数关系式;②再利用结论可求得其最得最小值时对应的x的值,则可得到P、C、D的坐标,可判断A、C关于x轴对称,B、D关于y轴对称,可判断四边形ABCD为菱形.6.如图,过原点的直线y=k1x和y=k2x与反比例函数y= 的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是________四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,a=,b= ,试判断a,b的大小关系,并说明理由.【答案】(1)平行(2)解:∵正比例函数y=k1x(k1>0)与反比例函数y= 的图象在第一象限相交于A,∴k1x= ,解得x= (因为交于第一象限,所以负根舍去,只保留正根)将x= 带入y=k1x得y= ,故A点的坐标为(,)同理则B点坐标为(,),又∵OA=OB,∴ = ,两边平方得: +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,∵k1≠k2,所以k1k2﹣1=0,即k1k2=1;(3)解:∵P(x1, y1),Q(x2, y2)(x2>x1>0)是函数y= 图象上的任意两点,∴y1= ,y2= ,∴a= = = ,∴a﹣b= ﹣ = = ,∵x2>x1>0,∴>0,x1x2>0,(x1+x2)>0,∴>0,∴a﹣b>0,∴a>b.【解析】【解答】解:(1)∵直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,∴OA=OC,OB=OD,∴四边形ABCD 是平行四边形;故答案为:平行;【分析】(1)由直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,即可得到结论.(2)联立方程求得A、B点的坐标,然后根据OA=OB,依据勾股定理得出 = ,两边平分得 +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,根据k1≠k2,则k1k2﹣1=0,即可求得;(3)由P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,得到y1= ,y2= ,求出a= = = ,得到a﹣b= ﹣ = = >0,即可得到结果.7.如图所示,在平面直角坐标系xoy中,直线y= x+ 交x轴于点B,交y轴于点A,过点C(1,0)作x轴的垂线l,将直线l绕点C按逆时针方向旋转,旋转角为α(0°<α<180°).(1)当直线l与直线y= x+ 平行时,求出直线l的解析式;(2)若直线l经过点A,①求线段AC的长;②直接写出旋转角α的度数;(3)若直线l在旋转过程中与y轴交于D点,当△ABD、△ACD、△BCD均为等腰三角形时,直接写出符合条件的旋转角α的度数.【答案】(1)解:当直线l与直线y= x+平行时,设直线l的解析式为y= x +b,∵直线l经过点C(1,0),∴0=+b,∴b=,∴直线l的解析式为y=x−(2)解:①对于直线y= x+,令x=0得y=,令y=0得x=−1,∴A(0,),B(−1,0),∵C(1,0),∴AC=,②如图1中,作CE∥OA,∴∠ACE=∠OAC,∵tan∠OAC=,∴∠OAC=30°,∴∠ACE=30°,∴α=30°(3)解:①如图2中,当α=15°时,∵CE∥OD,∴∠ODC=15°,∵∠OAC=30°,∴∠ACD=∠ADC=15°,∴AD=AC=AB,∴△ADB,△ADC是等腰三角形,∵OD垂直平分BC,∴DB=DC,∴△DBC是等腰三角形;②当α=60°时,易知∠DAC=∠DCA=30°,∴DA=DC=DB,∴△ABD、△ACD、△BCD均为等腰三角形;③当α=105°时,易知∠ABD=∠ADB=∠ADC=∠ACD=75°,∠DBC=∠DCB=15°,∴△ABD、△ACD、△BCD均为等腰三角形;④当α=150°时,易知△BDC是等边三角形,∴AB=BD=DC=AC,∴△ABD、△ACD、△BCD均为等腰三角形,综上所述:当α=15°或60°或105°或150°时,△ABD、△ACD、△BCD均为等腰三角形.【解析】【分析】(1)设直线l的解析式为y= x+b,把点C(1,0)代入求出b即可;(2)①求出点A的坐标,利用两点间距离公式即可求出AC的长;②如图1中,由CE∥OA,推出∠ACE=∠OAC,由tan∠OAC=,推出∠OAC=30°,即可解决问题;(3)根据等腰三角形的判定和性质,分情况作出图形,进行求解即可.8.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.操作探究:(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为________cm3.【答案】(1)解:A.有田字,故A不能折叠成无盖正方体;B.只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;C.可以折叠成无盖正方体;D.有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体.故答案为:C.(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)x;(20﹣2x)2;576【解析】【解答】(3)解:①如图,②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).故答案为:x,(20﹣2x)2, 576【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,即可解答.9.请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB 对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH;①求证:△CBH∽△OBC;②求OH+HC的最大值.【答案】(1)证明:由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)证明:①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC解:②由△CBH∽△OBC可知:∵AB=8,∴BC2=HB•OC=4HB,∴HB= ,∴OH=OB-HB=∵CB=CH,∴OH+HC=当∠BOC=90°,此时BC=∵∠BOC<90°,∴0<BC<令BC=x∴OH+HC= = =当x=2时,∴OH+HC可取得最大值,最大值为5【解析】【分析】(1)由题意可知:∠CAB=∠GAF,∠GAF=∠GCE,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:,所以HB= ,由于BC=HC,所以OH+HC=利用二次函数的性质即可求出OH+HC的最大值.10.如图1,抛物线y=ax2+bx﹣3经过点A,B,C,已知点A(﹣1,0),点B(3,0)(1)求抛物线的解析式(2)点D为抛物线的顶点,DE⊥x轴于点E,点N是线段DE上一动点①当点N在何处时,△CAN的周长最小?②若点M(m,0)是x轴上一个动点,且∠MNC=90°,求m的取值范围.【答案】(1)解:函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,故函数的表达式为:y=x2﹣2x﹣3(2)解:①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小.设过点A、C'的一次函数表达式为y=kx+b,则:,解得:,故直线AC'的表达式为:y=﹣x﹣1,当x=1时,y=﹣2,故点N(1,﹣2);②如图2,过点C作CG⊥ED于点G.设NG=n,则NE=3﹣n.∵∠CNG+∠GCN=90°,∠CNG+∠MNE=90°,∴∠NCG=∠MNE,则tan∠NCG=n=tan∠MNE,故ME=﹣n2+3n,∴﹣1<0,故ME有最大值,当n时,ME,则m的最小值为:;如下图所示,当点N与点D重合时,m取得最大值.过C作CG⊥ED于G.∵y=x2﹣2x﹣3= y=(x-1)2﹣4,∴D(1,-4),∴CG=OE=1.∵EG=OC=3∴GD=4-3=1,∴CG=DG=1,∴∠CDG=45°.∵∠CDM=90°,∴∠EDM=45°,∴△EDM是等腰直角三角形,∴EM=ED=4,∴OM=OE+EM=1+4=5,∴m=5.故:m≤5.【解析】【分析】(1)函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;(2)①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小,即可求解;②如图2,ME=﹣n2+3n,求出ME最大值,则可求出m的最小值;当点N与点D处时,m取得最大值,求解即可.11.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(2)在(1)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.【答案】(1)解:如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ACB=∠ABD=90°,∴△ABC∽△ADB,∴∠ABC=∠ADB,且∠ACB=∠BCD=90°,∴△ABC∽△BDC,∴∵A(﹣3,0),C(1,0),∴AC=4,∵BC=AC.∴BC=3,∴AB===5,∵,∴,∴CD=,∴AD=AC+CD=4+ =,∴OD=AD﹣AO=,∴点D的坐标为:(,0);(2)解:如图2,当∠APC=∠ABD=90°时,∵∠APC=∠ABD=90°,∠BAD=∠PAQ,∴△APQ∽△ABD,∴,∴∴m=,如图3,当∠AQP=∠ABD=90°时,∵∠AQP=∠ABD=90°,∠PAQ=∠BAD,∴△APQ∽△ADB,∴,∴∴m=;综上所述:当m=或时,△APQ与△ADB相似.【解析】【分析】(1)如图1,过点B作BD⊥AB,交x轴于点D,可证△ABC∽△ADB,可得∠ABC=∠ADB,可证△ABC∽△BDC,可得,可求CD 的长,即可求点D坐标;(2)分两种情况讨论,由相似三角形的性质可求解.12.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.【答案】(1)解:将抛物线表达式变为顶点式,则抛物线顶点坐标为(1,-1);(2)解:①m=1时,抛物线表达式为,因此A、B的坐标分别为(0,0)和(2,0),则线段AB上的整点有(0,0),(1,0),(2,0)共3个;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;又有抛物线表达式,令y=0,则,得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,∴.【解析】【分析】(1)将抛物线表达式变为顶点式,即可得到顶点坐标;(2)①m=1时,抛物线表达式为,即可得到A、B的坐标,可得到线段AB上的整点个数;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;令y=0,则,解方程可得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,即可得到结论.。

2024年中考数学高频压轴题训练——反比例函数的实际应用含参考答案

2024年中考数学高频压轴题训练——反比例函数的实际应用含参考答案

2024年中考数学高频压轴题训练——反比例函数的实际应用1.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=240x的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?2.A,B两地相距200千米,一辆汽车匀速从A地驶往B地,速度为v(单位:千米/小时),驶完全程的时间为t(单位:小时).(1)求v关于t的函数表达式,并写出自变量t取值范围.(2)若速度每小时不超过60千米,那么从A地行驶到B地至少要行驶多少小时?3.如图所示,制作一种产品的同时,需要将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟,据了解,该材料在加热过程中温度y与时间x成一次函数关系,已知该材料在加热前的温度为15℃,加热5分钟使材料温度达到60℃时停止加热.停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系.(1)分别求出该材料加热过程中和停止加热后y与x之间的函数表达式,并写出x的取值范围;(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间是多少?4.某游泳池每次换水前后水的体积基本保持不变,当该游泳池以每小时300立方米的速度放水时,经3小时能将池内的水放完,设放水的速度为x立方米/时,将池内的水放完需y小时.已知该游泳池每小时的最大放水速度为350立方米.(1)求y关于x的函数表达式.(2)若该游泳池将放水速度控制在每小时200立方米至250立方米(含200立方米和250立方米),求放水时间y的范围.(3)该游泳池能否在2.5小时内将池内的水放完?请说明理由.5.一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间成反比例函数关系,其图象如图所示.(1)求V与t之间的函数表达式;(2)若要2h排完水池中的水,那么每小时的排水量应该是多少?(3)如果每小时排水量不超过4000m3,那么水池中的水至少要多少小时才能排完?6.你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)S(mm2)的反比例函数,其图象如图所示.(1)写出y(m)与S(mm2)的函数关系式;(2)求当面条粗2mm2时,面条的总长度是多少米?7.近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图所示,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO 浓度y 与时间x 的函数关系式,并写出相应的自变量取值范围;(2)当空气中的CO 浓度达到34mg/L 时,井下3km 的矿工接到自动报警信号,这时他们至少要以多少km/h 的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO 浓度降到4mg/L 及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?8.某养猪场对猪舍进行喷药消毒.在消毒的过程中,先经过5min 的药物集中喷洒,再封闭猪舍10min ,然后再打开窗户进行通风.已知室内每立方米空气中含药量y (3/mg m )与药物在空气中的持续时间x (min )之间的函数图象如图所示,其中在打开窗户通风前y 与x 分别满足两个一次函数,在通风后y 与x 满足反比例函数.(1)求反比例函数的关系式;(2)当猪舍内空气中含药量不低于35/mg m 且持续时间不少于21min ,才能有效杀死病毒,问此次消毒是否有效?9.大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x 天的销售量p 件与销售的天数x 的关系如下表:x (天)123...50p (件)118116114 (20)销售单价q (元/件)与x 满足:当1≤x <25时q=x+60;当25≤x≤50时q=40+1125x .(1)请分析表格中销售量p 与x 的关系,求出销售量p 与x 的函数关系.(2)求该超市销售该新商品第x 天获得的利润y 元关于x 的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?10.为适应日益激烈的市场竞争要求,某工厂从2016年1月且开始限产,并对生产线进行为期5个月的升降改造,改造期间的月利润与时间成反比例;到5月底开始恢复全面生产后,工厂每月的利润都比前一个月增加10万元.设2016年1月为第1个月,第x个月的利润为y万元,其图象如图所示,试解决下列问题:(1)分别求该工厂对生产线进行升级改造前后,y与x之间的函数关系式;(2)到第几个月时,该工厂月利润才能再次达到100万元?(3)当月利润少于50万元时,为该工厂的资金紧张期,问该工厂资金紧张期共有几个月?11.为了做好新冠肺炎疫情期间开学工作,我区某中学用药熏消毒法对教室进行消毒.已知一瓶药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x成反比例,如图所示.根据图中提供的信息,解答下列问题:(1)写出倾倒一瓶药物后,从药物释放开始,y与x之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量不低于8毫克时,消毒有效,那么倾倒一瓶药物后,从药物释放开始,有效消毒时间是多少分钟?12.对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3)记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为. 13.冬天即将到来,龙泉某中学的初三学生到某蔬菜生产基地作数学实验.在气温较低时,蔬菜生产基地用装有恒温系统的大棚栽培蔬菜,经收集数据,该班同学将大棚内温度和时间的关系拟合为一个分段函数,如图是某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB,BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)若大棚栽种某种蔬菜,温度低于10℃时会受到伤害.问若栽种这种蔬菜,恒温系统最多可以关闭多少小时就必须再次启动,才能使蔬菜避免受到伤害?14.小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.15.【合作学习】如图,矩形ABOD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数y=kx(k≠0)的图象分别相交于点E,F,且DE=2.过点E作EH⊥x轴于点H,过点F作FG⊥EH于点G.回答下面的问题:①该反比例函数的解析式是什么?②当四边形AEGF为正方形时,点F的坐标是多少?(1)阅读合作学习内容,请解答其中的问题;(2)小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?”针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由.答案解析部分1.【答案】(1)解:当x=12时,y=240x=20,B (12,20),∵AB 段是恒温阶段,∴A (2,12),设函数解析式为y=kx+b ,代入(0,10),和(2,20),得=102+=20,解得=5=10,0到2小时期间y 随x 的函数解析式y=5x+10(2)解:把y=15代入y=5x+10,即5x+10=15,解得x 1=1,把y=15代入y=240x ,即15=240x ,解得x 2=16,∴16﹣1=15,答:恒温系统在一天内保持大棚内温度不低于15℃的时间有15小时2.【答案】(1)解:由题意,可得v =200t(t >0);(2)解:∵v≤60,∴200t ≤60,解得t≥103.即从A 地行驶到B 地至少要行驶103小时.3.【答案】(1)解:设加热过程中一次函数表达式为y=kx+b (k≠0),∵该函数图象经过点(0,15),(5,60),∴15560b k b =⎧⎨+=⎩,解得915k b =⎧⎨=⎩,∴一次函数的表达式为y=9x+15(0≤x≤5),设加热停止后反比例函数表达式为y=a x (a≠0),∵该函数图象经过点(5,60),∴5a =60,解得:a=300,∴反比例函数表达式为y=300x (x≥5)(2)解:∵y=9x+15,∴当y=30时,9x+15=30,解得x=53,∵y=300x ,∴当y=30时,300x =30,解得x=10,10﹣53=253,所以对该材料进行特殊处理所用的时间为253分钟4.【答案】(1)解:900y x =(0350x <≤)(2)解:由题知:200250x ≤≤∵900y x =在200250x ≤≤内随着x 的增大而减小,∵当200x =时,92y =,当250x =时,185y =;∴18952y ≤≤(3)解:不能;当350x =时,900183507y ==>2.5故该游泳池不能在2.5小时内将池内的水放完.5.【答案】(1)解:设函数表达式为V =k t ,把(6,3000)代入V =k t ,得3000=k 6.解得:k =18000,所以V 与t 之间的函数表达式为:V =18000t ;(2)解:把t =2代入V =18000t,得V =9000,答:每小时的排水量应该是9000m 3;(3)解:把V =4000代入V =18000t,得t =4.5,根据反比例函数的性质,V 随t 的增大而减小,因此水池中的水至少要4.5h 才能排完6.【答案】(1)解:设y 与s 的函数关系式为y =k s ,∵P (4,25),∴25=4k解得k =100,∴y 与s 的函数关系式是y =100s (2)解:x =2mm 2时,y =1002=50,求当面条粗2mm 2时,面条长为50米.7.【答案】(1)解:因为爆炸前浓度呈直线型增加,所以可设y 与x 的函数关系式为y=k 1x+b (k 1≠0),由图象知y=k 1x+b 过点(0,4)与(7,46),则=471+=46,解得1=6=4,则y=6x+4,此时自变量x 的取值范围是0≤x≤7.(不取x=0不扣分,x=7可放在第二段函数中)∵爆炸后浓度成反比例下降,∴可设y 与x 的函数关系式为2k y x=(k 2≠0).由图象知2k y x =过点(7,46),∴2467k =,∴k 2=322,∴322y x=,此时自变量x 的取值范围是x >7.(2)解:当y=34时,由y=6x+4得,6x+4=34,x=5.∴撤离的最长时间为7﹣5=2(小时).∴撤离的最小速度为3÷2=1.5(km/h ).(3)解:当y=4时,由y=322x 得,x=80.5,80.5﹣7=73.5(小时).∴矿工至少在爆炸后73.5小时才能下井.8.【答案】(1)解:设反比例函数关系式为k y x=.∵反比例函数的图象过点()158,,∴120k =.∴120y x =.(2)解:设正比例函数关系式为y kx =.把5x =,10y =代入上式,得2k =.∴2y x =.当5y =时,52x =.把5y =代入120y x =,得24x =.∴52421.5212-=>.答:此次消毒能有效杀死该病毒.9.【答案】(1)解:设销售量p 件与销售的天数x 的函数解析式为p=kx+b ,代入(1,118),(2,116)得+=1182+=116解得=−2=120因此销售量p 件与销售的天数x 的函数解析式为p=﹣2x+120(2)解:当1≤x <25时,y=(60+x ﹣40)(﹣2x+120)=﹣2x 2+80x+2400,当25≤x≤50时,y=(40+1125x ﹣40)(﹣2x+120)=135000x ﹣2250(3)解:当1≤x <25时,y=﹣2x 2+80x+2400,=﹣2(x ﹣20)2+3200,∵﹣2<0,∴当x=20时,y 有最大值y 1,且y 1=3200;当25≤x≤50时,y=135000x﹣2250;∵135000>0,∴135000x随x的增大而减小,当x=25时,135000x最大,于是,x=25时,y=135000x﹣2250有最大值y2,且y2=5400﹣2250=3150.∵y1>y2∴这50天中第20天时该超市获得利润最大,最大利润为3200元10.【答案】(1)解:由题意得,设前5个月中y与x的还是关系式为y=kx,把x=1,y=3代入得,k=100,∴y与x之间的函数关系式为y=100 x,把x=5代入得y=1005=20,由题意设5月份以后y与x的函数关系式为y=10x+b,把x=5,y=20代入得,20=10×5+b,∴b=﹣30,∴y与x之间的函数关系式为y=10x﹣30(2)解:由题意得,把y=100y=10x﹣30得100=10x﹣30,解得:x=13,∴到第13个月时,该工厂月利润才能再次达到100万元(3)解:对于y=100x,y=50时,x=2,∵k=100>0,y随x的增大而减小,∴x<2时,y<50,对于y=10x﹣30,当y=50时,x=8,∵k=10>0,y随x的增大而增大,∴x<8时,y<50,∴2<x<8时,月利润少于50万元,∴该工厂资金紧张期共有5个月11.【答案】(1)解:当0≤x≤15时,设y=ax(a≠0);当x>15时,设y=kx(k≠0).将(15,20)代入y=ax,20=15a,解得:a=4 3,∴y=43x(0≤x≤15).k20=15k ,解得:k=300,∴y=300x (x>15),∴=≤15)>15);(2)解:把y=8代入y=43x 得,x=6;把y=8代入y=300x 得,x=37.5,37.5-6=31.5(分钟).答:有效消毒时间是31.5分钟.12.【答案】(1)解:函数y=x-1没有不变值;∵函数1y x=有-1和1两个不变值,∴其不变长度为2;∵函数2y x =有0和1两个不变值,∴其不变长度为1;(2)解:① 函数y=2x 2-bx 的不变长度为0,∴方程2x 2-bx=x 有两个相等的实数根,∴△=(b+1)2=0,∴b=-1,②∵2x 2-bx=x ,∴12102b x x +==,, 1≤b≤3,∴1≤2x ≤2,∴函数y=2x 2-bx 的不变长度的取值范围为1≤q≤2.(3)1≤m≤3或m<-1813.【答案】(1)解:设线段AB 解析式为y =k 1x+b (k≠0)∵线段AB 过点(0,10),(2,14)代入得110214b k b =⎧⎨+=⎩,得1210k b =⎧⎨=⎩,AB 解析式为:y =2x+10(0≤x <5)∵B 在线段AB 上当x =5时,y =20∴B 坐标为(5,20)∴线段BC 的解析式为:y =20(5≤x <10)设双曲线CD 解析式为:y =200x (k 2≠0)∵C (10,20)∴双曲线CD 解析式为:y =200x(10≤x≤24)∴y 关于x 的函数解析式为:y =210(05)20(510)200(1024)x x x x x⎧⎪+⎪<⎨⎪⎪⎩(2)解:把y =10代入y =200x中,解得,x =20∴20﹣10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.14.【答案】(1)解:依题可得:300S+200(48-S )≤12000,解得:S≤24,∴S max =24.(2)解:①设区域Ⅱ四周宽度为a ,依题可得:AB=6-2a ,BC=8-2a ,∵AB :BC=2:3,∴(6-2a ):(8-2a )=2:3,解得:a=1,∴AB=6-2a=4,BC=8-2a=6,②设乙、丙瓷砖单价分别为5x 元/m 2和3x 元/m 2,则甲的单价为(300-3x )元/m 2,∵PQ ∥AD ,∴S 甲=S 矩形ABCD ×12=4×6×12=12,设乙的面积为s ,则丙的面积为12-s (0<s <12),依题可得:12(300-3x )+5xs+3x (12-s )=4800,解得:s=600x,∵k=600>0,∴s 随着x 的增大而减少,∴当0<s <12时,∴x >50,又∵300-3x>0,∴3x<300,∴丙瓷砖单价的范围为:150<3x<300.15.【答案】(1)解:①∵四边形ABOD为矩形,EH⊥x轴,而OD=3,DE=2,∴E点坐标为(2,3),∴k=2×3=6,∴反比例函数解析式为y=6x(x>0);②设正方形AEGF的边长为a,则AE=AF=a,∴B点坐标为(2+a,0)),A点坐标为(2+a,3),∴F点坐标为(2+a,3﹣a),把F(2+a,3﹣a)代入y=6x得(2+a)(3﹣a)=6,解得a1=1,a2=0(舍去),∴F点坐标为(3,2)(2)解:①当AE>EG时,矩形AEGF与矩形DOHE不能全等.理由如下:假设矩形AEGF与矩形DOHE全等,则AE=OD=3,AF=DE=2,∴A点坐标为(5,3),∴F点坐标为(5,1),而5×1=5≠6,∴F点不在反比例函数y=6x的图象上,∴矩形AEGF与矩形DOHE不能全等;②当AE>EG时,矩形AEGF与矩形DOHE能相似.∵矩形AEGF与矩形DOHE能相似,∴AE:OD=AF:DE,∴AE OD=3,∴A点坐标为(2+3t,3),∴F点坐标为(2+3t,3﹣2t),把F(2+3t,3﹣2t)代入y=6x得(2+3t)(3﹣2t)=6,解得t1=0(舍去),t2=56,∴AE=3t=5 2,∴相似比=AEOD=523=56.。

