第2章 缩聚和逐步聚合
高分子化学-第二章 缩聚和逐步聚合
N0
N0
反应程度与转化率的区别
转化率:参加反应的单体量占起始单体量的分数,是指已 经参加反应的单体的数目
反应程度:则是指已经反应的官能团的数目
例如: 一种缩聚反应,单体间双双反应很快全部变成二聚体,就 单体转化率而言,转化率达100%;而官能团的反应程度 仅50%
反应程度与平均聚合度的关系
聚合度是指高分子中含有的结构单元的数目
聚加成:形式上是加成反应,但反应机理是逐步反应。 如聚氨酯的合成(p17)。
开环反应:部分开环反应为逐步反应,如水、酸引发的己内 酰胺的开环反应。
氧化-偶合:单体与氧气的缩合反应, 如 2,6-二甲基苯酚和氧 气形成聚苯撑氧,也称聚苯醚。
2 逐步聚合反应的特点
官能团间的反应,无特定的活性中心;无所谓的引发、 增长、终止等基元反应;反应逐步进行,每一步的反 应速率和活化能大致相同;
[ H + ][ A- ] KHA =
[ HA ]
[ HA ] [ H + ] [ A- ] = KHA
代入式
-d [ COOH ] = k1k3[ COOH ][OH ][ H+]
dt
k 2KHA
催化用酸HA:可以是二元酸本身,但反应较慢,也可以是 外加酸,如H2SO4,大大加速
自催化缩聚反应
无外加酸,二元酸单体催化剂,[HA] = [COOH]
Flory对此进行了解释:
官能团等活性理论是近似的,不是绝对的,这一理论大大简化了研 究处理,可用同一平衡常数表示,整个缩聚过程可以用两种官 能团之间的反应来表征
COOH + HO
k1
OCO
k1
2. 线型缩聚动力学
不可逆条件下的缩聚动力学
第二章 缩聚及其他逐步聚合反应
第二章缩聚及其他逐步聚合反应一、学习要求1、了解线形缩聚的单体种类及类型,掌握官能团及官能度的概念,等物质的量的概念。
2、熟悉线形缩聚的机理和特点,熟悉在密闭体系与开放体系中聚合度与平衡常数和残留小分子的关系,熟悉线形缩聚中出现的副反应。
3、掌握官能团等活性概念,了解线形缩聚动力学,自催化聚酯化动力学及外加酸聚酯化动力学,平衡缩聚动力学。
4、掌握线形缩聚产物聚合度的影响因素及控制方法,了解反应程度和平衡常数对聚合度的影响;了解等物质的量对聚合度的影响;掌握摩尔系数的计算,聚合度与反应程度、摩尔系数的关系,了解线形缩聚物的分子量分布。
5、掌握体型缩聚的形成条件,凝胶化现象与凝胶点,Carothers方程的理论基础及方程式,等物质的量及非等物质的量条件下的体系平均官能度的计算,了解Flory统计法估算体系凝胶点的方法。
6、掌握缩聚反应的实施方法,了解聚酯、聚酰胺的制备原理及过程,了解酚醛树脂、尿醛树脂及三聚氰胺甲醛树脂的制备原理及过程。
二、学时学时聚合反应从机理上可分为逐步聚合反应和连锁聚合反应两大类型。
在高分子化学和高分子合成工业中,逐步聚合反应占有重要地位。
其中包括人们熟知的涤纶、尼龙、酚醛树脂及脲醛树脂等高分子材料。
近年来,逐步聚合反应的研究在理论上和实际应用上都有了新的发展,一些高强度、高模量、耐老化及抗高温等综合性能优异的高分子材料不断问世。
逐步聚合反应中最重要是缩合聚合,简称缩聚。
本章着重讨论缩聚反应,并介绍其他常用的逐步聚合反应。
2.1 聚合反应类型及特点逐步聚合反应包括缩聚反应、逐步加成聚合,一些环状化合物的开环聚合、Diels—Alder 加成反应(狄尔斯-阿尔德反应是一种有机反应(具体而言是一种环加成反应)。
共轭双烯与取代烯烃(一般称为亲双烯体)反应生成取代环己烯。
即使新形成的环之中的一些原子不是碳原子,这个反应也可以继续进行。
一些狄尔斯-阿尔德反应是可逆的,这样的环分解反应叫做逆狄尔斯-阿尔德反应(retro-Diels–Alder)。
第2章缩聚和逐步聚合
56弗洛里小传弗洛里小传((Paul J. Flory )(1910-1985)1910年6月19日生于伊利诺伊州斯特灵日生于伊利诺伊州斯特灵;;1934年在俄亥俄州州立大学获物理化学博士学位博士学位,,后任职于杜邦公司后任职于杜邦公司,,进行高分子基础理论研究分子基础理论研究;;1948年在康奈尔大学任教授年在康奈尔大学任教授;;1953年当选为美国科学院院士年当选为美国科学院院士;;1957年任梅隆科学研究所执行所长年任梅隆科学研究所执行所长;;1961年任斯坦福大学化学系教授年任斯坦福大学化学系教授;;1974年获诺贝尔化学奖年获诺贝尔化学奖。
