长沙市近50年降水特征及变化趋势
1956—2016_年中国年降水量及其年内分配演变特征
第34卷第2期2023年3月㊀㊀水科学进展ADVANCES IN WATER SCIENCE Vol.34,No.2Mar.2023DOI:10.14042/ki.32.1309.2023.02.0031956 2016年中国年降水量及其年内分配演变特征杜军凯1,仇亚琴1,李云玲2,卢㊀琼1,郝春沣1,刘海滢1(1.中国水利水电科学研究院,北京㊀100038;2.水利部水利水电规划设计总院,北京㊀100120)摘要:为分析中国降水时空演变格局,本文在月尺度上对水利部门与国家基本气象站的降水量监测数据进行融合,针对融合后的4177个站点,使用趋势分析㊁突变检验和年内分配向量法等方法分析了集中度㊁集中期和最大4个月累积降水量占全年之比等多个指数的分布格局,分析了1956 2016年中国年降水系列的趋势性和突变性特征,以及降水年内分配过程的时空演变㊂主要结论如下:①中国降水时空分布不均,自东南到西北,年降水量总体递减,降水年内分布集中度递增;站点年降水量序列的变化趋势呈现较强的地带性,自东南到西北呈 增 减 增 的3个条带;显著增加条带分别位于东南和西部地区,显著减少的条带位于中部,从东北地区向西南绵延至边境;年降水序列的趋势性变化大多伴随着突变,发生在20世纪80年代的站点最多㊂②沿200mm 和400mm 年降水量等值线,中国北方出现1个 汛期降水减少 条带,但其时间尺度效应较强;在月尺度上,站点汛期降水占比下降,非汛期降水占比增加;而在日尺度上则相反,连续3~7d 累积降水量的波幅加大,表明降水事件的极端程度在增强㊂③降水序列变化与径流的同步性较好,中国西北和东南地区年降水量呈增加趋势,典型水文站的还原径流量同步增加;年降水量显著减少㊁且最大4个月累积降水量占比指数减少超过10%的区域集中在北方的辽河㊁海河与黄河流域等非湿润区,相应水文断面的还原径流量显著减少㊂关键词:降水;年内分配;降水集中度;降水集中期;演变规律中图分类号:P333㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1001-6791(2023)02-0182-15收稿日期:2023-01-04;网络出版日期:2023-03-26网络出版地址:https :ʊ /kcms /detail /32.1309.P.20230324.1649.002.html基金项目:国家重点研发计划资助项目(2021YFC3201101);国家自然科学基金资助项目(52279030)作者简介:杜军凯(1987 ),男,河南禹州人,高级工程师,博士,主要从事流域水循环及其伴生过程模拟研究㊂E-mail:du_djk@通信作者:仇亚琴,E-mail:qyq@ 联合国政府间气候变化专门委员会(IPCC)第六次评估报告[1]指出,人类影响造成的气候变暖速率前所未有,全球极端天气与极端气候事件发生频率不断增强,全球尺度的降水结构发生了显著变化[2],较大程度上影响了区域水安全和经济社会可持续发展[3]㊂水循环是联系地球系统大气圈㊁水圈㊁岩石圈和生物圈的纽带㊂降水是水循环过程的总输入,研究中国降水的时空分布与演变格局可为洪涝灾害应对㊁水资源情势分析及水生态修复等工作提供科技支撑,具有重要的意义㊂在降水时空分布与演变规律方面,已有较多学者开展了相关研究㊂如在降水年际变化趋势分析方面,王英等[4]基于730个气象站的监测数据进行空间插值法和趋势分析,结果表明中国降水量从20世纪60年代到90年代呈明显下降趋势;施雅风等[5]总结了西北地区气候变化特征,指出西北地区气候向暖湿转型可能是世纪性的;张强等[6]分析了西北地区气候湿化趋势,指出西北地区西部和东部从21世纪开始同时进入增湿期;王米雪等[7]研究了1960 2013年东南沿海地区年降水量变化特征,指出2000年后东南沿海地区形成 重旱-重涝并重 的格局㊂在降水序列突变研究方面,丁一汇等[8]对青藏高原年平均气温和降水量序列进行突变检验,研究指出气候要素突变方向㊁突变时间存在较大时空差异;贾路等[9]认为西北地区降水集中度指数均值序列存在显著的突变点;张阿龙等[10]认为锡林河和巴拉格尔河流域气候突变发生在20世纪90年代至2010年;Zuo 等[11]研究表明,海河流域年降水量系列在1979年发生突变㊂在降水年内变化研究方面,刘向培等[12]从 信息熵 角度分析了厄尔尼诺与南方涛动㊁太平洋年代际涛动对中国降水集中程度的影响;㊀第2期杜军凯,等:1956 2016年中国年降水量及其年内分配演变特征183㊀Zhang等[13]定义了降水年内集中度和年内集中期指数概念和计算方法,该方法被广泛用于区域年内多尺度降水不均匀性和集中程度,以及年际变化规律等研究中㊂此外,另有学者关注降水分区区划㊁降水变化的周期性㊁雨日数与雨强演变特征㊁季节降水结构演变与平稳性㊁城市化对降水的影响,以及极端降水时空变化特征等[14-19]㊂尽管当前研究取得了丰硕成果,但在以下几个方面仍有待提升㊂首先,受测站数量㊁密度㊁数据系列长度等条件制约,当前针对全国范围的研究较少;其次,中国幅员辽阔,地形㊁地貌复杂多变,降水时空演化具有很强的地带性特征,相关规律亟需总结;再者,针对降水年内丰枯变化的相关研究有待补充,尤其是汛期降水在长时间尺度上的演变及其径流效应㊂鉴于此,本文对气象站和水文站实测降水量进行月尺度融合,以提升监测资料的时空完整性,系统分析了多项指标的时空分布格局㊁地带性变化特征及其水文效应,为揭示中国降水时空演变规律提供科技支撑㊂1㊀数据与方法1.1㊀基础数据本文所用的降水量数据来源如下:一是国家基本气象站的逐日数据,来源于国家气象数据共享网;二是水文部门上报的逐月降水量观测数据,来源于全国第三次水资源调查评价上报的降水量数据集,时间序列为1956 2016年;另有水文部门提供典型站点的日尺度观测信息㊂对国家基本气象站和水文-雨量站的监测数据进行融合,处理原则如下:①删除重复站点,如水文-雨量站与基本气象站的空间位置相同,则优先使用国家基本气象站的监测数据;②舍弃监测不全的站点,如某站点在设站年份的监测数据缺失1个月以上,则放弃;③时间尺度统一,将日观测成果转换到月㊂按上述原则处理后,共得到4177个融合站点(图1)㊂本文所用降水量等值线图来自文献[20]㊂注:该图基于自然资源部标准地图服务网站下载的审图号为GS(2022)4307号的标准地图制作㊂图1㊀气象站点分布Fig.1Location of the meteorological stations and the terrain landform of China1.2㊀分析方法(1)趋势与突变检验分别使用Mann-Kendall(后文简称MK)趋势检验法和PETTITT突变分析法进行趋势和突变检验㊂MK趋势检验法[21-22]是一种典型的非参数检验方法,该检验方法在气象和水文领域得以广泛应用㊂PETTITT检184㊀水科学进展第34卷㊀验[23]是一种非参数的突变检验方法,构造一个Mann-Whitney 统计量,根据构造统计量的特征进行数据序列的突变点分析㊂(2)集中程度分析采用降水年内分配的集中度(Precipitation Concentration Degree,PCD)指数和集中期(Precipitation Concen-tration Period,PCP)指数来表征降水分布的集中性特点,计算方法见式(1)和式(2)㊂PCD 指数取值介于0~1,值越大表示降水年内分配越不均匀;PCP 指数以角度为单位,将0ʎ~360ʎ分配到全年12个月,取值越大表明降水峰值越靠后㊂D PC,i =(ð12j =1r ij ˑsin θj )2+(ð12j =1r ij ˑcos θj )2/R i (1)P PC,i =arctan[(ð12j =1r ij ˑsin θj )/(ð12j =1r ij ˑcos θj )](2)式中:D PC,i 和P PC,i 分别为测站第i 年的降水年内分配PCD 指数和PCP 指数;r ij 为第i 年第j 月的降水量,mm;R i 为第i 年的年降水量,mm;θj 为第j 月中对应的角度,角度与1 12月份的对应关系参见文献[12]㊂使用年内最大4个月累积降水量占全年的比例(PEC)指数来表示站点汛期降水的分布特征,计算方法见式(3):C PE =ð4i =1P ∗i /ð12j =1P j ˑ100(3)式中:C PE 为测站PEC 指数,%;P j 为1 12月的月平均降水量,mm;P ∗i 为年内最大4个月的月均降水量,mm㊂2㊀降水量时空分布注:该图基于自然资源部标准地图服务网站下载的审图号为GS(2022)4307号的标准地图制作㊂图2㊀测站多年平均降水量的空间分布Fig.2Spatial distribution of annual mean precipitation at the meteorological stations 2.1㊀年降水量分布格局中国幅员辽阔,东部属季风气候,西北部属温带大陆性气候,青藏高原属高寒气候,降水空间分布不均匀,总体呈 东南高㊁西北低 的特征㊂融合后站点降水量与多年平均降水量等值线[20]分布见图2㊂多年平均年降水量200mm 等值线为中国干旱区与半干旱区的分界线,该线北起内蒙古高原中部,大致沿阴山-贺兰㊀第2期杜军凯,等:1956 2016年中国年降水量及其年内分配演变特征185㊀山-六盘山-祁连山-柴达木盆地-昆仑山一线;多年平均年降水量400mm等值线沿东北 西南方向斜贯中国全境,系半干旱区与半湿润区分界线,北起大兴安岭,沿燕山-太行山-黄土高原北缘-祁连山东段分布;多年平均年降水量800mm等值线沿东西方向横贯全境,系湿润区和半湿润区的分界线;多年平均年降水量在800~1600mm的区域主要分布在 秦淮线 以南,包括淮河中下游㊁长江中下游㊁四川盆地㊁云贵高原和广西大部等地;多年平均年降水量超过1600mm的区域主要分布在东南沿海㊁湘赣山区㊁西南(云南㊁四川㊁西藏)部分山区,其中,海南岛部分区域㊁台湾岛[20]大部分地区降水量超过2000mm㊂2.2㊀年内分配特征根据式(1)和式(2),分别计算了所有站点逐年月降水量的PCD指数㊁PCP指数和最大4个月降水量占全年比例,各站点多年平均月降水量的年内集中度空间分布见图3,集中期空间分布见图4㊂(1)月降水量的年内集中度㊂由图3可见,各站点PCD指数为0.077~0.768,大体呈现北高南低的分布格局㊂0.077ɤD PC<0.200的站点主要分布在长江以南,即长江流域㊁珠江流域㊁东南诸河区和西南诸河区的大部分区域,另有黄河河源区㊁渭河南山支流㊁伊洛河等流域,以及位于天山北支与中支之间的伊犁河流域㊂0.200ɤD PC<0.320的站点集中分布在辽河区南部㊁海河区东部㊁淮河区大部和黄河中游部分区域,以及阿尔泰山南麓的额尔齐斯河流域㊂0.320ɤD PC<0.520的站点主要分布在西北诸河区,包括塔里木盆地㊁柴达木盆地及黑河上游等内陆河流域㊂0.520ɤD PCɤ0.768的站点大多散乱分布在400mm降水等值线两侧,包括松花江区西部㊁辽河区北部㊁太行山区,以及黄河上游大通河与湟水等流域㊂综上所见,中国干旱区域PCD指数值大,年降水量年内分配不均匀性强于降水量丰沛的区域㊂注:该图基于自然资源部标准地图服务网站下载的审图号为GS(2022)4307号的标准地图制作㊂图3㊀测站月降水量的PCD指数Fig.3PCD indexes of monthly precipitation at the meteorological stations(2)月降水量的年内集中期㊂由图4可见,各测站月降水量PCP指数为116.9ʎ~234.0ʎ,自东南至西北总体呈低 高 低的分布特征,两边PCP指数低㊁中部高㊂116.9ʎɤP PC<150.0ʎ(即集中期在6月中旬以前)的站点集中分布在长江中下游㊁东南诸河与珠江中下游地区,这与梅雨气候有关㊂150.0ʎɤP PC<175.0ʎ(集中期6月中旬至7月中旬)的站点分布在长江中游江北地区㊁长三角㊁珠江中游南岭南麓区域㊁武夷山以东的沿海地带,以及天山山区㊂175.0ʎɤP PC<190.0ʎ(集中期7月中下旬)的站点分布最广,沿东北 西南方向斜贯全国,包括东北大部㊁华北地区中部㊁青藏高原东部㊁四川盆地大部以及云贵高原东缘㊂190.0ʎɤP PCɤ234.0ʎ(集中期8月上旬至9月中旬)的站点主要分布在黄河流域大部㊁山东半岛和辽东半岛沿海地带㊁186㊀水科学进展第34卷㊀太行山区大部㊁金沙江上游㊁西南诸河以及海南岛等区域㊂注:该图基于自然资源部标准地图服务网站下载的审图号为GS(2022)4307号的标准地图制作㊂图4㊀测站月降水量的PCP指数分布Fig.4Distribution of PCP indexes of monthly precipitation at the meteorological stations(3)最大4个月累积降水占比㊂由图5可见,各测站PEC指数介于53.7%~97.8%,空间分布与PCP 指数类似,总体呈西北高㊁东南低的格局㊂53.7%ɤC PE<65.0%的站点绝大多数分布在长江中下游和东南诸河区,少部分位于南岭以南的柳江㊁西江流域,以及地处西北的天山山区㊂65.0%ɤC PE<75.0%的站点在上一分级(53.7%~<65.0%)的外层,东北地区主要分布在长白山以东,中部集中在祁连山东侧-秦岭-淮河沿线,以及西南的四川盆地㊁云贵高原大部,华南的珠江流域大部等区域㊂75.0%ɤC PE<85.0%的站点分布在东北平原㊁华北平原㊁黄土高原大部,以及西南的金沙江流域等㊂85.0%ɤC PEɤ97.8%的站点分布在大兴安岭山区㊁河套平原㊁柴达木盆地西部和塔里木盆地,以及青藏高原西南部等广袤地区㊂注:该图基于自然资源部标准地图服务网站下载的审图号为GS(2022)4307号的标准地图制作㊂图5㊀测站PEC指数分布Fig.5Distribution of proportion indexes of the maximum accumulated precipitation in4months to annual precipitation㊀第2期杜军凯,等:1956 2016年中国年降水量及其年内分配演变特征187㊀3㊀降水量时空演变3.1㊀年降水量序列的趋势性采用MK检验法对年降水量序列进行趋势分析,共有337个站点通过显著性检验(显著性水平α=0.05,详见图6)㊂通过显著性检验站点中,呈显著增加趋势的站点共142个,各站点年降水量的年际变化梯度为2.9~8.5mm/a;呈显著减少趋势的站点共195个,变化梯度为-11.7~-2.0mm/a㊂在空间分布上,各站点年降水量的变化趋势的规律性较强,自东南到西北明显呈 增 减 增 的3个条带㊂据图6可知,站点年降水量显著减少的条带位于中部,从中国东北地区向西南绵延至边境区域㊂站点年降水量显著增加的条带有2个,分别位于西北和东南地区:西北地区各站点变化趋势在空间上比较一致,基本呈增加态势;东南地区以增加为主,但空间变异性更强,沿海少数站点呈减少趋势㊂注:该图基于自然资源部标准地图服务网站下载的审图号为GS(2022)4307号的标准地图制作㊂图6㊀测站年降水量序列的MK趋势检验结果Fig.6Mann-Kendall trends of annual precipitation series at the meteorological stations3.2㊀年降水量序列的突变性采用PETTITT检验法对年降水量序列进行突变分析,共有282个站点通过显著性检验(显著性水平α= 0.05,详见图7)㊂各站点突变年份介于1965 2005年,具体如下:1965 1969年的站点共2个;1970 1979年的站点共70个;1980 1989年的站点共128个;1990 1999年的站点共58个;2000 2005年的站点共24个㊂对比图6和图7可知,在空间分布上,发生突变的站点与趋势变化显著的站点比较一致㊂这意味着站点年降水序列的趋势性变化大多与突变相伴㊂3.3㊀最大4个月累积降水量占比变化针对序列超过50a的2575个测站,计算各站点1960 1969年㊁2007 2016年平均PEC指数及其相对变幅㊂以1960 1969年为基准,2007 