中考数学反比例函数综合题含详细答案.doc

中考数学反比例函数综合题含详细答案.doc

中考数学反比例函数综合题含详细答案一、反比例函数1.如图,平行于y 轴的直尺(一部分)与双曲线y=(k≠0)(x>0)相交于点A、 C,与x 轴相交于点 B、 D,连接 AC.已知点 A、 B 的刻度分别为 5, 2(单位: cm),直尺的宽度为2cm, OB=2cm.(1)求 k 的值;(2)求经过 A、 C 两点的直线的解析式;(3)连接 OA、 OC,求△OAC的面积.【答案】(1)解:∵AB=5﹣ 2=3cm, OB=2cm,∴A 的坐标是( 2, 3),代入 y=得3=,解得: k=6(2)解: OD=2+2=4,在y= 中令 x=4,解得 y= .则C 的坐标是( 4,).设AC 的解析式是 y=mx+n,根据题意得:,解得:,则直线 AC 的解析式是y=﹣x+(3)解:直角△ AOB 中, OB=2, AB=3,则 S△AOB= OB?AB=× 2× ;3=3直角△ ODC中, OD=4, CD=,则S△OCD=OD?CD=× 4×=3.在直角梯形ABDC 中, BD=2, AB=3,CD=,则S梯形ABDC=(AB+DC)?BD=(3+)×2=.=S+S ﹣ S=3+ ﹣ 3=则 S△OAC△AOB 梯形 ABDC △ OCD【解析】【分析】( 1 )首先求得 A 的坐标,然后利用待定系数法求得函数的解析式;( 2 )首先求得 C 的坐标,然后利用待定系数法求得直线的解析式;( 3 )根据△OAC=S△AOB+S梯形ABDC﹣S△OCD 利用直角三角形和梯形的面积公式求解.S2.如图,已知直线y=x+k 和双曲线y=(k为正整数)交于A,B 两点.(1)当 k=1 时,求 A、 B 两点的坐标;(2)当 k=2 时,求△ AOB 的面积;(3)当 k=1 时,△ OAB 的面积记为S1,当k=2时,△OAB的面积记为S2,⋯,依此类推,当 k=n 时,△ OAB 的面积记为 S n 1 2n,若 S +S +⋯ +S=,求 n 的值.【答案】(1)解:当 k=1 时,直线y=x+k 和双曲线y=化为:y=x+1和y=,,解得,∴A(1, 2), B(﹣ 2,﹣1)(2)解:当k=2 时,直线y=x+k 和双曲线y=化为:y=x+2和y=,解得,,∴A(1, 3), B(﹣ 3,﹣ 1)设直线 AB 的解析式为: y=mx+n ,∴∴,∴直线 AB 的解析式为: y=x+2∴直线 AB 与 y 轴的交点( 0, 2),∴S△AOB=× 2× 1+× 2× ;3=4(3)解:当k=1 时, S1=× 1(×1+2)=,当k=2 时, S2= × 2(×1+3)=4,⋯当 k=n 时, S n= n( 1+n+1) =n2+n,∵S1 2n,+S +⋯ +S=∴ ×(2)+( 1+2+3+⋯n)= ,⋯ +n整理得:,解得: n=6.【解析】【分析】( 1)两图像的交点就是求联立的方程组的解;(2)斜三角形△ AOB 的面积可转化为两水平(或竖直)三角形(有一条边为水平边或竖直边的三角形称为水平或竖直三角形)的面积和或差;(3)利用 n 个数的平方和公式和等差数列的和公式可求出.3.给出如下规定:两个图形 G1和 G2,点 P 为 G1上任一点,点 Q 为 G2上任一点,如果线段 PQ 的长度存在最小值,就称该最小值为两个图形G1 2之间的距离.在平面直角坐和 G标系 xOy 中, O 为坐标原点.(1)点 A 的坐标为A( 1, 0),则点B( 2, 3)和射线OA 之间的距离为 ________,点 C(﹣ 2, 3)和射线OA 之间的距离为________;(2)如果直线y=x+1 和双曲线y=之间的距离为,那么k=________;(可在图 1 中进行研究)(3)点 E 的坐标为( 1,),将射线OE 绕原点 O 顺时针旋转120°,得到射线OF,在坐标平面内所有和射线OE, OF 之间的距离相等的点所组成的图形记为图形M .①请在图 2 中画出图形M ,并描述图形M 的组成部分;(若涉及平面中某个区域时可以用阴影表示).②将射线 OE, OF 组成的图形记为图形W,直线 y=﹣ 2x﹣ 4 与图形 M 的公共部分记为图形N,请求出图形W 和图形 N 之间的距离.【答案】(1) 3;(2)﹣ 4(3)解:①如图, x 轴正半轴,∠GOH 的边及其内部的所有点(OH、 OG 分别与OE、 OF 垂直),;②由① 知 OH 所在直线解析式为y=﹣x, OG 所在直线解析式为y=x,由得,即点M(﹣,),由得:,即点N(﹣,),则﹣≤x≤﹣,x,﹣ 2x﹣ 4),图形 N(即线段 MN )上点的坐标可设为(即图形 W 与图形 N 之间的距离为d,d===∴当 x=﹣时,d的最小值为=,即图形 W 和图形 N 之间的距离.【解析】【解答】解:(1)点( 2, 3)和射线OA 之间的距离为3,点(﹣2, 3)和射线OA 之间的距离为= ,故答案分别为:3,;(2)直线 y=x+1 和双曲线y= k x 之间的距离为,∴k<0(否则直线y=x+1 和双曲线y=相交,它们之间的距离为0).过点 O 作直线 y=x+1 的垂线 y=﹣ x,与双曲线 y= 交于点 E、 F,过点 E 作 EG⊥ x 轴,如图1,由得,即点F(﹣,),则 OF==,∴O E=OF+EF=2 ,在 Rt△ OEG中,∠ EOG=∠OEG=45°, OE=2,则有 OG=EG= OE=2,∴点 E 的坐标为(﹣ 2, 2),∴k=﹣ 2 × 2=﹣4 ,故答案为:﹣4;【分析】( 1)由题意可得出点B( 2, 3)到射线 OA 之间的距离为 B 点纵坐标,根据新定义得点 C(﹣ 2,3)和射线 OA 之间的距离;(2)根据题意即可得 k< 0(否则直线y=x+1 和双曲线 y= k x 相交,它们之间的距离为0).过点 O 作直线 y=x+1 的垂线 y=﹣ x,与双曲线 y= k x 交于点 E、 F,过点 E 作 EG⊥ x 轴,如图 1,将其联立即可得点 F 坐标,根据两点间距离公式可得OF 长,再由 OE=OF+EF 求出 OE 长,在 Rt△ OEG 中,根据等腰直角三角形的性质可得点 E 的坐标为(﹣ 2,2),将 E 点代入反比例函数解析式即可得出k 值.(3)①如图, x 轴正半轴,∠ GOH 的边及其内部的所有点(OH、OG 分别与 OE、OF 垂直);②由① 知 OH 所在直线解析式为y=﹣x, OG 所在直线解析式为y=x,分别联立即可得出点M 、N 坐标,从而得出x 取值范围,根据题意图形N(即线段MN )上点的坐标可设为( x,﹣ 2x﹣4 ),从而求出图形W 与图形 N 之间的距离为d,由二次函数性质知 d 最小值 .4.如图,一次函数 y=kx+b 的图象分别与反比例函数y= 的图象在第一象限交于点A( 4,3),与 y 轴的负半轴交于点 B,且 OA=OB.(1)求函数y=kx+b 和 y=的表达式;(2)已知点C(0, 5),试在该一次函数图象上确定一点M ,使得MB=MC,求此时点M 的坐标.【答案】(1)解:把点A( 4, 3)代入函数y=得:a=3×4=12,∴y=.OA==5,∵OA=OB,∴O B=5,∴点 B 的坐标为( 0,﹣ 5),把B( 0,﹣ 5), A(4, 3)代入 y=kx+b 得:解得:∴y=2x﹣ 5.(2)解:∵点 M 在一次函数y=2x﹣ 5 上,∴设点 M 的坐标为( x, 2x﹣ 5),∵MB=MC,∴解得: x=2.5,∴点 M 的坐标为( 2.5, 0).【解析】【分析】( 1)先求反比例函数关系式,由函数解析式中求出解析式;( 2 )M 点的纵坐标可用OA=OB,可求出 B 坐标,再代入一次 x 的式子表示出来,可套两点间距离公式,表示出MB、 MC,令二者相等,可求出x .5.如图, P1、 P2( P2在P1的右侧)是y= ( k> 0)在第一象限上的两点,点A1的坐标为(2, 0).( 1)填空:当点P1的横坐标逐渐增大时,△ P1OA1的面积将 ________(减小、不变、增大)(2)若△ P1OA1与△ P2A1A2均为等边三角形,① 求反比例函数的解析式;②求出点P2的坐标,并根据图象直接写在第一象限内,当x 满足什么条件时,经过点P 、 P 的一次函数的函数值大于反比例函数y= 的函数值.1 2【答案】(1)减小(2)解:①如图所示,作P1B⊥ OA1于点 B,∵A1的坐标为( 2, 0),∴OA1=2,∵△ P1 OA1是等边三角形,∴∠ P1 OA1=60 °,又∵ P1 B⊥ OA1,∴OB=BA1=1,∴P1B=,∴P1的坐标为( 1,),代入反比例函数解析式可得k= ,∴反比例函数的解析式为y=;②如图所示,过P2作 P2C⊥ A1A2于点 C,∵△ P2 A1A2为等边三角形,∴∠ P2 A1A2=60 °,设A1C=x,则 P2C=x,∴点 P2的坐标为(2+x,x),代入反比例函数解析式可得(2+x)x=,解得 x1= ﹣ 1, x2=﹣﹣ 1(舍去),∴OC=2+ ﹣ 1= +1, P2C= (﹣ 1)=﹣,∴点 P 的坐标为(+1,﹣),2∴当 1< x<+1 时,经过点 P1 2的一次函数的函数值大于反比例函数y= 的函数值、 P【解析】【解答】解:( 1)当点 P1的横坐标逐渐增大时,点1P 离 x 轴的距离变小,而1OA 的长度不变,故△ P1 OA1的面积将减小,故答案为:减小;【分析】( 1)当点 P1的横坐标逐渐增大时,点P1离 x 轴的距离变小,而OA1的长度不变,故△ P1OA1的面积将减小;(2)①由 A1的坐标为( 2, 0),△P1 OA1是等边三角形,求出 P1的坐标,代入反比例函数解析式即可;②由△ P2A1A2为等边三角形,求出点P2的坐标,得出结论 .6.抛物线y=+x+m 的顶点在直线y=x+3 上,过点F(﹣ 2,2)的直线交该抛物线于点M、 N 两点(点M 在点 N 的左边), MA ⊥x 轴于点 A, NB⊥ x 轴于点 B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m 的代数式表示),再求m 的值;(2)设点 N 的横坐标为a,试用含 a 的代数式表示点N 的纵坐标,并说明NF=NB;(3)若射线NM 交 x 轴于点 P,且 PA?PB=,求点M的坐标.【答案】(1)解: y= x2+x+m=(x+2)2+(m﹣1)∴顶点坐标为(﹣2, m﹣ 1)∵顶点在直线y=x+3 上,∴﹣ 2+3=m﹣ 1,得m=2;(2)解:过点 F 作 FC⊥ NB 于点 C,∵点 N 在抛物线上,∴点 N 的纵坐标为:a2 +a+2,即点 N( a,a2+a+2)在Rt△ FCN中, FC=a+2, NC=NB﹣ CB= a2+a,∴NF2=NC2+FC2=( a2+a)2+( a+2)2,=(a2+a)2 +( a2+4a) +4,而NB2=( a2+a+2)2,=(a2+a)2 +( a2+4a) +4∴N F2=NB2,NF=NB(3)解:连接AF、 BF,由NF=NB,得∠ NFB=∠ NBF,由( 2)的思路知, MF=MA ,∴∠ MAF=∠ MFA,∵MA ⊥ x 轴, NB⊥ x 轴,∴MA ∥ NB,∴∠ AMF+∠BNF=180 °∵△ MAF 和△ NFB 的内角总和为360 ,°∴2∠ MAF+2∠ NBF=180 ,°∠ MAF+∠NBF=90 ,°∵∠ MAB+∠ NBA=180 ,°∴∠ FBA+∠ FAB=90 ,°又∵∠ FAB+∠ MAF=90°,∴∠ FBA=∠ MAF=∠ MFA,又∵∠ FPA=∠ BPF,∴△ PFA∽△ PBF,∴=,PF2=PA×PB=,过点 F 作 FG⊥ x 轴于点 G,在 Rt△ PFG中,PG==,∴PO=PG+GO=,∴P(﹣设直线解得 k= ∴直线, 0)PF: y=kx+b,把点, b=,PF: y= x+,F(﹣ 2, 2)、点P(﹣, 0)代入y=kx+b,解方程x2+x+2= x+,得 x=﹣ 3 或 x=2(不合题意,舍去),当 x=﹣ 3 时, y=,∴M (﹣ 3,).【解析】【分析】( 1)利用配方法将二次函数化成顶点式,写出顶点坐标,由顶点再直线y=x+3 上,建立方程求出m 的值。

