连续时间马氏链
随机过程-第五章-连续时间的马尔可夫链
第五章 连续时间的马尔可夫链5.1连续时间的马尔可夫链考虑取非负整数值的连续时间随机过程}.0),({≥t t X定义5.1 设随机过程}.0),({≥t t X ,状态空间}0,{≥=n i I n ,若对任意121...0+<<<≤n t t t 及I i i i n ∈+121,...,,有})(,...)(,)()({221111n n n n i t X i t X i t X i t X P ====++=})()({11n n n n i t X i t X P ==++ (5.1) 则称}.0),({≥t t X 为连续时间马尔可夫链.由定义知,连续时间马尔可夫链是具有马尔可夫性的随机过程,即过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1+n t 的状态只依赖于现在状态而与过去无关.记(5.1)式条件概率一般形式为),(})()({t s p i s X j t s X P ij ===+ (5.2) 它表示系统在s 时刻处于状态i,经过时间t 后转移到状态j 的转移概率.定义5.2 若(5.2)式的转移概率与s 无关,则称连续时间马尔可夫链具有平稳的或齐次的转移概率,此时转移概率简记为),(),(t p t s p ij ij =其转移概率矩阵简记为).0,,()),(()(≥∈=t I j i t p t P ij以下的讨论均假定我们所考虑的连续时间马尔可夫链都具有齐次转移概率.简称为齐次马尔可夫过程.假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且接下来的s 个单位时间单位中过程未离开状态i,(即未发生转移),问随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?由马尔可夫我们知道,过程在时刻s 处于状态i 条件下,在区间[s,s+t]中仍然处于i 的概率正是它处于i 至少t 个单位的无条件概率..若记i h 为记过程在转移到另一个状态之前停留在状态i 的时间,则对一切s,t 0≥有},{}{t h P s h t s h P i i i >=>+>可见,随机变量i h 具有无记忆性,因此i h 服从指数分布.由此可见,一个连续时间马尔可夫链,每当它进入状态i,具有如下性质:(1) 在转移到另一状态之前处于状态i 的时间服从参数为i v 的指数分布;(2) 当过程离开状态i 时,接着以概率ij p 进行状态j,1=∑≠ij ij p .上述性质也是我们构造连续时间马尔可夫链的一种方法.当∞=i v 时,称状态i 为瞬时状态,因为过程一旦进入此状态立即就离开.0=i v 时,称状态i 为吸收状态,因为过程一旦进入状态就永远不再离开了.尽管瞬时状态在理论上是可能的,但以后假设对一切i, ∞<≤i v 0.因此,实际上一个连续时间的马尔可夫链是一个这样的随机过程,它按照一个离散时间的马尔可夫链从一个状态转移到另一个状态,但在转移到下一个状态之前,它在各个状态停留的时间服从指数分布.此外在状态i 过程停留的时间与下一个到达的状态必须是相互独立的随机变量.因此下一个到达的状态依赖于i h ,那么过程处于状态i 已有多久的信息与一个状态的预报有关,这与马尔可夫性的假定相矛盾.定理5.1 齐次马尔可夫过程的转移概率具有下列性质:;0)1(≥ij p(2) ;1=∑∈ij I j p(3) ∑∈=+Ik kj ik ij s p t p s t p )()()(.其中(3)式即为连续时间齐次马尔可夫链的切普曼—柯尔哥洛夫方程.证明 只证(3).由全概率公式及马尔可夫性可得===+=+)})0()({)(i X j s t X P s t p ij=∑∈===+Ik i X k t X j s t X P })0()(,)({=})()({})0()({k t X j s t X P i X k t X P Ik ==+==∑∈∑∈=Ik kj ik s p t p )()(.对于转移概率)(t p ij ,一般还假定它满足:⎩⎨⎧≠==→.,0,1)(lim 0j i j i t p ij t (5.3) 称(5.3)式为正则条件.正则条件说明,过程刚进入某状态不可能立即又跳跃到另一状态.这正好说明一个物理系统要在有限时间内发生限多次跳跃,从而消耗无穷多的能量这是不可能的.定义5.3 对于任 一0≥t 记},)({)(j t X P t p j ==,},)0({)0(I j j X P p p j j ∈===分别称}{},),({,I j p I j t p j j ∈∈ 齐次马尔可夫过程的绝对概率分布和初始概率分布. 定理5.2齐次马尔可夫过程的绝对概率及有限维概率分布具有下列性质:(1) ,0)(≥t p j(2) ,1)(=∑∈t p j I j(3) )()(t p p t p ij Ii i j ∑∈=;(4) );()()(h p t p h t p ij Ii i j ∑∈=+(5)).()...(})(,...,)({112111211-∈--====-∑n n i i i i ii I i i n n t t p t t p p p i t X i t X p n n例5.1试证明泊松过程}0),({≥t t X 为连续时间齐次马尔可夫链.证明 先证泊松过程具有马尔可夫性,再证明齐次性.由泊松过程的定义它是独立增量过程,且X(0)=0.11,...0+<<<n n t t t ,有})(,...,)()({1111n n n n i t X i t X i t X P ===++= ,.)0()()()({1111i X t X i i t X t X P n n n n =--==-++=,111212)()(,...)()(---=--=-n n n n i i t X t X i i t X t X }= })()({11n n n n i i t X t X P -=-++ .另一方面,因为})()({11n n n n i t X i t X P ==++ =})0()()()({11n n n n n n i X t X i i t X t X P =--=-++=})()({11n n n n i i t X t X P -=-++ 所以})(,...,)()({1111n n n n i t X i t X i t X P ===++=})()({11n n n n i t X i t X P ==++.即泊松过程是一个连续时间马尔可夫过程.以下证明齐次性.当i j ≥ 时,由泊松过程的定义})()({i s X j t s X P ==+= })()({i j s X t s X P -=-+=)!()(i j t e ij t ---λλ j<i.时,由于过程的增量只取非负整数,故,0),(=t s p ij 所以⎪⎩⎪⎨⎧<≥-==--i j i j i j t e t p t s p ij t ij ij ,0,)!()()(),(λλ, 即转移概率只与t 有关,泊松过程具有齐次性.5.2柯尔莫哥洛夫微分方程对于连续时间齐次马尔可夫链转移概率)(t p ij 的求解一般比较复杂.下面首先讨论)(t p ij 的可微性及)(t p ij 满足的柯尔莫哥洛夫微分程.