2016年平均PEC指数相对变幅超出ʃ10%的站点共有123个,空间分布见图8㊂其中,共106个站点的PEC指数下降超过10%,共17个站点的PEC指数增加10%㊂PEC指数变幅超出ʃ10%的站点空间分布同样具有较强的地带性特征㊂减幅超过10%的站点大多数位于北方地区,少部分位于南方地区;这些站点空间分布与200mm和400mm年降水量等值线走势基本一致,集中分布在2条等值线两侧,如海河流域与黄河流域过渡地带㊁三江源地区,以及天山西段㊁阿尔泰山之间的广大区域㊂增幅超过10%的站点集中分布在南方地区,大多数位于800mm等值线之南㊂188㊀水科学进展第34卷㊀注:该图基于自然资源部标准地图服务网站下载的审图号为GS(2022)4307号的标准地图制作㊂图7㊀测站年降水量序列的PETTITT突变检验结果Fig.7Results of PETTITT abrupt detections of annual precipitation series at the meteorological stations㊀㊀200mm㊁400mm多年平均年降水量等值线分别是中国半干旱与干旱区㊁半湿润与半干旱区的分界线, PEC指数从月尺度上反映了汛期降水的集中性㊂上述分析结果表明,在中国北方较为干旱的区域,站点年降水量的年内分配呈现一定程度的 平均化 倾向,汛期降水占比下降,非汛期降水占比增加㊂注:该图基于自然资源部标准地图服务网站下载的审图号为GS(2022)4307号的标准地图制作㊂图8㊀测站2007 2016年平均PEC指数较1960 1969年均值的变化Fig.8Relative change of the mean PEC index from2007to2016compared with that from1960to19694㊀讨㊀㊀论4.1㊀合理性分析(1)PCP指数和PCD指数分析结果的合理性㊂降水PCD指数和PCP指数分布与气候类型密切相关,中㊀第2期杜军凯,等:1956 2016年中国年降水量及其年内分配演变特征189㊀国的降水主要受夏季风控制,具有雨热同季特点㊂习惯上,中国将大兴安岭-阴山山脉-贺兰山-乌鞘岭-巴颜喀拉山-唐古拉山-冈底斯山系作为季风区与非季风区的分界线[24](图4)㊂春季,中国大部分地区冷空气较强,来自海洋的暖湿气流在华南㊁东南一带与之交锋,这些区域进入降水集中的第1个时段,即春雨期;随时间推移,季风强度不断加大,暖湿气流在初夏时节运动到江淮地区,产生梅雨锋面系统,形成1条降水丰富的锋面雨带;暖湿气流在夏㊁秋季节到达东北㊁华北和西北部分地区时,集中产生夏雨和秋雨;之后,夏季风强度不断减弱,雨带重回东南㊁西南和华南等地㊂总体而言,降水年内分配过程存在多峰的地区,集中度较低㊁集中期较早,反之则集中度较高,集中期相对延后㊂据图4可知,中国季风区降水体现出时空上的高度集中性[25],东北㊁华北和西南等地区月降水的PCP 指数值大多高于非季风区㊂月降水量PCP指数空间分布与季风活动密切相关,如梅雨气候控制的江南㊁江淮和长江中下游地区(见‘梅雨监测指标:GB/T33671 2017“)集中期明显提前至6 7月㊂海南岛雨源主要有锋面雨㊁热雷雨和台风雨等类型,每年5 10月为多雨期,其中台风多发生在8 10月[26]㊂受台风调节,海南岛月降水量集中期相对偏后㊂自东南向西北跨过分界线后,非季风区月降水集中期有所提前㊂如北疆的天山和阿尔泰山地区,其降水受盛行西风控制,月降水PCP指数明显低于东北和华北等地㊂与已有成果进行对比,刘向培等[12]指出40ʎN附近是中国年降水集中度分布的高值区,35ʎN以南是其分布的低值区;张天宇等[27]指出华北地区年内各候降水PCD指数为0.19~0.58,PCP指数多集中在7月;张运福等[28]指出东北地区年内各旬降水量PCD指数为0.59~0.79,PCP指数集中在7月中到8月上;张录军等[29]的研究结果表明,长江流域年内各旬降水量的PCD指数为0.35~0.51,PCD指数集中在4 7月;杨金虎等[30]指出西北五省(区)绝大部分地区年内各月降水量的PCD指数为0.16~0.76,PCP指数集中在6 7月㊂本文有关PCP指数计算结果与已有成果一致,PCD指数计算结果比部分文献偏低㊂究其原因, PCD指数计算结果受时段长短的影响,时间尺度越大(如侯 月 年),其取值则越低㊂为提升监测数据时空完整性,本文据月尺度降水量数据进行分析,故PCD指数计算结果偏低㊂(2)年降水量系列趋势分析结果的合理性㊂与年降水量系列趋势分析相关成果进行对比,王米雪等[7]的研究表明,中国东南沿海地区降水呈波动上升趋势,年际增速约为1.91mm/a;徐东坡等[15]的研究表明,中国西北地区和西藏等区域年降水系列存在显著增加趋势,华北和东北部分地区降水量呈减少趋势,上述成果与3.1节的趋势分析结果一致㊂本文得出全国降水年际变化在空间分布上呈 增 减 增 条带状分布的结论,与‘中国气候变化蓝皮书2021“[31]有关中国年降水量变化速率分布图是一致的㊂为进一步分析趋势检验结果的稳定性,本文将北京㊁郑州和广州3个气象站的监测资料延长到2020年,对比1956 2016年序列与1956 2020年序列的异同,结果见表1㊂据表1可知,同一测站不同序列降水量的年际变化梯度值有所差别,但其序列增/减趋势及显著性检验结果是一致的㊂需要说明的是,降水演变过程和机理相当复杂,针对1956 2016年序列的分析结果在未来是否能持续,仍有待开展进一步的研究㊂表1㊀典型站点不同序列趋势分析结果Table1Trend analysis results of different time series at the3meteorological stations站点名称年际梯度值/(mm㊃a-1)MK检验Z统计量1956 2020年1956 2016年1956 2020年1956 2016年北京气象站-2.21-2.16-1.66-1.48郑州气象站0.020.660.010.45广州气象站 6.64 6.84 2.16∗ 1.96∗注:显著性水平α=0.05标准正态分布Z统计量的临界值为1.96;∗表示通过α=0.05的显著性检验㊂㊀㊀(3)降水变化与季风强度变化的关系㊂中国降水的趋势性与突变性变化与季风气候的变化密切相关㊂东亚夏季风在1961 2020年间总体呈减弱趋势[31],在20世纪60年代初至70年代后期偏强,在70年代末期至21世纪初偏弱,之后转强㊂中国东北地区㊁华北地区和西南地区降水量与东亚夏季风强度之间存在显著190㊀水科学进展第34卷㊀的正相关关系[32],西风带的水汽输送为中国西北大部分地区提供了基本的水汽来源[33],热带气旋降水量是中国东南沿海地区降水的重要组成部分㊂从地域分布分析,东亚夏季风强度减弱是年降水量减少条带呈 东北 西南 分布(图6)的重要原因㊂类似地,郝立生等[34]认为东亚夏季风减弱使得从南边界进入的水汽通量大量减少,进而导致了华北地区降水量减少;Zhang等[35]的研究表明,中国西北地区的西风环流和垂直方向的上升气流呈增强趋势,给西北地区输送了更多的水汽,导致区域降水量偏多㊂青藏高原的水汽来源[36]包括海源㊁陆源和再循环水汽三大部分,关于高原降水量增加的原因,众多学者认识不一:如Zhang等[37]认为大尺度环流变化导致的水汽输送增加是主因;汤秋鸿等[38]认为西南季风控制区和高原区本地水汽贡献增加是主因;黄伟[39]研究指出中国东南沿海地区热带气旋降水强度显著增加,这可能是该区域降水偏多的重要原因㊂已有研究表明,西北地区年降水量系列突变点多发生在20世纪80年代和90年代,东北地区年降水系列突变点多发生在1980 1988年[15,40];长江流域8个降水变化敏感区年降水量系列的突变点发生在1977 1998年;黄河流域上㊁中㊁下游年降水量系列突变点发生年份波动较大,变化范围介于1965 1995年[41-42]㊂本文成果与上述文献的计算结果总体一致,20世纪80年代是测站年降水系列突变较集中的一个时期,这与季风强度年代际转换有关㊂李明聪等[43]的研究结果表明,东亚夏季风关系在20世纪70年代末发生了年代际转变,南亚季风在20世纪80年代中期发生了 强 弱 转换㊂此外,由于数据来源㊁系列长度㊁突变分析方法存在差异,不同文献的分析结果有所不同㊂4.2㊀汛期降水变化的尺度效应2000年以来,中国极端天气现象频现,出现诸如北京 7㊃21 特大暴雨㊁郑州 7㊃20 特大暴雨和广州 5㊃22 特大暴雨等多个极端降水事件㊂为进一步探究汛期降水变化的尺度效应,本文选取分别位于北京市(A站)㊁郑州市(B站)和广州市(C站)的3个典型气象站,以1960 2021年逐日降水量序列为基础,分析年内连续3d㊁连续5d和连续7d最大降水量的代际变化特征,各年段相应的统计值见表2㊂典型测站年内连续3㊁5㊁7d最大降水量在代际间呈波动变化,但近期(2010 2021年均值)均处于全序列(1960 2021年)高值区㊂其中,A站和B站历史最大暴雨事件恰好发生在此时段内,拉高了近期平均水平;C站自1970年以后,日尺度降水集中度出现较稳定增长㊂年内连续3㊁5㊁7d最大降水量指标的空间异质性较强㊂A站连续3d降水量在代际间呈先减后增特点,从60年代的136.2mm减至2000 2009年的年均82.0mm,再增长到2010 2021年的年均142.9mm;B站则不同,连续3d降水量在代际间基本呈增长趋势;C站位于湿润区,代际间波动性小于A站和B站㊂表2㊀典型站点连续3 7d降水量最大值统计Table2Cumulative precipitation statistics from3to7days at the3meteorological stations单位:mm统计时段A站(北京市)B站(郑州市)C站(广州市)3d5d7d3d5d7d3d5d7d1960 1979年平均136.2159.2167.8102.5113.4124.0182.6207.8236.1 1970 1979年平均123.9141.7170.5110.9130.2138.2153.2195.0224.2 1980 1989年平均122.3136.1147.8104.6115.5123.1172.3220.4242.6 1990 1999年平均100.3111.4139.2112.4125.5137.8186.1218.9235.2 2000 2009年平均82.090.9105.9120.6137.6158.3194.9221.6251.7 2010 2021年平均142.9152.5162.4172.4198.4205.9225.7263.5291.3 1960 2021年极大值381.7381.8394.4948.4989.0990.9329.0409.3421.1极大值发生年份2016年2016年2016年2021年2021年2021年2001年1989年1989年㊀㊀典型测站的分析结果与前文 106个站点月尺度降水呈现一定程度的均化倾向 并不冲突㊂二者相结合,。
长沙市1987-2012湿度
精心整理长沙市1987——1988年气象资料(站点:57687)
说明:57687站点为长沙望城坡(东经112.92°,北纬28.22°,海拔68.0米)。
?????日平均气温为2时、8时、14时、20时四个整点的平均值。
?????日降水量为上日20时至次日20时的降水量。
长沙市1989——1990年气象资料(站点:57687)
说明:57687站点为长沙望城坡(东经112.92°,北纬28.22°,海拔68.0米)。
?????日平均气温为2时、8时、14时、20时四个整点的平均值。
?????日降水量为上日20时至次日20时的降水量。
长沙市1991——1992年气象资料(站点:57687)
米)。
?????日平均气温为2时、8时、14时、20时四个整点的平均值。
?????日降水量为上日20时至次日20时的降水量。
长沙市1993——1994年气象资料(站点:57687)
米)。
?????日降水量为上日20时至次日20时的降水量。
长沙市1995——1996年气象资料(站点:57687)
长沙市1997——1998年气象资料(站点:57687)
米)。
米)。
米)。
米)。
米)。
米)。
米)。
50年中国气候特征
最近十几年来黄河中下游流域和华北平 原的干旱少水以及长江中下游的洪水均 气候长期变化背景因素相关。
中国的雨型发生了年代际变化
东部降水量无长期变化,趋势以20~30a尺度振荡为主
1951~2000年夏季降, 夏季降水呈上升趋势
10a尺度振荡特征明显、 变化大值区集中在长江以 南
以长江为界的南涝北旱分 布型式清楚
1956~ 2002年期间全国平均年降水量标准化距平
1998 年降水最多, 1986 年降水最少 90 年代初大部分年份的降水量均高于常年值、60 年代则一般低于常年值 冬季和春季上升趋势比夏、秋季明显;但降水的年代际变化在冬季和夏季
1951-2001年中国年平均气温趋势
四川盆地和川、滇交界气温下 降
北方和青藏高原、海南、云南 北部、东南沿海及江淮 增温 系数超0.4
新疆东南、青海西北、西藏中 部、内蒙、黑龙江、辽宁、河 北北部、北京、海南及云南南 部 增温系数超0.6
1951-2001年温度距平时间序列—长江中下游区
海洋-大气系统年代际以上尺度的低频振动及其对 中国地面气温的影响
无法排除当前的地面气温变化是低频自然振动一 部分的可能性
温度变化 降水变化 其它要素变化
一、温度变化
中国大陆年平均气温距平变化
80年代中后期开始增暖 50a 1.1℃;0.22 ℃/10a 51a 冬季 1.8 ℃;春季1.2 ℃;秋季1.0 ℃;夏季0.6 ℃ 冬季0.36 ℃ /10a ;春季0.23 ℃/10a;秋季0.19℃/10a ;夏季0.12℃/10a
长沙气候特点
长沙所处的地理位置与地形地貌使长沙一带乃至整个湘中的气候都较为特殊。
影响长沙气候的原因主要有3个:一就是长沙位于我国东南部,属世界著名的季风气候区,由于受季风影响,季节变化很明显,冬冷夏热;二就是长沙位于我国地势的第三梯级,距海较远,地形以平原、丘陵为主,因此冬冷夏热的大陆性气候特征较明显;三就是长沙所处的湘中地区,由于地质时代的升降运动,造成南高北低的地势,特别就是其南有五岭,东有幕阜山,西有雪峰山,北为洞庭湖区,使其地形为一向北开口的马蹄形,阻隔了东、南海洋委风的调节,使冬寒夏炎的特征尤为显著。
长沙地区气候的特点就是:冬寒夏热,四季分明;春秋短促,冬夏绵长,充分体现了亚热带大陆性委风气候类型的共同特点。
春季:气候特点一就是增温迅速,气温变化大。
“春来一日水热三分”就是长沙老幼皆知的谚语。
从3月平均所温10℃至5月平均气温22℃,仅两个月时间气温升高12℃,平均每月升高6-7℃。
同时,不但升温快,而且变化大,如4月份的气温,据30年的统计资料,月平均气温最低为13、6℃,最高为21、1℃,相差近8℃之多。
又如1969年4月5日的最低气温为2、5℃,而同年4月10日的最高温为33、4℃,5天之中温差达30多度。
因此,“倒春寒”就是长沙常见的现象。
增温快有利于农作物的播种,但温差大又带来了不利的影响。
长沙春季的第二个特点就是阴雨连绵,空气潮湿。
长沙3月至5月的平均降雨日数(日降雨量等于或大于0、1毫米)有52、8天,约占年(151、2天)总降雨日数的35%以上,有不少年份还出现连续降雨15-20天的情况,因此3月至5月的降水量占全年总降水量的40%以上。
这3个月阴天(日平均总云量大于8成)占全年阴天总数31%以上,相对湿度都在83%至84%之间,就是全年相对温度最大的季节。
总之,长沙的春雨闻名全国。
夏季:长沙夏季漫长酷热已国人皆知,长达4个半月,就是全年最长的季节。
也就是全年气温最高的季节。
从6月至9月,旬平均气温25℃,7月下旬至8月下旬,旬平均气温29℃以上。
1960-2011年洞庭湖区年降水量变化特征
分析等方 法分析 了洞庭 湖区年降水量的 变化特征 , 并采用正 交分解 函数 E O F 、 旋转正交分解 函数 R E O F计算 了洞庭湖 区年尺度 的标准化 降水指数 ( S P 1 ) , 分析 了洞庭 湖区的旱涝时 空分 布特征 。结果表 明: 洞庭 湖 区年 降水量 空 间上 由北 向南逐渐 增加 . 时