2024年中考数学《反比例函数及其应用》真题含解析

2024年中考数学《反比例函数及其应用》真题含解析

专题反比例函数及其应用(41题)一、单选题1.(2024·安徽·中考真题)已知反比例函数y=kxk≠0与一次函数y=2-x的图象的一个交点的横坐标为3,则k的值为()A.-3B.-1C.1D.3【答案】A【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出y=2-3=-1,代入反比例函数求解即可【详解】解:∵反比例函数y=kxk≠0与一次函数y=2-x的图象的一个交点的横坐标为3,∴y=2-3=-1,∴-1=k3,∴k=-3,故选:A2.(2024·重庆·中考真题)反比例函数y=-10x的图象一定经过的点是()A.1,10B.-2,5C.2,5D.2,8【答案】B【分析】本题考查了求反比例函数值.熟练掌握求反比例函数值是解题的关键.分别将各选项的点坐标的横坐标代入,求纵坐标,然后判断作答即可.【详解】解:解:当x=1时,y=-101=-10,图象不经过1,10,故A不符合要求;当x=-2时,y=-10-2=5,图象一定经过-2,5,故B符合要求;当x=2时,y=-102=-5,图象不经过2,5,故C不符合要求;当x=2时,y=-102=-5,图象不经过2,8,故D不符合要求;故选:B.3.(2024·天津·中考真题)若点A x1,-1,B x2,1,C x3,5都在反比例函数y=5x的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x1<x3<x2C.x3<x2<x1D.x2<x1<x3【答案】B【分析】本题主要考查了比较反比例函数值的大小,根据反比例函数性质即可判断.【详解】解:∵k=5>0,∴反比例函数y =5x的图象分布在第一、三象限,在每一象限y 随x 的增大而减小,∵点B x 2,1 ,C x 3,5 ,都在反比例函数y =5x的图象上,1<5,∴x 2>x 3>0.∵-1<0,A x 1,-1 在反比例函数y =5x的图象上,∴x 1<0,∴x 1<x 3<x 2.故选:B .4.(2024·广西·中考真题)已知点M x 1,y 1 ,N x 2,y 2 在反比例函数y =2x的图象上,若x 1<0<x 2,则有()A.y 1<0<y 2B.y 2<0<y 1C.y 1<y 2<0D.0<y 1<y 2【答案】A【分析】本题考查了反比例函数的图象,熟练掌握反比例函数图象上点的坐标特征是解题的关键.根据点M x 1,y 1 ,N x 2,y 2 在反比例函数图象上,则满足关系式y =2x,横纵坐标的积等于2,结合x 1<0<x 2即可得出答案.【详解】解:∵点M x 1,y 1 ,N x 2,y 2 在反比例函数y =2x的图象上,∴x 1y 1=2,x 2y 2=2,∵x 1<0<x 2,∴y 1<0,y 2>0,∴y 1<0<y 2.故选:A .5.(2024·浙江·中考真题)反比例函数y =4x的图象上有P t ,y 1 ,Q t +4,y 2 两点.下列正确的选项是()A.当t <-4时,y 2<y 1<0B.当-4<t <0时,y 2<y 1<0C.当-4<t <0时,0<y 1<y 2D.当t >0时,0<y 1<y 2【答案】A【分析】本题考查了反比例函数图象上的点的坐标特征,由于反比例函数y =4x,可知函数位于一、三象限,分情况讨论,根据反比例函数的增减性判断出y 1与y 2的大小.【详解】解:根据反比例函数y =4x,可知函数图象位于一、三象限,且在每个象限中,y 都是随着x 的增大而减小,反比例函数y =4x的图象上有P t ,y 1 ,Q t +4,y 2 两点,当t<t+4<0,即t<-4时,0>y1>y2;当t<0<t+4,即-4<t<0时,y1<0<y2;当0<t<t+4,即t>0时,y1>y2>0;故选:A.6.(2024·河北·中考真题)节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x度,则能使用y天.下列说法错误的是()A.若x=5,则y=100B.若y=125,则x=4C.若x减小,则y也减小D.若x减小一半,则y增大一倍【答案】C【分析】本题考查的是反比例函数的实际应用,先确定反比例函数的解析式,再逐一分析判断即可.【详解】解:∵淇淇家计划购买500度电,平均每天用电x度,能使用y天.∴xy=500,∴y=500x,当x=5时,y=100,故A不符合题意;当y=125时,x=500125=4,故B不符合题意;∵x>0,y>0,∴当x减小,则y增大,故C符合题意;若x减小一半,则y增大一倍,表述正确,故D不符合题意;故选:C.7.(2024·四川泸州·中考真题)已知关于x的一元二次方程x2+2x+1-k=0无实数根,则函数y=kx与函数y=2x的图象交点个数为()A.0B.1C.2D.3【答案】A【分析】本题考查了根的判别式及一次函数和反比例函数的图象.首先根据一元二次方程无实数根确定k 的取值范围,然后根据一次函数和反比例函数的性质确定其图象的位置.【详解】解:∵方程x2+2x+1-k=0无实数根,∴Δ=4-41-k<0,解得:k<0,则函数y=kx的图象过二,四象限,而函数y=2x的图象过一,三象限,∴函数y=kx与函数y=2x的图象不会相交,则交点个数为0,故选:A.8.(2024·重庆·中考真题)已知点-3,2 在反比例函数y =kxk ≠0 的图象上,则k 的值为()A.-3B.3C.-6D.6【答案】C【分析】本题考查了待定系数法求反比例解析式,把-3,2 代入y =kxk ≠0 求解即可.【详解】解:把-3,2 代入y =kxk ≠0 ,得k =-3×2=-6.故选C .9.(2024·黑龙江牡丹江·中考真题)矩形OBAC 在平面直角坐标系中的位置如图所示,反比例函数y =kx的图象与AB 边交于点D ,与AC 边交于点F ,与OA 交于点E ,OE =2AE ,若四边形ODAF 的面积为2,则k 的值是()A.25B.35C.45D.85【答案】D【分析】本题考查了矩形的性质、三角形面积的计算、反比例函数的图象和性质、相似三角形的判定和性质;熟练掌握矩形的性质和反比例函数的性质是解决问题的关键.过点E 作EM ⊥OC ,则EM ∥AC ,设E a ,k a ,由△OME ∽△OCA ,可得OC =32a ,AC =32⋅ka,再由S 矩形OBAC =S △OBD +S △OCF +S 四边形ODAF ,列方程,即可得出k 的值.【详解】过点E 作EM ⊥OC ,则EM ∥AC ,∴△OME ∽△OCA ,∴OM OC =EM AC =OEOA设E a ,k a ,∵OE =2AE ∴OM OC =EM AC=23,∴OC =32a ,AC =32⋅ka∴S 矩形OBAC =S △OBD +S △OCF +S 四边形ODAF =32a ⋅32⋅ka即k 2+k 2+2=32a ⋅32⋅k a ,解得:k =85故选D10.(2024·黑龙江大兴安岭地·中考真题)如图,双曲线y =12xx >0 经过A 、B 两点,连接OA 、AB ,过点B 作BD ⊥y 轴,垂足为D ,BD 交OA 于点E ,且E 为AO 的中点,则△AEB 的面积是()A.4.5B.3.5C.3D.2.5【答案】A【分析】本题考查了反比例函数,相似三角形的判定与性质等知识,过点A 作AF ⊥BD ,垂足为F ,设A a ,12a ,证明△AFE ∽△ODE ,有AF OD =AE OE=EF DE ,根据E 为AO 的中点,可得AF =OD ,EF =DE ,进而有EF =DE =12DF =12a ,AF =OD =12y A =6a ,可得y B =OD =6a ,x B=2a ,则有BE =BD -DE=32a ,问题随之得解.【详解】如图,过点A 作AF ⊥BD ,垂足为F ,设A a ,12a,a >0,∵BD ⊥y 轴,AF ⊥BD ,∴AF ∥y 轴,DF =a ,∴△AFE ∽△ODE ,∴AF OD =AE OE=EFDE ,∵E 为AO 的中点,∴AE =OE ,∴AF OD =AE OE=EFDE =1,∴AF =OD ,EF =DE ∴EF =DE =12DF =12a ,AF =OD =12y A =6a,∵OD =y B ,∴y B =OD =6a,∴xB =2a ,∴BD=x B=2a,∴BE=BD-DE=32a,∴S△ABE=12×AF×BE=12×6a×32a=92=4.5,故选:A.11.(2024·江苏扬州·中考真题)在平面直角坐标系中,函数y=4x+2的图像与坐标轴的交点个数是()A.0B.1C.2D.4【答案】B【分析】根据函数表达式计算当x=0时y的值,可得图像与y轴的交点坐标;由于4x+2的值不可能为0,即y≠0,因此图像与x轴没有交点,由此即可得解.本题主要考查了函数图像与坐标轴交点个数,掌握求函数图像与坐标轴交点的计算方法是解题的关键.【详解】当x=0时,y=42=2,∴y=4x+2与y轴的交点为0,2;由于4x+2是分式,且当x≠-2时,4x+2≠0,即y≠0,∴y=4x+2与x轴没有交点.∴函数y=4x+2的图像与坐标轴的交点个数是1个,故选:B.12.(2024·吉林长春·中考真题)如图,在平面直角坐标系中,点O是坐标原点,点A4,2在函数y=k xk>0,x>0的图象上.将直线OA沿y轴向上平移,平移后的直线与y轴交于点B,与函数y=k xk>0,x>0的图象交于点C.若BC=5,则点B的坐标是()A.0,5B.0,3C.0,4D.0,25【答案】B【分析】本题主要考查反比例函数、解直角三角形、平移的性质等知识点,掌握数形结合思想成为解题的关键.如图:过点A作x轴的垂线交x轴于点E,过点C作y轴的垂线交y轴于点D,先根据点A坐标计算出sin∠OAE、k值,再根据平移、平行线的性质证明∠DBC=∠OAE,进而根据sin∠DBC=CDBC=sin∠OAE求出CD,最后代入反比例函数解析式取得点C的坐标,进而确定CD=2,OD=4,再运用勾股定理求得BD,进而求得OB即可解答.【详解】解:如图,过点A作x轴的垂线交x轴于点E,过点C作y轴的垂线交y轴于点D,则AE∥y轴,∵A4,2,∴OE=4,OA=22+42=25,∴sin∠OAE=OEOA =425=255.∵A4,2在反比例函数的图象上,∴k=4×2=8.∴将直线OA向上平移若干个单位长度后得到直线BC,∴OA∥BC,∴∠OAE=∠BOA,∵AE∥y轴,∴∠DBC=∠BOA,∴∠DBC=∠OAE,∴sin∠DBC=CDBC =sin∠OAE=255,∴CD5=255,解得:CD=2,即点C的横坐标为2,将x=2代入y=8x,得y=4,∴C点的坐标为2,4,∴CD=2,OD=4,∴BD=BC2-CD2=1,∴OB=OD-BD=4-1=3,∴B0,3故选:B.13.(2024·四川宜宾·中考真题)如图,等腰三角形ABC中,AB=AC,反比例函数y=kxk≠0的图象经过点A、B及AC的中点M,BC∥x轴,AB与y轴交于点N.则ANAB的值为()A.13B.14C.15D.25【答案】B【分析】本题考查反比例函数的性质,平行线分线段成比例定理,等腰三角形的性质等知识,找到坐标之间的关系是解题的关键.作辅助线如图,利用函数表达式设出A 、B 两点的坐标,利用D ,M 是中点,找到坐标之间的关系,利用平行线分线段成比例定理即可求得结果.【详解】解:作过A 作BC 的垂线垂足为D ,BC 与y 轴交于E 点,如图,在等腰三角形ABC 中,AD ⊥BC ,D 是BC 中点,设A a ,k a,B b ,kb ,由BC 中点为D ,AB =AC ,故等腰三角形ABC 中,∴BD =DC =a -b ,∴C 2a -b ,kb,∵AC 的中点为M ,∴M 3a -b 2,ka +kb 2 ,即3a -b 2,k a +b 2ab,由M 在反比例函数上得M 3a -b 2,k 3a -b2,∴k a +b 2ab=k3a -b 2,解得:b =-3a ,由题可知,AD ∥NE ,∴AN AB=DE BD =a a -b =a a +3a =14.故选:B .二、填空题14.(2024·北京·中考真题)在平面直角坐标系xOy 中,若函数y =kxk ≠0 的图象经过点3,y 1 和-3,y 2 ,则y1+y2的值是.【答案】0【分析】本题考查了反比例函数图象上点的坐标特征,已知自变量求函数值,熟练掌握反比例函数的性质是解题的关键.将点3,y1和-3,y2代入y=kxk≠0,求得y1和y2,再相加即可.【详解】解:∵函数y=kxk≠0的图象经过点3,y1和-3,y2,∴有y1=k3,y2=-k3,∴y1+y2=k3-k3=0,故答案为:0.15.(2024·云南·中考真题)已知点P2,n在反比例函数y=10x的图象上,则n=.【答案】5【分析】本题考查反比例函数图象上点的坐标特征,将点P2,n代入y=10x求值,即可解题.【详解】解:∵点P2,n在反比例函数y=10x的图象上,∴n=102=5,故答案为:5.16.(2024·山东威海·中考真题)如图,在平面直角坐标系中,直线y1=ax+b a≠0与双曲线y2=kxk≠0交于点A-1,m,B2,-1.则满足y1≤y2的x的取值范围.【答案】-1≤x<0或x≥2【分析】本题考查了一次函数与反比例函数的交点问题,根据图象解答即可求解,利用数形结合思想解答是解题的关键.【详解】解:由图象可得,当-1≤x<0或x≥2时,y1≤y2,∴满足y1≤y2的x的取值范围为-1≤x<0或x≥2,故答案为:-1≤x<0或x≥2.17.(2024·湖南·中考真题)在一定条件下,乐器中弦振动的频率f与弦长l成反比例关系,即f=kl(k为常数.k≠0),若某乐器的弦长l为0.9米,振动频率f为200赫兹,则k的值为.【答案】180【分析】本题考查了待定系数法求反比例函数解析式,把l=0.9,f=200代入f=kl求解即可.【详解】解:把l=0.9,f=200代入f=kl,得200=k0.9,解得k=180,故答案为:180.18.(2024·陕西·中考真题)已知点A-2,y1和点B m,y2均在反比例函数y=-5x的图象上,若0<m<1,则y1+y20.【答案】</小于【分析】本题主要考查了反比例函数的性质,先求出y1=52,y2=-5m,再根据0<m<1,得出y2<-5,最后求出y1+y2<0即可.【详解】解:∵点A-2,y1和点B m,y2均在反比例函数y=-5x的图象上,∴y1=52,y2=-5m,∵0<m<1,∴y2<-5,∴y1+y2<0.故答案为:<.19.(2024·湖北武汉·中考真题)某反比例函数y=kx具有下列性质:当x>0时,y随x的增大而减小,写出一个满足条件的k的值是.【答案】1(答案不唯一)【分析】本题考查的是反比例函数的性质,反比例函数的图象是双曲线,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小,当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.直接根据反比例函数的性质写出符合条件的的值即可.【详解】解:∵当x>0时,y随x的增大而减小,∴k>0故答案为:1(答案不唯一).20.(2024·黑龙江齐齐哈尔·中考真题)如图,反比例函数y=kx(x<0)的图象经过平行四边形ABCO的顶点A,OC在x轴上,若点B-1,3,S▱ABCO=3,则实数k的值为.【答案】-6【分析】本题考查了反比例函数,根据A ,B 的纵坐标相同以及点A 在反比例函数上得到A 的坐标,进而用代数式表达AB 的长度,然后根据S ▱ABCO =3列出一元一次方程求解即可.【详解】∵ABCO 是平行四边形∴A ,B 纵坐标相同∵B -1,3∴A 的纵坐标是3∵A 在反比例函数图象上∴将y =3代入函数中,得到x =k 3∴A k 3,3∴AB =-1-k 3∵S ▱ABCO =3,B 的纵坐标为3∴AB ×3=3即:-1-k 3×3=3解得:k =-6故答案为:-6.21.(2024·内蒙古包头·中考真题)若反比例函数y 1=2x ,y 2=-3x,当1≤x ≤3时,函数y 1的最大值是a ,函数y 2的最大值是b ,则a b =.【答案】12/0.5【分析】此题主要考查了反比例函数的性质,负整数指数幂,正确得出a 与b 的关系是解题关键.直接利用反比例函数的性质分别得出a 与b ,再代入a b 进而得出答案.【详解】解:∵函数y 1=2x,当1≤x ≤3时,函数y 1随x 的增大而减小,最大值为a ,∴x =1时,y 1=2=a ,∵y 2=-3x ,当1≤x ≤3时,函数y 2随x 的增大而减大,函数y 2的最大值为y 2=-1=b ,∴a b =2-1=12.故答案为:12.22.(2024·四川遂宁·中考真题)反比例函数y =k -1x 的图象在第一、三象限,则点k ,-3 在第象限.【答案】四/4【分析】本题考查了反比例函数的性质,点所在的象限,根据反比例函数的性质得出k >1,进而即可求解.【详解】解:∵反比例函数y =k -1x的图象在第一、三象限,∴k -1>0∴k >1∴点k ,-3 在第四象限,故答案为:四.23.(2024·江苏扬州·中考真题)如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数y =k x (x >0)的图像上,BC ⊥x 轴于点C ,∠BAC =30°,将△ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为.【答案】23【分析】本题考查了反比例函数k 的几何意义,掌握求解的方法是解题的关键.如图,过点D 作DE ⊥x 轴于点E .根据∠BAC =30°,BC ⊥x ,设BC =a ,则AD =AC =3a ,由对称可知AC =AD ,∠DAB =∠BAC =30°,即可得AE =32a ,DE =32a ,解得B (1+3a ,a ),D 1+32a ,32a ,根据点B 的对应点D 落在该反比例函数的图像上,即可列方程求解;【详解】解:如图,过点D 作DE ⊥x 轴于点E .∵点A 的坐标为(1,0),∴OA =1,∵∠BAC =30°,BC ⊥x 轴,设BC =a ,则AD =AC =BC tan30°=3a ,由对称可知AC =AD ,∠DAB =∠BAC =30°,∴∠DAC =60°,∠ADE =30°,∴AE =32a ,DE =AD ·sin60°=32a ,∴B (1+3a ,a ),D 1+32a ,32a ,∵点B 的对应点D 落在该反比例函数的图像上,∴k =a 1+3a =32a ⋅1+32a,解得:a =233,∵反比例函数图象在第一象限,∴k =2331+233×3 =23,故答案为:23.24.(2024·内蒙古呼伦贝尔·中考真题)如图,在平面直角坐标系中,点A ,B 的坐标分别为5,0 ,2,6 ,过点B 作BC ∥x 轴交y 轴于点C ,点D 为线段AB 上的一点,且BD =2AD .反比例函数y =k x(x >0)的图象经过点D 交线段BC 于点E ,则四边形ODBE 的面积是.【答案】12【分析】本题主要考查了反比例函数的图象与性质,反比例函数图象上点的坐标特征,反比例函数k 的几何意义,作BM ⊥x 轴于M ,作DN ⊥x 轴于N ,则DN ∥BM ,由点A ,B 的坐标分别为5,0 ,2,6 得BC =OM =2,BM =OC =6,AM =3,然后证明△ADN ∽△ABM 得DN BM =AN AM =AD AB ,求出DN =2,则ON =OA -AN =4,故有D 点坐标为4,2 ,求出反比例函数解析式y =8x ,再求出E 43,6 ,最后根据S 四边形ODBE =S 梯形OABC -S △OCE -S △OAD 即可求解,熟练掌握知识点的应用是解题的关键.