引理5.1 设齐次马尔可夫过程满足正则性条件(5.3),则对于任意固定的)(,,t p I j i ij ∈是t 的一致连续函数.证明 设h>0,由定理5.1得)()()()()(t p t p h p t p h t p ij rj Ir ir ij ij -=-+∑∈)()()()()(t p t p h p t p h p ij ij ii rj ir ir -+=∑≠=)()](1[)()(t p h p t p h p ij ii rj ir ir --=∑≠故有)],(1[)()](1[)()(h p t p h p t p h t p ii ij ii ij ij --≥--=-+),(1)()()()()(h p h p t p h p t p h t p ii ir ir rj i r ir ij ij -=≤≤-+∑∑≠≠因此).(1)()(h p t p h t p ii ij ij -≤-+对于h<0,同样有).(1)()(h p t p h t p ii ij ij --≤-+综上所述得到).(1)()(h p t p h t p ii ij ij -≤-+由正则性条件知,0)()(lim 0=-+→t p h t p ij ij h即)(t p ij 关于t 是一致连续的.以下我们恒设齐次马尔可夫过程满足正则性条件(5.3)式.定理5.3 设)(t p ij 是齐次马尔可夫过程的转移概率,则下列极限存在(1);)(1lim 0∞≤==∆∆-→∆ii i ii t q v tt p(2).,)(lim 0j i q t t p ij ij t ≠∞<=∆∆→∆我们称ij q 为齐次马尔可夫过程从状态i 到状态j 的转移概率或跳跃强度.定理中的极限的概率意义为:在长为t ∆的时间区间内,过程从状态i 转移到另一其他状态的转移概率为)(1t p ii ∆-等于t q ii ∆加一个比t ∆高阶的无穷小量,而过程从状态i 转移到状态j 的转移概率为)(t p ij ∆等于t q ij ∆加一个比t ∆高阶的无穷小量.推论 对有限齐次马尔可夫过程,有∞<=∑≠ij ij ii q q证明 由定理5.1 ,有)()(1,1)(t p t p t pij ij ii I j ij ∆=∆-=∆∑∑≠∈ 由于求和是在有限集中进行,故有.)(lim )(1lim 00∑∑≠≠→∆→∆=∆∆=∆∆-=ij ij ij i j t ii t ii q t t p t t p q (5.4) 对于状态空间无限的齐次马尔可夫过程,一般只有∑≠≥ij ij ii q q .若连续时间齐次马尔可夫是具有有限状态空间I={0,1,2,…,n},则其转移速率构成以下形式的矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=nn n n n n q q q q q q q q q Q .....................101111000100 (5.5) 由(5.4)式知,Q 矩阵的每一行元素之和为0,对角线元素为负或0,其余.0,≥ij q利用Q 矩阵可以推出任意时间间隔t 的转移概率所满足的方法组,从而可以求解转移概率.由切普曼---柯尔莫哥洛夫方程有),()()(t p h p h t p Ik kj ik ij ∑∈=+或等价地)()](1[)()()()(t p h p t p h p t p h t p ij ii kj ik ik ij ij --=-+∑≠两边除以h 后令0→h 取极限,应用定理5.3得到)()()(lim )()(lim 00t p q t p hh p h t p h t p ij ii kj i k ik h ij ij h -=-+∑≠→→ (5.6) 假定在(5.6)式的右边可交换极限与求和,再运用定理5.3,于是得到以下结论:定理5.4 (柯尔莫哥洛夫向后方程)假设,ii ik ik q q =∑≠则对一切i,j 及0≥t ,有,)()(ij ii ik kj ik ijp q t p q t p -='∑≠ (5.7) 证明 只要证明(5.6)式右边极限与求和可交换次序.现在对于任意固定的N,有≥∑≠→)()(inf lim 0t p h h p kj i k ik h )()()(inf lim ,,0t p q t p h h p kj Nk i k ik kj N k i k ik h ∑∑<≠<≠→= 因为上式对一切N 成立,所以 )()()(inf lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≥ (5.8) 为了倒转不等式,注意对于N>i,由于,1)(≤t p kj 所以≤∑≠→)()(sup lim ,0t p hh p kj i k ik h ≤+≤∑∑≥<≠→])()()(sup[lim ,0N k ik kj N k i k ik h h h p t p h h p ≤--+≤∑∑<≠<≠→])()(1)()(sup[lim ,,0Nk i k ik ii kj N k i k ik h h h p h h p t p h h p ,)(,,∑∑<≠<≠-+≤N k i k ik ii kj N k i k ik q q t p q令∞→N ,由定理5.3和条件得)()()(sup lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≤. 上式连同(5.8)可得)()()(lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→=.定理5.4中)(t p ij 满足的微分方程组以柯尔莫可洛夫向后方程著称.称它们为向后方程,是因为在计算时刻t+h 的状态的概率分布时我们对退后到时刻h 的状态取条件,即我们从)()(})0()({..})(,)0()({)(h p t p i X k h X P k h X i X j h t X P h t p ik I k kj I k ij ∑∑∈∈======+=+开始计算.对时刻t 的状态取条件,我们可以导出另一组方程,称为柯尔莫哥洛夫向前方程.可得 ),()()(h p t p h t p kj Ik ik ij ∑∈=+)()()()()(t p h p t p t p h t p ij kj Ik ik ij ij -=-+∑∈=)()](1[)()(t p h p h p t p ij jj kj jk ik --=∑≠,所以)}.()(1)()({lim )()(lim 00t p hh p h h p t p h t p h t p ij jj kj j k ik h ij ij h --=-+∑≠→→ 假定我们能交换极限与求和,则由定理5.3便得到),()()(t p q q t p t p ij ii jk kj ik ij-='∑≠ 令人遗憾的是上述极限与求和的交换不是恒成立,所以上式并非总是成立.然而在大多数模型中----包括全部生灭过程与全部有限状态的模型,它们是成立的.定理5.5(柯尔莫哥洛夫向前方程) 在适当的正则条件下,,)()()(jj ij kj ik ik ijq t p q t p t p -='∑≠ (5.9) 利用方程组(5.7)或(5.9)及初始条件.,0)0(,1)0(j i p p ij ii ≠==我们可以解得)(t p ij .