研究表明, 湖北省近 5 0 a 来降水量的年、 季尺度变化 1 资料与方法 不显著 , 降水 量的变化趋势则各地 差异 明显。刘 可 使用的资料为洞庭湖区( 2 8 。 3 0 _3 0 。 2 0 N, 1 1 0 。 群等 指出 , 近4 5 a 来, 随着全球气候变化 , 湖北东 4 0 一1 l 3 。 1 0 E ) 包括湖北荆州、 湖南常德、 益阳、 岳阳 部尤其是江汉平原东南部 的年 降雨 量呈增加趋势 。 4 市2 4个气象 站 l 9 6 0 _2 0 1 1 年逐年 的年 降水量资 刘梦等 研究认为 , 近5 0 a 来位 于湖北省东南部 的 料 , 资料来源于各市气象局。洞庭湖区 2 4个气象站 咸宁市年降水量无明显增降趋势。张剑明等 研究 中, 2 1 个站位 于湖 区, 海拔高度为 2 8 —7 0 m, 石门、 表明 , 湖南省年降水量有增加趋势。郭华等 指 出, 安化和平江位于 山区, 但 3个气象 站的海拔 高度均 鄱 阳湖流域降水量在 1 9 9 0年发生 突变 , 继而呈 现显 在 1 3 0 m 以下 ( 图1 ) , 基 于行 政 区域 考 虑 , 将 这 3站 著的上升趋势。因此 , 进一步研究 降水量 变化 的区 与其他站点一起分析 。 域差异 , 对于充分认 识和利用华 中区域气 候资源有 采用线性趋势分 析、 Ma n n — K e n d a l l ( 简称 M— K) 重要 的意义 。 突变检测法和 Mo r l e t 小波变换等方法分析洞庭湖区 洞庭湖区位于荆江南岸 , 跨湘、 鄂两省 , 是江、 淮 年降水量 的总体特征及变化趋势。采用正交分解 函
长沙近50年来降水的多时间尺度分析
3 降水 的变 化趋 势
31 年 降 水 变 化 趋 势 .
现 出不 同 的 趋 势 . 因 此 需 在 具 体 的 气 候 层 次 上 讨 论 变 化 趋 势
才有意义[ 2 1 。目前 对 湖南 省 降水 的多 时 间 尺度 的研 究 还 不 多 。 刘 会 玉翩 出 湖 南 省 汛 期 降 水 存 在 着 明 显 的 3年 、 指 7年 和 2 3年 的 特 征 时 间尺 度 和 周 期 性振 荡 。上 述 研 究 是 针对 汛期 进 行 的 降 水
降 水 呈 增 加趋 势 ;夏 季 降 水 变化 趋 势 和年 降 水 变 化 趋 势 相 似 ;春 季 降 水 变化 不 大 ;秋 冬 两 季 降 水 也 呈 增 加 趋 势 。通 过
Molt 波 分 析 长 沙除 了冬 季 外 进入 本世 纪 降水 都 有 减 少的 趋 势 。 r 小 e 通过 M — 突 变分 析 , 沙年 降 水 和 夏 季 降 水 增 多是 一 K 长
突 变现 象 . 具体 开始 的 时 间分 别 为 1 9 年 和 1 8 92 9 8年 ; 季 、 季 和 冬 季 降 水 无 突 变现 象 。 春 秋 关 键 词 : 沙 ; 水 变化 ; 波 分 析 ; — 突 变分 析 长 降 小 M K
中 图分 类 号 :3 8. P3 2
文 献 标 识 码 : A
(. 1湖南 师范大 学资 源 与环 境科 学 学院 , 南 长 沙 4 0 8 ;. 南省 气象 台 , 南 长 沙 4 0 0 ) 湖 10 12湖 湖 10 7
摘 要 : 用线 性 回 归 、 波 分 析 和 M — 突 变 分析 等 方 法 分 析 了近 5 利 小 K O年 来 长 沙 降 水 的 变化 . 果 表 明 长 沙近 5 结 O年 来年
湖南省主要城市降雨特征统计数据、暴雨强度公式、年径流总量控制率对应的设计降雨量、气候要素资料
43 1410 48.9 1473 28.8 1346 39.3 1366 49.8 1513 38.1 1354 51.5 1445 48.2 1377 50.4 1354 48.1 1504 48.8 1426 43.1 1328 41.7 1371 46.1 1383 33.2 1364
关系曲线见图 C.0.8。
表 C.0.8 长沙市年径流总量控制率对应的设计降雨量
年径流总量控制率(%) 设计降雨量(mm)
60
70
75
80
85
90
13
17.9
21.2
25.4
31.1
39.7
208
图 C.0.8 长沙市年径流总量控制率与设计降雨量关系曲线
C.0.9 怀化市年径流总量控制率对应的设计降雨量可按表 C.0.9 取值,年径流总量控制率与设计降雨量
关系曲线见图 C.0.5。
表 C.0.5 吉首市年径流总量控制率对应的设计降雨量
年径流总量控制率(%)
60
70
75
80
85
90
设计降雨量(mm)
14.4
20.4
24.5
29.9
37.6Βιβλιοθήκη 49.5图 C.0.5 吉首市年径流总量控制率与设计降雨量关系曲线
C.0.6 常德市年径流总量控制率对应的设计降雨量可按表 C.0.6 取值,年径流总量控制率与设计降雨量
关系曲线见图 C.0.6。
表 C.0.6 常德市年径流总量控制率对应的设计降雨量
年径流总量控制率(%)
60
70
75
80
85
近50年福建气温,降水变化的统计特征
近50年福建气温,降水变化的统计特征
黄文堂
【期刊名称】《气象》
【年(卷),期】1994(020)007
【摘要】近50年福建气温呈下降趋势,全省年平均气温变化率为-0.0114℃。
年^-^1,即大约10年下降0.11℃,气温下降趋势势沿海大于内陆,冬春季大于夏季,80年代秋季则呈上升趋势。
降水量丰水期方要在50年代,枯水期在60年代,80年代以来春雨(2-4月)显著增多,雨季(5-6月)降水量显著减少。
【总页数】7页(P19-25)
【作者】黄文堂
【作者单位】无
【正文语种】中文
【中图分类】P463.1
【相关文献】
1.厦门市近50年的气温降水变化特征及突变分析 [J], 田愉
2.福清市近50年年度极端最低气温统计特征分析 [J], 陈源高;俞成标;汤巧秀;严
娟
3.佛冈县近50年来气温统计特征及变化趋势 [J], 罗桂森;林杨海;吴乃庚;招柳媚
4.近50年福建省年度极端最低气温统计特征 [J], 蔡文华;王加义;岳辉英
5.广西西江流域近50年气温和降水变化趋势及突变分析 [J], 谢贤胜;王升;闫妍;胡宝清
因版权原因,仅展示原文概要,查看原文内容请购买。
近50年黄河流域气温和降水量变化特征分析
近50年黄河流域气温和降水量变化特征分析刘勤;严昌荣;张燕卿;杨建莹;郑盛华【摘要】利用黄河流域54个气象站点1961-2010年气象数据,探讨近50a黄河流域气温和降水量的变化趋势特征.结果表明:(1)黄河流域年降水量变化具有明显的空间差异,总体表现为上游地区增多、中游地区减少的特点.春季上游降水量呈显著增加趋势,秋季中游显著减少,冬季全流域降水量均呈显著增加趋势,其中下游增幅最大.年内降水量显著增加的时段主要集中在1-3月和12月;(2)黄河流域气温变化呈显著升高趋势,平均最高气温和最低气温变化具有明显的不对称性,平均最低气温变化对平均气温升高的贡献率大于平均最高气温.平均最高气温、平均气温和平均最低气温全流域均表现为冬季增幅最大,夏季和秋季则为流域上游增幅最大.月平均气温显著增加的站点比例最高,月最高气温显著增加的站点比例最小,且均集中在2月.(3)全流域冬季出现暖湿化趋势,春季上游出现暖湿化趋势,而秋季中游出现暖干化趋势.%The variation of temperature and precipitation in the Yellow River Basin was analyzed based on meteorological data at 54 metrological stations during 1961 - 2010. The results showed that the annual precipitation increased in upper and decreased in middle of the Yellow River Basin. The precipitation increased in upper in spring, decreased in midlist in autumn, and increased during whole winter, especially from January to March, and December. Temperature increased, but maximum and minimum temperature changed non-symmetrically. Annual maximum, mean and minimum temperature increased with an amplitude peak in winter in whole basin, which increased obviously in summer and autumn. The increase rate of monthly mean temperature was highest, followed bymonthly minimum temperature. It tended to warming-wetting during winter in whole basin and same in upper during spring, warming-drying in autumn in middle stream.【期刊名称】《中国农业气象》【年(卷),期】2012(033)004【总页数】6页(P475-480)【关键词】气温;降水量;变化趋势;黄河流域【作者】刘勤;严昌荣;张燕卿;杨建莹;郑盛华【作者单位】中国农业科学院农业环境与可持续发展研究所/农业部旱作节水农业重点实验室,北京100081;中国农业科学院农业环境与可持续发展研究所/农业部旱作节水农业重点实验室,北京100081;中国农业科学院农业环境与可持续发展研究所/农业部旱作节水农业重点实验室,北京100081;中国农业科学院农业环境与可持续发展研究所/农业部旱作节水农业重点实验室,北京100081;中国农业科学院农业资源与农业区划研究所,北京100081【正文语种】中文【中图分类】S162大量观测结果证实,近百年来,以全球变暖为主要特征的气候变化已成为事实[1-2]。
近50年上思县气温和降水变化分析
近50年上思县气温和降水变化分析龚沃超;陆小丹;潘汉海;王国安【摘要】Basing the temperature and precipitation data of Shangsi weather station, using a linear regression equation and the moving average mathematical statistical methods, the change characteristic of temperature and precipitation in recent 50 years were analyzed. It shows the annual average temperature (precipitation) is rising with the linear trend rate of 0.177 ℃ / 10a (7.27mm/10a) . Winter warming is most significant with the linear trend rate of 0.253 ℃ / 10a.%采用上思国家气象观测站1961—2010年的气温与降水观测资料,运用一元线性回归方程、滑动平均等数理统计方法.分析近50a来气温和降水变化的总体特征和趋势,结果表明:上思县年平均气温呈上升趋势,线性倾向率为0.177℃/10a,冬季增温最为显著,线性倾向率为O.253℃/10a;上思县年降水量整体呈增加趋势,线性倾向率为7.27mm/10a,降水量增加的趋势不显著。
【期刊名称】《气象研究与应用》【年(卷),期】2012(033)004【总页数】5页(P38-42)【关键词】上思;气温;降水;趋势变化【作者】龚沃超;陆小丹;潘汉海;王国安【作者单位】上思县气象局,广西上思535599;上思县气象局,广西上思535599;大新县气象局,广西大新532300;上思县气象局,广西上思535599【正文语种】中文【中图分类】P461 上思县概况上思县位于广西南部,北纬21°44′-22°22′,东经107°33′-108°16′,南临防城区,北连扶绥、邕宁,东接钦州市钦北区,西邻宁明县,全县总面积2816平方公里,属于南亚热带季风气候区,气候温和、日照充足。
对我国1959~1961年气候条件的分析与评估
对我国1959~1961年气候条件的分析与评估
1959年至1961年,我国气候条件发生了重大变化。
在此期间,全国大部分地区出现了明显的干旱,气温明显偏高,降水量减少,并伴有干旱灾害的发生。
首先,1959至1961年,我国大部分地区出现了明显的干旱,华中地区、华北地区出现了尤其严重的干旱,1959年湖南省宛城、怀化、永州等地的降水量仅为1948年的1/3,1963年湖南省湘潭市的降水量仅为1948年的10%。
其次,气温明显偏高,1959~1961年的首都(北京市)、江苏省、四川省,月平均气温要比1948年出现明显上升。
江苏省月平均最高气温和月平均最低气温,比1948年分别上升1.5度和1度。
国家统计局的统计数据表明,1959~1961年降水量减少。
1959年6月份,首都北京的降水量仅为1948年的2/3;1959年9月份,安徽省的降水量仅为1948年的1/3。
最后,干旱灾害的发生受到恶劣的气候条件的影响。
1959年5月份,湖北省部分地区发生了旱涝灾害;1959年■■■■,陕西省的四个省份及陕南地区发生了洪水灾害;1960年8月份,甘肃省出现了洪涝灾害。
综上所述,1959至1961年,我国气候条件发生了明显变化,华中和华北等地出现了严重的干旱,气温普遍上升,降水量减少,并伴有干旱灾害的发生,严重影响了我国农业生产和人民生活。
长沙地区暴雨气候特征分析及个例研究
摘要对长沙地区长沙站、宁乡站、浏阳站和马坡岭站4个站点的1981—2015年暴雨资料进行统计分析,结果表明,出现暴雨日数最多的是宁乡站,其次是马坡岭站。
长沙地区春季、夏季、秋季和冬季暴雨日数分别占全年总暴雨日数的28.9%、58.5%、10.4%和2.1%。
其中6月暴雨日数最多,占夏季总暴雨日数的54.1%,为全年总暴雨日数的30.9%。
近35年来,长沙地区年暴雨日数呈增多趋势,气候倾向率为1.29d/10年。
春季、夏季、秋季和冬季暴雨日数整体均处于增多趋势,这与长沙近35年暴雨日数变化趋势一致,气候倾向率分别为0.83、1.07、0.17、0.08d/10年,并以夏季增多最为明显。
选取长沙市暴雨天气个例进行分析,得出暴雨主要影响系统,且水汽、动力等物理量均与暴雨有着很好的对应关系。