1975年退休年退休;;1985年9月9日逝世日逝世。
在高分子物理化学方面的贡献,几乎遍及各个领域几乎遍及各个领域。
既是实验家又是理论家是实验家又是理论家,,是高分子科学理论的主要开拓者和奠基人之一和奠基人之一。
著有著有《《高分子化学原理子化学原理》》和《长链分子的统计力学的统计力学》》等。
线形缩聚反应的统计学假设官能团等活性反应程度p,则的百分数,它表示聚合反应到达时刻t 时,参加反应的COOH的百分数1-p就是时刻t 时一个给定的COOH 还没参加反应的几率57聚酰胺化反应的过程分子式存在的结构单元数反应了的COOH数10213243x x-158591、x-聚体的数量分布函数问题:从聚合的混合物中从聚合的混合物中,,随机选择一个分子随机选择一个分子,,恰好含有x 个结构单元(x-聚体聚体))的几率是多少的几率是多少??aAb 型则:x-1个COOH 连续反应掉的几率:p x-11个COOH 未反应掉的几率未反应掉的几率::1-pP(x)=p x-1(1-p)a-A-A-A-A-A-A ┅A-A-bp p p p p p pp x-11-p60共有N 个分子个分子,,x-聚体的数目为N x 反应产生的水被脱除反应产生的水被脱除,,则COOH 的总数总是等于分子总数NP(x)=p x-1(1 -p)N x /N =p x-1(1 -p)N x =Np x-1(1 -p)N(COOH)=N =N 0(1-p )N x =N 0p x-1(1-p)22-4161•此式是线型缩聚反应产物分子量的数量分布函数•在任何反应程度p 时单体时单体((x=1)总是有最大的存在几率•随反应程度的提高随反应程度的提高,,其分布变宽其分布变宽,,平均分子量增大N x =N 0p x-1 (1-p)22-4162N x =N 0p x-1 (1-p)2所示的数量分布曲线关系不同反应程度下线性缩聚物分子量的数量分布曲线1. p=0.9600;2. p=0.9875;3. p=0.995063线形缩聚产物的分子量分布函数可完全参照自由基聚合中推导的函数式来表达函数式来表达。
高分子化学第二章-缩聚及逐步聚合
l 按反应热力学的特征分类 平衡缩聚反应 指平衡常数小于 103 的缩聚反应 不平衡缩聚反应 平衡常数大于 103
l按生成聚合物的结构分类 线型缩聚 体型缩聚
2.2.3 特点
缩聚反应是缩合聚合反应的简称,是缩合反应多 次重复结果形成缩聚物的过程。 1、典型缩合反应——形成低分子化合物
3 、反应程度与数均聚合度的关系
数均聚合度是指高分子中含有的结构单元的数目。
Xn
起始单体数目
=
达到平衡时同系物数目(大分子数)
N0 N
代入反应程度关系式
P = N0-N = 1- N
N0
N0
P = 1- 1 Xn
1 Xn = 1-P
一般 Xn 100~200 P提高到
0.99~0.995
300 250 200
a. 密闭体系中,nw=P
Xn
1 P
K=
1 nw
K
当M n 104 , P 1, X n
K nw
平衡缩聚中数均聚合度与平衡常数
及小分子副产物浓度三者关系
Xn只与温度有关,与其他无关。(因为nw平衡时为定值)
b. 敞开体系,水排出,则 nw为体系中剩余的。
说明:X
的影响因素
n
密闭体系,只与T有关 敞开体系,与排出的水有关
3、缩聚中的副反应 副反应
消去反应 化学降解 链交换反应
消去反应
HOOC(CH2)nCOOH
HOOC(CH2)nH + CO2
二元酸脱羧温度(℃)
己二酸 300~320 庚二酸 290~310 辛二酸 340~360 壬二酸 320~340 癸二酸 350~370
《材化高分子化学》第2章 缩聚和逐步聚合
6
第二章 缩聚和逐步聚合
Diels-Alder加成聚合:单体含一对共轭双键,如:
+
与缩聚反应不同,逐步加成聚合反应没有小分 子副产物生成。
7
第二章 缩聚和逐步聚合
逐步聚合还可以按以下方式分类:
逐步聚合
线形逐步聚合 非线形逐步聚合
(1)线形逐步聚合反应 参与反应的每种单体只含两个功能基,聚合产物分子链
19
第二章 缩聚和逐步聚合
★ 浓度很低时,A功能基旁同一分子链上的B功能基浓度较 高,相互反应生成环状高分子。