柯尔莫哥洛夫向后和向前方程虽然形式不同,但是可以证明它们所求得的解)(t p ij 是相同的.在实际应用中,当固定最后所处状态j,研究)(t p ij时(i=0,1,2,…,n),采用向后方程比较方便;当固定状态i,研究)(t p ij 时(j=0,1,2,…,),则采用向前方程较方便.向后方程和向前方程可以写成矩阵形式),()(t QP t P =' (5.10),)()(Q t P t P =' (5.11)其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=............ (222120121110)020100q q q q q q q q q Q ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= (22)2120121110020100p p p p p p p p p P 这样,连续时间马尔可夫链的转移概率的求解问题就是矩阵微分方程的求解问题,其转移概率由其转移速率矩阵Q 决定.特别地,若Q 是一个有限维矩阵,则(5.10)和(5.11)的解为.!)()(0∑∞===j jQt j Qt e t P 定理5.6 .齐次马尔可夫过程在t 时刻处于状态I j ∈的绝对概率)(t p j 满足下列方程: .)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' (5.12)证明 由定理5.2,有)()(t p p t p ij Ii i j ∑∈=t将向前方程(5.9)式两边乘以,i p 并对i 求和得.)())(()(kj j k ik i I i jj ij iI i ij I i i q t p p q t p p t p p ∑∑∑∑≠∈∈∈+-='故 .)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' .与离散马尔可夫链类似,我们讨论转移概率 )(t p ij 当 ∞→t 时的极限分布与平稳分布的有限性质.定义5.4 设)(t p ij 为连续时间马尔可夫链的转移概率,若存在时刻 21,t t ,使得,0)(1>t p ij ,0)(2>t p ij则称状态i 和j 是互通的.若所有状态都是互通的,则称此马尔可夫链为不可约的. 定理5.7 设连续时间的马尔可夫是不可约的,则有下列性质:(1) 若它是正常返的,则极限)(lim t p ij t ∞→存在且等于.,0I j j ∈>π这里.,0I j j ∈>π是方程组1,==∑∑∈≠Ij j kj j k k jj j q q πππ (5.13)的唯一非负解.此时称.,0{I j j ∈>π是该过程的平稳分布,并且有.)(lim j j t t p π=∞→(2) 若它是零常返的或非常返的,则.,,0)(lim )(lim I j i t p t p j t ij t ∈==∞→∞→在实际问题中,有些问题可以用柯尔莫哥洛夫方程直接求解,有些问题虽然不能求解但是可以用方程(5.13)求解.例5.2 考虑两个状态的连续时间马尔可夫链,在转移到状态1之前链在状态0停留的时间是参数为λ的指数变量,而在回到状态0之前它停留在状态1的时间是参数为μ的指数变量,显然该链是一个齐次马尔可夫过程,其状态转移概率为),()(01h o h h p +=λ),()(10h o h h p +=μ由定理5.3知由柯尔莫哥洛夫向前方程得到)()()(000100t p t p t p λμ-='=,)()(00μμλ++-t p 其中最后一个等式来自).(1)(0001t p t p -=因为,1)0(00=p 由常数变易法得,)()(00t e t p μλμλλμλμ+-+++=若记,,00μλμμμλλλ+=+=则 ,)()(0000t e t p μλλμ+-+=类似地由向前方程)()()(010001t p t p t p μλ-=' 可解得 ,)()(0001t e t p μλλλ+--=由对称性知,)()(0011t e t p μλμλ+-+=,)()(0010t e t p μλμμ+--=转移概率的极限为),(lim )(lim 10000t p t p t t ∞→∞→==μ),(lim )(lim 11001t p t p t t ∞→∞→==λ由此可见,当∞→t 时, )(t p ij 的极限存在且与i 无关.定理5.6知,平稳分布为0100,λπμπ==若取初始分布为平稳分布,即,}0)0({00μ===p X P ,}1)0({01λ===p X P则过程在时刻t 的绝对概率分布为,)()(lim )(1lim 1001010011011q h p dh d h h p h h p q h h h ====-==→→μ,)()(lim )(1lim 010********00q h p dhd h h p h h p q h h h ====-==→→λ)()()(1010000t p p t p p t p +==0)(000)(00]1[][μμλμλμμλμλ=-+++-+-t t e e=0)(000)(00][]1[λμλλλμμλμλ=++-+-+-t t e e .例5.3 机器维修问题.设例5.2中状态0代表某机器正常工作状态1代表机器出故障.状态转移概率与例 5.2相同,即在h 时间内,机器从正常工作变为出故障的概率为),()(01h o h h p +=λ在h 时间内,机器从有故障变为经修复后正常工作的概率为),()(10h o h h p +=μ试求在t=0时正常工作的机器,在t=5时为正常工作的概率.解 由例5.2已求得该过程的Q 矩阵为⎪⎪⎭⎫ ⎝⎛--=μμλλQ . 根据题意,要求机器最后所处的状态为正常工作,只需计算)(00t p 即可.由例5.2知,)()(0000t e t p μλλμ+-+=,,00μλμμμλλλ+=+=故 ,)5(5)(0000μλλμ+-+=e p因为P{X(0)=0}=1=,0p 所以====)5()5(}0)5({0000p p p X P .)5(5)(0000μλλμ+-+=e p5.3 生灭过程连续时间马尔可夫链的一类重要特殊情形是生灭过程,它的特征是在很短的时间内,系统的状态只能从状态i 转移到状态i-1或i+1或保持不变,确切定义如下.定义 5.5 设齐次马尔可夫过程}0),({≥t t X 的状态空间为I={0,1,2,…},转移概率为)(t p ij ,如果,0),()(1,>+=+i i i i h o h h p λλ,0,0),()(01,=>+=-μμμi i i i h o h h p),()(1)(,h o h h p i i i i ++-=μλ则称 }0),({≥t t X 为生灭过程,i λ为出生率,i μ为死亡率.)()()(1010101t p p t p p t p +=,2),()(,≥-=j i h o h p j i若,λλi i =μλμμ,(,i i =是正常数),则称}0),({≥t t X 为线性生灭过程.若0≡i μ,则称}0),({≥t t X 为纯生过程. 若0≡i λ,则称}0),({≥t t X 为纯灭过程.生灭过程可作如下概率解释:若以X(t)表示一个生物群体在t 时刻的大小,则在很短的时间h 内(不计高阶无穷小),群体变化有三种可能,状态由i 变到i+1,即增加一个个体,其概率为h i λ;.