【详解】如图,作BM ⊥x 轴于M ,作DN ⊥x 轴于N ,则DN ∥BM ,∵点A ,B 的坐标分别为5,0 ,2,6 ,∴BC =OM =2,BM =OC =6,AM =3,∵DN ∥BM ,∴△ADN ∽△ABM ,∴DN BM =AN AM =AD AB,∵BD =2AD ,∴DN 6=AN 3=13,∴DN =2,AN =1,∴ON =OA -AN =4,∴D 点坐标为4,2 ,代入y =k x 得,k =2×4=8,∴反比例函数解析式为y =8x,∵BC ∥x 轴,∴点E 与点B 纵坐标相等,且E 在反比例函数图象上,∴E 43,6,∴CE =43,∴S 四边形ODBE =S 梯形OABC -S △OCE -S △OAD =12×2+5 ×6-12×6×43-12×5×2=12,故答案为:12.25.(2024·四川广元·中考真题)已知y =3x 与y =k x x >0 的图象交于点A 2,m ,点B 为y 轴上一点,将△OAB 沿OA 翻折,使点B 恰好落在y =k x x >0 上点C 处,则B 点坐标为.【答案】0,4【分析】本题考查了反比例函数的几何综合,折叠性质,解直角三角形的性质,勾股定理,正确掌握相关性质内容是解题的关键.先得出A 2,23 以及y =43xx >0 ,根据解直角三角形得∠1=30°,根据折叠性质,∠3=30°,然后根据勾股定理进行列式,即OB =OC =23 2+22=4.【详解】解:如图所示:过点A 作AH ⊥y 轴,过点C 作CD ⊥x 轴,∵y =3x 与y =k xx >0 的图象交于点A 2,m ,∴把A 2,m 代入y =3x ,得出m =3×2=23,∴A 2,23 ,把A 2,23 代入y =k xx >0 ,解得k =2×23=43,∴y =43xx >0 ,设C m ,43m,在Rt △AHO ,tan ∠1=AH OH =223=33,∴∠1=30°,∵点B 为y 轴上一点,将△OAB 沿OA 翻折,∴∠2=∠1=30°,OC =OB ,∴∠3=90°-∠1-∠2=30°,则CD OD=tan ∠3=33=43m m ,解得m =23(负值已舍去),∴C 23,2 ,∴OB =OC =23 2+22=4,∴点B 的坐标为0,4 ,故答案为:0,4 .26.(2024·广东深圳·中考真题)如图,在平面直角坐标系中,四边形AOCB 为菱形,tan ∠AOC =43,且点A 落在反比例函数y =3x 上,点B 落在反比例函数y =k x k ≠0 上,则k =.【答案】8【分析】本题主要考查反比例函数与几何的综合及三角函数;过点A 、B 作x 轴的垂线,垂足分别为D 、E ,然后根据特殊三角函数值结合勾股定理求得A 32,2 ,OA =52,再求得点B 4,2 ,利用待定系数法求解即可.【详解】解:过点A 、B 作x 轴的垂线,垂足分别为D 、E ,如图,∵tan ∠AOC =43,∴AD OD =43,∴设AD =4a ,则OD =3a ,∴点A 3a ,4a,∵点A 在反比例函数y =3x 上,∴3a ⋅4a =3,∴a =12(负值已舍),则点A 32,2,∴AD =2,OD =32,∴OA =OD 2+AD 2=52,∵四边形AOCB 为菱形,∴AB =OA =52,AB ∥CO ,∴点B 4,2 ,∵点B 落在反比例函数y =k x k ≠0 上,∴k =4×2=8,故答案为:8.27.(2024·广东广州·中考真题)如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数y =k x(x >0)的图象上,A (1,0),C (0,2).将线段AB 沿x 轴正方向平移得线段A B (点A 平移后的对应点为A ),A B 交函数y =k x (x >0)的图象于点D ,过点D 作DE ⊥y 轴于点E ,则下列结论:①k =2;②△OBD 的面积等于四边形ABDA 的面积;③A E 的最小值是2;④∠B BD =∠BB O .其中正确的结论有.(填写所有正确结论的序号)【答案】①②④【分析】由B 1,2 ,可得k =1×2=2,故①符合题意;如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,利用k 的几何意义可得△OBD 的面积等于四边形ABDA 的面积;故②符合题意;如图,连接A E ,证明四边形A DEO 为矩形,可得当OD 最小,则A E 最小,设D x ,2xx >0 ,可得A E 的最小值为2,故③不符合题意;如图,设平移距离为n ,可得B n +1,2 ,证明△B BD ∽△A OB ,可得∠B BD =∠B OA ,再进一步可得答案.【详解】解:∵A (1,0),C (0,2),四边形OABC 是矩形;∴B 1,2 ,∴k =1×2=2,故①符合题意;2如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,05∵S △AOB =S △A OD =12×2=1,∴S △BOK =S 四边形AKDA,∴S △BOK +S △BKD =S 四边形AKDA+S △BKD ,∴△OBD 的面积等于四边形ABDA 的面积;故②符合题意;如图,连接A E ,∵DE ⊥y 轴,∠DA O =∠EOA =90°,∴四边形A DEO 为矩形,∴A E =OD ,∴当OD 最小,则A E 最小,设D x ,2x x >0 ,∴OD 2=x 2+4x 2≥2⋅x ⋅2x =4,∴OD ≥2,∴A E 的最小值为2,故③不符合题意;如图,设平移距离为n ,∴B n +1,2 ,∵反比例函数为y =2x,四边形A B CO 为矩形,∴∠BB D =∠OA B =90°,D n +1,2n +1 ,∴BB =n ,OA =n +1,B D =2-2n +1=2n n +1,A B =2,∴BB OA =n n +1=2n n +12=B D A B,∴△B BD ∽△A OB ,∴∠B BD =∠B OA ,∵B C ∥A O ,∴∠CB O =∠A OB ,∴∠B BD =∠BB O ,故④符合题意;故答案为:①②④【点睛】本题考查的是反比例函数的图象与性质,平移的性质,矩形的判定与性质,相似三角形的判定与性质,勾股定理的应用,作出合适的辅助线是解本题的关键.28.(2024·四川乐山·中考真题)定义:函数图象上到两坐标轴的距离都小于或等于1的点叫做这个函数图象的“近轴点”.例如,点0,1 是函数y =x +1图象的“近轴点”.(1)下列三个函数的图象上存在“近轴点”的是(填序号);①y =-x +3;②y =2x;③y =-x 2+2x -1.(2)若一次函数y =mx -3m 图象上存在“近轴点”,则m 的取值范围为.【答案】③-12≤m <0或0<m ≤12【分析】本题主要考查了新定义--“近轴点”.正确理解新定义,熟练掌握一次函数,反比例函数,二次函数图象上点的坐标特点,是解决问题的关键.(1)①y =-x +3中,取x =y =1.5,不存在“近轴点”;②y =2x,由对称性,取x =y =±2,不存在“近轴点”;③y =-x 2+2x -1=-x -1 2,取x =1时,y =0,得到1,0 是y =-x 2+2x -1的“近轴点”;(2)y =mx -3m =m x -3 图象恒过点3,0 ,当直线过1,-1 时,m =12,得到0<m ≤12;当直线过1,1 时,m =-12,得到-12≤m <0.【详解】(1)①y =-x +3中,x =1.5时,y =1.5,不存在“近轴点”;②y =2x,由对称性,当x =y 时,x =y =±2,不存在“近轴点”;③y =-x 2+2x -1=-x -1 2,x =1时,y =0,∴1,0 是y =-x 2+2x -1的“近轴点”;∴上面三个函数的图象上存在“近轴点”的是③故答案为:③;(2)y =mx -3m =m x -3 中,x =3时,y =0,∴图象恒过点3,0 ,当直线过1,-1 时,-1=m 1-3 ,∴m =12,∴0<m ≤12;当直线过1,1 时,1=m 1-3 ,∴m =-12,∴-12≤m <0;∴m 的取值范围为-12≤m <0或0<m ≤12.故答案为:-12≤m <0或0<m ≤12.三、解答题29.(2024·甘肃·中考真题)如图,在平面直角坐标系中,将函数y =ax 的图象向上平移3个单位长度,得到一次函数y =ax +b 的图象,与反比例函数y =k x x >0 的图象交于点A 2,4 .过点B 0,2 作x 轴的平行线分别交y =ax +b 与y =k xx >0 的图象于C ,D 两点.(1)求一次函数y =ax +b 和反比例函数y =k x的表达式;(2)连接AD ,求△ACD 的面积.【答案】(1)一次函数y =ax +b 的解析式为y =12x +3;反比例函数y =k x x >0 的解析式为y =8xx >0 ;(2)6【分析】本题主要考查了一次函数与反比例函数综合:(1)先根据一次函数图象的平移规律y =ax +b =ax +3,再把点A 的坐标分别代入对应的一次函数解析式和反比例函数解析式中,利用待定系数法求解即可;(2)先分别求出C 、D 的坐标,进而求出CD 的长,再根据三角形面积计算公式求解即可.【详解】(1)解:∵将函数y =ax 的图象向上平移3个单位长度,得到一次函数y =ax +b 的图象,∴y =ax +b =ax +3,把A 2,4 代入y =ax +3中得:2a +3=4,解得a =12,∴一次函数y =ax +b 的解析式为y =12x +3;把A 2,4 代入y =k x x >0 中得:4=k 2x >0 ,解得k =8,∴反比例函数y =k x x >0 的解析式为y =8xx >0 ;(2)解:∵BC ∥x 轴,B 0,2 ,∴点C 和点D 的纵坐标都为2,在y =12x +3中,当y =12x +3=2时,x =-2,即C -2,2 ;在y =8x x >0 中,当y =8x =2时,x =4,即D 4,2 ;∴CD =4--2 =6,∵A 2,4 ,∴S △ACD =12CD ⋅y A -y C =12×6×4-2 =6.30.(2024·青海·中考真题)如图,在同一直角坐标系中,一次函数y =-x +b 和反比例函数y =9x 的图象相交于点A 1,m ,B n ,1 .(1)求点A ,点B 的坐标及一次函数的解析式;(2)根据图象,直接写出不等式-x +b >9x的解集.【答案】(1)A 1,9 ,B 9,1 ,y =-x +10(2)x <0或1<x <9【分析】本题主要考查了一次函数与反比函数的交点问题:(1)分别把点A 1,m ,点B n ,1 代入y =9x,可求出点A ,B 的坐标,即可求解;(2)直接观察图象,即可求解.【详解】(1)解:把点A 1,m 代入y =9x 中,得:m =91=9,∴点A 的坐标为1,9 ,把点B n ,1 代入y =9x 中,得:n =91=9,∴点B 的坐标为9,1 ,把x =1,y =9代入y =-x +b 中得:-1+b =9,∴b =10,∴一次函数的解析式为y =-x +10,(2)解:根据一次函数和反比例函数图象,得:当x <0或1<x <9时,一次函数y =-x +b 的图象位于反比例函数y =9x的图象的上方,∴-x +b >9x的解集为x <0或1<x <9.31.(2024·吉林·中考真题)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R 的取值范围).(2)当电阻R 为3Ω时,求此时的电流I .【答案】(1)I =36R(2)12A【分析】本题主要考查了反比例函数的实际应用:(1)直接利用待定系数法求解即可;(2)根据(1)所求求出当R =3Ω时I 的值即可得到答案.【详解】(1)解:设这个反比例函数的解析式为I =URU ≠0 ,把9,4 代入I =U RU ≠0 中得:4=U9U ≠0 ,解得U =36,∴这个反比例函数的解析式为I =36R;(2)解:在I =36R中,当R =3Ω时,I =363=12A ,∴此时的电流I 为12A .32.(2024·山东·中考真题)列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数y =2x +b 与y =kx部分自变量与函数值的对应关系:x -72a12x +ba1________kx________________7(1)求a、b的值,并补全表格;(2)结合表格,当y=2x+b的图像在y=kx的图像上方时,直接写出x的取值范围.【答案】(1)a=-2b=5,补全表格见解析(2)x的取值范围为-72<x<0或x>1;【分析】本题考查的是一次函数与反比例函数的综合,利用图像法写自变量的取值范围;(1)根据表格信息建立方程组求解a,b的值,再求解k的值,再补全表格即可;(2)由表格信息可得两个函数的交点坐标,再结合函数图像可得答案.【详解】(1)解:当x=-72时,2x+b=a,即-7+b=a,当x=a时,2x+b=1,即2a+b=1,∴a-b=-72a+b=1,解得:a=-2b=5,∴一次函数为y=2x+5,当x=1时,y=7,∵当x=1时,y=kx=7,即k=7,∴反比例函数为:y=7x,当x=-72时,y=7÷-72=-2,当y=1时,x=a=-2,当x=-2时,y=-7 2,补全表格如下:x-72-212x+b-217kx-2-7 27(2)由表格信息可得:两个函数的交点坐标分别为-72,-2,1,7 ,∴当y=2x+b的图像在y=kx的图像上方时,x的取值范围为-72<x<0或x>1;33.(2024·湖北·中考真题)一次函数y=x+m经过点A-3,0,交反比例函数y=kx于点B n,4.(1)求m,n,k;(2)点C在反比例函数y=kx第一象限的图象上,若S△AOC<S△AOB,直接写出C的横坐标a的取值范围.【答案】(1)m=3,n=1,k=4;(2)a>1.【分析】本题主要考查了一次函数和反比例函数的综合,求反比例函数解析式,解题的关键是熟练掌握数形结合的思想.(1)利用一次函数y=x+m经过点A-3,0,点B n,4,列式计算求得m=3,n=1,得到点B1,4,再利用待定系数法求解即可;(2)利用三角形面积公式求得S△AOB=6,得到32y C<6,据此求解即可.【详解】(1)解:∵一次函数y=x+m经过点A-3,0,点B n,4,∴-3+m=0 n+m=4 ,解得m=3 n=1 ,∴点B1,4,∵反比例函数y=kx经过点B1,4,∴k=1×4=4;(2)解:∵点A-3,0,点B1,4,∴AO =3,∴S △AOB =12AO ×y B =12×3×4=6,S △AOC =12AO ×y C =32y C ,由题意得32y C<6,∴y C <4,∴x C >1,∴C 的横坐标a 的取值范围为a >1.34.(2024·四川凉山·中考真题)如图,正比例函数y 1=12x 与反比例函数y 2=kxx >0 的图象交于点A m ,2 .(1)求反比例函数的解析式;(2)把直线y 1=12x 向上平移3个单位长度与y 2=kxx >0 的图象交于点B ,连接AB ,OB ,求△AOB 的面积.【答案】(1)y 2=8x(2)6【分析】本题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,一次函数的平移等知识,熟练掌握函数的平移法则是关键.(1)待定系数法求出反比例函数解析式即可;(2)先得到平移后直线解析式,联立方程组求出点B 坐标,根据平行线间的距离可得S △AOB =S △ADO ,代入数据计算即可.【详解】(1)解:∵点A (m ,2)在正比例函数图象上,∴2=12m ,解得m =4,∴A (4,2),∵A (4,2)在反比例函数图象上,∴k =8,∴反比例函数解析式为y 2=8x.(2)解:把直线y 1=12x 向上平移3个单位得到解析式为y =12x +3,令x =0,则y =3,∴记直线与y 轴交点坐标为D (0,3),连接AD ,联立方程组y =8xy =12x +3,解得x =2y =4,x =-8y =-1 (舍去),∴B (2,4),由题意得:BD ∥AO ,∴△AOB ,△AOD 同底等高,∴S △AOB =S △ADO =12OD ⋅x A =12×3×4=6.35.(2024·贵州·中考真题)已知点1,3 在反比例函数y =kx的图象上.(1)求反比例函数的表达式;(2)点-3,a ,1,b ,3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.【答案】(1)y =3x(2)a <c <b ,理由见解析【分析】本题主要考查了反比例函数的性质,以及函数图象上点的坐标特点,待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.(1)把点1,3 代入y =kx可得k 的值,进而可得函数的解析式;(2)根据反比例函数表达式可得函数图象位于第一、三象限,再根据点A 、点B 和点C 的横坐标即可比较大小.【详解】(1)解:把1,3 代入y =k x ,得3=k 1,∴k =3,∴反比例函数的表达式为y =3x;(2)解:∵k =3>0,∴函数图象位于第一、三象限,∵点-3,a ,1,b ,3,c 都在反比例函数的图象上,-3<0<1<3,∴a <0<c <b ,∴a <c <b .36.(2024·河南·中考真题)如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数y =kxx >0 的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象.(3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为.【答案】(1)y =6x(2)见解析(3)92【分析】本题考查了待定系数法求反比例函数解析,画反比例函数图象,平移的性质等知识,解题的关键是:(1)利用待定系数法求解即可;(2)分别求出x =1,x =2,x =6对应的函数值,然后描点、连线画出函数图象即可;(3)求出平移后点E 对应点的坐标,利用平移前后对应点的横坐标相减即可求解.【详解】(1)解:反比例函数y =kx的图象经过点A 3,2 ,∴2=k3,∴k =6,∴这个反比例函数的表达式为y =6x;(2)解:当x =1时,y =6,当x =2时,y =3,当x =6时,y =1,∴反比例函数y =6x的图象经过1,6 ,2,3 ,6,1 ,画图如下:(3)解:∵E 6,4 向左平移后,E 在反比例函数的图象上,∴平移后点E 对应点的纵坐标为4,当y =4时,4=6x,解得x =32,∴平移距离为6-32=92.故答案为:92.37.(2024·四川乐山·中考真题)如图,已知点A 1,m 、B n ,1 在反比例函数y =3xx >0 的图象上,过点A 的一次函数y =kx +b 的图象与y 轴交于点C 0,1 .(1)求m 、n 的值和一次函数的表达式;(2)连接AB ,求点C 到线段AB 的距离.【答案】(1)m =3,n =3,y =2x +1(2)点C 到线段AB 的距离为322【分析】(1)根据点A 1,m 、B n ,1 在反比例函数y =3x图象上,代入即可求得m 、n 的值;根据一次函数y =kx +b 过点A 1,3 ,C 0,1 ,代入求得k ,b ,即可得到表达式;(2)连接BC ,过点A 作AD ⊥BC ,垂足为点D ,过点C 作CE ⊥AB ,垂足为点E ,可推出BC ∥x 轴,BC 、AD 、DB 的长度,然后利用勾股定理计算出AB 的长度,最后根据S △ABC =12BC ⋅AD =12AB ⋅CE ,计算得CE 的长度,即为点C 到线段AB 的距离.【详解】(1)∵点A 1,m 、B n ,1 在反比例函数y =3x图象上。