关键词暴雨;气候特征;个例;天气系统;雷达产品;卫星云图;湖南长沙中图分类号P426.61+4文献标识码A 文章编号1007-5739(2017)19-0188-04Climate Characteristics Analysis and Case Study on Torrential Rain in Changsha AreaSONG Wei LI Cheng(Observation Station of Changsha Meteorological Bureau in Hunan Province ,Changsha Hunan 410205)Abstract Statistical analysis of rainfall data of the 4stations (Changsha Station ,Ningxiang Station ,Liuyang Station and Mapoling Station )in Changsha area from 1981to 2015was conducted.The results showed that there were the most torrential rain days in Ningxiang Station ,and the least torrential rain days in Mapoling Station.The torrential rain days of spring ,summer ,autumn and winter in Changsha area respectively accounted for 28.9%,58.5%,10.4%and 2.1%of the annual total torrential rain days.The maximum monthly torrential rain days was in June ,accounting for 54.1%of the total torrential rain days in summer and 30.9%of the annual total torrential rain days.In recent 35years ,the torrential rain days in Changsha area was increasing ,and the climate tendency rate was 1.29d per 10years.The torrential rain days in spring ,summer ,autumn and winter showed a increasing trend ,which was consistent with the change trend of torrential rain days in recent 35years in Changsha area ,and the decadal climate tendency rates were 0.83d ,1.07d ,0.17d and 0.08d.The torrential rain days increased the most obviously in summer.The torrential rain weather case in Changsha City was analyzed ,and the main effect system was concluded ,it showed that there was fine correspondence between torrential rain and physical quantities ,such as water vapor ,dynamic ,etc.Key words torrential rain ;climate feature ;case ;weather system ;radar product ;satellite cloud image ;Changsha Hunan长沙地区暴雨气候特征分析及个例研究宋伟李诚(湖南省长沙市气象局观测站,湖南长沙410205)长沙位于中国中南部的长江以南、湖南省的东部偏北地区,地处湘江下游和长浏盆地西缘,属洞庭湖平原的南端向湘中丘陵盆地过渡地带。
1961-2020年中国降水等级的变化特征
第31卷第2期2024年4月水土保持研究R e s e a r c ho f S o i l a n d W a t e rC o n s e r v a t i o nV o l .31,N o .2A pr .,2024收稿日期:2023-03-03 修回日期:2023-04-04资助项目:江苏省碳达峰碳中和科技创新专项资金(B K 20220017);中国气象局创新发展专项(C X F Z 2022J 067);安徽省重点研究与开发计划(206038346013);江苏省研究生实践创新计划(S J C X 22_0374) 第一作者:许肖璐(1998 ),女,浙江长兴人,硕士研究生,研究方向为气象灾害㊂E -m a i l :1031659254@q q.c o m 通信作者:张方敏(1983 ),女,河南漯河人,博士,教授,主要从事应用气象研究㊂E -m a i l :f m i n .z h a n g@n u i s t .e d u .c n h t t p :ʊs t b c y j .p a p e r o n c e .o r gD O I :10.13869/j.c n k i .r s w c .2024.02.003.许肖璐,张方敏,邓汗青,等.1961 2020年中国降水等级的变化特征[J ].水土保持研究,2024,31(2):181-189.X uX i a o l u ,Z h a n g F a n g m i n ,D e n g H a n q i n g ,e t a l .C h a n g e s i nP r e c i pi t a t i o nG r a d e s i nC h i n a f r o m1961-2020[J ].R e s e a r c h o f S o i l a n dW a t e r C o n -s e r v a t i o n ,2024,31(2):181-189.1961-2020年中国降水等级的变化特征许肖璐1,2,3,张方敏1,邓汗青2,3,何彬方3,4,田红2,3,方砚秋1(1.南京信息工程大学气象灾害预报预警与评估协同创新中心/江苏省农业气象重点实验室,南京210044;2.安徽省气候中心,合肥230031;3.气象科学研究所/大气科学与卫星遥感安徽省重点实验室,合肥230031;4.寿县国家气候观象台/中国气象局淮河流域典型农田生态气象野外科学试验基地,安徽淮南232000)摘 要:[目的]探究全国各等级降水的时空分布特征及季节变化规律,增强对我国不同等级降水发生规律的认知,进而为提升全国防灾减灾能力提供科技支撑㊂[方法]基于1961 2020年全国681个气象站点的逐日地面降水资料,分析了全国不同等级降水(小雨㊁中雨㊁大雨和暴雨)日数㊁强度的时空分布特征和季节变化规律㊂[结果](1)19612020年全国小雨日数呈减少趋势,中雨以上等级日数呈增长趋势,除暴雨强度变化幅度较大外,小雨㊁中雨和大雨强度均无明显变化㊂秋季小雨日数减幅最大,大雨㊁暴雨日数在夏季增加最快㊁秋季最缓,暴雨强度在各季节波动幅度均较大㊂(2)不同等级降水空间分布有一定差异性,小雨日数高值区主要分布在西南诸河流域,中雨以上等级降水日数以及各等级降水强度均从东南向西北逐渐减小,内陆河流域降水日数㊁强度均为最小㊂(3)春㊁秋㊁冬三季降水主要集中在东南诸河流域和珠江流域,小雨占主导地位,夏季降水主要集中在西南诸河流域㊁东南诸河流域和珠江流域㊂(4)小雨日数的减少在春季和冬季较为明显,东南诸河流域和珠江流域对小雨日数减少起到了很大贡献,中雨以上等级降水日数在各季节大致以上升趋势为主,大雨强度在春季增强㊁秋季减弱,各流域暴雨强度在春季呈增强趋势㊂[结论]全国各等级降水在时空分布以及季节尺度上有明显差异,九大流域对全国不同等级降水的贡献作用不尽相同,未来应加强各流域主要环流系统及水循环等对不同等级降水影响的研究㊂关键词:九大流域;降水日数;降水强度;季节变化中图分类号:P 426.6 文献标识码:A 文章编号:1005-3409(2024)02-0181-09C h a n g e s i nP r e c i pi t a t i o nG r a d e s i nC h i n a f r o m1961-2020X uX i a o l u 1,2,3,Z h a n g F a n g m i n 1,D e n g H a n q i n g 2,3,H eB i n f a n g 3,4,T i a nH o n g 2,3,F a n g Y a n qi u 1(1.C o l l a b o r a t i v e I n n o v a t i o nC e n t e r o nF o r e c a s t a n dE v a l u a t i o no f M e t e o r o l o g i c a lD i s a s t e r s /J i a n g s uK e yL a b o r a t o r y o f A g r i c u l t u r a lM e t e o r o l o g y ,C o l l e g e o f A p p l i e d M e t e o r o l o g y ,N a n j i n g U n i v e r s i t y o f I n fo r m a t i o n S c i e n c e&T e c h n o l o g y ,N a n j i n g 210044,C h i n a ;2.A n h u iC l i m a t eC e n t e r ,H e fe i 230031,C h i n a ;3.A n h u iP r o v i n c e M e t e o r o l o g i c a lS c i e n c eR e s e a r c hI n s t i t u t e /A t m o s p h e r i cS c i e n c e a n dS a t e l l i t eR e m o t eS e n s i n g K e y L a b o r a t o r y ,H e f e i 230031,C h i n a ;4.S h o u x i a nN a t i o n a lC l i m a t o l o g y S t a t i o n /H u a iR i v e rB a s i nT y p i c a lA g r o -E c o s y s t e m s M e t e o r o l o g y F i e l dE x p e r i m e n t S t a t i o no f C h i n a M e t e o r o l o gi c a lA d m i n i s t r a t i o n ,H u a i n a n ,A n h u i 232000,C h i n a )A b s t r a c t :[O b j e c t i v e ]T h e a i m s o f t h i s s t u d y a r e t o e x p l o r e t h e s p a t i a l a n d t e m po r a l d i s t r i b u t i o nc h a r a c t e r i s t i c s a n d s e a s o n a l c h a n g e p a t t e r n so f p r e c i p i t a t i o no fv a r i o u s g r a d e sa c r o s s C h i n a ,e n h a n c et h ek n o w l e d g eo ft h e o c c u r r e n c e p a t t e r n s o f d i f f e r e n t g r a d e s o f p r e c i p i t a t i o n i nC h i n a ,a n d t h e n p r o v i d e s c i e n t i f i c a n d t e c h n o l o gi c a l s u p p o r t f o r e n h a n c i n g t h e n a t i o n a l d i s a s t e r p r e v e n t i o n a n dm i t i g a t i o n c a p a c i t y .[M e t h o d s ]B a s e do n t h e d a i l y s u r f a c e p r e c i p i t a t i o nd a t af r o m 681m e t e o r o l o g i c a l s t a t i o n s i nC h i n ad u r i n g 1961 2020,t h et e m po r a l a n d s p a t i a l d i s t r i b u t i o n c h a r a c t e r i s t i c s a n d s e a s o n a l v a r i a t i o no f t h e d a y s a n d i n t e n s i t y o f p r e c i pi t a t i o no f d i f f e r e n tg r a d e s(l i g h t r a i n,m o d e r a t e r a i n,l a r g e r a i n a n d h e a v y r a i n)a c r o s sC h i n aw e r e a n a l y z e s.[R e s u l t s](1)F r o m 1961t o2020,t h en u m b e r o f l i g h t r a i nd a y s s h o w e d a d e c r e a s i n g t r e n d,w h i l e t h e n u m b e r o fm o d e r a t e r a i n, l a r g e r a i na n dh e a v y r a i nd a y ss h o w e da ni n c r e a s i n g t r e n d,a n dn os i g n i f i c a n tc h a n g e s i nt h e i n t e n s i t y o f l i g h t,m o d e r a t e a n d l a r g e r a i n e x c e p t f o r g r e a t c h a n g e s i n t h e i n t e n s i t y o f h e a v y r a i nw e r e f o u n d.T h e n u m b e r o f l i g h t r a i nd a y s d e c r e a s e d t h em o s t i na u t u m n,l a r g e a n dh e a v y r a i nd a y s i n c r e a s e d t h e f a s t e s t i n s u mm e r, a n d t h e s l o w e s t i n a u t u m n.T h e i n t e n s i t y o f h e a v y r a i n f l u c t u a t e d g r e a t l y i n e a c h s e a s o n.(2)T h e r ew a s s o m e v a r i a b i l i t y i nt h es p a t i a ld i s t r i b u t i o no fd i f f e r e n t p r e c i p i t a t i o nl e v e l s,t h eh i g hn u m b e ro f l i g h tr a i nd a y s m a i n l y d i s t r i b u t e d i n t h e s o u t h w e s t r i v e r b a s i n s,t h en u m b e ro f d a y sw i t h m o d e r a t e r a i na n da b o v e a n d t h e i n t e n s i t y o f p r e c i p i t a t i o na t e a c h l e v e l g r a d u a l l y d e c r e a s e d f r o ms o u t h e a s t t on o r t h w e s t,a n d t h en u m b e ro f d a y s a n d i n t e n s i t y o f p r e c i p i t a t i o n i n t h e I n l a n dR i v e rb a s i n sw e r e t h e s m a l l e s t.