状态由i 变到i-1,即减少一个个体,.其概率为h i μ;群体大小保持不变,其概率为.)(1h i i μλ+-由定理5.3得到,0,)()(,0≥+=-==i h p dh d t q i i h ii ii μλ ⎩⎨⎧≥-=≥+====,1,1,,0,1,)()(0i i j i i j h p dh d t q i i h ij ij μλ ,2,0≥-=j i q ij故柯尔莫哥洛夫向前方程为.,),()()()()(1,11,1I j i t p t p t p t p j i j ij j j j i j ij∈++-='++--μμλλ 故柯尔莫哥洛夫向后方程为.,),()()()()(,11,I j i t p t p t p t p j i i ij j j j i i ij∈++-='+-λμλμ 因为上述方程组的求解较为困难,我们讨论其平稳分布.由(5.13)式,有,1100πμπλ=.1,)(1111≥+=+++--j j j j j j j j πμπλπμλ逐步递推得,0101πμλπ=…, ,11--=j jj j πμλπ 再利用11=∑∞=j j π,得平稳分布,11211100)......1(-∞=-∑+=j j j μμμλλλπ, 112111021110)......1(......-∞=--∑+=j jj j j j μμμλλλμμμλλλπ 例5.4 生灭过程例子M/M/S 排队系统.假设顾客按照参数为λ的泊松过程来到一个有s 个服务员的服务站,即相继来到之间的时间是均值为λ1的独立指数随机变量,每一个顾客一来到,如果有服务员空闲,则直接进行服务,否则此顾客加入排队系列.当一个服务员结束对一位顾客的服务时顾客就离开服务系统,排队中的下一顾客进入服务.假定相继的服务时间是独立的指数随机变量,均值为μ1.如果我们以X(t)记时刻t 系统中的人数,则}0),({≥t t X 是生灭过程⎩⎨⎧>≤≤=,,,1,s n s s n n n μμμ .0,≥=n n λλM/M/s 排队系统中M 表示马尔可夫过程,s 代表s 个服务员.特别在M/M/1排队系统中,μμλλ==n n ,,若1<μλ,则由(5.14)可得.0),1()()(1)(1≥-=+=∑∞=n n n nn n μλμλμλμλπ。
第05章 连续时间马尔可夫链S
体诸成员的年龄之和的均值。时刻 t 诸年龄之和,记为 A(t),
X (t )1
可表示为 A(t) a0 t (t Si ) i 1
其中 a0 是初始个体在 t=0 时的年龄。对 X(t)取条件
n
E[A(t) | X (t) n 1} a0 t E[ (t Si ) | X (t) n 1} i 1
1 vi
i 1
1 i2
)。假设所考虑的全部马尔可
夫链是规则的。
第四页,共六十九页。
对一切i j,qij定义为
qij vi Pij
因为vi是过程离开状态 i 的速率而 Pij 是它转移到 j 的概率,所以
qij是过程从状态 i 转移到状态 j 的速率;称qij 是从 i 到 j 的转移
率。显然vi qij ji
连续时间马尔可夫链是具有马尔可夫性的随机过程,即已 知现在 s 时的状态 X(s)及一切过去时刻 u,0u<s 的状态 X(u)的 条件下在将来时刻 t+s 的状态 X(t+s)的条件分布只依赖现在的状 态 X(s)而与过去独立。
第一页,共六十九页。
二、连续时间马尔可夫链的状态逗留时间和转移速率
命题 以i 记过程在转移到另一状态之前停留在状态 i 的时 间,则对一切 s,t0 有 P{ i t s | i s} P{ i t},因此, 随机变量i 是无记忆的必有指数分布,其参数设为vi
态 i-1 或 i+1,当状态增长 l 时,就说生了一个;而当它减少 1
时,就说死了一个。设i qi,i1,i qi,i1,值{i , i 0}与{i , i 1}
分 别 称 为 生 长 率 与 死 亡 率 。 因 为 qij vi , 可 见 ji
连续时间的马尔可夫链
成立,称{X(t),t ≥0}为连续参数马尔可夫链。
(0)
1, Pij
(0)
1 , i j 0 ( i j ) 知 lim p ij ( t ) t 0 0 , i j
定义5.5:连续参数齐次马氏链{X(t),t ≥0}称 p P X 0 j
j
即X(0)的概率分布,为连续参数齐次马氏链的初 始分布。 称
ii ii
(1) lim
1 p ii ( t ) t p ij ( t ) t
t 0
i q ii
( 2 ) lim
t 0
q ij , j i
q ii 表 示 在 t时 刻 通 过 状 态 i的 通 过 速 度 , q ij 表 示 在 时 刻 t由 状 态 i 到 状 态 j的 速 度 。
证
由切普曼-柯尔莫哥洛夫方程有
kI
p ij ( t h )
p ik ( h ) p k j ( t )
p ij ( t h ) p ij ( t ) p ij ( t ) lim
k i
p ik ( h ) p k j ( t ) [1 p ii ( h )] p ij ( t )
e p ij ( s , t ) p ij ( t ) 0
t
( j i )! , j i
, j i
转移概率与s无关,泊松过程具有齐次性。
连续时间Markov链
02
03
特性
转移密度函数具有非负性、积分归一 化、连续性。
03
连续时间Markov链的特 性
无记忆性
定义
连续时间Markov链的无记忆性是指,给定当前状态,过去的状态 对未来的状态没有影响。
数学表达
如果一个连续时间Markov链满足无记忆性,则未来状态的条件概 率分布只依赖于当前状态,与过去状态无关。
公式
$P_{ij}(t) = P(X(t)=j|X(0)=i)$,表示从状态i在时 间t转移到状态j的概率。
3
特性
转移概率具有时齐性、可加性、非负性。
转移密度函数
定义
转移密度函数描述了Markov链从一个状态转移到其他所 有状态的概率分布。
01
公式
$f_{ij}(t) = frac{d}{dt}P_{ij}(t)$,表示 从状态i到状态j的转移概率密度。
应用领域的拓展
生物信息学
将连续时间Markov链应用于基因表达、蛋白质相互作用等生物 信息学领域,以揭示生物过程的动态机制。
金融市场分析
利用连续时间Markov链对金融市场的复杂动态进行建模,以预 测市场趋势和风险评估。
社交网络分析
研究社交网络中用户行为的连续时间Markov链模型,以揭示用 户行为的动态模式和社区结构的演化。
直接模拟
通过直接模拟系统状态转移过程,适用于状态空间较 小且转移速率已知的情况。
计算转移概率
转移速率矩阵
01
根据已知的转移速率计算转移速率矩阵,用于描述状态之间的
转移关系。
稳态转移概率
02
在长期观察下,通过转移速率矩阵计算稳态转移概率,用于描
述系统在长期运行下的状态转移规律。
第五章 连续时间马尔可夫链
的停留时间
i 超过x的概率为1,则称状态i为吸收状态. 随机过程讲义
第五章 连续时间的马尔可夫链
定理5.1 齐次马尔可夫过程的转移概率具有下列性:
(1) pij(t) 0; (2)
kI
p (t ) 1;
jI ij
(3) pij ( t s ) pik ( t ) pkj ( s ) 证 由概率的定义, (1)(2)显然成立, 下证(3).