反比例函数及其应用(共35道)—2023年中考数学真题(全国通用)(解析版)

反比例函数及其应用(共35道)—2023年中考数学真题(全国通用)(解析版)

反比例函数及其应用(35道)一、单选题A .1B .2C .3D .4【答案】B【分析】延长BA 交y 轴于点D ,根据反比例函数k 值的几何意义得到1212ADO S =⨯=△,3OCBD S =矩形,根据四边形ABCO 的面积等于ADOOCBD S S−矩形,即可得解.【详解】解:延长BA 交y 轴于点D ,∵AB x ∥轴, ∴DA y ⊥轴,∵点A 在函数2(0)y x x =>的图象上,∴1212ADO S =⨯=△,∵BC x ⊥轴于点C ,DB y ⊥轴,点B 在函数3(0)y x x =>的图象上,∴3OCBD S =矩形,∴四边形ABCO 的面积等于312ADOOCBD S S−=−=矩形;故选B .【点睛】本题考查反比例函数与几何图形的综合应用.熟练掌握反比例函数中k 的几何意义,是解题的关键.A .321y y y <<B .132y y y <<C .312y y y <<D .231y y y <<【答案】C【分析】先根据函数解析式中的比例系数k 确定函数图象所在的象限,再根据各象限内点的坐标特点及函数的增减性解答.【详解】解:在反比例函数(0)ky k x =<中,0k <,∴此函数图象在二、四象限,420−<−<,∴点()14,A y −,2(2,)B y −在第二象限,10y ∴>,20y >,函数图象在第二象限内为增函数,420−<−<, 120y y ∴<<.30>,3(3,)C y ∴点在第四象限,30y \<,1y ∴,2y ,3y 的大小关系为312y y y <<.故选:C .【点睛】此题考查的是反比例函数图象上点的坐标特点及平面直角坐标系中各象限内点的坐标特点,比较简单.A .当3x >时,12y y <B .当1x <−时,12y y <C .当03x <<时,12y y >D .当10x −<<时,12y y <【答案】B【分析】结合一次函数与反比例函数的图象,逐项判断即可得. 【详解】解:A 、当3x >时,12y y >,则此项错误,不符合题意; B 、当1x <−时,12y y <,则此项正确,符合题意; C 、当03x <<时,12y y <,则此项错误,不符合题意; D 、当10x −<<时,12y y >,则此项错误,不符合题意;故选:B .【点睛】本题考查了一次函数与反比例函数的图象,熟练掌握函数图象法是解题关键.A .123y y y <<B .312 y y y <<C .213y y y <<D .321y y y <<【答案】C【分析】根据反比例函数的图象与性质解答即可. 【详解】解:∵30k =>,∴图象在一、三象限,且在每个象限内y 随x 的增大而减小, ∵2101−<−<<, ∴2130y y y <<<.故选:C .【点睛】本题考查了反比例函数的图象与性质,反比例函数ky x =(k 是常数,0k ≠)的图象是双曲线,当0k >,反比例函数图象的两个分支在第一、三象限,在每一象限内,y 随x 的增大而减小;当 0k <,反比例函数图象的两个分支在第二、四象限,在每一象限内,y 随x 的增大而增大.【答案】A【分析】连接四边形ABCD 的对角线AC BD 、,过D 作DE x ⊥轴,过C 作CF x ⊥轴,直线1y x =−与x 轴交于点M ,如图所示,根据函数图像交点的对称性判断四边形ABCD 是平行四边形,由平行四边形性质及平面直角坐标系中三角形面积求法,确定()11142四边形△ABC COD D S S OM DE CF ===⋅+,再求出直线1y x =−与x 轴交于点()1,0M ,通过联立1y x k y x =−⎧⎪⎨=⎪⎩求出C D 、纵坐标,代入方程求解即可得到答案. 【详解】解:连接四边形ABCD 的对角线AC BD 、,过D 作DE x ⊥轴,过C 作CF x ⊥轴,直线1y x =−与x 轴交于点M ,如图所示:根据直线1y x =+、1y x =−与双曲线()0ky k x =>交点的对称性可得四边形ABCD 是平行四边形,()11142四边形△ABC O D C D S S OM DE CF ∴===⋅+, 直线1y x =−与x 轴交于点M , ∴当0y =时,1x =,即()1,0M ,1y x =−与双曲线()0ky k x =>分别相交于点C D 、,∴联立1y x k y x =−⎧⎪⎨=⎪⎩,即1k y y =−,则20y y k +−=,由0k >,解得y =,∴1112⎤⨯⨯−=⎥⎢⎥⎝⎭⎣⎦2=,解得34k =,故选:A .【点睛】本题考查一次函数与反比例函数综合,涉及平行四边形的判定与性质,熟练掌握平面直角坐标系中三角形面积求法是解决问题的关键.A .2:3:6B .6:3:2C .1:2:3D .3:2:1【答案】A【分析】首先根据长方体的性质,得出相对面的面积相等,再根据物体的压力不变,结合反比例函数的性质进行分析,即可得出答案.【详解】解:∵长方体物体的一顶点所在A 、B 、C 三个面的面积比是3:2:1, ∴长方体物体的A 、B 、C 三面所对的与水平地面接触的面积比也为3:2:1, ∵FP S =,0F >,且F 一定,∴P 随S 的增大而减小, ∴111::::2:3:6321A B C P P P ==.故选:A .【点睛】本题考查了反比例函数的性质,解本题的关键在熟练掌握反比例函数的性质.A .B .C .D .【答案】D【分析】先根据一次函数图象确定a 、b 的符号,进而求出ab 的符号,由此可以确定反比例函数图象所在的象限,看是否一致即可.【详解】解:A 、∵一次函数图象经过第一、二、三象限, ∴00a b >>,, ∴0ab >,∴反比例函数aby x =的图象见过第一、三象限,这与图形不符合,故A 不符合题意;B 、∵一次函数图象经过第一、二、四象限, ∴00a b <>,, ∴0ab <, ∴反比例函数aby x =的图象见过第二、四象限,这与图形不符合,故B 不符合题意;C 、∵一次函数图象经过第一、三、四象限, ∴00a b ><,, ∴0ab <, ∴反比例函数aby x =的图象见过第二、四象限,这与图形不符合,故C 不符合题意;D 、∵一次函数图象经过第一、二、四象限, ∴00a b <>,, ∴0ab <, ∴反比例函数aby x =的图象见过第二、四象限,这与图形符合,故D 符合题意;故选D .【点睛】本题主要考查了一次函数与反比例函数图象和性质,熟练掌握相关性质与函数图象的关系是解决本题的关键.A .B .C .D .【答案】B 【分析】根据题意11FL F L =代入数据求得245F L =,即可求解.【详解】解:∵11FL F L =,125cm L =,19.8NF =,∴259.8245FL =⨯=, ∴245F L =,函数为反比例函数,当35cm L =时,245735F ==,即245F L =函数图象经过点()35,7. 故选:B .【点睛】本题考查了反比例函数的应用以及函数图象,根据题意求出函数关系式是解题的关键.A .3B .4C .5D .6【答案】B【分析】由正方形的性质得2BC AB ==,可设2,2k C ⎛⎫ ⎪⎝⎭,1,22k E ⎛⎫+ ⎪⎝⎭,根据21222k k ⎛⎫⨯=⨯+ ⎪⎝⎭可求出k 的值. 【详解】解:∵四边形ABCD 是正方形, ∵2,AB BC CD AD ==== ∵点E 为AD 的中点, ∴11,2AE AD ==设点C 的坐标为2,2k ⎛⎫ ⎪⎝⎭,则,222k kBO AO AB BO ==+=+, ∴1,22k E ⎛⎫+ ⎪⎝⎭, ∵点C ,E 在反比例函数ky x =的图象上,∴21222k k ⎛⎫⨯=⨯+ ⎪⎝⎭,解得,4k =, 故选:B .【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数ky x =(k 为常数,0k ≠)的图象是双曲线,图象上的点()x y ,的横纵坐标的积是定值k ,即xy k =.为半径作圆,当A 与x 轴相切、B 与y 轴相切时,连结【答案】C【分析】过点,A B 分别作,y x 轴的垂线,垂足分别为,E D ,,AE BD 交于点C ,得出B 的横坐标为1,A 的纵坐标为1,设(),1A k ,()1,B k ,则1,1AC k BC k =−=−,根据AB =【详解】解:如图所示,过点A B ,分别作y x ,轴的垂线,垂足分别为E D ,,AE BD ,交于点C ,依题意,B 的横坐标为1,A 的纵坐标为1,设(),1A k ,()1,B k∴()1,1C ,则1,1AC k BC k =−=−,又∵90ACB ∠=︒,AB =∴()()(22211k k −+−=∴13k −=(负值已舍去) 解得:4k =, 故选:C .【点睛】本题考查了切线的性质,反比例函数的性质,勾股定理,掌握以上知识是解题的关键. 统考中考真题)如图,在平面直角坐标系中,OAB 三个顶点的坐标分别为与OAB 关于直线 A .23 【答案】A【分析】过点B 作BD x ⊥轴,根据题意得出1,BD OD ==和性质得出2OB AB ==,30BOA BAO ∠∠==︒,利用各角之间的关系180OBA OBD '∠+∠=︒,确定A ',B ,D 三点共线,结合图形确定)2C,然后代入反比例函数解析式即可.【详解】解:如图所示,过点B 作BD x ⊥轴,∵(0,0),O A B ,∴1,BD OD ==∴AD OD =tan BD BOA OD ∠==,∴2OB AB ==,30BOA BAO ∠∠==︒,∴60OBD ABD ∠∠==︒,120OBA ∠=︒, ∵OA B '与OAB 关于直线OB 对称, ∴120OBA '∠=︒, ∴180OBA OBD '∠+∠=︒, ∴A ',B ,D 三点共线, ∴2A B AB '==, ∵A C BC '=, ∴1BC =, ∴2CD =,∴)2C,将其代入(0,0)ky k x x =>>得:k =故选:A .【点睛】题目主要考查等腰三角形的判定和性质,特殊角的三角函数及反比例函数的确定,理解题意,综合运用这些知识点是解题关键.A .2B .2−C .1D .1−【答案】A【分析】证明四边形ANOM 是矩形,根据反比例函数的k 值的几何意义,即可解答. 【详解】解:AM x ⊥轴于点M ,AN y ⊥轴于直N ,90MON ∠=︒,∴四边形AMON 是矩形,四边形AMON 的面积为2, 2k ∴=,反比例函数在第一、三象限,2k ∴=,故选:A .【点睛】本题考查了矩形的判定,反比例函数的k 值的几何意义,熟知在一个反比例函数图像上任取一点,过点分别作x 轴,y 轴的垂线段,与坐标轴围成的矩形面积为k是解题的关键.二、填空题【答案】63y x =−【分析】函数图象的平移规则为:上加下减,左加右减,根据平移规则可得答案. 【详解】解:将反比例函数6y x =的图象向下平移3个单位可得平移后的解析式为:63y x =−,故答案为:63y x =−.【点睛】本题考查的是函数图象的平移,解题的关键是理解并熟记函数图象的平移规则为:上加下减,左加右减.14.(2023·陕西·统考中考真题)如图,在矩形OABC 和正方形CDEF 中,点A 在y 轴正半轴上,点C ,F 均在x 轴正半轴上,点D 在边BC 上,2BC CD =,3AB =.若点B ,E 在同一个反比例函数的图象上,则这个反比例函数的表达式是 .【答案】18y x =【分析】设正方形CDEF 的边长为m ,根据2BC CD =,3AB =,得到()3,2B m ,根据矩形对边相等得到3OC =,推出()3,E m m +,根据点B ,E 在同一个反比例函数的图象上,得到()323m m m⨯=+,得到3m =,推出18y x =.【详解】解:∵四边形OABC 是矩形, ∴3OC AB ==,设正方形CDEF 的边长为m , ∴CD CF EF m ===, ∵2BC CD =, ∴2BC m =, ∴()3,2B m ,()3,E m m +, 设反比例函数的表达式为ky x =,∴()323m m m⨯=+,解得3m =或0m =(不合题意,舍去), ∴()3,6B ,∴3618=⨯=k ,∴这个反比例函数的表达式是18y x =,故答案为:18y x =.【点睛】本题主要考查了反比例函数,解决问题的关键是熟练掌握矩形性质,正方形性质,反比例函数性质,k 的几何意义.统考中考真题)如图,在平面直角坐标系中,AOC 的边两点.若AOC 的面积是 【答案】4【分析】过B ,C 两点分别作y 轴的垂线,垂足分别为D ,E ,设B 点坐标为k m m ⎛⎫ ⎪⎝⎭,,则BD m =,由点B 为AC 的中点,推出C 点坐标为22k m m ⎛⎫ ⎪⎝⎭,,求得直线BC 的解析式,得到A 点坐标,根据AOC 的面积是6,列式计算即可求解.【详解】解:过B ,C 两点分别作y 轴的垂线,垂足分别为D ,E ,∴BD CE ∥, ∴ABD ACE ∽,∴BD ABCE AC =,设B 点坐标为k m m ⎛⎫ ⎪⎝⎭,,则BD m =, ∵点B 为AC 的中点, ∴12BD AB CE AC ==, ∴22CE BD m ==,∴C 点坐标为22k m m ⎛⎫ ⎪⎝⎭,, 设直线BC 的解析式为y ax b =+, ∴22k ma b mk ma b m ⎧+=⎪⎪⎨⎪+=⎪⎩,解得2232k a m k b m ⎧=−⎪⎪⎨⎪=⎪⎩, ∴直线BC 的解析式为2322k k y x m m =−+, 当0x =时,32ky m =,∴A 点坐标为302k m ⎛⎫ ⎪⎝⎭,, 根据题意得132622k m m ⋅⋅=,解得4k =, 故答案为:4.【点睛】本题考查了反比例函数的性质、相似三角形的判定及性质、求一次函数解析式、坐标与图形,解题关键是熟练掌握反比例函数的性质及相似三角形的性质.【答案】33【分析】过点B 作BC y ⊥轴于点C ,由旋转的性质得,AO AB =,120OAB ∠=︒,在Rt ABC 中求出BC 、AC 的长,即可得出点B 的坐标,代入反比例函数解析式即可求出k 的值.【详解】解∶过点B 作BC y ⊥轴于点C ,由旋转的性质得,AO AB =,120OAB ∠=︒, ∵点A 的坐标为(0,2), ∴2AO AB ==, ∵120OAB ∠=︒,∴180********BAC OAB ∠∠=︒−=︒−︒=︒, ∴9030ABC BAC ∠∠=︒−=︒, ∴AC =12AB =1221⨯=,由勾股定理得BC ==∴213OC AO AC =+=+=,∴点B 的坐标为(3), ∵点B 恰好落在反比例函数ky x =的图象上,∴3k =故答案为∶3【点睛】本题考查了反比例函数图象上点的坐标特征,坐标与图形的变化之旋转,解答本题的关键是求出点B 的坐标.【答案】>【分析】把2x =−和=1x −分别代入反比例函数2y x =中计算y 的值,即可做出判断.【详解】解:∵点()12,A y −和点()21,B y −都在反比例函数2y x =的图象上,∴令2x =−,则1212y ==−−;令=1x −,则2221y ==−−,12−>−,12y y ∴>,故答案为:>.【点睛】本题考查了反比例函数图像上点的坐标特征,计算y 的值是解题的关键. 若OAB 的面积为【答案】196/136【分析】由k 的几何意义可得19212k =,从而可求出k 的值. 【详解】解:AOB 的面积为||192212k k ==, 所以k =196. 故答案为:196.【点睛】本题主要考查了k 的几何意义.用k 表示三角形AOB 的面积是本题的解题关键.【答案】3【分析】先把点A 坐标代入求出反比例函数解析式,再把点B 代入即可求出m 的值. 【详解】解:∵函数()0ky k x =≠的图象经过点()3,2A −和(),2B m −∴把点()3,2A −代入得326k =−⨯=−,∴反比例函数解析式为6y x −=, 把点(),2B m −代入得:62m −−=,解得:3m =, 故答案为:3.【点睛】本题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,熟知反比例函数图象上的点的坐标一定满足函数解析式是解题的关键.【答案】1.5(满足12k <<都可以)【分析】先判断出一次函数7y x b =−+的图象必定经过第二、四象限,再根据120x x ⋅>判断出反比例函数图象和一次函数图象的两个交点在同一象限,从而可以得到反比例函数的图象经过第二、四象限,即630k −<,最终选取一个满足条件的值即可. 【详解】解:70−<,∴一次函数7y x b =−+的图象必定经过第二、四象限,120x x ⋅>,∴反比例函数图象和一次函数图象的两个交点在同一象限, ∴反比例函数63ky x −=(1k >且2k ≠)的函数图象经过第一、三象限,∴630k −>,∴2k <, ∵1k >, ∴12k <<,∴满足条件的k 值可以为1.5, 故答案为:1.5(满足12k <<都可以).【点睛】本题考查一次函数和反比例函数的图形性质,解题的关键是根据120x x ⋅>判断出反比例函数图象和一次函数图象的两个交点在同一象限.的正ABC 的顶点,现将ABC 绕原点【答案】6【分析】画出变换后的图像即可(画AOB 即可),当点A 在y 轴上,点B 、C 在x 轴上时,根据ABC 为等边三角形且AO BC ⊥,可得OB OA=A 、B 分别作x 轴垂线构造相似,则BFO OEA ∽,根据相似三角形的性质得出3AOE S =△,进而根据反比例函数k 的几何意义,即可求解.【详解】当点A 在y 轴上,点B 、C 在x 轴上时,连接AO ,ABC 为等边三角形且AO BC ⊥,则30BAO ∠=︒,∴tan tan30BAO ∠=︒=OB OA=, 如图所示,过点,A B 分别作x 轴的垂线,交x 轴分别于点,E F ,AO BO ⊥,90BFO AEO AOB ∠=∠=∠=︒,∴90BOF AOE EAO ∠=︒−∠=∠, ∴BFO OEA ∽,∴213BFO AOES OB S OA ⎛⎫== ⎪⎝⎭, ∴212BFOS−==,∴3AOE S =△, ∴6k =.【点睛】本题考查了反比例函数的性质,k 的几何意义,相似三角形的性质与判定,正确作出辅助线构造相似三角形是解题关键.【答案】2/2−+【分析】过点A 作CD y ⊥轴于点D ,过点B 作BC CD ⊥于点C ,证明DAO CBA ≌,进而根据全等三角形的性质得出,DA CB AC OD ==,根据点(),2A m ,进而得出()2,2B m m +−,根据点,A B 在反比例函数(0)ky x x =>的图象上.列出方程,求得m 的值,进而即可求解.【详解】解:如图所示,过点A 作CD y ⊥轴于点D ,过点B 作BC CD ⊥于点C ,∴90C CDO ∠=∠=︒, ∵,90OA AB OAB =∠=︒, ∴90DAO CAB CBA ∠=︒−∠=∠ ∴DAO CBA ≌ ∴,DA CB AC OD == ∵点A 的坐标为()m,2.∴2AC OD ==,AD BC m == ∴()2,2B m m +−∵,A B 在反比例函数(0)ky x x =>的图象上,∴()()222m m m =+−解得:1m =或1m =(舍去)∴22k m ==故答案为:2.【点睛】本题考查了反比例函数的图象和性质,全等三角形的判定和性质,求得点B 的坐标是解题的关键.【答案】4【分析】根据题意可设点P 的坐标为()22m m ,,则()2D m m ,,把()2D m m ,代入一次函数解析式中求出m 的值进而求出点P 的坐标,再求出k 的值即可.