(3)P r e c i p i t a t i o n i ns p r i n g, a u t u m na n dw i n t e rm a i n l y c o n c e n t r a t e d i nt h es o u t h e a s t e r nR i v e rB a s i n sa n dt h eP e a r lR i v e rB a s i n,w h e r e l i g h t r a i n f a l l p r e d o m i n a t e d,a n di ns u mm e r p r e c i p i t a t i o n m a i n l y c o n c e n t r a t e di nt h es o u t h w e s t e r n R i v e r s B a s i n,t h e s o u t h e a s t e r n R i v e r s B a s i n a n d t h e P e a r l R i v e r B a s i n.T h e a r e a s w i t h h i g h e ri n t e n s i t y o f p r e c i p i t a t i o na t a l l l e v e l s i n s p r i n g w e r em a i n l y l o c a t e d i n t h e s o u t h e a s t e r nR i v e r sB a s i n,t h eY a n g t z eR i v e r B a s i na n d t h eP e a r lR i v e rB a s i n,a n dt h ea r e a sw i t hh i g h e r i n t e n s i t y o f p r e c i p i t a t i o n i nw i n t e rw e r em a i n l y l o c a t e d i n t h e s o u t h e a s t e r nR i v e r s B a s i n a n d t h eH u a i h eR i v e r B a s i n.(4)T h e d e c r e a s e i n t h e n u m b e r o f l i g h t r a i nd a y sw a sm o r e o b v i o u s i n s p r i n g a n dw i n t e r,a n d t h e s o u t h e a s t e r nR i v e r B a s i n s a n d t h e P e a r l R i v e r B a s i n c o n t r i b u t e d g r e a t l y t o t h ed e c r e a s e i n t h en u m b e ro f l i g h t r a i nd a y s.T h en u m b e ro f p r e c i p i t a t i o nd a y s a b o v e t h e m o d e r a t e r a i n l e v e lw a s g e n e r a l l y o n a n u p w a r d t r e n d i n a l l s e a s o n s.T h e i n t e n s i t y o f l a r g e r a i n s t r e n g t h e n s i n s p r i n g a n dw e a k e n e di na u t u m n,a n dt h e i n t e n s i t y o fh e a v y r a i ni na l lb a s i n s w a so na ni n c r e a s i n g t r e n di ns p r i n g.[C o n c l u s i o n]T h e r ea r eo b v i o u sd i f f e r e n c e s i nt h es p a t i a l a n dt e m p o r a ld i s t r i b u t i o na n ds e a s o n a l s c a l e so f p r e c i p i t a t i o n l e v e l s a c r o s sC h i n a,a n d t h e c o n t r i b u t i o no f t h e n i n em a j o r r i v e r b a s i n s t o t h e d i f f e r e n t l e v e l s o f p r e c i p i t a t i o na c r o s s t h eC h i n a v a r i e s,s o f u t u r e r e s e a r c ho n t h e i n f l u e n c e o f t h em a j o r c i r c u l a t i o n s y s t e m s a n d t h ew a t e r c y c l e i ne a c h r i v e r b a s i no n t h e d i f f e r e n t l e v e l s o f p r e c i p i t a t i o n s h o u l db e s t r e n g t h e n e d.K e y w o r d s:n i n em a j o r r i v e r b a s i n s;p r e c i p i t a t i o nd a y s;p r e c i p i t a t i o n i n t e n s i t y;s e a s o n a l v a r i a t i o n根据I P C C第6次评估报告,气候变化给自然界和人类带来了广泛而深重的危害[1-2]㊂在全球气候变化的背景下,我国降水事件发生的强度㊁范围和频次正在逐渐改变,可能会导致洪涝㊁干旱等灾害事件的增多㊂根据预测,极端降水事件在未来还有进一步增加的趋势[3]㊂这些灾害的发生已经对社会经济㊁生态环境以及人身安全等各个方面造成了巨大危害和损失,严重威胁了人类的生产生活和社会发展,因此降水事件的发展规律及影响因素已经越来越被人们所关注,成为新的研究热点[4-5]㊂中国地域广阔,降水呈现出显著的地域性,目前有关降水的研究大多只针对某一区域展开,全国范围的研究大多针对月㊁季节平均条件的特征展开㊂不同等级降水是影响气候环境的重要因素,小雨的减少会加剧干旱化趋势,大雨的增加会加重洪涝灾害和土壤侵蚀等[6],近年来,众多学者对分级降水事件进行了深入研究,在太湖流域[7]㊁赣江流域[8]㊁长白山区[9]㊁西南地区等[10]不同尺度的研究表明我国各区域的分级降水情况并不一致㊂在已有研究中,以九大流域的划分为背景进行不同等级降水变化特征的研究较为少见㊂方国华等[11]建立了基于G E V的极端降水统计模型,研究得到全国极端月降水量由东南向西北递减,未来九大流域极端月降水呈现差异性增长;陈峪等[12]研究了1956 2008年中国主要河流流域的极端降水情况,结果表明,我国年平均暴雨日数增加不明显,南方流域多有升高,北方流域有下降趋势;内陆河流域有明显变湿的趋势,东北部流域整体降水有减少趋势,东部大部分流域小雨降水量减少,西部与东南大部分流域大雨以上等级降水量增加[13-15]㊂但以往研究多集中于单一流域,关于全国九大流域整体降水情况的研究较为有限,研究选取的时间跨度也不尽相同,这也就意味着不同流域无法进行对比分析㊂因此本文通过对全国1961 2020年降水情况进行统计分析,辨识近60a来全国范围内不同等级降水的变化趋势,并在此基础上进行深入研究,探究不同等级降水在九大流域内的时空以及季节变化281水土保持研究第31卷特征,以期获得新的研究进展为提升流域减灾防灾能力做出贡献㊂1资料与方法1.1研究资料及研究区域本文采用来自中国气象数据网的681个气象站的1961 2020年的日降水数据(h t t p:ʊd a t a.c m a.c n/),数据经过国家气象信息中心标准化订正处理,以及严格的质量控制和检查比如气候界限值检查㊁台站极值检查和一致性检查,检查后的数据实有率在99%以上,数据的正确性接近100%㊂九大流域边界数据(图1)来源中国科学院资源环境科学数据中心(h t t p s:ʊw w w.r e sd c.c n/),将中国划分为松辽河流域片㊁海河流域片㊁淮河流域片㊁黄河流域片㊁长江流域片㊁珠江流域片㊁东南诸河片㊁西南诸河片㊁内陆河片,各流域分别有104,40,48,88,198,71,31,33,68气象站点㊂注:本图基于国家测绘地理信息局标准地图服务网站下载的审图号为G S(2019)1825号的标准地图制作,底图无修改,下同㊂图1研究区域及气象站点分布F i g.1S t u d y a r e a a n dm e t e o r o l o g i c a l s t a t i o nd i s t r i b u t i o n1.2研究方法采用国家降水等级划分标准[16],进行如下定义: 24h内降雨量在0.1~9.9mm为小雨,24h内降雨量在10~24.9mm为中雨,24h内降雨量在25~ 49.9mm为大雨,24h内降雨量大于50mm为暴雨㊂按照以上等级划分,计算每个台站每月的降水日数和降水量,然后累加计算各季节和各年的值进行统计分析㊂某一时期内所有站点的总降水量与总降水日数之比为平均降水强度,各等级降水量与降水日数之比为各等级降水强度㊂此外,文中四季划分标准为:3 5月为春季,6 8月为夏季,9 11月为秋季,12月 次年2月为冬季㊂本文采用线性倾向估计法分析降水日数与降水强度的长期变化规律,并采用p值对气候倾向率进行显著性检验,p>0.05不显著㊁p<0.05显著㊁p<0.01极显著㊂此外,为了分析降水日数和降水强度的空间变化特征,利用A r c G I S软件中的反距离权重插值法[17]进行空间插值,该方法以插值点与样本点间的距离为权重进行加权平均,它可以灵活地调整权重函数和搜索半径,以适应不同的空间分布特征和插值精度要求㊂2结果与分析2.1全国不同等级降水的时间变化特征2.1.1 各等级降水年平均变化 1961 2020年㊁1991 2020年和2011 2020年全国不同等级平均降水日数㊁降水强度的统计结果见表1㊂从表中可以看出,全国小雨日数呈减少趋势,其中1961 2020年以-1.03d/10a的速率达到极显著水平(p<0.01);而中雨㊁大雨和暴雨降水日数呈缓慢增长的趋势, 1961 2020年大雨和暴雨降水日数分别以0.1,0.08 d/10a的速率达到极显著水平(p<0.01),近10a各等级降水日数变化幅度均远超过去30a,60a㊂暴雨强度变化幅度较大,小雨㊁中雨㊁大雨强度较为稳定,无明显变化,近30a和近60a小雨强度均通过0.01的显著性检验㊂2.1.2各等级降水季节变化从1961 2020年不同等级降水日数㊁降水强度的四季气候倾向率变化可知(图2),不同季节小雨日数均呈减少趋势,其中秋季小雨日数减少幅度最大(-0.3d/10a),且下降趋势显著(p<0.05)㊂大雨㊁暴雨降水日数在各季节都呈上升趋势,两者均在夏季增长最快,在秋季最缓,且夏冬两季均通过0.05的显著性检验㊂中雨降水日数在夏季㊁冬季以较快速度上升,在春季㊁秋季则缓慢下降㊂在不同等级降水强度方面,除春季暴雨和秋季中雨㊁大雨㊁暴雨外,其余降水强度均呈增强趋势㊂各季节小雨强度均小幅增强,且都通过0.05的显著性检验㊂暴雨强度在各季节变化幅度较大,其中夏冬两季暴雨强度均达到0.4m m/10a以上,呈显著增强趋势(p<0.05)㊂2.2全国不同等级降水的空间变化特征2.2.1不同等级降水变化趋势的空间分布图3A D 为全国九大流域不同等级降水日数和气候倾向率的空间分布及变化趋势图㊂中雨㊁大雨㊁暴雨降水日数均呈现东南多西北少的分布格局,这3类降水日数的高值区大都集中分布在珠江流域㊁东南诸河流域和长江流域;小雨降水日数的高值区位于西南诸河流域和长江流域,其降水日数可高达124d以上,并以此为中心向四周逐渐递减,在松辽河流域片北部㊁东部以及381第2期许肖璐等:1961 2020年中国降水等级的变化特征内陆河流域北部地区降水日数均异常高于周围地区,甚至高值区降水日数可达到100d以上,各等级降水日数均以内陆河流域最少㊂图中85.7%站点的小雨日数均呈现显著下降趋势,东南诸河流域㊁珠江流域和西南诸河流域的东南部降水日数减少最为显著,气候倾向率可达-8.5d/10a,62.1%站点的中雨以及85%以上站点的大雨㊁暴雨日数呈显著上升趋势㊂总体而言,东南诸河流域㊁珠江流域和西南诸河流域是小雨降水日数减少的显著区域,但这些地区中雨㊁大雨㊁暴雨的降水日数增加也最为显著㊂表1全国不同等级降水日数㊁降水强度统计T a b l e1S t a t i s t i c s o f p r e c i p i t a t i o nd a y s a n d p r e c i p i t a t i o n i n t e n s i t y o f d i f f e r e n t g r a d e s i nC h i n a指标年份降水日数/d气候倾向率/(d/10a)降水强度/(mm㊃d-1)气候倾向率/(mm/10a)小雨1961 202088.8-1.03**2.40.02** 1991 202086.7-1.97*2.50.03** 2011 202085.4-8.872.50.08中雨1961 202016.50.0215.70.01 1991 202016.40.1015.70.01 2011 202016.70.9115.70.05大雨1961 20206.20.10**34.20.02 1991 20206.30.1834.20.01 2011 20206.60.5834.2-0.27*暴雨1961 20202.40.08**76.30.23* 1991 20202.40.1076.8-0.27 2011 20202.60.3776.50.82注:*表示通过0.05显著性水平,**表示通过0.01显著性水平㊂注:*表示通过0.05显著性水平㊂图21961-2020年不同等级降水日数㊁降水强度的四季气候倾向率F i g.2S e a s o n a l c l i m a t i c t e n d e n c y r a t e s o f p r e c i p i t a t i o nd a y s a n d p r e c i p i t a t i o n i n t e n s i t y i nd i f f e r e n t g r a d e s f r o m1961t o2020图3E H为全国九大流域不同等级降水强度和气候倾向率的空间分布及变化趋势图㊂各等级降水强度空间分布大致相似,均呈现由东南向西北递减的趋势,即各等级降水强度的高值区大致均集中分布在珠江流域㊁东南诸河流域和长江流域㊂小雨和中雨强度低值区主要分布在内陆河流域,大雨和暴雨降水强度低值区主要集中在西南诸河流域㊂从变化趋势上来看,80%以上站点的小雨㊁大雨㊁暴雨降水强度均以显著上升趋势为主,小雨降水强度增幅以内陆河流域最大,气候倾向率可达1.5mm/10a,大雨降水强度增幅以长江流域最大,气候倾向率可达83.7mm/10a,暴雨降水强度增幅以淮河流域最大,气候倾向率可达163.5mm/10a;中雨降水强度呈显著上升和下降站点数量大致相似㊂2.2.2四季各等级降水空间分布1961 