ji
p ( t )
ijtຫໍສະໝຸດ qij .ji
说明 对状态空间无限的齐次马尔可夫过程, 一般只有
qii qij .
ji
随机过程讲义
第五章 连续时间的马尔可夫链
二、柯尔莫哥洛夫方程
问题:若连续时间齐次马尔可夫链具有有限状态空间为 I={0,1,2, ,n}, 则其转移速率可构成矩阵
iI iI
(4) p j ( t ) pi ( t ) pij ( );
iI
jI
pi pii1 ( t1 ) pi1i2 ( t 2 t1 )
, X ( t n ) in }
pin1in ( t n t n1 ).
随机过程讲义
第五章 连续时间的马尔可夫链
分布律
(n) pij 0,
转移方程
( n) ( l ) ( nl ) pij pik pkj k I
j I
(n) pij 1
时间 连续
1 , i j lim pij ( t ) t 0 0 , i j
pij ( t ) 0
p (t ) 1
j I ij
则对一切i,j及t 0, 有
( t ) qik pkj ( t ) qii pij ( t ) Qi Pj . pij
5--连续时间马尔可夫链--beamer
������ (������ (������) = ������, ������ (2������) = ������, · · · , ������ (������������) = ������|������ (0) = ������) = [������������������ (������)] .
(������ −������)!
当 ������
������,
⎩ 0, ������ = ������, ������ ̸= ������.
第五章: 连续时间马尔可夫链
当 ������ < ������,
其中 ������������������ 是马氏链.
������������������ (0) = ������������������
并且对于 ������ ������, 有
∞ ∞ ∑︁ ������������ (������) ∑︁ ������������ ������ −������ ������������������ = (������)������ ������������ (−1)������−������ ������! ������! ������=0 ∞ ∑︁
称矩阵 ������ = (������������������ (������))������,������ ∈������ 为马氏链的一步转移概率矩阵, 简称为转移矩阵.
韩参变量 (某某大学)
第五章: 连续时间马尔可夫链
3 / 61
连续时间马氏链的性质
1. ������������������ 是 ������ 函数, 即 ������������������ (0) = ������������������ = ⎧ ⎨ 1, ⎩ 0, ������ = ������, ������ ̸= ������.
随机过程第五章连续时间的马尔可夫链
第五章 连续时间的马尔可夫链5.1连续时间的马尔可夫链考虑取非负整数值的连续时间随机过程}.0),({≥t t X定义5.1 设随机过程}.0),({≥t t X ,状态空间}0,{≥=n i I n ,若对任意121...0+<<<≤n t t t 及I i i i n ∈+121,...,,有})(,...)(,)()({221111n n n n i t X i t X i t X i t X P ====++=})()({11n n n n i t X i t X P ==++ (5.1) 则称}.0),({≥t t X 为连续时间马尔可夫链.由定义知,连续时间马尔可夫链是具有马尔可夫性的随机过程,即过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1+n t 的状态只依赖于现在状态而与过去无关.记(5.1)式条件概率一般形式为),(})()({t s p i s X j t s X P ij ===+ (5.2) 它表示系统在s 时刻处于状态i,经过时间t 后转移到状态j 的转移概率. 定义5.2 若(5.2)式的转移概率与s 无关,则称连续时间马尔可夫链具有平稳的或齐次的转移概率,此时转移概率简记为 ),(),(t p t s p ij ij =其转移概率矩阵简记为).0,,()),(()(≥∈=t I j i t p t P ij以下的讨论均假定我们所考虑的连续时间马尔可夫链都具有齐次转移概率.简称为齐次马尔可夫过程.假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且接下来的s 个单位时间单位中过程未离开状态i,(即未发生转移),问随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?由马尔可夫我们知道,过程在时刻s 处于状态i 条件下,在区间[s,s+t]中仍然处于i 的概率正是它处于i 至少t 个单位的无条件概率..若记i h 为记过程在转移到另一个状态之前停留在状态i 的时间,则对一切s,t 0≥有},{}{t h P s h t s h P i i i >=>+>可见,随机变量i h 具有无记忆性,因此i h 服从指数分布.由此可见,一个连续时间马尔可夫链,每当它进入状态i,具有如下性质: (1) 在转移到另一状态之前处于状态i 的时间服从参数为i v 的指数分布; (2) 当过程离开状态i 时,接着以概率ij p 进行状态j,1=∑≠ij ij p .上述性质也是我们构造连续时间马尔可夫链的一种方法.当∞=i v 时,称状态i 为瞬时状态,因为过程一旦进入此状态立即就离开.0=i v 时,称状态i 为吸收状态,因为过程一旦进入状态就永远不再离开了.尽管瞬时状态在理论上是可能的,但以后假设对一切i, ∞<≤i v 0.因此,实际上一个连续时间的马尔可夫链是一个这样的随机过程,它按照一个离散时间的马尔可夫链从一个状态转移到另一个状态,但在转移到下一个状态之前,它在各个状态停留的时间服从指数分布.此外在状态i 过程停留的时间与下一个到达的状态必须是相互独立的随机变量.因此下一个到达的状态依赖于i h ,那么过程处于状态i 已有多久的信息与一个状态的预报有关,这与马尔可夫性的假定相矛盾.定理5.1 齐次马尔可夫过程的转移概率具有下列性质: ;0)1(≥ij p (2);1=∑∈ij Ij p(3) ∑∈=+Ik kj ik ij s p t p s t p )()()(.其中(3)式即为连续时间齐次马尔可夫链的切普曼—柯尔哥洛夫方程.证明 只证(3).由全概率公式及马尔可夫性可得 ===+=+)})0()({)(i X j s t X P s t p ij =∑∈===+Ik i X k t X j s t X P })0()(,)({=})()({})0()({k t X j s t X P i X k t X P Ik ==+==∑∈∑∈=Ik kj ik s p t p )()(.对于转移概率)(t p ij ,一般还假定它满足: ⎩⎨⎧≠==→.,0,1)(lim 0j i ji t p ij t (5.3) 称(5.3)式为正则条件.