环化反应经常被用来合成环状低聚物与环状高分子。 环化低聚物可用做开环聚合的单体,具有以下的优点: (1)没有小分子副产物生成; (2)聚合反应速率高; (3)所得聚合物的分子量分布窄。
环状高分子则由于不含未反应的末端功能基,其分子量 和性能不会因末端功能基间的反应而不稳定。
n 聚体 + m 聚体
(n + m) 聚体 + 水
缩聚反应无特定活性种,各步反应速率和活化能基本相等。
23
第二章 缩聚和逐步聚合
在缩聚反应早期,单体之间两两反应,转化率很高,但
分子量很低,因此转化率无实际意义。用基团的反应程度P
来表示聚合深度。
反应程度P定义为参与反应的基团数(N0-N)占起始
基团数的分数,
13
第二章 缩聚和逐步聚合
HOOC-R-COOH + HO-R'-OH
HOOC-R-COO-R'-OH + H2O 二聚体
HOOC-R-COO-R'-OH +
HOOC-R-COOH HO-R'-OH
高分子化学第二章缩聚及逐步聚合
说明:Xn的影响因素 密闭体系,只与T有关 敞开体系,与排出的水有关
水排出多,则nw ,K / nw ,则Xn
K小时,可通过排水提高Xn
2.4.4 影响缩聚平衡的因素 1、温度的影响
lnK2 K1
RHT11
1 T2
对于吸热反响,△H>0,假设T2>T1,那么K2>K1 ,即温度升高,平衡常数增大。
n HO-R-COOH H2O
H-(ORCO)n-OH + (n-1)
2、体形缩聚反应(K值通常大于103的缩聚反应)
n a-A-a + n b-B-b b
~A-B-A~
A
A~
~A-B-A-B-A-B-A-B-A-B-A~
A
A
A
~A-B-A-B-A-B-A-B-A-B-A~
A~
A~
参加聚合反响的单体至少有一个含有两个
1、线型逐步聚合反响〔K值通常小于103的缩聚反响〕
参与反响的单体只含两个官能团〔即双官能团 单体〕,聚合物分子链只会向两个方向增长,分子 量逐步增大,体系的粘度逐渐上升,获得的是可溶 可熔的线型高分子。
双官能团单体类型:
a. 两官能团一样并可相互反响
b. 如二元醇聚合生成聚醚
c. n HO-R-OH
与醛缩合,官能度为 3
单体官能度的影响
• 单官能度只发生缩合反响而不能发生缩聚反响。 • 多官能度〔f = 2〕形成线型构造的缩聚物。 • 多官能度〔f > 2〕形成体型构造的缩聚物。 •
2 、双官能度体系的成环反响
在生成线型缩聚物的同时,常伴随有 成环反响
• 成环是副反响,与环的大小密切相关 • 环的稳定性如下:
高分子化学第二章 缩聚和逐步聚合
O=
C
H2C─C O H2C─CH2
H2C O
H2C CH2 CH2
20
• HO–(CH2)n–COOH缩聚
n=1,2HOCH2COOH HOCH2COOCH2COOH O=C-CH2O-C=O + H2O OCH2
21
• n=2
HO(CH2)2COOH
CH2=CH-COOH+H2O
• n=3 HO(CH2)3COOH
CH2-C=O CH2-CH2-O + H2O
22
• n=4 HO(CH2)4COOH
CH2-CH2-C=O CH2-CH2-O + H2O
• n>=5,成链,形成线形聚合物。
23
• 成环倾向大小,主要取决于单体的结构, 受反应条件的影响较小。
• 环上取代基或环上元素改变时,环的稳定 性也相应变化。
• 在工业上:锦纶大量用来制造轮胎帘子 布、工业用布、缆绳、传送带、帐篷、 鱼网等,还可用作降落伞。
64
• 还可用于制造轴承、齿轮、滚子、 滑轮、辊轴、风扇叶片、涡轮、垫 片等。
65
全芳聚酰胺
• 是20世纪60年代由美国的杜邦公司首先开 发成功的。
13
自由基聚合
线型缩聚
③只有链增长才使聚 ③任何物种间都能反应, 合度增加,从一聚体 使分子量逐步增加。反应 增长到高聚物,时间 可以停留在中等聚合度阶 极短,中途不能暂停。段,只在聚合后期,才能 聚合一开始,就有高 获得高分子量产物。 聚物存在。
④在聚合过程中,单 ④聚合初期,单体几乎全
体逐渐减少,转化率 部缩聚成低聚物,以后再
(2—23式)
• 水部分排出时:
-dC/d t =k1 [ (1-P)2-P•nW/ K]
第二章_缩聚和逐步聚合 教案
Page3.