【详解】解:∵PA x ⊥轴于点,A PB y ⊥轴于点,B PA PB =, ∴点P 的横纵坐标相同, ∴可设点P 的坐标为()22m m ,,∵D 为PB 的中点, ∴()2D m m ,,∵()2D m m ,在直线1y x =+上,∴12m m +=, ∴1m =, ∴()22P ,,∵点P 在反比例函数()0ky k x =>的图象上,∴224k =⨯=, 故答案为:4.【点睛】本题主要考查了一次函数与反比例函数综合,正确求出点P 的坐标是解题的关键.【答案】6【分析】延长CD 交x 轴于点F ,设,k D a a ⎛⎫ ⎪⎝⎭,利用相似三角形的判定与性质可求得矩形的长与宽,再由矩形的面积即可求和k 的值.【详解】解:延长CD 交x 轴于点F ,如图,由点D 在反比例函数()0k y x x =>的图象上,则设,k D a a ⎛⎫ ⎪⎝⎭,∵矩形ABCD 的边AB 平行于x 轴,AB CD ∥,AD CD ⊥, ∴CD y ⊥轴,AD OF ∥, 则kDF a OF a ==,,∵AD OF ∥, ∴CDA CFO △∽△, ∴CD AD ACCF OF OC ==, ∵2AC AO =,∴23AC OC =, ∴2223CD CF DF a ===,2233k AD OF a ==, ∵8AD CD ⋅=,即2283k a a ⨯=,∴6k =, 故答案为:6.【点睛】本题考查了相似三角形的判定与性质,反比例函数图象上点的坐标特征,其中相似三角形的判定与性质是关键.则ABP 的面积是 【答案】152【分析】把()2,3A −代入到22k y x =可求得2k 的值,再把(),2Bm −代入双曲线函数的表达式中,可求得m 的值,进而利用三角形的面积公式进行求解即可. 【详解】∵直线11y k x b =+与双曲线22k y x =(其中120k k ⋅≠)相交于()2,3A−,(),2B m −两点,∴2232k m =−⨯=−∴263k m =−=,,∴双曲线的表达式为:26y x =−,()3,2B −,∵过点B 作BP x ∥轴,交y 轴于点P , ∴3BP =, ∴1153(32)22ABPS=⨯⨯+=,故答案为152.【点睛】本题是一次函数与反比例函数的交点问题,考查了待定系数法求反比例函数,反比例函数图象上点的坐标特征,三角形的面积,数形结合是解答此题的关键. 三、解答题26.(2023·四川绵阳·统考中考真题)如图,设反比例函数的解析式为(k >0).(1)若该反比例函数与正比例函数y=2x 的图象有一个交点的纵坐标为2,求k 的值;(2)若该反比例函数与过点M (﹣2,0)的直线l :y=kx+b 的图象交于A ,B 两点,如图所示,当△ABO 的面积为时,求直线l 的解析式.【答案】(1);(2).【详解】试题分析:(1)由题意可得A(1,2),利用待定系数法即可解决问题;(2)把M(﹣2,0)代入y=kx+b,可得b=2k,可得y=kx+2k,由消去y得到,解得x=﹣3或1,推出B(﹣3,﹣k),A(1,3k),根据△ABO的面积为,可得•23k+•2k=,解方程即可解决问题;试题解析:(1)由题意A(1,2),把A(1,2)代入,得到3k=2,∴.(2)把M(﹣2,0)代入y=kx+b,可得b=2k,∴y=kx+2k,由消去y得到,解得x=﹣3或1,∴B(﹣3,﹣k),A(1,3k),∵△ABO的面积为,∴×2×3k+•2k=,解得k=,∴直线l 的解析式为.考点:反比例函数与一次函数的交点问题.(1)2m =,4a =,求函数3y 的表达式及(2)当a 、m 在满足0a m >>的条件下任意变化时,(3)试判断直线PH 与BC 边的交点是否在函数【答案】(1)函数3y 的表达式为325y x =−+,PGH △的面积为12(2)不变,理由见解析 (3)在,理由见解析【分析】(1)由2m =,4a =,可得(20)A ,,()20B −,,12y x=,22y x −=,则4AB =,当2x =,1212y ==,则()21E ,;当14y =,24x =,解得12x =,则142G ⎛⎫ ⎪⎝⎭,;当24y =,24x −=,解得12x =−,则142H ⎛⎫− ⎪⎝⎭,;待定系数法求一次函数3y 的解析式为325y x =−+,当0x =,35y =,则()05P ,,根据()11154222PGH S ⎡⎤⎛⎫=⨯−−⨯− ⎪⎢⎥⎝⎭⎣⎦△,计算求解即可;(2)求解过程同(1);(3)设直线PH 的解析式为22y k x b =+,将()01P a +,,m a H a a −⎛⎫⎪⎝⎭,,代入22y k x b =+得,2221b am a k b a a =+⎧⎪−⎨+=⎪⎩,解得221b aa k a m =+⎧⎪⎨=⎪−⎩,即1a x a a m y +−=+,当x m a =−,()11y a m a a a m ⨯+=−+=−,则直线PH 与BC 边的交点坐标为()1m a −,,当x m a =−,21m ay m a −=−=,进而可得结论.【详解】(1)解:∵2m =,4a =,∴(20)A ,,()20B −,,12y x=,22y x −=,∴4AB =, 当2x =,1212y ==,则()21E ,;当14y =,24x =,解得12x =,则142G ⎛⎫ ⎪⎝⎭,; 当24y =,24x −=,解得12x =−,则142H ⎛⎫− ⎪⎝⎭,; 设一次函数3y 的解析式为3y kx b =+,将()21E ,,142G ⎛⎫⎪⎝⎭,,代入3y kx b =+得,21142k b k b +=⎧⎪⎨+=⎪⎩,解得25k b =−⎧⎨=⎩,∴325y x =−+, 当0x =,35y =,则()05P ,,∴()1111542222PGH S ⎡⎤⎛⎫=⨯−−⨯−=⎪⎢⎥⎝⎭⎣⎦△; ∴函数3y 的表达式为325y x =−+,PGH △的面积为12;(2)解:PGH △的面积不变,理由如下:∵(0)A m ,,(0)B m a −,,1m y x =,2m ay x −=,∴AB a =,当x m =,11m y m ==,则()1E m ,;当1y a =,m a x =,解得m x a =,则m G a a ⎛⎫⎪⎝⎭,; 当2y a =,m a a x −=,解得m a x a −=,则m a H a a−⎛⎫ ⎪⎝⎭,; 设一次函数3y 的解析式为113k x b y =+,将()1E m ,,m G a a ⎛⎫ ⎪⎝⎭,,代入113k x b y =+得,11111mk b m k b a a +=⎧⎪⎨+=⎪⎩,解得111a k m b a ⎧=−⎪⎨⎪=+⎩,∴31ax a m y =−++,当0x =,31y a =+,则()01P a +,,∴()11122PGH m m a S a a a a ⎡−⎤⎛⎫=⨯−⨯+−= ⎪⎢⎥⎝⎭⎣⎦△; ∴PGH △的面积不变;(3)解:直线PH 与BC 边的交点在函数2y 的图像上,理由如下:设直线PH 的解析式为22y k x b =+,将()01P a +,,m a H a a −⎛⎫⎪⎝⎭,,代入22y k x b =+得,2221b a m a k b a a =+⎧⎪−⎨+=⎪⎩,解得221b aa k a m =+⎧⎪⎨=⎪−⎩, ∴1ax a a m y +−=+,当x m a =−,()11y am a a a m ⨯+=−+=−,∴直线PH 与BC 边的交点坐标为()1m a −,,当x m a =−,21m ay m a −=−=,∴直线PH 与BC 边的交点在函数2y 的图像上.【点睛】本题考查了正方形的性质,一次函数解析式,反比例函数解析式,交点坐标.解题的关键在于对知识的熟练掌握与灵活运用.(1)求一次函数和反比例函数的表达式; (2)求OAB 的面积;(3)过动点()0T t ,作x 轴的垂线l ,l 与一次函数y x m =−+和反比例函数ky x=的图象分别交于当M 在N 的上方时,请直接写出t 的取值范围.【答案】(1)一次函数的解析式为3y x =−+,反比例函数的解析式为2y x =(2)32(3)0t <或12t << 【分析】(1)把()1,2A 分别代入一次函数和反比例函数求出m k 、的值即可得到答案;(2)联立32y x y x =−+⎧⎪⎨=⎪⎩求出点B 的坐标,令直线AB 与x 交于点C ,由直线AB 求出点C 的坐标,最后由1122AOBAOCBOCA B SSSOC y OC y =−=⋅⋅−⋅⋅,进行计算即可得到答案;(3)直接由函数图象即可得到答案. 【详解】(1)解:把()1,2A 代入一次函数y x m =−+,得12m −+=, 解得:3m =,∴一次函数的解析式为:3y x =−+,把()1,2A 代入反比例函数ky x =,得21k =,解得:2k =,∴反比例函数的解析式为:2y x =;(2)解:联立32y x y x =−+⎧⎪⎨=⎪⎩,解得:12x y =⎧⎨=⎩或21x y =⎧⎨=⎩,()21B ∴,,令直线AB 与x 交于点C ,如图,,当0y =时,30x −+=, 解得:3x =, ()30C ∴,,11113323122222AOBAOCBOCA B SS SOC y OC y ∴=−=⋅⋅−⋅⋅=⨯⨯−⨯⨯=(3)解:由图象可得:,当M 在N 的上方时,t 的取值范围为:0t <或12x <<.【点睛】本题考查了求反比例函数的解析式、求一次函数的解析式、反比例函数与一次函数的交点问题,熟练掌握反比例函数和一次函数的图象与性质,是解题的关键.(1)当气球内的气压超过150KPa 少时气球不会爆炸(球体的体积公式(2)请你利用p 与V 的关系试解释为什么超载的车辆容易爆胎.【答案】(1)气球的半径至少为0.2m 时,气球不会爆炸; (2)由于车辆超载,轮胎体积变小,胎内气压增大导致爆胎 【分析】(1)设函数关系式为k p =,用待定系数法可得 4.8p V =,即可得当150p =时, 4.80.032150V ==,从而求出0.2r =;(2)由于车辆超载,轮胎体积变小,胎内气压增大导致爆胎. 【详解】(1)设函数关系式为kp V =, 根据图象可得:1200.04 4.8k pV ==⨯=, ∴4.8p V =,∴当150p =时,4.80.032150V ==,∴3430.0323r ⨯=,解得:0.2r =,4.80k =>,p ∴随V 的增大而减小,∴要使气球不会爆炸,0.032V ≥,此时0.2r ≥, ∴气球的半径至少为0.2m 时,气球不会爆炸;(2)由于车辆超载,轮胎体积变小,胎内气压增大导致爆胎.【点睛】本题考查反比例函数的应用,涉及立方根等知识,解题的关键是读懂题意,掌握待定系数法求出反比例函数的解析式.轴的对称点,OAC 的面积是【答案】(1)y x =(2)(2P −++或(2P −−−【分析】(1)设,k A m m ⎛⎫ ⎪⎝⎭,可得,k C m m ⎛⎫− ⎪⎝⎭,结合OAC 的面积是8.可得()182k m m m +=,从而可得答案;(2)先求解()2,4A ,()2,4C −,可得直线为28y x =+,联立828y x y x ⎧=⎪⎨⎪=+⎩,再解方程组即可.【详解】(1)解:∵点A 在反比例函数(0)ky k x =≠的图象上,∴设,k A m m ⎛⎫⎪⎝⎭,∵点C 是点A 关于y 轴的对称点,∴,k C m m ⎛⎫− ⎪⎝⎭, ∵OAC 的面积是8.∴()182k m m m +=,解得:8k =;∴反比例函数解析式为:8y x =;(2)∵点A 的横坐标为2时, ∴842A y ==,即()2,4A ,则()2,4C −,∵直线2y x b =+过点C , ∴44b −+=, ∴8b =,∴直线为28y x =+, ∴828y x y x ⎧=⎪⎨⎪=+⎩,解得:24x y ⎧=−+⎪⎨=+⎪⎩或24x y ⎧=−−⎪⎨=−⎪⎩,经检验,符合题意;∴(2P −++或(2P −−−.【点睛】本题考查的是一次函数与反比例函数的综合应用,轴对称的性质,一元二次方程的解法,熟练的利用图形面积建立方程求解是解本题的关键.(1)求反比例函数的表达式;(2)点D 在反比例函数图象上,且横坐标大于3OBDS=【答案】(1)4y x =(2)132y x =−+【分析】(1)根据四边形OABC 是边长为2的正方形求出点B 的坐标,代入ky x =求出k ;(2)设4,D a a ⎛⎫ ⎪⎝⎭,过点D 作DH x ⊥轴,根据OBD OBH BHD ODH S S S S =+−V V V V 面积列方程,求出点D 坐标,再由待定系数法求出直线BD 的函数表达式.【详解】(1)解:四边形OABC 是边长为2的正方形, ∴4OABC S xy ==正方形, ∴4k =;即反比例函数的表达式为4y x =.(2)解:设4,D a a ⎛⎫ ⎪⎝⎭,过点D 作DH x ⊥轴,点()2,2B ,4,D a a ⎛⎫ ⎪⎝⎭,(),0H a ,∴12OBH S OH AB a=⋅=V 1144(2)(2)222BHD a S DH AH a a a −=⋅=⋅⋅−=V ,122ODH S OH DH =⋅=V3OBD OBH BHD ODH S S S S =+−=V V V V∴4(2)232a a a −+−=,解得:14a =,21a =−,经检验4a =,是符合题意的根,即点()4,1D ,设直线BD 的函数解析式为y kx b =+,得∶ 2241k b k b +=⎧⎨+=⎩,解得:123k b ⎧=−⎪⎨⎪=⎩,即:直线BD 的函数解析式为132y x =−+.【点睛】本题考查了反比例函数的几何意义和待定系数法求一次函数解析式,反比例函数ky x =图象上任意一点做x 轴、y 轴的垂线,组成的长方形的面积等于k,灵活运用几何意义是解题关键.2(1)求反比例函数的解析式;(2)点C 在这个反比例函数图象上,连接【答案】(1)8y x =(2)()4,2C【分析】(1)利用正切值,求出4OB =,进而得到()2,4A ,即可求出反比例函数的解析式;(2)过点A 作AE x ⊥轴于点E ,易证四边形ABOE 是矩形,得到2OE =,4AE =,再证明AED △是等腰直角三角形,得到4DE =,进而得到()6,0D ,然后利用待定系数法求出直线AD 的解析式为6y x =−+,联立反比例函数和一次函数,即可求出点C 的坐标. 【详解】(1)解:AB y ⊥轴,90ABO ∴∠=︒,1tan 2AOB =∠,12AB OB ∴=,2AB =,4OB ∴=,()2,4A ∴,点A 在反比例函数()0ky x x =>的图象上,248k ∴=⨯=,∴反比例函数的解析式为8y x =;(2)解:如图,过点A 作AE x ⊥轴于点E ,90ABO BOE AEO ∠=∠=∠=︒,∴四边形ABOE 是矩形,2OE AB ∴==,4OB AE ==,45ADO ∠=︒,AED ∴是等腰直角三角形, 4DE AE ∴==,246OD OE DE ∴=+=+=,()6,0D ∴,设直线AD 的解析式为y kx b =+,2460k b k b +=⎧∴⎨+=⎩,解得:16k b =−⎧⎨=⎩, ∴直线AD 的解析式为6y x =−+,点A 、C 是反比例函数8y x =和一次函数6y x =−+的交点,联立86y x y x ⎧=⎪⎨⎪=−+⎩,解得:24x y =⎧⎨=⎩或42x y =⎧⎨=⎩,()2,4A , ()4,2C ∴.【点睛】本题是反比例函数综合题,考查了锐角三角函数值,矩形的判定和性质,待定系数法求函数解析式,反比例函数和一次函数交点问题等知识,求出直线AD 的解析式是解题关键.(1)求反比例函数的表达式和点E 的坐标;(2)若一次函数y x m =+与反比例函数的部分时(点M 可与点,D E 重合)【答案】(1)反比例函数解析式为y x =,()22E ,(2)30m −≤≤【分析】(1)根据矩形的性质得到BC OAAB OA ∥,⊥,再由()4,1D 是AB 的中点得到()42B ,,从而得到点E的纵坐标为2,利用待定系数法求出反比例函数解析式,进而求出点E 的坐标即可; (2)求出直线y x m =+恰好经过D 和恰好经过E 时m 的值,即可得到答案. 【详解】(1)解:∵四边形OABC 是矩形,∴BC OAAB OA ∥,⊥, ∵()4,1D 是AB 的中点, ∴()42B ,,∴点E 的纵坐标为2,∵反比例函数()0ky x x =>的图象分别与,AB BC 交于点()4,1D 和点E ,∴14k =,∴4k =,∴反比例函数解析式为4y x =,在4y x =中,当42y x ==时,2x =, ∴()22E ,;(2)解:当直线 y x m =+经过点()22E ,时,则22m +=,解得0m =; 当直线 y x m =+经过点()41D ,时,则41m +=,解得3m =−;∵一次函数y x m =+与反比例函数()0ky x x =>的图象相交于点M ,当点M 在反比例函数图象上,D E 之间的部分时(点M 可与点,D E 重合), ∴30m −≤≤.【点睛】本题主要考查了求一次函数解析式,一次函数与反比例函数综合,矩形的性质等等,灵活运用所学知识是解题的关键.【答案】(1)反比例函数的表达式为y x =−;一次函数的表达式为22y x =−+(2)142BC =【分析】(1)利用待定系数法即可求解;(2)先求得直线BC 的表达式为1y =,再分别求得B C 、的坐标,据此即可求解.【详解】(1)解:∵反比例函数()0ky x x =<的图象经过点()1,4A −,∴144k =−⨯=−, ∴反比例函数的表达式为4y x =−;∵一次函数2y x m =−+的图象经过点()1,4A −,∴()421m=−⨯−+,∴2m =,∴一次函数的表达式为22y x =−+; (2)解:∵1OD =, ∴()01D ,,∴直线BC 的表达式为1y =, ∵1y =时,14x =−,解得4x =−,则()41B −,,∵1y =时,122x =−+,解得12x =,则112C ⎛⎫ ⎪⎝⎭,,∴()114422BC =−−=.【点睛】本题考查一次函数、反比例函数图象上点的坐标特征,待定系数法是求函数解析式的基本方法.(1)求反比例函数和一次函数的表达式;(2)求AOB 的面积; (3)请根据图象直接写出不等式【答案】(1)12y x =−,32y x =−+(2)9(3)<2x −或04x <<【分析】(1)把点B 代入反比例函数()0ky k x =≠,即可得到反比例函数的解析式;把点A 代入反比例函数,即可求得点A 的坐标;把点A 、B 的坐标代入一次函数一次函数()0y ax b a =+<即可求得a 、b 的值,从而得到一次函数的解析式;(2)AOB 的面积是AOC 和BOC 的面积之和,利用面积公式求解即可;(3)利用图象,找到反比例函数图象在一次函数图象下方所对应的x 的范围,直接得出结论. 【详解】(1)∵点()4,3B −在反比例函数ky x =的图象上,∴34k −=, 解得:12k =− ∴反比例函数的表达式为12y x =−.∵(),3A m m −在反比例函数12y x =−的图象上,∴123m m =−−,解得12m =,22m =−(舍去).∴点A 的坐标为()2,6−.∵点A ,B 在一次函数y ax b =+的图象上,把点()2,6A −,()4,3B −分别代入,得2643a b a b −+=⎧⎨+=−⎩,解得323a b ⎧=−⎪⎨⎪=⎩,∴一次函数的表达式为332y x =−+; (2)∵点C 为直线AB 与y 轴的交点,∴把0x =代入函数332y x =−+,得3y = ∴点C 的坐标为()0,3 ∴3OC =,∴AOB AOC BOC SS S =+ 1122A B OC x OC x =⋅⋅+⋅⋅11323422=⨯⨯+⨯⨯9=.(3)由图象可得,不等式k ax b x <+的解集是<2x −或04x <<.【点睛】此题是反比例函数与一次函数的交点问题,考查了待定系数法求函数的解析式,三角形面积,函数与不等式的关系,求出两个函数解析式是解本题的关键.。