正则条件说明,过程刚进入某状态不可能立即又跳跃到另一状态.这正好说明一个物理系统要在有限时间内发生限多次跳跃,从而消耗无穷多的能量这是不可能的.定义5.3 对于任 一0≥t 记 },)({)(j t X P t p j ==,},)0({)0(I j j X P p p j j ∈===分别称}{},),({,I j p I j t p j j ∈∈ 齐次马尔可夫过程的绝对概率分布和初始概率分布.定理5.2齐次马尔可夫过程的绝对概率及有限维概率分布具有下列性质: (1) ,0)(≥t p j (2),1)(=∑∈t p j Ij(3) )()(t p p t p ij Ii i j ∑∈=;(4) );()()(h p t p h t p ij Ii i j ∑∈=+(5)).()...(})(,...,)({112111211-∈--====-∑n n i i i i ii Ii i n n t t p t t p p p i t X i t X p n n例5.1试证明泊松过程}0),({≥t t X 为连续时间齐次马尔可夫链. 证明 先证泊松过程具有马尔可夫性,再证明齐次性.由泊松过程的定义 它是独立增量过程,且X(0)=0.11,...0+<<<n n t t t ,有})(,...,)()({1111n n n n i t X i t X i t X P ===++= ,.)0()()()({1111i X t X i i t X t X P n n n n =--==-++ =,111212)()(,...)()(---=--=-n n n n i i t X t X i i t X t X } = })()({11n n n n i i t X t X P -=-++ . 另一方面,因为})()({11n n n n i t X i t X P ==++=})0()()()({11n n n n n n i X t X i i t X t X P =--=-++ =})()({11n n n n i i t X t X P -=-++所以})(,...,)()({1111n n n n i t X i t X i t X P ===++=})()({11n n n n i t X i t X P ==++. 即泊松过程是一个连续时间马尔可夫过程.以下证明齐次性. 当i j ≥ 时,由泊松过程的定义})()({i s X j t s X P ==+= })()({i j s X t s X P -=-+=)!()(i j t eij t---λλ j<i.时,由于过程的增量只取非负整数,故,0),(=t s p ij 所以⎪⎩⎪⎨⎧<≥-==--i j ij i j t e t p t s p i j t ij ij ,0,)!()()(),(λλ, 即转移概率只与t 有关,泊松过程具有齐次性. 5.2柯尔莫哥洛夫微分方程对于连续时间齐次马尔可夫链转移概率)(t p ij 的求解一般比较复杂.下面首先讨论)(t p ij 的可微性及)(t p ij 满足的柯尔莫哥洛夫微分程.引理5.1 设齐次马尔可夫过程满足正则性条件(5.3),则对于任意固定的)(,,t p I j i ij ∈是t 的一致连续函数.证明 设h>0,由定理5.1得)()()()()(t p t p h p t p h t p ij rj Ir ir ij ij -=-+∑∈)()()()()(t p t p h p t p h p ij ij ii rj ir ir -+=∑≠=)()](1[)()(t p h p t p h p ij ii rj ir ir --=∑≠故有)],(1[)()](1[)()(h p t p h p t p h t p ii ij ii ij ij --≥--=-+ ),(1)()()()()(h p h p t p h p t p h t p ii ir ir rj ir ir ij ij -=≤≤-+∑∑≠≠因此).(1)()(h p t p h t p ii ij ij -≤-+对于h<0,同样有).(1)()(h p t p h t p ii ij ij --≤-+ 综上所述得到).(1)()(h p t p h t p ii ij ij -≤-+ 由正则性条件知,0)()(lim 0=-+→t p h t p ij ij h即)(t p ij 关于t 是一致连续的.以下我们恒设齐次马尔可夫过程满足正则性条件(5.3)式.定理5.3 设)(t p ij 是齐次马尔可夫过程的转移概率,则下列极限存在 (1);)(1lim 0∞≤==∆∆-→∆ii i ii t q v t t p (2).,)(lim 0j i q tt p ij ij t ≠∞<=∆∆→∆我们称ij q 为齐次马尔可夫过程从状态i 到状态j 的转移概率或跳跃强度.定理中的极限的概率意义为:在长为t ∆的时间区间内,过程从状态i 转移到另一其他状态的转移概率为)(1t p ii ∆-等于t q ii ∆加一个比t ∆高阶的无穷小量,而过程从状态i 转移到状态j 的转移概率为)(t p ij ∆等于t q ij ∆加一个比t ∆高阶的无穷小量. 推论 对有限齐次马尔可夫过程,有 ∞<=∑≠ij ij ii q q证明 由定理5.1 ,有)()(1,1)(t p t p t pij ij ii Ij ij∆=∆-=∆∑∑≠∈由于求和是在有限集中进行,故有.)(lim )(1lim 00∑∑≠≠→∆→∆=∆∆=∆∆-=ij ij ij i j t ii t ii q t t p t t p q (5.4)对于状态空间无限的齐次马尔可夫过程,一般只有 ∑≠≥ij ij ii q q .若连续时间齐次马尔可夫是具有有限状态空间I={0,1,2,…,n},则其转移速率构成以下形式的矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=nn n n n n q q q q q qq q q Q .....................11111000100 (5.5) 由(5.4)式知,Q 矩阵的每一行元素之和为0,对角线元素为负或0,其余.0,≥ij q 利用Q 矩阵可以推出任意时间间隔t 的转移概率所满足的方法组,从而可以求解转移概率.由切普曼---柯尔莫哥洛夫方程有 ),()()(t p h p h t p Ik kj ik ij ∑∈=+或等价地)()](1[)()()()(t p h p t p h p t p h t p ij ii kj ik ik ij ij --=-+∑≠两边除以h 后令0→h 取极限,应用定理5.3得到 )()()(lim )()(lim 00t p q t p hh p ht p h t p ij ii kj ik ik h ij ij h -=-+∑≠→→ (5.6) 假定在(5.6)式的右边可交换极限与求和,再运用定理5.3,于是得到以下结论: 定理5.4 (柯尔莫哥洛夫向后方程)假设,ii ik ik q q =∑≠则对一切i,j 及0≥t ,有,)()(ij ii ik kj ik ijp q t p q t p -='∑≠ (5.7) 证明 只要证明(5.6)式右边极限与求和可交换次序.