缩聚反应的特征
四个特征:反应的历程; 每一步反应的速率及活 化能大致相同;反应体系 的组成;聚合产物的分子 量(与连锁聚合的不同) 。 --延长反应时间的目的主 要是为了提高分子量,对 转化率的贡献不大。
Page4.
什么是缩聚反应(缩合与缩聚的不同)
什么是缩聚反应(缩合与 缩聚的不同) ; 对于这两个反应我们如 何描述?需要介绍几个 概念。
Page9.
f:1-1 和 f:1-2
Page10. 线型缩聚:f:2-2 或 f:2
掌握:线型缩聚的条件。
4
Page11. 从热力学的角度,将线型缩聚分为:平衡(可逆)和不平衡
涤纶生产中需要高真空
Page12. 不平衡线型逐步聚合反应
不平衡有两层意思:生成 的聚合物分子间不会发 生交换反应且单体与聚 合产物之间不存在可逆 的平衡。
Page43. 2.9 重要的线性缩聚物:1 涤纶
Page44. 2.9 重要的线性缩聚物:1 涤纶
15
Page45. 2.9 重要的线性缩聚物:2 聚酰胺
Page46. 2.9 重要的线性缩聚物:2 聚酰胺
Page47. 2.9 重要的线性缩聚物:3 全芳聚酰胺
16
Page48. 2.9 重要的线性缩聚物:4 聚碳酸酯
Page31. 分子量的数均及重均分布函数
分子量数均分布函数:
Page32. 分子量的分布指数,反应分子量的多分散性
缩聚产物的分子量分布, 随聚 合反应的进行逐渐增大, 且应 ≤2。
11
Page33. 平衡反应对聚合度的影响:密闭体系(小分子未排除,P28)
Page34. 非密闭体系:小分子被排出。
第二章 缩聚和逐步聚合
第二章 缩聚和逐步聚合
§2-3 缩聚反应的机理和动力学
§2.3.1 缩聚反应的基本过程 (1 ) 大分子的生长反应
a ABb + a A B + ab a A B + ab
aAa + b B b a A B m
n
m +n
特点:大分子之间可以互相反应产生更大的分子。
17
(2)大分子生长过程的停止
a. 热力学平衡的限制---缩聚反应的逆反应解缩聚
+ HO
O C R' COOH H OROCOR' CO m OH
( ( )
(
HCOORR' CO
OROCOR' CO n OH
)
)
2 H 2N CH 2 n NH2
( )
2 C CH 2 n1
)
NH
+ 2NH 3 + NH 3
H 2N CH 2 n NH CH 2 n NH2
+
21
§2.3.1
线性缩聚反应动力学
13
●单体中官能团的空间分布对产物结构与性能的影响
nH2N- -NH2 + nClOC- -COCl
H-NH-
-NHOC-
-CO-Cl + (2n-1)HCl
n
聚对苯二甲酰对苯二胺
结晶性高聚物,能溶于浓硫酸中,不溶解于有机溶剂
nH2N NH2 H-NH NHOC
聚间苯二酰间苯二胺
+ nClOC COCl + (2n-1)HCl CO- Cl n
脲醛缩聚反应 聚烷基化反应 聚硅醚化反应
脲醛树脂 聚烷烃 有பைடு நூலகம்硅树脂
6
n [CH2]
-Si-O-
第2章缩聚和逐步聚合反应
大部分缩聚属于逐步聚合,缩聚也占了逐步聚 合的大部分。有时候换用,但不是一个概念。 逐步聚合的概念: 逐步聚合反应指随着反应时间的延长,相对分 子质量逐步增大的聚合反应。 聚合初期,单体通过官能团反应变为低聚物, 然后由低聚物转化为高聚物。 单体、低聚物和高聚物之间任何两个分子都可 以反应,相对分子质量逐步增大,聚合物链逐 渐增长。 反应的中间物可以分离出来,并能再进一步反 应。
也称A-A型缩聚,如:
② 混缩聚(或称为杂缩聚) mixing polycondensation 由两种具有不同官能 团(功能基)的单体参加的缩聚反应,这两 种单体自身都不能进行均缩聚。通式为:
如二元酸和二元胺,二元酸和二元醇的缩 聚反应(2-2官能度体系)。
③ 共缩聚 (co-condensation polymerization) 在均缩聚中加入第二种单体进行缩聚, 或在混缩聚中加入第三种甚至第四种单 体进行的缩聚反应。通式分别为:
线形缩聚产物相对分子质量或聚合度与反 应程度之间有怎样的关系?