2020年九大流域不同等级降水日数季节变化如图4A D所示,大部分流域降水日数以春夏季为主,秋季次之,冬季最少㊂从不同季节来看,春季降水日数较多地区主要集中在东南诸河流域和珠江流域,小雨占主导地位,夏季降水日数较多地区主要集中在西南诸河流域㊁东南诸河流域以及珠江流域,秋季降水以小雨和中雨为主,主要分布在长江流域㊁东南诸河流域和珠江流域,冬季降水日数最少,小雨等级居多,主要分布在东南诸河流域㊁长江流域以及珠江流域㊂481水土保持研究第31卷注:图中站点标注气候倾向率均通过0.05的显著性检验㊂图31961-2020年全国各等级降水日数㊁降水强度及气候倾向率空间分布F i g.3T h e s p a t i a l d i s t r i b u t i o n o f p r e c i p i t a t i o n d a y s,p r e c i p i t a t i o n i n t e n s i t y a n d c l i m a t i c t e n d e n c y r a t e i nC h i n a d u r i n g1961-2020581第2期许肖璐等:1961 2020年中国降水等级的变化特征1961 2020年九大流域不同等级降水强度季节变化如图4E H所示,春季各等级降水强度较大的地区主要分布在东南诸河流域㊁长江流域以及珠江流域,夏季各等级降水强度在不同流域相差不大,秋季东南诸河流域和珠江流域的暴雨降水强度较大,均超过75mm/d,冬季降水以小雨为主,降水强度较大的地区主要分布在东南诸河流域和淮河流域㊂各流域小雨㊁中雨㊁大雨强度在不同季节变化不大,春㊁夏㊁秋季降水强度较为接近,冬季降水强度最小,暴雨强度在夏季最大,秋季㊁春季次之,冬季最小㊂注:a为东南诸河流域;b为海河流域;c为淮河流域;d为黄河流域;e为内陆河流域;f为松辽河流域;g为西南诸河流域;h为长江流域;i为珠江流域㊂下同㊂图41961-2020年九大流域不同等级降水日数、降水强度季节变化F i g.4T h e n u m b e r o f p r e c i p i t a t i o nd a y s o f d i f f e r e n t g r a d e s a n d p r e c i p i t a t i o n i n t e n s i t yi n t h e n i n em a j o r r i v e r b a s i n s d u r i n g1961-2020九大流域不同等级降水日数㊁降水强度四季气候倾向率变化趋势如图5所示,小雨日数在内陆河流域㊁西南诸河流域和松辽河流域有上升趋势,其余流域均呈现下降趋势,其中冬季东南诸河流域以681水土保持研究第31卷及珠江流域小雨日数均以大于1.2d/10a的速度显著下降(p<0.05),可知东南诸河流域和珠江流域对小雨日数减少的贡献最大㊂中雨以上等级降水日数大致以增加趋势为主,西南诸河流域春季中雨日数增加最快,上升趋势显著(p<0.05);东南诸河流域夏季的大雨㊁暴雨日数均以大于0.2d/10a的速度显著上升(p<0.05)㊂从不同等级降水强度来看,大部分流域的小雨强度均达到显著上升趋势(p<0.05);中雨强度在各季节无明显变化,仅内陆河流域冬季中雨强度增幅远高于其余流域,且达到显著趋势(p<0.05);大雨强度在内陆河流域和东南诸河流域有较明显的季节变化;暴雨强度变化幅度较大,东南诸河流域冬季暴雨强度(7.4mm/ 10a)增强最快,且增加趋势显著(p<0.05)㊂注:*表示通过0.05显著性水平㊂图5九大流域不同等级降水日数㊁降水强度)四季气候倾向率及显著性变化F i g.5T h e n u m b e r o f p r e c i p i t a t i o nd a y s o f d i f f e r e n t g r a d e s a n d p r e c i p i t a t i o n i n t e n s i t y i n t h e n i n em a j o rr i v e r b a s i n s a n d t h e i r c l i m a t i c t e n d e n c y r a t e s a n d s i g n i f i c a n t c h a n g e s3讨论不同等级降水空间分布有一定差异性,小雨日数的高值区主要分布在西南诸河流域,中雨㊁大雨㊁暴雨日数多集中分布在东南诸河流域和珠江流域㊂形成原因主要是受西太平洋副热带高压㊁南亚高压以及副热带西风急流等天气系统的影响[18-19],东南沿海地区降水丰富,且夏季台风天气多发[20],中雨以上量级降水较多;印度洋孟加拉湾南支槽前西南暖湿气流的水汽输送[21-22],在西南诸河流域等地区形成降水,多以小雨为主[23],当西南季风发展强盛时,也可深入到长江流域㊂本文研究得出,全国小雨日数呈减少趋势,中雨㊁大雨和暴雨日数呈缓慢增长趋势,除暴雨强度变化幅度较大外,小雨㊁中雨和大雨强度均无明显变化,这与前人的研究结果一致[12,24]㊂本研究进一步发现:春㊁冬季的东南诸河流域以及秋㊁冬季的珠江流域小雨日数锐减,其余流域小雨日数减幅小或呈增加趋势,由此可见东南诸河流域和珠江流域小雨日数的减少可能是导致全国小雨日数减少的主要原因,张丽亚等[25]认为小雨减少应归结为气候变暖和气溶胶增多,指出在相同的空气湿度下温暖环境中更难凝结成降水,因此在增暖更明显的东南部流域小雨减少更为显著㊂大量的气溶胶会降低地表吸收的太阳辐射,使得空气稳定性变得更好,并降低了地表空气的上升速度;高浓度气溶胶还能影响云团的形成,使得云团的物理特性发生变化,从而影响降水[26]㊂在气溶胶颗粒显著增加的中国东南部地区,降水明显减少,这就归结于气溶胶粒子的间接效应使得降水更难发生[27]㊂结合本文研究结果发现,容易引发洪涝灾害的大雨㊁暴雨表现出降水日数增加㊁降水强度大幅变化或基本不变的趋势,维持地区基本湿润的小雨表现出降水日数减少㊁降水强度基本不变的趋势,在这种降水格局下,干旱和洪涝等极端降水事件在未来发生概率有增强可能性[8,24],不同流域降水特征具有区域性差异,其所面对的气候灾害风险也会有所不同,需因地制宜采取措施防范㊂研究表明,自然系统自身变化和外强迫协同作用的共同影响导致了降水的变化,除了太阳活动㊁火山气溶胶等自然外强迫,还有温室气体㊁土地利用㊁气溶胶等人为所致的外强迫[28-29],本文分析了全国不同等级降水日数㊁降水强度的时空分布特征和季节变化规律,但各流域的主要环流系统及水循环等对不同等级降水的影响还需深入探讨,因此,在今后的研究中可以加以考虑,进一步明确影响各流域降水情况的因素㊂4结论(1)1961 2020年全国小雨日数呈减少趋势,中781第2期许肖璐等:1961 2020年中国降水等级的变化特征雨㊁大雨和暴雨日数呈缓慢增长趋势,除暴雨强度变化幅度较大外,小雨㊁中雨和大雨强度均无明显变化㊂秋季小雨日数减幅最大,大雨㊁暴雨日数在夏季增长最快,秋季最缓,暴雨强度在各季节波动幅度均较大㊂(2)1961 2020年中雨㊁大雨㊁暴雨日数均呈现东南多西北少的分布格局,小雨日数的高值区位于西南诸河流域和长江流域,并以此为中心向四周递减,不同等级降水强度均呈现由东南向西北递减的趋势,内陆河流域降水日数㊁降水强度均为最小㊂从空间变化趋势来看,在通过0.05显著性检验的站点中,小雨日数在大部分站点均呈现显著下降趋势,中雨㊁大雨㊁暴雨日数大致呈显著上升趋势,小雨㊁大雨㊁暴雨强度在大部分站点以显著上升趋势为主,中雨强度呈显著上升和下降站点数量大致相似㊂(3)春㊁秋㊁冬三季降水主要集中在东南诸河流域和珠江流域,小雨占主导地位,夏季降水主要集中在西南诸河流域㊁东南诸河流域以及珠江流域㊂(4)小雨日数的减少在春季和冬季较为明显,东南诸河流域和珠江流域对小雨日数减少起到了很大贡献,中雨以上等级降水日数在各季节大致以上升趋势为主;大雨强度在春季增强㊁秋季减弱,各流域暴雨强度在春季呈增强趋势㊂参考文献(R e f e r e n c e s):[1]匡舒雅,周泽宇,梁媚聪,等.I P C C第六次评估报告第二工作组报告解读[J].环境保护,2022,50(9):71-75.K u a n g SY,Z h o uZY,L i a n g M C,e t a l.I n t e r p r e t a t i o no f t h em a i nc o n c l u s i o n so f I P C C A R6w o r k i n gg r o u pⅡr e p o r t[J].E n v i r o n m e n t a l P r o t e c t i o n,2022,50(9):71-75. [2]王蕾,张百超,石英,等.A R6报告关于气候变化影响和风险主要结论的解读[J].气候变化研究进展,2022,18(4):389-394.W a n g L,Z h a n g BC,S h iY,e t a l.I n t e r p r e t a t i o no f t h eI P C C A R6o nt h e i m p a c t sa n dr i s k so fc l i m a t ec h a n g e[J].C l i m a t eC h a n g eR e s e a r c h,2022,18(4):389-394.[3]刘闻,曹明明,刘琪,等.1951 2012年渭河流域降水频次变化特征分析[J].干旱区地理,2015,38(1):18-24.L i u W,C a o M M,L i uQ,e t a l.F r e q u e n c y o f p r e c i p i t a-t i o n f o r t h e W e i h eR i v e rB a s i nd u r i n g1951 2012[J].A r i dL a n dG e o g r a p h y,2015,38(1):18-24.[4]白静漪,管兆勇.华东地区夏季不同等级降水变化特征分析[J].气象科学,2014,34(4):365-372.B a i JY,G u a nZ Y.C l i m a t i cc h a r a c t e r i s t i c so f g r a d e ds u mm e r p r e c i p i t a t i o no v e rE a s t C h i n a[J].J o u r n a l o f t h eM e t e o r o l o g i c a l S c i e n c e s,2014,34(4):365-372. [5]王冰,边玉明,张秋良,等.近45年内蒙古大兴安岭林区不同等级降水变化特征[J].生态学杂志,2017,36(11): 3235-3242.W a n g B,B i a nY M,Z h a n g QL,e t a l.D y n a m i c c h a r a c-t e r i s t i c so fd i f f e r e n t g r a d e p r e c i p i t a t i o n e v e n t sd u r i n gp a s t45y e a r s i nD a x i n g'a n l i n g f o r e s t r e g i o n,I n n e rM o n-g o l i a[J].C h i n e s eJ o u r n a lo fE c o l o g y,2017,36(11):3235-3242.[6]申露婷,张方敏,黄进,等.1981 2018年内蒙古不同等级降水时空变化特征[J].气象科学,2022,42(2):162-170.S h e nLT,Z h a n g F M,H u a n g J,e t a l.S p a t i o t e m p o r a l v a r i a t i o n s o f d i f f e r e n t p r e c i p i t a t i o n g r a d e s i n I n n e r M o n g o l i a f r o m1981t o2018[J].J o u r n a l o f t h eM e t e o r o-l o g i c a l S c i e n c e s,2022,42(2):162-170.[7]董满宇,田相佑,胡木兰,等.1960 2017年太湖流域不同等级降水时空特征[J].热带地理,2020,40(6):1063-1074.D o n g M Y,T i a nX Y,H u M L,e t a l.S p a t i o-t e m p o r a lv a r i a t i o ni n p r e c i p i t a t i o n f o r d i f f e r e n t g r a d e si n t h e T a i h u L a k e B a s i n d u r i n g1960 2017[J].T r o p i c a lG e o g r a p h y,2020,40(6):1063-1074.[8]刘卫林,吴滨,李香,等.赣江流域不同等级降水变化特征及其与大尺度气候相关性研究[J].长江流域资源与环境,2022,31(3):659-672.L i u W L,W uB,L iX,e ta l.V a r i a t i o nc h a r a c t e r i s t i c so f r a i n f a l l a t d i f f e r e n t l e v e l s a n d i t s c o r r e l a t i o nw i t h l a r g e-s c a l ec l i m a t e i nd i ce s o nG a n g j i a n g B a s i n[J].R e s o u r c e sa n dE n v i-r o n m e n t i n t h eY a n g t z eB a s i n,2022,31(3):659-672. [9]王延吉,神祥金,姜明.1961 2018年长白山区不同等级降水时空变化特征[J].气候与环境研究,2021,26(2): 227-238.W a n g YJ,S h e nXJ,J i a n g M.S p a t i a l-t e m p o r a l v a r i a-t i o n c h a r a c t e r i s t i c s o f d i f f e r e n t g r a d e s o f p r e c i p i t a t i o n i nC h a n g b a iM o u n t a i n f r o m1961t o2018[J].C l i m a t i c a n dE n v i r o n m e n t a lR e s e a r c h,2021,26(2):227-238.[10]薛雨婷,李谢辉,王磊,等.1976 2017年西南地区夏季不同等级降水时空变化特征[J].西南大学学报:自然科学版,2022,44(2):137-145.X u eY T,L iX H,W a n g L,e t a l.S p a t i a l a n d t e m p o-r a l c h a n g e c h a r a c t e r i s t i c s o f d i f f e r e n t g r a d e s o f p r e c i p i-t a t i o n i ns u mm e r i ns o u t h w e s t e r nC h i n a f r o m1976t o2017[J].J o u r n a lo fS o u t h w e s t U n i v e r s i t y:N a t u r a lS c i e n c eE d i t i o n,2022,44(2):137-145. [11]方国华,戚核帅,闻昕,等.