现在对于任意固定的N,有 ≥∑≠→)()(inflim 0t p hh p kj ik ik h )()()(inf lim ,,0t p q t p h h p kj Nk i k ik kj Nk i k ik h ∑∑<≠<≠→= 因为上式对一切N 成立,所以)()()(inflim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≥ (5.8) 为了倒转不等式,注意对于N>i,由于,1)(≤t p kj 所以≤∑≠→)()(sup lim ,0t p hh p kj i k ik h ≤+≤∑∑≥<≠→])()()(sup[lim ,0Nk ik kj Nk i k ik h h h p t p h h p ≤--+≤∑∑<≠<≠→])()(1)()(sup[lim ,,0Nk i k ik ii kj Nk i k ik h h h p h h p t p h h p ,)(,,∑∑<≠<≠-+≤Nk i k ikii kj Nk i k ikqq t p q令∞→N ,由定理5.3和条件得 )()()(sup lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→≤. 上式连同(5.8)可得 )()()(lim ,,0t p q t p h h p kj i k ik kj i k ik h ∑∑≠≠→=.定理5.4中)(t p ij 满足的微分方程组以柯尔莫可洛夫向后方程著称.称它们为向后方程,是因为在计算时刻t+h 的状态的概率分布时我们对退后到时刻h 的状态取条件,即我们从)()(})0()({..})(,)0()({)(h p t p i X k h X P k h X i X j h t X P h t p ik Ik kj Ik ij ∑∑∈∈======+=+开始计算.对时刻t 的状态取条件,我们可以导出另一组方程,称为柯尔莫哥洛夫向前方程.可得),()()(h p t p h t p kj Ik ik ij ∑∈=+)()()()()(t p h p t p t p h t p ij kj Ik ik ij ij -=-+∑∈=)()](1[)()(t p h p h p t p ij jj kj jk ik --=∑≠,所以 )}.()(1)()({lim )()(lim 00t p h h p h h p t p ht p h t p ij jj kj jk ik h ij ij h --=-+∑≠→→假定我们能交换极限与求和,则由定理5.3便得到),()()(t p q q t p t p ij ii jk kj ik ij-='∑≠ 令人遗憾的是上述极限与求和的交换不是恒成立,所以上式并非总是成立.然而在大多数模型中----包括全部生灭过程与全部有限状态的模型,它们是成立的. 定理5.5(柯尔莫哥洛夫向前方程) 在适当的正则条件下,,)()()(jj ij kj ik ik ijq t p q t p t p -='∑≠ (5.9) 利用方程组(5.7)或(5.9)及初始条件 .,0)0(,1)0(j i p p ij ii ≠==我们可以解得)(t p ij .柯尔莫哥洛夫向后和向前方程虽然形式不同,但是可以证明它们所求得的解)(t p ij 是相同的.在实际应用中,当固定最后所处状态j,研究)(t p ij 时(i=0,1,2,…,n),采用向后方程比较方便;当固定状态i,研究)(t p ij 时(j=0,1,2,…,),则采用向前方程较方便.向后方程和向前方程可以写成矩阵形式),()(t QP t P =' (5.10) ,)()(Q t P t P =' (5.11) 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---= (222120121110)020100q q q q q qq q q Q ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=............ (222120121110)020100p p p p p pp p p P 这样,连续时间马尔可夫链的转移概率的求解问题就是矩阵微分方程的求解问题,其转移概率由其转移速率矩阵Q 决定.特别地,若Q 是一个有限维矩阵,则(5.10)和(5.11)的解为 .!)()(0∑∞===j jQtj Qt et P定理5.6 .齐次马尔可夫过程在t 时刻处于状态I j ∈的绝对概率)(t p j 满足下列方程:.)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' (5.12)证明 由定理5.2,有)()(t p p t p ij Ii i j ∑∈=t将向前方程(5.9)式两边乘以,i p 并对i 求和得.)())(()(kj jk ikiIi jj ijiIi ijIi iq t pp q t pp t p p ∑∑∑∑≠∈∈∈+-='故 .)()()(kj jk k jj j j q t p q t p t p ∑≠+-=' .与离散马尔可夫链类似,我们讨论转移概率 )(t p ij 当 ∞→t 时的极限分布与平稳分布的有限性质.定义5.4 设)(t p ij 为连续时间马尔可夫链的转移概率,若存在时刻 21,t t ,使得 ,0)(1>t p ij ,0)(2>t p ij则称状态i 和j 是互通的.若所有状态都是互通的,则称此马尔可夫链为不可约定理5.7 设连续时间的马尔可夫是不可约的,则有下列性质:(1) 若它是正常返的,则极限)(lim t p ij t ∞→存在且等于.,0I j j ∈>π这里.,0I j j ∈>π是方程组1,==∑∑∈≠Ij j kj jk k jj j q q πππ (5.13)的唯一非负解.此时称.,0{I j j ∈>π是该过程的平稳分布,并且有 .)(lim j j t t p π=∞→ (2) 若它是零常返的或非常返的,则.,,0)(lim )(lim I j i t p t p j t ij t ∈==∞→∞→在实际问题中,有些问题可以用柯尔莫哥洛夫方程直接求解,有些问题虽然不能求解但是可以用方程(5.13)求解.例5.2 考虑两个状态的连续时间马尔可夫链,在转移到状态1之前链在状态0停留的时间是参数为λ的指数变量,而在回到状态0之前它停留在状态1的时间是参数为μ的指数变量,显然该链是一个齐次马尔可夫过程,其状态转移概率为 ),()(01h o h h p +=λ),()(10h o h h p +=μ由定理5.3知,)()(lim )(1lim 1001010011011q h p dhdhh p h h p q h h h ====-==→→μ,)()(lim )(1lim 0100101000000q h p dhdhh p h h p q h h h ====-==→→λ由柯尔莫哥洛夫向前方程得到)()()(000100t p t p t p λμ-='=,)()(00μμλ++-t p 其中最后一个等式来自).