聚合度:进入大分子链中的平均总单体数 (或结构单元数)。
式(2-3)同样适用于“a-A-a + b-B-b”型(2/2官能度 体系) 缩聚反应。如等量的二元酸和二元醇之间的 反应。
如果设 为平均相对结构单元质量,则 线型缩聚产物的数均相对分子质量为:
如果羧基数和羟基数相等,令其起始浓 度C0=1,时间t的浓度为C,
C= C0*(1-P)=1-P。则酯的浓度为 1-C=P,水全未排除时,水的浓度也是P 。 如果一部分水排出,残留水的浓度为nw
上式表明:总反应速率与反应程度P、低分子副产物含 量nw、平衡常数K有关
2.5 线型缩聚物的聚合度
逐步聚合反应的分类: 缩聚反应、逐步加成聚合反应
02 缩聚和逐步聚合
HO CH2 CH2 OH
+
HOOC
COOH
O H2N R N H2
O R' C OH
+
HO
C
CH3 HO
O OH
C
CH3
+
Cl
C Cl
OH
H
OH
H
+
H C H2O
OH
+
OH
H
C H2
CH2
H
CH3
O OH
n HO
C
CH3
+ (n+2) ClCH2
C CH2 H
3、氧化偶联聚合反应 通过氧化偶联反应生成聚合物的反应。 例如:苯的氧化偶联聚合生成聚苯;酚的氧化偶联 聚合生成聚苯醚。 4、逐步加成聚合反应 通过加成反应逐步生成聚合物的反应。 例如:聚氨酯的合成、D-A聚合等,反应式见p17 表2-1。
一、线形缩聚与成环倾向 1、反应倾向 一般来说,5、6元环比较稳定,因此如果形成的是5、6元 环,则易发生成环反应; 否则,主要发生线形缩聚反应。
2、影响因素 单体浓度,影响着成环反应与线形缩聚的竞争。 成环反应是单分子反应,缩聚则是双分子反应, 因此,低浓度有利于成环反应,高浓度有利于缩聚反应。
有特殊官能团单体 有特殊的活性中心
线形缩聚
烯烃 无特殊的活性中心
有基元反应,各步Ea 无基元反应,各步Ea 不同 相同 分子量随时间不变, 转化率随时间增加 单体 +大分子+微量引 发剂 C% 分子量随时间增加, 转化率随时间不变 聚合度不等的同系物 P
单体及引发剂浓度、 平衡常数、单体比例、 温度、阻聚剂、分子 温度、…… 量调节剂、……
chap2 缩聚和逐步聚合
二级反应
30
dC = k 'C 2 dt
二级反应
= k 'C 0t + 1
积分并引入 p,得 : 1
1 p
Xn = k 'C0t+1
1/(1-p)或 Xn 与时间 t 成动力学
聚酯化反应K值较小,小分子副产物若不及时 排除,逆反应不能忽视。 分别考虑水不排除和部分不排除(残留水的浓度 为 nw )两种情况: COOH + OH C0 t时(水未排除) C t时(水部分排除) C
2
一、引言
按聚合机理或动力学分类: 连锁聚合(chain polymerization) 活性中心(active center)引发单体,迅速连锁增长 自由基聚合 活性中心不同 阳离子聚合 阴离子聚合 逐步聚合(stepwise polymerization) 无活性中心,单体所带的不同官能团间相互反 应而逐步增长 大部分缩聚属逐步机理, 大多数烯类加聚属连锁机理。
第二章 缩聚和逐步聚合
(stepwise polymerization)
1
本章内容
一、引言 二、缩聚反应 (polycondensation) 三、线形缩聚(linear polycondensation) 四、线形缩聚动力学 五、影响线形缩聚物聚合度的因素及控制方法 六、分子量分布(MWD) 七、 逐步聚合的实施方法
K = k1 / k 1
0.5 = 0.75 p=1 2
2 1 = =4 Xn= 0.5 1 0.75
20
1 Xn= 1 p
符合此式须满足官能团数 等当量的条件。 聚合度将随反应程度而增 加
p=0.9
第2章缩聚及其他逐步聚合反应
高分子化学
第2章 缩聚及其他逐步聚合反应
2.1-2.3
2.2.1.2 缩聚反应的类型 按参加反应的单体种类分类 (1)均缩聚:只有一种单体参加的缩聚反应,其重复单元 只含有一种结构单元。单体本身含有能发生缩合反应的两种 官能团。 如由氨基酸单体合成聚酰胺:
(2)混缩聚:由两种单体参与、但所得聚合物只有一种重 复结构单元的缩聚反应,其起始单体通常为对称性双功能基 单体,如aRa和bR ′ b,聚合反应通过X和Y功能基的相互反 应进行。
2.1-2.3
(1)实验依据d: (2)理论分析: 官能团的活性取决于官能团的碰撞频率,而不是大分子的扩散 速率。 碰撞频率:单位时间内一个官能团与其他官能团碰撞的次数。 大分子的整体扩散速率很低,大分子链末端的官能团的活动性 要比整个大分子大很多。
(3)“等活性”理论需满足的条件