中考数学《反比例函数》专项练习(附答案解析)

中考数学《反比例函数》专项练习(附答案解析)

中考数学《反比例函数》专项练习(附答案解析)一、综合题1.已知:如图1,函数y1=kx 和y2=xk(k>1)的图象相交于点A和点B .(1)求点A和点B的坐标(用含k的式子表示);(2)如图2,点C的坐标为(1,k),点D是第一象限内函数y1的图象上的动点,且在点A的右侧,直线AC、BC、AD、BD分别与x轴相交于点E、F、G、H .①判定△CEF的形状,并说明理由;②点D在运动的过程中,∠CAD和∠CBD的度数和是否变化?如果变化,说明理由;如果不变,求出∠CAD和∠CBD的度数和.2.在平面直角坐标系中,我们把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(-2,-2),(√2,√2),…都是“梦之点”,显然“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=nx(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s-1(k,s为常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由.3.如图,点A是坐标原点,点D是反比例函数y=6x(x>0)图象上一点,点B在x轴上,AD=BD,四边形ABCD是平行四边形,BC交反比例函数y=6x(x>0)图象于点E.(1)平行四边形BCD 的面积等于 ;(2)设D 点横坐标为m ,试用m 表示点E 的坐标;(要有推理和计算过程) (3)求 CE:EB 的值; (4)求 EB 的最小值.4.如图,一次函数y=kx+b 的图象与反比例函数y= mx 的图象交于点A (﹣3,m+8),B (n ,﹣6)两点.(1)求一次函数与反比例函数的解析式; (2)求△AOB 的面积.5.已知双曲线y=1x (x >0),直线l 1:y ﹣√2=k (x ﹣√2)(k <0)过定点F 且与双曲线交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2)(x 1<x 2),直线l 2:y=﹣x+√2. (1)若k=﹣1,求△OAB 的面积S ; (2)若AB=52√2,求k 的值;(3)设N (0,2√2),P 在双曲线上,M 在直线l 2上且PM ∥x 轴,求PM+PN 最小值,并求PM+PN 取得最小值时P 的坐标.(参考公式:在平面直角坐标系中,若A (x 1,y 1),B (x 2,y 2)则A ,B 两点间的距离为AB=√(x 1−x 2)2+(y 1−y 2)2)6.已知反比例函数y=1−2mx( m为常数)的图象在一、三象限.(1)求m的取值范围.(2)如图,若该反比例函数的图象经过▱ ABCD的顶点D,点A,B的坐标分别为(0,3),(-2,0).①求出反比例函数表达式;②设点P是该反比例函数图象上的一点,若OD=OP,则P点的坐标为▲ .若以D,O,P为顶点的三角形是等腰三角形,则满足条件的点P的个数为▲ .7.绘制函数y=x+1x的图象,我们经历了如下过程:确定自变量x的取值范围是x≠0;列表﹣﹣描点﹣﹣连线,得到该函数的图象如图所示.x …-4 -3 -2 -1 −12−13−141413121 2 3 4 …y …−414−313−212−2−212−313−4144143132122 212313414…观察函数图象,回答下列问题:(1)函数图象在第象限;(2)函数图象的对称性是A.既是轴对称图形,又是中心对称图形B.只是轴对称图形,不是中心对称图形C.不是轴对称图形,而是中心对称图形D.既不是轴对称图形,也不是中心对称图形(3)在x>0时,当x=时,函数y有最(大,小)值,且这个最值等于;在x<0时,当x=时,函数y有最(大,小)值,且这个最值等于;=−2x+1是否有实数解?说明理由.(4)方程x+1x8.菱形ABCD在平面直角坐标系中的位置如图所示,对角线AC与BD的交点E恰好在y轴上,过点D和BC的中点H的直线交AC于点F,线段DE,CD的长是方程x2﹣9x+18=0的两根,请解答下列问题:(1)求点D的坐标;(k≠0)的图象经过点H,则k= ;(2)若反比例函数y= kx(3)点Q在直线BD上,在直线DH上是否存在点P,使以点F,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.9.设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数解析式,并画出这个函数的图象;的图象与函数y1的图象相交于点A,且点A的纵坐标为2.(2)若反比例函数y2=kx①求k的值;②结合图象,当y1>y2时,写出x的取值范围.10.受新冠肺炎疫情的影响,运城市某化工厂从2020年1月开始产量下降.借此机会,为了贯彻“发展循环经济,提高工厂效益”的绿色发展理念;管理人员对生产线进行为期5个月的升级改造,改造期间的月利润与时间成反比例函数;到5月底开始恢复全面生产后,工厂每月的利润都比前一个月增加10万元.设2020年1月为第1个月,第x个月的利润为y万元,其图象如图所示,试解决下列问题:(1)分别写出该化工厂对生产线进行升级改造前后,y与x的函数表达式.(2)到第几个月时,该化工厂月利润才能再次达到100万元?(3)当月利润少于50万元时,为该化工厂的资金紧张期,问该化工厂资金紧张期共有几个月?11.(如图,四边形ABCD在平面直角坐标系的第一象限内,其四个顶点分别在反比例函数y1=nx 与y2=4nx的图象上,对角线AC⊥BD于点P,AC⊥x轴于点N(2,0)(1)若CN=12,试求n的值;(2)当n=2,点P是线段AC的中点时,试判断四边形ABCD的形状,并说明理由;(3)直线AB与y轴相交于E点.当四边形ABCD为正方形时,请求出OE的长度.12.如图点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA= √5,反比例函数y= kx(k>0)的图象过CD的中点E.(1)求证:△AOB≌△DCA;(2)求k的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,试判断点G是否在反比例函数的图象上,并说明理由.13.如图所示,一次函数y=kx+b的图象与x轴、y轴分别交于点A、B,且与反比例函数y=m的图象在第二象限交于点C,CD⊥x轴,垂足为点D.若OB=2OA=3OD= x12 .(1)求一次函数与反比例函数的解析式;(2)若两函数图象的另一个交点为E,连结DE,求△CDE的面积;(3)直接写出不等式kx+b≤m的解集.x与y2= 14.某校九年级数学小组在课外活动中,研究了同一坐标系中两个反比例函数y1=k1xk2(k2>k1>0)在第一象限图象的性质,经历了如下探究过程:x操作猜想:(1)如图①,当k1=2,k2=6时,在y轴的正方向上取一点A作x轴的平行线交y1于点B,交y2于点C .当OA=1时,AB=,BC=,BC AB =;当OA=3时,AB=,BC=,BCAB=;当OA=a时,猜想BCAB=(2)在y轴的正方向上任意取点A作x轴的平行线,交y1于点B、交y2于点C,请用含k1、k2的式子表示BCAB的值,并利用图②加以证明.(3)如图③,若k2=12,BCAB =12,在y轴的正方向上分别取点A、D(OD>OA)作x轴的平行线,交y1于点B、E,交y2于点C、F,是否存在四边形ADFB是正方形?如果存在,求OA的长和点B的坐标;如果不存在,请说明理由.15.如图,直线y=2x+2与y轴交于A点,与反比例函数y=kx(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.(1)求H点的坐标及k的值;(2)点P在y轴上,使△AMP是以AM为腰的等腰三角形,请直接写出所有满足条件的P 点坐标;(3)点N(a,1)是反比例函数y=kx(x>0)图象上的点,点Q(m,0)是x轴上的动点,当△MNQ的面积为3时,请求出所有满足条件的m的值.16.如图,双曲线y1=k1x与直线y2=xk2的图象交于A、B两点.已知点A的坐标为(4,1),点P(a,b)是双曲线y1=k1x上的任意一点,且0<a<4.(1)分别求出y1、y2的函数表达式;(2)连接PA、PB,得到△PAB,若4a=b,求三角形ABP的面积;(3)当点P在双曲线y1=k1x上运动时,设PB交x轴于点E,延长PA交x轴于点F,判断PE与PF的大小关系,并说明理由.参考答案与解析1.【答案】(1)解:由题意,联立{y=kxy=xk,解得{x=ky=1或{x=−ky=−1,∵点A在第一象限,点B在第二象限,且k>1,∴A(k,1),B(−k,−1)(2)解:①△CEF是等腰直角三角形,理由如下:设直线BC的解析式为y=k0x+b0,将点B(−k,−1),C(1,k)代入得:{−kk0+b0=−1k0+b0=k,解得{k0=1b0=k−1,则直线BC的解析式为y=x+k−1,当y=0时,x+k−1=0,解得x=1−k,即F(1−k,0),同理可得:点E的坐标为E(1+k,0),∴CF=√(1−k−1)2+(0−k)2=√2k,CE=√(1+k−1)2+(0−k)2=√2k,EF=1+k−(1−k)=2k,∴CE=CF,CE2+CF2=4k2=EF2,∴△CEF是等腰直角三角形;②由题意,设点D的坐标为D(m,km),则m>k>1,∵△CEF是等腰直角三角形,∴∠CFE=∠CEF=45°,∴∠BFH=∠AEG=135°,设直线BD的解析式为y=k1x+b1,将点B(−k,−1),D(m,km )代入得:{−kk1+b1=−1mk1+b1=km,解得{k1=1mb1=k−mm,则直线BD的解析式为y=1m x+k−mm,当y=0时,1m x+k−mm=0,解得x=m−k,即H(m−k,0),同理可得:点G的坐标为G(k+m,0),∴DH=√(m−k−m)2+(0−km )2=km√1+m2,DG=√(k+m−m)2+(0−km )2=km√1+m2,∴DH=DG,∴∠DHG=∠DGH,∵∠DHG=∠BHF,∴∠DGH=∠BHF,∴∠CAD+∠CBD=∠AEG+∠DGH+∠CBD,=∠BFH+∠BHF+∠CBD,=180°,即∠CAD与∠CBD的度数和不变,度数和为180°2.【答案】(1)解:根据题意,“梦之点”就是有关函数图象与直线y=x的交点,其坐标就是对应的方程组的解.由题意可得:m=2由点P(2, 2)在反比例函数y=nx图象上,可得n=2×2=4故所求的反比例函数的解析式为y=4x(2)解:由题意可得:(Ⅰ)当k=0时,y=s−1,此时“梦之点”的坐标为(s−1, s−1 ) . (Ⅱ)当k≠0 时, (3k−1)x=1−s显然,此方程的解的情况决定函数y=3kx+s−1的图象上“梦之点”的存在情况,当k=13, s≠1时,方程无解,不存在“梦之点”;当k=13, s=1时,方程有无数个解,此时存在无数个“梦之点”,“梦之点”的坐标可表示为(ℎ,ℎ)(ℎ为任意实数);当k≠13时,得{x=1−s3k−1y=1−s3k−1,即“梦之点”的坐标为(1−s3k−1, 1−s3k−1)3.【答案】(1)12(2)解:由题意D(m,6m),由(1)可知AB=2m,∵四边形ABCD是平行四边形,∴CD=AB=2m,∴C(3m,6m) .∵B(2m,0),C(3m,6m),∴直线BC的解析式为y=6m2x−12m,由{y=6xy=6m2x−12m,解得{x=(√2+1)my=6√2−6m或{x=(1−√2)my=6(1+√2)m(舍弃),∴E((√2+1)m,6√2−6m);(3)解:作EF⊥x轴于F,CG⊥x轴于G . ∵EF//CG,∴CE BE=FG BF=√2+1)m (√2+1)m−2m =√2√2−1=√2 ;(4)解:∵CEBE =√2 ∴BE =√2+1 ,要使得 BE 最小,只要 AD 最小, ∵AD =√m 2+36m 2=√(m −6m )2+12 ,∴AD 的最小值为 2√3 , ∴BE 的最小值为√3√2+1=2√6−2√3 .4.【答案】(1)解:将A (﹣3,m+8)代入反比例函数y= mx 得,m −3=m+8,解得m=﹣6, m+8=﹣6+8=2,所以,点A 的坐标为(﹣3,2), 反比例函数解析式为y=﹣ 6x ,将点B (n ,﹣6)代入y=﹣ 6x 得,﹣ 6n =﹣6, 解得n=1,所以,点B 的坐标为(1,﹣6),将点A (﹣3,2),B (1,﹣6)代入y=kx+b 得, {−3k +b =2k +b =−6 , 解得 {k =−2b =−4,所以,一次函数解析式为y=﹣2x ﹣4; (2)解:设AB 与x 轴相交于点C , 令﹣2x ﹣4=0解得x=﹣2, 所以,点C 的坐标为(﹣2,0), 所以,OC=2, S △AOB =S △AOC +S △BOC , = 12 ×2×3+ 12 ×2×1,=3+1, =4.5.【答案】(1)解:当k=-1时,l 1:y=﹣x+2√2, 联立得,{y =−x +2√2y =1x ,化简得x 2﹣2√2x+1=0, 解得:x 1=√2﹣1,x 2=√2+1,设直线l 1与y 轴交于点C ,则C (0,2√2). S △OAB =S △AOC ﹣S △BOC =12•2√2•(x 2﹣x 1)=2√2;(2)解:根据题意得:{y −√2=k(x −√2)y =1x 整理得:kx 2+√2(1﹣k )x ﹣1=0(k <0), ∵△=[√2(1﹣k )]2﹣4×k ×(﹣1)=2(1+k 2)>0, ∴x 1、x 2 是方程的两根, ∴{x 1+x 2=√2(k−1)k x 1·x 2=−1k①, ∴AB=√(x 1−x 2)2+(y 1−y 2)2=√(x 1−x 2)2+(1x 1−1x 2)2=√(x 1−x 2)2(1+1x 12·x 22)=√[(x 1+x 2)2−4x 1x 2](1+1x 12·x 22),将①代入得,AB=√2(k 2+1)2k 2=√2(k 2+1)−k (k <0),∴√2(k 2+1)−k =5√22,整理得:2k2+5k+2=0,解得:k=﹣2,或 k=12;(3)解:∵直线l1:y﹣√2=k(x﹣√2)(k<0)过定点F, ∴ F(√2,√2).如图:设P(x,1x ),则M(﹣1x+√2,1x),则PM=x+1x ﹣√2=√(x+1x−√2)2=√x2+1x2−2√2(x+1x)+4,∵PF=√(x−√2)2+(1x −√2)2=√x2+1x2−2√2(x+1x)+4,∴PM=PF.∴PM+PN=PF+PN≥NF=2,当点P在NF上时等号成立,此时NF的方程为y=﹣x+2√2,由(1)知P(√2﹣1,√2+1),∴当P(√2﹣1,√2+1)时,PM+PN最小值是2.6.【答案】(1)解:根据题意,得1−2m>0,解得m<12,∴m的取值范围是m<12.(2)解:①∵四边形ABCD是平行四边形,A(0,3),B(−2,0),∴D(2,3) .把D(2,3)代入y=1−2mx ,得3=1−2m2,∴1−2m=6 .∴反比例函数表达式为y=6x;②(3,2)或(-2,-3)或(-3,-2);4 7.【答案】(1)一、三(2)C(3)1;小;2;−1;大;−2(4)解:方程x + 1x =﹣2x +1没有实数解,理由为:y =x + 1x 与y =﹣2x +1在同一直角坐标系中无交点.8.【答案】(1)解:x 2﹣9x+18=0, (x ﹣3)(x ﹣6)=0, x=3或6, ∵CD >DE , ∴CD=6,DE=3, ∵四边形ABCD 是菱形,∴AC ⊥BD ,AE=EC= √62−32 =3 √3 , ∴∠DCA=30°,∠EDC=60°, Rt △DEM 中,∠DEM=30°, ∴DM= 12 DE= 32 , ∵OM ⊥AB ,∴S 菱形ABCD = 12 AC •BD=CD •OM , ∴12×6√3×6 =6OM ,OM=3 √3 , ∴D (﹣ 32 ,3 √3 ) (2)解:(3)解:如图1,①∵DC=BC ,∠DCB=60°, ∴△DCB 是等边三角形, ∵H 是BC 的中点,∴DH⊥BC,∴当Q与B重合时,如图1,四边形CFQP是平行四边形,∵FC=FB,∴∠FCB=∠FBC=30°,∴∠ABF=∠ABC﹣∠CBF=120°﹣30°=90°,∴AB⊥BF,CP⊥AB,Rt△ABF中,∠FAB=30°,AB=6,∴FB=2 √3 =CP,,√3);∴P(92②如图2,∵四边形QPFC是平行四边形,∴CQ∥PH,由①知:PH⊥BC,∴CQ⊥BC,Rt△QBC中,BC=6,∠QBC=60°,∴∠BQC=30°,∴CQ=6 √3,连接QA,∵AE=EC,QE⊥AC,∴QA=QC=6 √3,∴∠QAC=∠QCA=60°,∠CAB=30°,∴∠QAB=90°,∴Q(﹣92,6 √3),由①知:F(32,2 √3),由F到C的平移规律可得P到Q的平移规律,则P(﹣92﹣3,6 √3﹣√3),即P(﹣152,5 √3);③如图3,四边形CQFP是平行四边形,同理知:Q(﹣92,6 √3),F(32,2 √3),C(92,3 √3),∴P(212,﹣√3);综上所述,点P的坐标为:(92,√3)或(﹣152,5 √3)或(212,﹣√3).9.【答案】(1)解:由题意y1=|x|.函数图象如图所示:(2)解:①当点A在第一象限时,由题意A(2,2),∴2=k2,∴k=4.同法当点A在第二象限时,k=−4,②观察图象可知:当k>0时,x>2时,y1>y2或x<0时,y1>y2.当k<0时,x<−2时,y1>y2或x>0时,y1>y2.10.【答案】(1)解:由题意得,设前5个月中y= kx,把x=1,y=100代入得,k=100,∴y与x之间的函数关系式为y= 100x(0<x<5,且x为整数),把x=5代入,得y=20,由题意设5月份以后y与x的函数关系式为y=10x+b,把x=5,y=20代入得,20=10×5+b,解得:b=-30,∴y与x之间的函数关系式为y=10x-30(x>5且x为整数);(2)解:在函数y=10x−30中,令y=100,得10x−30=100解得:x=13答:到第13个月时,该化工厂月利润再次达到100万元.(3)解:在函数y=100x中,当y=50时,x=2,∵100>0,y随x的增大而减小,∴当y<50时,x>2在函数y=10x−30中,当y<50时,得10x−30<50解得:x<8∴2<x<8且x为整数;∴x可取3,4,5,6,7;共5个月.答:该化工厂资金紧张期共有5个月.11.【答案】(1)解:∵点N的坐标为(2,0),CN⊥x轴,且CN=12,∴点C的坐标为(2,12).∵点C在反比例函数y1=nx的图象上,∴n=2×12=1.(2)解:四边形ABCD为菱形,理由如下:当n=2时,y1=nx=2x,y2=4nx=8x.当x=2时,y1=2x=1,y2=8x=4,∴点C的坐标为(2,1),点A的坐标为(2,4).∵点P是线段AC的中点,∴点P 的坐标为(2, 52 ). 当y = 52 时, 2x = 52 , 8x = 52 , 解得:x = 45 ,x = 165 ,∴点B 的坐标为( 45 , 52 ),点D 的坐标为( 165 , 52 ), ∴BP =2﹣ 45 = 65 ,DP = 165 ﹣2= 65 , ∴BP =DP .又∵AP =CP ,AC ⊥BD , ∴四边形ABCD 为菱形.(3)解:∵四边形ABCD 为正方形, ∴AC =BD ,且点P 为线段AC 及BD 的中点. 当x =2时,y 1= 12 n ,y 2=2n ,∴点A 的坐标为(2,2n ),点C 的坐标为(2, 12 n ),AC = 32 n , ∴点P 的坐标为(2, 54 n ).同理,点B 的坐标为( 45 , 54 n ),点D 的坐标为( 165 , 54 n ),BD = 125 . ∵AC =BD , ∴32 n = 125 , ∴n = 85 ,∴点A 的坐标为(2, 165 ),点B 的坐标为( 45 ,2). 设直线AB 的解析式为y =kx+b (k ≠0),将A (2, 165 ),B ( 45 ,2)代入y =kx+b ,得: {2k +b =16545k +b =2 ,解得: {b =65k =1 ,∴直线AB 的解析式为y =x+ 65 . 当x =0时,y =x+ 65 = 65 , ∴点E 的坐标为(0, 65 ),∴当四边形ABCD为正方形时,OE的长度为6.512.【答案】(1)证明:∵点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴,∴∠AOB=∠DCA=90°,在Rt△AOB和Rt△DCA中,AO=CD,AB=DA∴Rt△AOB≌Rt△DCA(HL)(2)解:在Rt△ACD中,CD=2,AD= √5,∴AC= =1,∴OC=OA+AC=2+1=3,∴D点坐标为(3,2),∵点E为CD的中点,∴点E的坐标为(3,1),k=3×1=3(3)解:点G在反比例函数的图象上.理由如下:∵△BFG和△DCA关于某点成中心对称,∴△BFG≌△DCA,∴FG=CA=1,BF=DC=2,∠BFG=∠DCA=90°,而OB=AC=1,∴OF=OB+BF=1+2=3,∴G点坐标为(1,3),∵1×3=3,∴G(1,3)在反比例函数y= 的图象上13.【答案】(1)解:∵OB =2OA =3OD =12 ∴OA =6,OD =4 ∴A(6,0),B(0,12)把 A(6,0),B(0,12) 分别代入 y =kx +b 得: {6k +b =0b =12 ,解之得: m =−4×20=−80 ∴一次函数的解析式为 y =−2x +12 令 x =−4 ,则 y =20 ∴C(−4,20)把 C(−4,20) 代入 y =mx 得:m =−4×20=−80∴反比例函数的解析式为 y =−80x ; (2)解:解方程组 {y =−2x +12y =−80x 得: {x 1=−4y 1=20,{x 2=10y 2=−8∴E(10,−8)∴S ΔCDE =S ΔADC +S ΔADE=12AD ⋅(CD +|y E |)=12×(4+6)×(20+8) =140(3)解:如图:当x <-4时, y =mx 的图象在 y =kx +b 的下方,即 kx +b > mx ; 当 −4 ≤ x <0 时, y =mx 的图象在 y =kx +b 的上方,即 kx +b ≤ mx ; 当0<x <10时, y =mx 的图象在 y =kx +b 的下方,即 kx +b > mx ; 当 x ≥10时, y =mx 的图象在 y =kx +b 的上方,即 kx +b ≤ mx ; 综上可得,不等式 kx +b ≤ mx 的解集为 −4 ≤ x <0 或 x ≥10. 14.【答案】(1)2;4;2;23;43;2;2 数学思考: (2)BCAB =k 2−k 1k 1证明:∵AB ·OA =k 1 , AC ·OA =k 2 , ∴AC ·OA −AB ·OA =BC ·OA =k 2−k 1 ,∴BCAB =BC·OAAB·OA=k2−k1k1.推广应用:(3)解:若四边形ADFB是正方形,设点B的坐标为(a,b)(a>0,b>0),则有DF=DA=AB=a,OA=b,OD=a+b,∴点F的坐标为(a,a+b) .∵k2=12,BCAB =k2−k1k1=12,∴12−k1k1=12,解得:k1=8 .∵点B在y=8x 图象上,点F在y=12x图象上,∴ab=8,a (a+b)=12,∴a2=12−8=4,∴a=2,∴b=4,∴OA=4,点B的坐标为(2,4) .15.【答案】(1)解:由y=2x+2可知A(0,2),即OA=2,∵tan∠AHO=2,∴OH=1,∴H(1,0),∵MH⊥x轴,∴点M的横坐标为1,∵点M在直线y=2x+2上,∴点M的纵坐标为4,即M(1,4),∵点M在y=kx上,∴k=1×4=4;(2)解:①当AM=AP时,∵A(0,2),M(1,4),∴AM=√5,则AP=AM=√5,∴此时点P的坐标为(0,2﹣√5)或(0,2+ √5);②若AM=PM时,设P(0,y),则PM=√(1−0)2+(4−y)2,∴√(1−0)2+(4−y)2=√5,解得y=2(舍)或y=6,此时点P的坐标为(0,6),综上所述,点P的坐标为(0,6)或(0,2+ √5),或(0,2﹣√5);(3)解:∵点N(a,1)在反比例函数y=4x(x>0)图象上,∴a=4,∴点N(4,1),延长MN交x轴于点C,设直线MN的解析式为y=mx+n,则有{m+n=44m+n=1,,解得{m=−1n=5,∴直线MN的解析式为y=﹣x+5.∵点C是直线y=﹣x+5与x轴的交点,∴点C的坐标为(5,0),OC=5,∵S△MNQ=3,∴S△MNQ =S△MQC﹣S△NQC=12×QC×4﹣12×QC×1=32QC=3,∴QC=2,∵C(5,0),Q(m,0),∴|m﹣5|=2,∴m=7或3,故答案为7或3.16.【答案】(1)解:把点A(4,1)代入双曲线y1=k1x得k1=4,∴双曲线的解析式为y1=4x;把点A(4,1)代入直线y2=x k2得k2=4,∴直线的解析式为y2=14x(2)解:∵点P(a,b)在y1=4x的图象上,∴ab=4,∵4a=b,∴4a2=4,则a=±1,∵0<a<4,∴a=1,∴点P的坐标为(1,4),又∵双曲线y1=4x 与直线y2=14x的图象交于A、B两点,且点A的坐标为(4,1),∴点B的坐标为(−4,−1),过点P作PG∥y轴交AB于点G,如图所示,把x=1代入y2=14x,得到y=14,∴点G的坐标为(1,14),∴PG =4−14=154 , ∴S △ABP =12 PG ( x A −x B )=12×154×8=15 (3)解:PE=PF .理由如下:∵点P ( a , b )在 y 1=4x 的图象上,∴b =4a ,∵点B 的坐标为( −4 , −1 ), 设直线PB 的表达式为 y =mx +n , ∴{am +n =4a −4m +n =−1, ∴{m =1a n =4a −1, ∴直线PB 的表达式为 y =1a x +4a −1 , 当 y =0 时, x =a −4 ,∴E 点的坐标为( a −4 ,0), 同理:直线PA 的表达式为 y =−1a x +4a +1 , 当 y =0 时, x =a +4 ,∴F 点的坐标为( a +4 ,0),过点P 作PH ⊥x 轴于H ,如图所示,∵P 点坐标为(,∴H 点的坐标为( a ,0),∴EH =x H −x E =a −(a −4)=4 , FH =x F −x H =a +4−a =4 , ∴EH=FH ,∴PE=PF .。