气候变化条件下21世纪中国九大流域极端月降水量时空演变分析[J].自然灾害学报,2016,25(2):15-25.F a n gG H,Q iH S,W e nX,e t a l.A n a l y s i s o f s p a t i o-t e m p o r a l e v o l u t i o no f e x t r e m em o n t h l yp r e c i p i t a t i o n i nt h en i n e m a j o rb a s i n so fC h i n ai n21s tc e n t u r y u n d e rc l i m a t e c h a n g e[J].J o u r n a l o fN a t u r a l D i s a s t e r s,2016,25(2):15-25.[12]陈峪,陈鲜艳,任国玉.中国主要河流流域极端降水变化特征[J].气候变化研究进展,2010,6(4):265-269.C h e n Y,C h e nX Y,R e n G Y.V a r i a t i o no fe x t r e m ep r e c i p i t a t i o n o v e r l a r g e r i v e r b a s i n s i nC h i n a[J].A d v a n c e s i nC l i m a t eC h a n g eR e s e a r c h,2010,6(4):265-269.[13]曾燕,谭云娟,邱新法,等.我国十大流域不同等级降水的881水土保持研究第31卷变化趋势分析[J].江苏农业科学,2017,45(14):189-195. Z e n g Y,T a n Y J,Q i u X F,e ta l.A n a l y s i so ft h et r e n d s o fd i f f e r e n t l e v e l so f p r e c i p i t a t i o ni nt e n m a j o rb a s i n si n C h i n a[J].J i a n g s u A g r ic u l t u r a l S c i e n c e s,2017,45(14):189-195.[14]王春学,王明田,王顺久.青藏高原不同等级降水时空变化特征[J].应用与环境生物学报,2022,28(4):829-835.W a n g CX,W a n g M T,W a n g SJ.S p a t i a l a n d t e m p o r a l v a r i a t i o n c h a r a c t e r i s t i c s o f d i f f e r e n t g r a d e so f p r e c i p i t a t i o ni nQ i n g h a i-T i b e tP l a t e a u[J].C h i n e s eJ o u r n a lo fA p p l i e da n dE n v i r o n m e n t a l B i o l o g y,2022,28(4):829-835.[15]王璐璐,延军平,王鹏涛,等.海河流域不同等级降水时空变化特征及其影响[J].资源科学,2015,37(4):690-699. W a n g LL,Y a n JP,W a n g PT,e t a l.S p a t i a l-t e m p o-r a l v a r i a t i o n i n p r e c i p i t a t i o n f o r d i f f e r e n t c a t e g o r i e s a n di m p a c t s i nt h e H a i h eR i v e rB a s i n[J].R e s o u r c e sS c i-e n c e,2015,37(4):690-699.[16]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.G B/T28592 2012降水量等级[S].北京:中国标准出版社,2012.G e n e r a lA d m i n i s t r a t i o n o fQ u a l i t y S u p e rV i s i o n,I n s p e c t i o na n dQ u a r a n t i n eo ft h eP e o p l ea n d R e p ub l i co fC h i n a.G B/T28592 2012G r a d e o fP r e c i p i t a t i o n[S].B e i j i n g:S t a n d a r d sP r e s s o fC h i n a,2012.[17]贾悦,崔宁博,魏新平,等.基于反距离权重法的长江流域参考作物蒸散量算法适用性评价[J].农业工程学报,2016,32(6):130-138.J i aY,C u iNB,W e iXP,e t a l.A p p l i c a b i l i t y e v a l u a t i o no f d i f f e r e n ta l g o r i t h m s f o rr e f e r e n c ec r o p e v a p o t r a n s p i r a-t i o ni n Y a n g t z e R i v e r B a s i n b a s e d o ni n v e r s ed i s t a n c ew e i g h t e dm e t h o d[J].T r a n s a c t i o n so f t h eC h i n e s eS o c i e t yo fA g r i c u l t u r a l E n g i n e e r i n g,2016,32(6):130-138. [18]庞轶舒,祝从文,马振峰,等.东亚夏季环流多齿轮耦合特征及其对中国夏季降水异常的影响分析[J].大气科学,2019,43(4):875-894.P a n g YS,Z h uC W,M aZF,e t a l.C o u p l i n g w h e e l si nt h e E a s t A s i a ns u mm e r m o n s o o nc i r c u l a t i o n sa n dt h e i r i m p a c t so n p r e c i p i t a t i o na n o m a l i e s i nC h i n a[J].C h i n e s eJ o u r n a lo f A t m o s p h e r i c S c i e n c e s,2019,43(4):875-894.[19]刘屹岷,洪洁莉,刘超,等.淮河梅雨洪涝与西太平洋副热带高压季节推进异常[J].大气科学,2013,37(2):439-450.L i uY M,H o n g JL,L i uC,e t a l.M e i y uf l o o d i n g o fH u a i h eR i v e r v a l l e y a n da n o m a l y o f s e a s o n a l v a r i a t i o no f s u b t r o p i c a l a n t i c y c l o n e o v e r t h e W e s t e r nP a c i f i c[J].C h i n e s eJ o u r n a lo f A t m o s p h e r i c S c i e n c e s,2013,37(2):439-450.[20]张淼,刘梅冰.近50年福建省不同时间尺度降水演变特性分析[J].福建师范大学学报:自然科学版,2022,38(4):96-105. Z h a n g M,L i u M B.A n a l y s i s o f p r e c i p i t a t i o n e v o l u t i o nc h a r a c t e r i s t i c s a td i f fe r e n t t i m e s c a l e s i nF u j i a nP r o v i n c e i nr e c e n t50y e a r s[J].J o u r n a lo fF u j i a n N o r m a lU n i v e r s i t y:N a t u r a l S c i e n c eE d i t i o n,2022,38(4):96-105. [21]王斌,李跃清.2010年秋冬季西南地区严重干旱与南支槽关系分析[J].高原山地气象研究,2010,30(4):26-35.W a n g B,L iY Q.R e l a t i o n s h i p a n a l y s i sb e t w e e ns o u t hb r a nc h t r o u g ha n ds e v e r ed r o u g h to f s o u t h we s tC h i n ad u r i n g a u t u m na n d w i n te r2009/2010[J].P l a t e a ua n dM o u n t a i n M e t e o r o l o g y R e s e a r c h,2010,30(4):26-35.[22]蒋兴文,李跃清.西南地区冬季气候异常的时空变化特征及其影响因子[J].地理学报,2010,65(11):1325-1335.J i a n g X W,L iY Q.T h es p a t i o-t e m p o r a l v a r i a t i o no fw i n t e r c l i m a t e a n o m a l i e s i n s o u t h w e s t e r nC h i n a a n d t h ep o s s i b l e i n f l u e n c i n g f a c t o r s[J].A c t aG e o g r a p h i c aS i n i c a,2010,65(11):1325-1335.[23]汪卫平,杨修群,张祖强,等.中国雨日数的气候特征及趋势变化[J].气象科学,2017,37(3):317-328.W a n g W P,Y a n g XQ,Z h a n g ZQ,e t a l.T h e c l i m a t i cc h a r a c t e r i s t i c s a nd t re n d s of r a i n y d a y so v e rC h i n a[J].J o u r n a l o f t h e M e t e o r o l o g i c a lS c i e n c e s,2017,37(3):317-328.[24]江洁,周天军,张文霞.近60年来中国主要流域极端降水演变特征[J].大气科学,2022,46(3):707-724.J i a n g J,Z h o uTJ,Z h a n g W X.T e m p o r a l a n ds p a t i a lv a r i a t i o n so fe x t r e m e p r e c i p i t a t i o ni nt h e m a i nr i v e rb a s i n s o fC h i n a i n t h e p a s t60y e a r s[J].C h i n e s e J o u r-n a l o fA t m o s p h e r i cS c i e n c e s,2022,46(3):707-724.[25]张丽亚,吴涧.近几十年中国小雨减少趋势及其机制的研究进展[J].暴雨灾害,2014,33(3):202-207.Z h a n g L Y,W uJ.M a i n p r o g r e s s i nr e s e a r c ho nr e d u c e dl i g h t r a i n i nC h i n a d u r i n g r e c e n t d e c a d e s[J].T o r r e n t i a lR a i na n dD i s a s t e r s,2014,33(3):202-207. [26]陈思宇,黄建平,付强,等.气溶胶对我国中东部地区秋季降水的影响[J].热带气象学报,2012,28(3):339-347.C h e nSY,H u a n g J P,F uQ,e t a l.E f f e c t s o f a e r o s o l s o na u t u m n p r e c i p i t a t i o n o v e rm i d-e a s t e r nC h i n a[J].J o u r n a l o fT r o p i c a l M e t e o r o l o g y,2012,28(3):339-347. [27] C h e n g YJ,L o h m a n nU,Z h a n g JH,e t a l.C o n t r i b u-t i o no f c h a n g e s i ns e as u r f a c e t e m p e r a t u r ea n da e r o s o ll o a d i n g t o t h e d e c r e a s i n g p r e c i p i t a t i o n t r e n d i n s o u t h e r nC h i n a[J].J o u r n a l o fC l i m a t e,2005,18(9):1381-1390.[28] C h e n H P,S u nJQ.C o n t r i b u t i o no fh u m a n i n f l u e n c et o i n c r e a s e d d a i l y p r e c i p i t a t i o n e x t r e m e s o v e r C h i n a[J].G e o p h y s i c a lR e s e a r c hL e t t e r s,2017,44(5):2436-2444.[29]杨慧玲,肖辉,洪延超.气溶胶对云宏微观特性和降水影响的研究进展[J].气候与环境研究,2011,16(4):525-542.Y a n g H L,X i a oH,H o n g YC.P r o g r e s s i n i m p a c t s o fa e r o s o l o nc l o u d p r o p e r t i e sa n d p r e c i p i t a t i o n[J].C l i m a t i ca n dE n v i r o n m e n t a l R e s e a r c h,2011,16(4):525-542.981第2期许肖璐等:1961 2020年中国降水等级的变化特征。
长沙水文气象资料
长沙位于中国中南部的长江以南地区,湖南省的东部偏北.地处洞庭湖平原的南端向湘中丘陵盆地过渡地带,与岳阳、益阳、娄底、株洲、湘潭和江西萍乡接壤.总面积为11818平方公里,其中市区面积954.6平方公里,建成区面积256平方千米(截至09年底).位于浏阳境内的大围山七星岭海拔1616米,为辖区最高处;岳麓山的云麓峰海拔300.8米,为城区至高点.