缩聚反应体系必须是真溶液、均相体系。 官能团所处的环境——邻近基团效应和空间阻碍在反应过程中 不变。 聚合物的相对分子质量不能太高,反应速率不能太大,体系粘 度不能太高。 第2章 缩聚及其他逐步聚合反应 2.1-2.3 高分子化学
第2章 缩聚及其他逐步聚合反应
2.1 聚合反应类型及特点
在高分子工业中具有重要地位:
1.大多数杂链聚合物都是由逐步聚合而成:聚酯、聚酰胺、聚 氨酯、酚醛树脂、环氧树脂等。
2.许多带芳环的耐高温聚合物如聚酰亚胺由逐步聚合而成。
3.逐步聚合可以合成很多功能高分子,如离子交换树脂。
4.许多天然生物高分子通过逐步聚合而得:蛋白质,多糖等。
n HOOC-R-COOH + n HO-R'-OH
高分子化学
O O HO ( C R C OR'O ) H + (2n-1) H2O n
高分子化学2 缩聚和逐步聚合
第二章 缩聚和逐步聚合
2.2 缩聚反应
若参与反应的物质均为二官能度的,则缩合反应转化 为缩聚反应。
以二元羧酸与二元醇的聚合反应为例。当一分子二元 酸与一分子二元醇反应时,形成一端为羟基,一端为羧基 的二聚物;二聚物可再与二元酸或二元醇反应,得到两端 均为羟基或均为羧基的三聚体,也可与二聚体反应,得到 四聚体;三聚体既可与单体反应,也可与二聚体或另一种 三聚体反应,如此不断进行,得到高分子量的聚酯。
CH2 O CO
CH2 CH2
HO(CH2)4COOH
CH2
CH2 CH2
O CO
CH2
22
第二章 缩聚和逐步聚合
3.2 线形缩聚机理
线形缩聚反应有两个显著的特征:逐步与可逆平衡。 1)聚合过程的逐步性
以二元酸和二元醇的缩聚为例。在缩聚反应中,含羟 基的任何聚体与含羧基的任何聚体之间都可以相互缩合。 随着反应的进行,分子量逐步增大,达到高分子量聚酯。 通式如下:
13
第二章 缩聚和逐步聚合
HOOC-R-COOH + HO-R'-OH
HOOC-R-COO-R'-OH + H2O 二聚体
HOOC-R-COO-R'-OH +
HOOC-R-COOH HO-R'-OH
HOOC-R-COO-R'-OOC-R-COOH + H2O 三聚体
HO-R'-OOC-R-COO-R'-OH + H2O
如光气法制备聚碳酸酯,合成聚砜等。
逐步特性是所有缩聚反应共有的,可逆平衡的 程度则各类缩聚反应有明显差别。
28
第二章 缩聚和逐步聚合
3.3 缩聚过程中的副反应
高分子化学导论第2章线性缩聚和逐步聚合
2.7 体形缩聚和凝胶化作用
一. 体形缩聚 1. 定义
在缩聚反应中,参加反应的单体只要有一种单体具有 两个以上官能团( f >2),缩聚反应将向三个方向发展, 生成支化或交联结构的体形大分子,称为体形缩聚。 体形缩聚的最终产物称为体形缩聚物。
r
=
Na
Na+2Nc
2表示1个分子Cb中的1个基 团b相当于一个过量的bBb 分子双官能团的作用
q=
Nc Na
=
2Nc Na
2
推导过程同上
r
=
1
q+1
1+r
q+2
Xn = 1+r-2rP = q+2( 1-P )
和前一种情况相同,只是 r 和 q 表达式不同
3)aRb 加少量单官能团物质Cb(分子数为Nc) 基团数比和分子过量分率如下:
Polymer Chemistry
高分子化学
缩聚和逐步聚合
2.1 发展历史
按聚合机理或动力学分类:
• 逐步聚合(stepwise polymerization) 无活性中心,单体官能团间相互反应而逐步增长
• 连锁聚合(chain polymerization) 活性中心(active center)引发单体,迅速连锁增长
( Na+Nb ) / 2
1+r
q+2
Xn = ( Na+Nb-2NaP ) / 2 = 1+r-2rP = q+2( 1-P )
( Na+Nb ) / 2
1+r
q+2
Xn = ( Na+Nb-2NaP ) / 2 = 1+r-2rP = q+2( 1-P )
若q很小
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 计算题1、通过碱滴定法和红外光谱法,同时测得21.3 g 聚己二酰己二胺试样中含有2.50⨯10-3mol 羧基。
根据这一数据,计算得数均分子量为8520。
计算时需作什么假定?如何通过实验来确定的可靠性?如该假定不可靠,怎样由实验来测定正确的值?解:∑∑=ii nNm M ,g m i 3.21=∑,852010*5.23.213==-n M ,310*5.2=∑i N 上述计算时需假设:聚己二酰己二胺由二元胺和二元酸反应制得,每个大分子链平均只含一个羧基,且羧基数和胺基数相等。
可以通过测定大分子链端基的COOH 和NH 2摩尔数以及大分子的摩尔数来验证假设的可靠性,如果大分子的摩尔数等于COOH 和NH 2的一半时,就可假定此假设的可靠性。