中考数学反比例函数综合题及答案解析.doc

中考数学反比例函数综合题及答案解析.doc

中考数学反比例函数综合题及答案解析一、反比例函数1.已知反比例函数y=的图象经过点A(﹣,1).(1)试确定此反比例函数的解析式;(2)点 O 是坐标原点,将线段 OA 绕 O 点顺时针旋转 30°得到线段 OB.判断点 B 是否在此反比例函数的图象上,并说明理由;(3)已知点P(m,m+6)也在此反比例函数的图象上(其中m< 0),过P 点作 x 轴的垂线,交x 轴于点 M .若线段PM 上存在一点Q,使得△ OQM 的面积是,设Q点的纵坐标为 n,求 n2﹣ 2n+9 的值.【答案】(1)解:由题意得1=,解得k=﹣,∴反比例函数的解析式为y=﹣(2)解:过点 A 作 x 轴的垂线交x 轴于点 C.在 Rt△ AOC中, OC=,AC=1,∴OA==2,∠ AOC=30 ,°∵将线段 OA 绕 O 点顺时针旋转30 °得到线段OB,∴∠ AOB=30 ,°OB=OA=2,∴∠ BOC=60 .°过点 B 作 x 轴的垂线交x 轴于点 D.在 Rt△ BOD 中, BD=OB?sin∠ BOD=,OD=OB=1,∴B 点坐标为(﹣ 1 ,),将 x=﹣ 1 代入 y=﹣中,得y=,∴点 B(﹣ 1,)在反比例函数y=﹣的图象上(3)解:由y=﹣得xy=﹣,∵点 P( m,m+6)在反比例函数y=﹣的图象上,其中m< 0,∴m(m+6) =﹣∴m2+2m+1=0,,∵PQ⊥ x 轴,∴ Q 点的坐标为( m, n).∵△ OQM 的面积是,∴OM?QM= ,∵m< 0,∴ mn=﹣ 1,∴m2n2 +2mn2 +n2=0,∴n 2﹣ 2 n=﹣1,∴n 2﹣ 2 n+9=8.【解析】【分析】( 1)由于反比例函数y= 的图象经过点 A(﹣, 1),运用待定系数法即可求出此反比例函数的解析式;(2)首先由点 A 的坐标,可求出OA 的长度,∠AOC 的大小,然后根据旋转的性质得出∠AOB=30 ,°OB=OA,再求出点B 的坐标,进而判断点 B 是否在此反比例函数的图象上;(3)把点 P( m,m+6)代入反比例函数的解析式,得到关于m 的一元二次方程;根据题意,可得Q 点的坐标为( m, n ),再由△OQM 的面积是,根据三角形的面积公式及式变形,把mn 的值代入,即可求出n2﹣2m< 0,得出n+9 的值.mn 的值,最后将所求的代数2.如图, P1、 P2( P2在P1的右侧)是y= ( k> 0)在第一象限上的两点,点A1的坐标为(2, 0).( 1)填空:当点 P1的横坐标逐渐增大时,11 的面积将 ________(减小、不变、增△ P OA大)(2)若△ P1OA1与△ P2A1A2均为等边三角形,① 求反比例函数的解析式;②求出点P2的坐标,并根据图象直接写在第一象限内,当x 满足什么条件时,经过点P 、 P 的一次函数的函数值大于反比例函数y= 的函数值.1 2【答案】(1)减小(2)解:①如图所示,作 P1 1于点 B,B⊥ OA∵A1的坐标为( 2, 0),∴OA1=2,∵△ P1 OA1是等边三角形,∴∠ P1 OA1=60 °,又∵ P1 B⊥ OA1,∴OB=BA1=1,∴P1B=,∴P1的坐标为( 1,),代入反比例函数解析式可得k= ,∴反比例函数的解析式为y=;②如图所示,过P2作 P2C⊥ A1A2于点 C,∵△ P2 A1A2为等边三角形,∴∠ P2 A1A2=60 °,设A1C=x,则 P2C=x,∴点 P2的坐标为(2+x,x),代入反比例函数解析式可得(2+x)x=,解得 x1= ﹣ 1, x2=﹣﹣ 1(舍去),∴OC=2+ ﹣ 1= +1, P2C= (﹣ 1)=﹣,∴点 P 的坐标为(+1,﹣),2∴当 1< x<+1 时,经过点 P1 2的一次函数的函数值大于反比例函数y= 的函数值、 P【解析】【解答】解:( 1)当点 P1的横坐标逐渐增大时,点1P 离 x 轴的距离变小,而1OA 的长度不变,故△ P1 OA1的面积将减小,故答案为:减小;【分析】( 1)当点 P1的横坐标逐渐增大时,点P1离 x 轴的距离变小,而OA1的长度不变,故△ P1OA1的面积将减小;(2)①由 A1的坐标为( 2, 0),△P1 OA1是等边三角形,求出 P1的坐标,代入反比例函数解析式即可;②由△ P2A1A2为等边三角形,求出点P2的坐标,得出结论 .3.抛物线y=+x+m 的顶点在直线y=x+3 上,过点F(﹣ 2,2)的直线交该抛物线于点M、 N 两点(点M 在点 N 的左边), MA ⊥x 轴于点 A, NB⊥ x 轴于点 B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m 的代数式表示),再求m 的值;(2)设点 N 的横坐标为a,试用含 a 的代数式表示点N 的纵坐标,并说明NF=NB;(3)若射线NM 交 x 轴于点 P,且 PA?PB=,求点M的坐标.【答案】(1)解: y= x2+x+m=(x+2)2+(m﹣1)∴顶点坐标为(﹣2, m﹣ 1)∵顶点在直线y=x+3 上,∴﹣ 2+3=m﹣ 1,得m=2;(2)解:过点 F 作 FC⊥ NB 于点 C,∵点 N 在抛物线上,∴点 N 的纵坐标为:a2 +a+2,即点 N( a,a2+a+2)在Rt△ FCN中, FC=a+2, NC=NB﹣ CB= a2+a,∴NF2=NC2+FC2=( a2+a)2+( a+2)2,=(a2+a)2 +( a2+4a) +4,而NB2=( a2+a+2)2,=(a2+a)2 +( a2+4a) +4∴N F2=NB2,NF=NB(3)解:连接AF、 BF,由NF=NB,得∠ NFB=∠ NBF,由( 2)的思路知, MF=MA ,∴∠ MAF=∠ MFA,∵MA ⊥ x 轴, NB⊥ x 轴,∴MA ∥ NB,∴∠ AMF+∠BNF=180 °∵△ MAF 和△ NFB 的内角总和为360 ,°∴2∠ MAF+2∠ NBF=180 ,°∠ MAF+∠NBF=90 ,°∵∠ MAB+∠ NBA=180 ,°∴∠ FBA+∠ FAB=90 ,°又∵∠ FAB+∠ MAF=90°,∴∠ FBA=∠ MAF=∠ MFA,又∵∠ FPA=∠ BPF,∴△ PFA∽△ PBF,∴=,PF2=PA×PB=,过点 F 作 FG⊥ x 轴于点 G,在 Rt△ PFG中,PG==,∴PO=PG+GO=,∴P(﹣设直线解得 k= ∴直线, 0)PF: y=kx+b,把点, b=,PF: y= x+,F(﹣ 2, 2)、点P(﹣, 0)代入y=kx+b,解方程x2+x+2= x+,得 x=﹣ 3 或 x=2(不合题意,舍去),当 x=﹣ 3 时, y=,∴M (﹣ 3,).【解析】【分析】( 1)利用配方法将二次函数化成顶点式,写出顶点坐标,由顶点再直线y=x+3 上,建立方程求出m 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中中考反比例函数应用题一、选择1.已知反比例函数x ky =的图象经过点P(一l ,2),则这个函数的图象位于A .第二、三象限B .第一、三象限C .第三、四象限D .第二、四象限2.反比例函数x k y =在第一象限的图象如图所示,则x ky =的值可能是( )A .1B .2C .3D .43.如图5,A 、B 是函数x ky =的图象上关于原点对称的任意两点, BC ∥x k y =轴,AC ∥x k y =轴,△ABC 的面积记为x k y =,则( ) A .x k y = B . x k y = C .x k y = D .x k y =4.市一小数学课外兴趣小组的同学每人制作一个面积为200cm 2的矩形学具进行展示. 设矩形的宽为x cm ,长为y cm ,那么这些同学所制作的矩形长y (cm )与宽x (cm )之间的函数关系的图象大致是 ( )【关键词】反比例函数5.一次函数y =kx +b 与反比例函数y =kx 的图象如图5所示,则下列说法正确的是 ( )A .它们的函数值y 随着x 的增大而增大B .它们的函数值y 随着x 的增大而减小C .k <0D .它们的自变量x 的取值为全体实数6.如图,点x k y =在反比例函数x k y =(x > 0)的图象上,且横坐标为2. 若将点x ky =先向右平移两个单位,再向上平移一个单位后所得的像为点x k y =.则在第一象限内,经过点x ky =的反比例函数图象的解析式是A .x k y =B .x k y =C . x k y =D . x ky =7.一张正方形的纸片,剪去两个一样的小矩形得到一个“x ky =”图案,如图所示,设小矩形的长和宽分别为x k y =、x k y =,剪去部分的面积为20,若x k y =,则x k y =与x k y =的函数图象是( )8.在反比例函数x k y =的图象的每一条曲线上,x k y =的增大而增大,则x ky =的值可以是( )A .x k y =B .0C .1D .2【关键词】反比例函数9.如图,直线y=mx 与双曲线y=x ky =交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM,若x ky ==2,则k 的值是( )A .2B 、m-2C 、mD 、4【关键词】一次函数与反比例函数的综合应用10.如图,双曲线x ky =经过矩形QABC 的边BC 的中点E ,交AB 于点D 。

若梯形ODBC 的面积为3,则双曲线的解析式为A .x k y =x k y = B .x k y = C .x k y = D .x k y =11.在反比例函数x k y =的图象的每一条曲线上,x k y =的增大而增大,则x ky =的值可以是( )A .x k y =B .0C .1D .212.一个直角三角形的两直角边长分别为x k y =,其面积为2,则x k y =与x ky =之间的关系用图象表示大致为( )13.已知点M (-2,3 )在双曲线x ky =上,则下列各点一定在该双曲线上的是( )A.(3,-2 )B.(-2,-3 )C.(2,3 )D.(3,2)1.已知点A (x k y =)、B (x k y =)是反比例函数xk y =(x k y =)图象上的两点,若x k y =,则有( )A .x k y =B .x k y =C .x k y =D .x k y =14.反比例函数x k y =的图象经过点x k y =,则该反比例函数图象在( ) A .第一、三象限B .第二、四象限C .第二、三象限D .第一、二象限15.(2009年漳州)矩形面积为4,它的长x k y =与宽x ky =之间的函数关系用图象大致可表示为( )16.点x k y =在反比例函数xk y =(x k y =)的图象上,则k 的值是( ). A .x k y = B .x k y = C .xky = D .x k y =【关键词】反比例函数图像的性质17.如图2,在直角坐标系中,点x k y =是x k y =轴正半轴上的一个定点,点x ky =是yA B CO双曲线x k y =(x k y =)上的一个动点,当点x ky =的横坐标逐渐增大时,x ky =的面积将会A .逐渐增大B .不变C .逐渐减小D .先增大后减小二、填空:1.已知点A 是反比例函数x k y =图象上的一点.若x k y =垂直于x k y =轴,垂足为x k y =,则x ky =的面积x ky =.2.如图,已知双曲线xky =经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k =____________..3.请你写出一个图象在第一、三象限的反比例函数.答: .4.已知,点x k y =是反比例函数x k y =图像上的一个动点,x k y =的半径为1,当x ky =与坐标轴相交时,点x k y =的横坐标x k y =的取值范围是x k y =5反比例函数 xky =的图象经过点(2,1),则x ky =的值是 .【答案】16.反比例函数的图象经过点P (x ky =,1),则这个函数的图象位于第 象限.7.点A (2,1)在反比例函数x ky =的图像上,当1﹤x ﹤4时,y 的取值范围是 .8.函数x ky =的图象如图所示,则结论: ①两函数图象的交点x k y =的坐标为x k y =; ②当x k y =时,x k y =; ③当x k y =时,x k y =; ④当x k y =逐渐增大时,x k y =随着x k y =的增大而增大,x k y =随着x k y =的增大而减小.其中正确结论的序号是 .9.若梯形的下底长为x k y =,上底长为下底长的x k y =,高为x k y =,面积为60,则x k y =与x ky =的函数关系是____________.(不考虑x k y =的取值范围) 10.如图,点x k y =、x k y =是双曲线xky =上的点,分别经过x k y =、x k y =两点向x k y =轴、x k y =轴作垂线段,若x k y =则x k y =.11.反比例函数的图象经过点P (x ky =,1),则这个函数的图象位于第 象限. 12.(2009年清远)已知反比例函数k y x =的图象经过点(23),,则此函数的关系式是 . 13.如图4,反比例函数x k y =x k y =的图象与经过原点的直线x k y =相交于A 、B 两点,已知A 点坐标为x k y =,那么B 点的坐标为 .14.如图,⊙A 和⊙B 都与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数x ky =的图象上,则图中阴影部分的面积等于 .15.已知, A 、B 、C 、D 、E 是反比例函数x ky =(x>0)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是 (用含π的代数式表示)16.如图是反比例函数y =x ky =在第二象限内的图象,若图中的矩形OABC 的面积为2,则k =_▲_. 17.反比例函数的图象经过点P (x k y =,1),则这个函数的图象位于第 象限. 18、如图,在x k y =轴的正半轴上依次截取x k y =,过点x k y =分别作x k y =轴的垂线与反比例函数x k y =的图象相交于点x k y =,得直角三角形x k y =并设其面积分别为x k y =则x k y =的值为 ..18.如图,已知一次函数x k y =的图象与反比例函数x k y =的图象在第一象限相交于点x k y =,与x ky =轴相交于点x k y =轴于点x k y =,x k y =的面积为1,则x k y =的长为 (保留根号). 19.如图,过原点的直线l 与反比例函数x k y =的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是___________.在函数xk y =20.如图11,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都(x ky =)的图象上,则点E 的坐标是( , ).【关键词】反比例函数的图像和性质21.如图1,已知点C 为反比例函数xky =上的一点,过点C 向坐标轴引垂线,垂足分别为A 、B ,那么四边形AOBC 的面积为 .22. 13.若A(x 1,y 1),B(x 2,y 2)是双曲线x ky =上的两点,且x 1>x 2>0,则y 1 y 2(填“>”“=”“<”).23.如图,直线x k y =与双曲线x k y =(x ky =)交于点x k y =.将直线x k y =向右平移xky =个单位后,与双曲线xk y =(x k y =)交于点x k y =,与x k y =轴交于点x k y =,若x k y =,则x k y = .24.反比例函数x ky =图像的两支分别在第 象限.25.已知点x ky =是反比例函数图象上的一点,则此反比例函数图象的解析式是____________________________.26.如图,正方形OABC 的面积是4,点B 在反比例函数x ky =的图象上.若点R 是该反比例函数图象上异于点B 的任意一点,过点R 分别作x 轴、y 轴的垂线,垂足为M 、N ,从矩形OMRN 的面积中减去其与正方形OABC 重合部分的面积,记剩余部分的面积为S .则当S=m(m 为常数,且0<m<4)时,点R 的坐标是________________________ (用含m 的代数式表示)【关键词】反比例函数的面积三、解答:1.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量x k y =(毫克)与时间x k y =(分钟)成正比例;药物释放完毕后,x k y =与x ky =成反比例,如图9所示.根据图中提供的信息,解答下列问题: (1)写出从药物释放开始,x k y =与x ky =之间的两个函数 关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入教室,那么从药物释放开始, 至少需要经过多少小时后,学生才能进入教室?2.如图,曲线C 是函数xk y =在第一象限内的图象,抛物线是函数x k y =的图象.点x k y =(x k y =)在曲线C 上,且x ky =都是整数.(1)求出所有的点x k y =;(2)在x ky =中任取两点作直线,求所有不同直线的条数;(3)从(2)的所有直线中任取一条直线,求所取直线与抛物线有公共点的概率.3.已知图中的曲线是反比例函数x k y =(x ky =为常数)图象的一支. (Ⅰ) 这个反比例函数图象的另一支在第几象限?常数x k y =的取值范围是什么? (Ⅱ)若该函数的图象与正比例函数x k y =的图象在第一象内限的交点为x k y =,过x k y =点作x k y =轴的垂线,垂足为x k y =,当x k y =的面积为4时,求点x k y =的坐标及反比例函数的解析式.4.在反比例函数x k y =的图像的每一条曲线上,x k y =都随x ky =的增大而减小.(1) 求x ky =的取值范围;(2) 在曲线上取一点A ,分别向x k y =轴、x ky =轴作垂线段,垂足分别为B 、C ,坐标原 点为O ,若四边形ABOC 面积为6,求x k y =的值. 【关键词】反比例函数性质5.水产公司有一种海产品共2 104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:第1天 第2天第3天 第4天 第5天 第6天 第7天 第8天 售价x (元/千克)400 250 240 200 150 125 120 销售量y (千克)304048608096100观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y (千克)与销售价格x (元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y (千克)与销售价格x (元/千克)之间都满足这一关系.(1) 写出这个反比例函数的解析式,并补全表格;(2) 在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?6.水产公司有一种海产品共2 104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:第1天 第2天第3天 第4天 第5天 第6天 第7天 第8天 售价x (元/千克)400 250 240 200 150 125 120 销售量y (千克)304048608096100观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y (千克)与销售价格x (元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y (千克)与销售价格x (元/千克)之间都满足这一关系.(1) 写出这个反比例函数的解析式,并补全表格;(2) 在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3) 在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?7.已知:如图,在平面直角坐标系x k y =中,直线AB 分别与x ky =轴交于点B 、A ,与反比例函数的图象分别交于点C 、D ,x k y =轴于点E ,x k y =. (1)求该反比例函数的解析式;(2)求直线AB 的解析式.8.已知:如图,在平面直角坐标系x k y =O x k y =中,Rt △OCD 的一边OC 在x k y =轴上,∠C=90°,点D在第一象限,OC=3,DC=4,反比例函数的图象经过OD 的中点A . (1)求该反比例函数的解析式;(2)若该反比例函数的图象与Rt △OCD 的另一边DC 交于点B ,求过A 、B 两点的直线的解析式.x k y =,x ky =是该图象上的两点.(1)比较x k y =与x k y =的大小;(2)求x ky =的取值范围. 10.已知正比例函数x k y =x k y =与反比例函数x k y =的图象交于x k y =两点,点x k y =的坐标为x k y =.(1)求正比例函数、反比例函数的表达式;(2)求点x ky =的坐标.11.如图 7,已知一次函数x k y =(m 为常数)的图象与反比例函数 x k y =(k 为常数, x ky =)的图象相交于点 A (1,3).(1)求这两个函数的解析式及其图象的另一交点x ky =的坐标;(2)观察图象,写出使函数值x k y =的自变量x ky =的取值范围.12.如图,已知正比例函数和反比例函数的图象都经过点x ky =.(1)求正比例函数和反比例函数的解析式;(2)把直线O A 向下平移后与反比例函数的图象交于点x k y =,求x ky =的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x k y =轴、x ky =轴分别交于C 、D ,求过A 、B 、D 三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数的图象上是否存在点E ,使四边形O ECD 的面积x ky =与四边形O ABD 的面积S 满足:x ky =?若存在,求点E 的坐标;若不存在,请说明理由.13.如图,在平面直角坐标系中,直线AB 与Y 轴和X 轴分别交于点A 、点8,与反比例函数y 一罟在第一象限的图象交于点c(1,6)、点D(3,x).过点C 作CE 上y 轴于E ,过点D 作DF 上X 轴于F . (1)求m ,n 的值;(2)求直线AB 的函数解析式; (3)求证:△AEC ∽△DFB .14.如图14,已知x k y =,x k y =是一次函数x ky =的图象和反比例函数x ky =的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线x k y =与x k y =轴的交点x k y =的坐标及△x k y =的面积;(3)求方程x ky =的解(请直接写出答案); (4)求不等式x k y =的解集(请直接写出答案). 15.如图,已知直线y=ax+b 经过点A(0,-3),与x 轴交于点C ,且与双曲线相交于点B(-4,-a),D . ⑴求直线和双曲线的函数关系式;⑵求△CDO (其中O 为原点)的面积.16.已知:如图,正比例函数x k y =的图象与反比例函数x k y =的图象交于点x k y =(1)试确定上述正比例函数和反比例函数的表达式; (2)根据图象回答,在第一象限内,当x ky =取何值时,反比例函数的值大于正比例函数的值? (3)x k y =是反比例函数图象上的一动点,其中x k y =过点x k y =作直线x k y =轴,交x k y =轴于点x k y =;过点x k y =作直线x k y =轴交x k y =轴于点x k y =,交直线x k y =于点x k y =.当四边形x k y =的面积为6时,请判断线段x k y =与x k y =的大小关系,并说明理由.17.如图,反比例函数x k y =的图像与一次函数x k y =的图像交于点A(m,2),点B(-2, n ),一次函数图像与y 轴的交点为C 。

相关文档
最新文档