湘江为长沙最重要的河流,由南向北贯穿全境,境内长度约75公里.湘江自南向北贯穿长沙城区,把城市分为河东和河西两大部分.河东以商业经济为主,河西以文化教育为主.2001年10月10日,市政府驻地由河东藩正街迁至河西观沙岭,力在发展河西的经济以平衡长沙两岸.地图坐标为东经111°53'-114°5',北纬27°51'-28°40',东西长约230公里,南北宽约88公里.地域呈东西向长条形状,地貌北、西、南缘为山地,东南丘陵为主,东北以岗地为主;山地、丘陵、岗地、平原大体各占四分之一.长沙土壤种类多样,可划分9个土类、21个亚类、85个土属、221个土种,总面积1366.2万亩,其中,以红壤、水稻土为主,分别占土壤总面积的70%与25%.其余还有菜园土、潮土、山地黄壤、黄棕壤、山地草甸土、石灰土、紫色土等,适宜多种农作物生长.
长沙属亚热带季风气候,四季分明.春末夏初多雨,夏末秋季多旱;春湿多变,夏秋多睛,严冬期短,暑热期长.全年无霜期约275天,年平均气温16.17.2℃,极端最高气温为40.6℃,极端最低气温为-12℃.年平均总降水量1422.4毫米.水资源以地表水为主,水源充足,年均地表径
流量达808亿立方米.除了湘江外,还有汇入湘江的支流有15条,主要有浏阳河、捞刀河、靳江和沩水河.最大的水库为宁乡县境内的黄材水库和浏阳市境内的朱树桥水库.。
长沙和成都的气候特点是什么意思
长沙和成都的气候特点是什么意思1、长沙和成都气候的差异及其原因地形:成都位于四川盆地的成都平原,长沙位于洞庭湖平原、由于成都在盆地,有聚热效应,北方有秦巴山地阻挡冷空气南下,冬季比较温暖,温差相对较小。
长沙地势开阔,冬季易受冷空气影响。
冬季气温相对较低,稳温差相对较大。
海陆位置:成都位于中国西南内陆地区,大陆性相对较强。
长沙距海较近,海洋性较强。
海拔:成都海拔500米左右,长沙110米左右,对气温也有影响。
季风:成都受西南季风和东北季风的影响,长沙主要受东南季风影响。
2、湖南长沙什么气候特点长沙气候条件:长沙年平均气温:17.5℃ ;年平均最高气温:21℃ ;年平均最低气温:14℃历史最高气温:41℃ 出现在1953年;历史最高气温:-11℃ 出现在1972年年平均降雨量:1368毫米;3、长沙和成都哪个冬季气温高成都和长沙气候类型相同,气温也相近,不过冬季成都水气多更阴冷。
成都气候:成都属亚热带季风气候,具有春早、夏热、秋凉、冬暖的气候特点,年平均气温16摄氏度,年降雨量1000毫米左右。
成都气候的一个显著特点是多云雾,日照时间短。
民间谚语中的“蜀犬吠日”正是这一气候特征的形象描述。
成都气候的另一个显著特点是空气潮湿,因此,夏天虽然气温不高(最高温度一般不超过35摄氏度),却显得闷热;冬天气温平均在5摄氏度以上,但由于阴天多,空气潮,却显得很阴冷。
成都的雨水集中在7、8两个月,冬春两季干旱少雨,极少冰雪。
长沙气候:长沙属亚热带季风性湿润气候。
气候特征是:气候变化明显,降水充沛,雨热同期,四季并不分明,只有冬夏两季。
长沙市区年平均气温17.2℃,各县16.8℃—17.3℃,年积温为5457℃,各县年均降水量1358.6~1552.5毫米。
长沙夏冬季长,春秋季短。
春温变化大,夏初雨水多,伏秋高温久,冬季严寒少。
3月下旬至5月中旬,冷暖空气相互交绥,形成连绵阴雨低温寡照天气。
从5月下旬起,气温显著提高,夏季日平均气温在30℃以上有85天,气温高于35℃的炎热日,年平均约30天,盛夏酷热少雨。
华东地区近50年降水量的变化特征及其与早涝灾害的关系分析
2 1 年 0 月 00 4
J OU RN A L 热 带 OPI 象 L ETEO RO LO G Y OF TR 气 CA 学 报 M
、 1 6 No b. . . 2 2
Apr, 2 0 . 01
文 章 编 号 : 10 —9 52 1)20 9 .7 0 44 6 (0 00 —140
势 的研究表 明: 华东地 区降水量有 明显 的增多趋势 ,
年 降 水 频 率 呈 减 少 趋 势 ,平 均 降 水 强度 增加 ,华 东 地 区 降水 量 的增 加 主要 是 由极 强 降 水 频 率 的增 大 引 起 的 。张 录 军等 [ 长 江流 域 水 旱灾 情 的分 析 表 明 , 9 对
析 了华东地区降水量 、降水量集 中度和集中期的气候特征和变化趋势特征 。结 果表 明,华东地 区北部的降水量
集 中度明显高于南部地 区, 而南部地区降水量集 中期超前于北部地 区 1 个半月左右 , 体现了华东地 区降水量 时
空分布上显著 的地 区差异。随着全球气候变暖 ,华东地区降水量有增加的趋势 ,降水量集 中度无明显的变化趋 势 ,降水量集 中期有普遍推后 的变化特征 ,主要表现在江西 和河南南部。华东地区的降水量与降水量集 中度和 集 中期有密 切的关系 ,表现在 降水量偏多的年份里 ,通常降水量集 中度越强其 降水量集 中期偏迟 。从年际变化 看华东地区降水量时空的不均匀分 布,导致降水极端事件频繁发生 ,是近年来旱涝灾害增多的一个原因。
端天气气候 事件呈增加趋势 ,从 而使长 江流域 的旱 涝灾 害愈加频繁 。符娇 兰等[ 3 】 研究表 明,近 4 5年 .mm 的 日数 ) 长 江 流域 在
中下游增多 ,而且主要来 自于大雨和暴 雨雨 日的贡
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
间 就 出 现 了 两个 降水 丰沛 年 , 一 个 降水 稀 少 年 。 降水 频 率 是 指 有 降 水 的天 数 占 总 天 数 的 百 分 比 . 通 过 剔 除
日降 水 量 为 0 m m 的天 数 , 除以每年的天数 , 求 出各 年 的 降水 频 率 。 由图 1 可得出 , 长沙近 5 0年 来 年 降水 频 率 随 年 降 水 总量 波 动状 态类 似 ,但 与 年 降 水 量 总体 增加 趋 势不同 , 降 水 频 率 总 体呈 下 降趋 势 。 由 图 2可 以看 出 .年 降 水量 方 差 在
从 图 1中可 以看 出 , 自1 9 6 1年 有 观 测 数 据 以来 , 年 降水 量
呈 丰枯 交替变化 。高于降水量趋势线 的有 2 6个年份 , 低 于趋势
线 的也 是 2 6个 年 份 。 选 取 在 1 9 6 1 ~ 2 0 1 2年 间偏 离 降 水 量 趋 势 线 较 远 并 且 处 于 拐 点 的 年 份 , 得 出 有 7 个 降 水 较 少 的 年 份
5 1 ~ 2 8 。 4 l 。长 沙市 区 的年 平 均气 温 1 7 . 2 c c ,年 均 降 水 量 为 1 3 6 1 . 6 am。 r 作 为 华 中地 区 重 要 的 城 市 , 长 沙 市 是 湖 南 省 的政 治 、 经济 、 文化中心 , 在 湖 南 经 济 社 会 发 展 中有 着 举 足 轻 重 的 地 位 。 随着经济建设 的步伐不断加快 , 长 沙 城 区 开 始 频 繁 出 现 水 资 源
( 1 9 6 3年 、 1 9 7 1年 、 1 9 7 8年 、 2 0 0 3年 、 1 9 8 6年 、 2 0 0 7年 、 2 0 1 1
匮 乏 和 城 市 洪 涝 等 灾 害 ,给 当 地 的 社 会 经 济 造 成 巨 大 的 损 失 。 通 过 分 析 当地 降水 的 变 化 特 征 。 为长 沙 市 的 城 市 防洪 减 涝 与 农
会 直 接 影 响社 会 的 生 产 , 近十年以来 , 降水 波 动 较 大 , 干 旱 和 洪 涝 等极端天 气事件发 生频率不 断提 高 , 旱 涝 灾 害频 繁 , 尤其是 降 水 量 的 波 动 使 水 资 源 缺 乏 问题 日益 突 出 , 严 重 阻 碍 了城 市 经
济 的发 展 。
影响 。 分析结果表明 , 长 沙年 降水 量 总体 趋 势 呈波 动 增 加 态 势 , 年 降 水 量 波 动 随 着 时 间推 移越 来越 明显 : 年 降 水 天数 有 增加趋势 , 平 均 降 水 强度 增 加 ; 从极端降水事件变化来看 , 近 年 来极 端 降水 频 率 有 增 加 趋 势 , 需要 加 大城 市相 应 的 防 汛
业 基 础 设施 建 设 提 供 部 分 依 据 , 以减少各种旱涝灾害的损失。
年) , 6个 降 水 量 丰 富 的 年 份 ( 1 9 6 9年 、 1 9 7 3年 、 1 9 9 7年 、 1 9 9 8 年、 2 0 1 0年 、 2 0 1 2年 ) 。由降 水 趋 势 线 可 以看 出 自 1 9 6 1年 以来 .
1 9 6 1 — 1 9 7 0年 缓 慢 上 升 , 在 1 9 7 1 ~ 1 9 9 3 年缓 慢 下 降 。 在 1 9 9 4 ~ 2 0 1 2年 开 始 迅 速 爬升, 方 差 总 体 呈上 升趋 势 , 说 明 长沙 年 降水 量 波 动 越 来 越 大 , 特别是进入 2 1 世 纪 以来 ,出现 干旱 或 者 洪 涝 等 灾 害 的 频 率 明显 增 加 。 对 其 进 行 原 因分 析 , 降 水
长 沙 年 降 水 量 总 体 趋 势 呈 波 动 增 加 态 势 .特 别 是 在 进 人 2 1 世
纪 以后 , 年 降水量 波动 愈发 明显 , 仅在 2 0 1 0年 到 2 0 1 2年 三 年
2 资料 选用 和分 析方 法
所 用资 料为 1 9 6 1 ~ 2 0 1 2年 长 沙 5 7 6 7 9号 和 5 7 6 8 7号 区 站 逐 日降 水 资 料 , 数据 统一 从 1 9 6 1年 1月 1 日开 始 , 截至 2 0 1 2 表1
资源 ・ 环 境
农 村经 济与 科 技2 0 1 5 年 第2 6 卷 第O 9 期( 总 第3 7 3 期)
长沙市近 5 0年降水特征及变化趋势
李 湘龙 。 张 坤 4 1 0 1 2 8 ) ( 湖 南农 业 大 学 资 源环 境 学 院 , 湖 南 长 沙
[ 摘 要 ] 通过 利 用 1 9 6 1  ̄ 2 0 1 3年 长 沙 5 7 6 7 9区站 逐 日降 水 资料 , 研究分析 了长沙近 5 O年 大 气 降水 的 变化 特 征 及
3 数据 结果 分析
3 . 1 降水 量 和 降水 频 率 的 年 际时 间 变 化 及 趋 势分 析
长沙 市是湖南 省省会 , 位 于湖南省 东部偏 北 。 湘 江 下 游 和 长 浏 盆 地 的西 缘 。 其 地 域 范 围为 东 经 1 1 l 。 5 3 1 l 4 o 1 5 . 北纬 2 7 o
周期进 行移动均值分析 , 数 据 处 理 通 过 采 用 线 性 趋 势 分 析 法 综
合 分 析 年 降 水量 和年 最 大 日降水 量 的变 化 特 征 。把 一 天 之 内 降
水量在 5 0 mm 以 上定 为极 端 降水 ,采 用 多 项 式 趋 势 线 分 析 降 水 年 方 差 和极 端 降水 日数 的年 际 变 化 。
抗 洪能 力 。
Байду номын сангаас
[ 关键 词 ] 降水特征 ; 变化 趋 势 ; 长 沙 市 [ 中 图分 类 号 ] P 3 3 3 [ 文献标识码] B
年 1 2月 3 1日。在 年 降 水 量 趋 势统 计 分 析 过 程 中 , 采用 1 0年 为
1 引言
降水 是一 个 地 区 重 要 的 气 候 指 标 , 气 候 变 化 可 以很 清 晰 地 体 现 在 降水 的变 化 上 , 是 一 个 重要 的 气候 要 素 。此 外 , 降 水 变 化