用气相渗透压法可较准确地测定数均分子量,得到大分子的摩尔数。
碱滴定法测得羧基基团数、红外光谱法测得羟基基团数2、羟基酸HO-(CH 2)4-COOH 进行线形缩聚,测得产物的质均分子量为18,400 g/mol -1,试计算:a. 羧基已经酯化的百分比 b. 数均聚合度 c. 结构单元数n X解:已知100,184000==M M w根据ppX M M X w w w -+==110和得:p=0.989,故已酯化羧基百分数为98.9%。
9251,1=+=n nw M P M M 51.9210092510===M M X n n 3、等摩尔己二胺和己二酸进行缩聚,反应程度p 为0.500、0.800、0.900、0.950、0.980、0.990、0.995,试求数均聚合度n X 、DP 和数均分子量n M ,并作n X-p 关系图。
4、等摩尔二元醇和二元酸经外加酸催化缩聚,试证明从开始到进行缩聚,反应程度p 为0.500、0.800、0.900、0.950、0.980、0.990、0.995,试求数均聚合度nX 、DP 和数均分子量n M ,并作n X-p 关系图。
解:在外加酸催化的聚酯合成反应中存在10+'=t c k X nP=0.98时, 50=n X , 所需反应时间0149c k t '=; P=0.99时, 100=n X , 所需反应时间0199c k t '=。
所以,t 2大约是t 1的两倍,故由0.98到0.99所需的时间相近。
5、由1mol 丁二醇和1mol 己二酸合成数均分子量为5000的聚酯,a. 两基团数完全相等,忽略端基对数均分子量的影响,求终止缩聚的反应程度P ;b. 在缩聚过程中,如果有5mmol 的丁二醇脱水成乙烯而损失,求达到同样反应程度时的数均分子量;c. 如何补偿丁二醇脱水损失,才能获得同一数均分子量的缩聚物?d. 假定原始混合物中羧基的总浓度为2mol ,其中1.0%为醋酸,无其它因素影响两基团数比,求获得同一数均聚合度时所需的反应程度。
解:a. —[CO(CH 2)4COO(CH 2)4O]— M 0=(112+88)/2=100,5010050000===M M X n n 由9800.011=⇒-=P PX nb. r=Na/Nb=2×(1-0.005) /(2×1)=0.995445310053.4453.449800.0995.02995.01995.012110=⨯=⨯==⨯⨯-++=-++=M X M rP r r X n n n c. 可排除小分子以提高P 或者补加单体来补偿丁二醇的脱水损失。
d. 依题意,醋酸羧基为2×1.0%=0.02mol 己二酸单体为(2-0.02)÷2=0.99mol ∴9900.102.0199.022=+++=f根据f P X n -=22 代入数据9900.12253.44⨯-=P解得P =0.98256、(略)7、(略)8、等摩尔的乙二醇和对苯二甲酸在280℃下封管内进行缩聚,平衡常数K=4,求最终n X 。
另在排除副产物水的条件下缩聚,欲得100=n X ,问体系中残留水分有多少?解:3111=+=-=K pX nLmol n n Kpn KpX w w wn /10*4100114-==≈=-=9、等摩尔二元醇和二元酸缩聚,另加醋酸1.5%,p=0.995或0.999时聚酯的聚合度多少?解:假设二元醇与二元酸的摩尔数各为1mol ,则醋酸的摩尔数为0.015mol 。
N a =2mol ,N b =2mol ,015.0'=b N mol985.0015.0*2222,=+=+=bb a N N N r当p=0.995时,88.79995.0*985.0*2985.01985.01211=-++=-++=rp r r X n当p=0.999时,98.116999.0*985.0*2985.01985.01211=-++=-++=rp r r X n10、尼龙1010是根据1010盐中过量的癸二酸来控制分子量,如果要求分子量为20000,问1010盐的酸值应该是多少?(以mg KOH/g 计)解:尼龙1010重复单元的分子量为338,则其结构单元的平均分子量M=16934.11816920000==n X假设反应程度p=1,983.0,11211=-+=-++=r rrrp r r X n尼龙1010盐的结构为:NH 3+(CH 2)NH 3OOC (CH 2)8COO -,分子量为374。
由于癸二酸过量,假设Na (癸二胺)=1,N b (癸二酸)=1.0/0.983=1.0173,则 酸值)1010/(18.53742*56*)10173.1(*2*)(*)(1010盐g mgKOH M N KOH M N N a a b =-=-=11、己内酰胺在封管内进行开环聚合。
按1 mol 己内酰胺计,加有水0.0205mol 、醋酸0.0205mol ,测得产物的端羧基为19.8 mmol ,端氨基2.3mmol 。
从端基数据,计算数均分子量。
解:NH(CH 2)5CO +H 2O ————HO-CO (CH 2)5NH-H└-------┘0.0205-0.0023 0.0023NH(CH 2)5CO +CH 3COOH ————HO-CO (CH 2)5NH-COCH3 └-------┘0.0205-0.0175 0.0198-0.0023 M=1132.57620198.00175.0*430023.0*10198.0*17113*1=+++==∑in n m M 12、等摩尔己二胺和己二酸缩合,p=0.99和0.995,试画出数量分布曲线和质量分布曲线,并计算数均聚合度和重均聚合度,比较两者分子量分布分布的宽度。
解:x -聚体的数量分布函数为)1(1P P NN x x-=- x -聚体的重量分布函数为21)1(P xP WW x x-=-99.1199111001199.0==-+==-==nww n X X PPX PX P 时995.13991120011995.0==-+==-==n w w n X X P P X P X P 时W x / W ×103xN x / N ×103反应程度高的,分子量分布要宽一些。
13、邻苯二甲酸酐与甘油或季戊四醇缩聚,两种基团数相等,试求:a. 平均官能度 b. 按Carothers 法求凝胶点 c. 按统计法求凝胶点解:a 、平均官能度: 1)甘油:4.2233*22*3=++=f2)季戊四醇:67.2121*42*2=++=fb 、 Carothers 法: 1)甘油:833.04.222===fp c 2)季戊四醇:749.067.222===f p c c 、Flory 统计法: 1)甘油:1,1,703.0)2([12/1===-+=ρρr f r r p c2)季戊四醇:1,1,577.0)2([12/1===-+=ρρr f r r p c14、分别按Carothers法和Flory统计法计算下列混合物的凝胶点:a. 邻苯二甲酸酐和甘油的摩尔比为1.50:0.9815、用乙二胺或二亚乙基三胺使1000g环氧树脂(环氧值为0.2)固化,固化剂按化学计量计算,再多加10%,问两种固化剂的用量使多少?解:环氧树脂f=2,乙二胺f=4,二次乙基三胺f=5乙二胺用量(1000/100)×0.2×(1/4)×(1+10%)=0.55mol 重量=0.55×60=33g二次乙基三胺用量(1000/100)×0.2×(1/5)×(1+10%)=0.44mol 重量=0.44×103=45.32g16、AA、BB、A3混合体系进行缩聚,NA0=NB0=3.0,A3中A基团数占混合物中A 总数(ρ)的10%,试求p=0.970时的n X以及n X= 200时的p。
解:N A0=N B0=3.0,A3中A基团数占混合物中A总数(ρ)的10%,则A3中A基团数为0.3mol,A3的分子数为0.1 mol。
N A2=1.35mol;N A3=0.1mol;N B2=1.5mol034.21.035.15.133=+++=++++=C B A C C B B A A N N N f N f N f N ffp X n -=22当p=0.970时,74034.2*97.022=-=nX200=n X 时,pf p X n 034.22222-=-=p=0.97317、2.5mol 邻苯二甲酸酐、1mol 乙二醇、1mol 丙三醇体系进行缩聚,为控制凝胶点需要,在聚合过程中定期测量树脂的熔点、酸值(mgKOH/g 试样)、溶解性能。
试计算反应至多少酸值时会出现凝胶。
解:已知按Carothers 方程计算:按Flory 方程计算以P 0=0.9计,起始反应羧基摩尔数为2.5×2×0.9=4.5,剩余羧基摩尔数为0.5,体系总重为524g ,每克树脂含羧基摩尔数为0.5/524=9.6×10-4mol/g ,酸值为9.5×10-4×56.1×103=53.52(mg KOH )。
以P 0=0.7906可作相似的计算。
实际凝胶点时的酸值在这两者之间。
18、制备醇酸树脂的配方为1.21mol 季戊四醇、0.50mol 邻苯二甲酸酐、0.49mol 丙三羧酸[C3H5(COOH )3],问能否不产生凝胶而反应完全?解:根据配方可知醇过量。
245.249.05.021.1)3*49.02*5.0(*2=++++=f89.02==fp c ,所以必须控制反应程度小于0.89过不会产生凝胶。