(1)(0001t p t p -=因为,1)0(00=p 由常数变易法得 ,)()(00t e t p μλμλλμλμ+-+++=若记,,00μλμμμλλλ+=+=则,)()(0000t e t p μλλμ+-+=类似地由向前方程)()()(010001t p t p t p μλ-=' 可解得 ,)()(0001t e t p μλλλ+--= 由对称性知,)()(0011t e t p μλμλ+-+= ,)()(0010t e t p μλμμ+--= 转移概率的极限为),(lim )(lim 10000t p t p t t ∞→∞→==μ),(lim )(lim 11001t p t p t t ∞→∞→==λ 由此可见,当∞→t 时, )(t p ij 的极限存在且与i 无关.定理5.6知,平稳分布为 0100,λπμπ== 若取初始分布为平稳分布,即,}0)0({00μ===p X P ,}1)0({01λ===p X P 则过程在时刻t 的绝对概率分布为 )()()(1010000t p p t p p t p +==0)(000)(00]1[][μμλμλμμλμλ=-+++-+-t t e e=0)(000)(00][]1[λμλλλμμλμλ=++-+-+-t t e e .例5.3 机器维修问题.设例5.2中状态0代表某机器正常工作状态1代表机器出故障.状态转移概率与例5.2相同,即在h 时间内,机器从正常工作变为出故障的概率为),()(01h o h h p +=λ在h 时间内,机器从有故障变为经修复后正常工作的概率为),()(10h o h h p +=μ试求在t=0时正常工作的机器,在t=5时为正常工作的概率.解 由例5.2已求得该过程的Q 矩阵为⎪⎪⎭⎫⎝⎛--=μμλλQ .根据题意,要求机器最后所处的状态为正常工作,只需计算)(00t p 即可. 由例5.2知,)()(0000t e t p μλλμ+-+=,,00μλμμμλλλ+=+=故 ,)5(5)(0000μλλμ+-+=e p 因为P{X(0)=0}=1=,0p 所以====)5()5(}0)5({0000p p p X P .)5(5)(0000μλλμ+-+=e p 5.3 生灭过程连续时间马尔可夫链的一类重要特殊情形是生灭过程,它的特征是在很短的时间内,系统的状态只能从状态i 转移到状态i-1或i+1或保持不变,确切定义如下. 定义5.5 设齐次马尔可夫过程}0),({≥t t X 的状态空间为I={0,1,2,…},转移概率为)(t p ij ,如果,0),()(1,>+=+i i i i h o h h p λλ)()()(1010101t p p t p p t p +=,0,0),()(01,=>+=-μμμi i i i h o h h p ),()(1)(,h o h h p i i i i ++-=μλ则称 }0),({≥t t X 为生灭过程,i λ为出生率,i μ为死亡率.若,λλi i =μλμμ,(,i i =是正常数),则称}0),({≥t t X 为线性生灭过程.若0≡i μ,则称}0),({≥t t X 为纯生过程. 若0≡i λ,则称}0),({≥t t X 为纯灭过程. 生灭过程可作如下概率解释:若以X(t)表示一个生物群体在t 时刻的大小,则在很短的时间h 内(不计高阶无穷小),群体变化有三种可能,状态由i 变到i+1,即增加一个个体,其概率为h i λ;.状态由i 变到i-1,即减少一个个体,.其概率为h i μ;群体大小保持不变,其概率为.)(1h i i μλ+- 由定理5.3得到 ,0,)()(,0≥+=-==i h p dhdt q i i h ii ii μλ ⎩⎨⎧≥-=≥+====,1,1,,0,1,)()(0i i j i i j h p dh dt q i i h ij ij μλ,2,0≥-=j i q ij 故柯尔莫哥洛夫向前方程为.,),()()()()(1,11,1I j i t p t p t p t p j i j ij j j j i j ij∈++-='++--μμλλ 故柯尔莫哥洛夫向后方程为.,),()()()()(,11,I j i t p t p t p t p j i i ij j j j i i ij∈++-='+-λμλμ 因为上述方程组的求解较为困难,我们讨论其平稳分布.由(5.13)式,有 ,1100πμπλ=.1,)(1111≥+=+++--j j j j j j j j πμπλπμλ 逐步递推得,2),()(,≥-=j i h o h p j i,0101πμλπ=…, ,11--=j jj j πμλπ 再利用11=∑∞=j j π,得平稳分布,11211100)......1(-∞=-∑+=j jj μμμλλλπ,112111021110)......1(......-∞=--∑+=j jj j j j μμμλλλμμμλλλπ例5.4 生灭过程例子M/M/S 排队系统.假设顾客按照参数为λ的泊松过程来到一个有s 个服务员的服务站,即相继来到之间的时间是均值为λ1的独立指数随机变量,每一个顾客一来到,如果有服务员空闲,则直接进行服务,否则此顾客加入排队系列.当一个服务员结束对一位顾客的服务时顾客就离开服务系统,排队中的下一顾客进入服务. 假定相继的服务时间是独立的指数随机变量,均值为μ1.如果我们以X(t)记时刻t 系统中的人数,则}0),({≥t t X 是生灭过程⎩⎨⎧>≤≤=,,,1,s n s s n n n μμμ.0,≥=n n λλM/M/s 排队系统中M 表示马尔可夫过程,s 代表s 个服务员.特别在M/M/1排队系统中,μμλλ==n n ,,若1<μλ,则由(5.14)可得.0),1()()(1)(1≥-=+=∑∞=n n n nnn μλμλμλμλπ。
连续时间马尔可夫链的研究和应用
连续时间马尔可夫链的研究和应用马尔可夫链是用于描述随机过程的数学工具,其特点是未来状态的转移仅依赖于当前状态,与过去状态无关。
在时间离散的情况下,马尔可夫链的数学理论已经十分成熟且应用广泛。
然而,在实际问题中,许多系统的状态变化是连续的,如金融市场、生产流程、医疗领域等。
为了更好地描述和分析这类系统,连续时间马尔可夫链成为了研究的焦点之一。
一、连续时间马尔可夫链的基本定义和性质连续时间马尔可夫链是一个连续时间随机过程,其状态在时间上的变化满足马尔可夫性质。
与离散时间马尔可夫链不同的是,在连续时间马尔可夫链中,状态的转移并不是以离散的时刻进行,而是在连续的时间区间内发生。
连续时间马尔可夫链可以用状态转移概率密度函数描述,记为P(t)。
该函数表示在时间t到t+dt之间,状态从i转移到状态j的概率为P(t)dt。
连续时间马尔可夫链的转移概率满足总概率为1的条件,即∫P(t)dt=1。
连续时间马尔可夫链的状态转移矩阵可用生成矩阵(Q)表示。
该矩阵的元素q(i,j)表示在单位时间内,状态从i转移到j的概率。
连续时间马尔可夫链的状态转移矩阵满足非负性和行和为零的条件。
二、连续时间马尔可夫链的稳定性与收敛性连续时间马尔可夫链的稳定性是指在长时间模拟中,系统的状态分布是否趋于稳定。
对于稳定的连续时间马尔可夫链,其状态转移概率在时间的演化中不再发生显著改变。
连续时间马尔可夫链的稳定性与其转移速率矩阵相关。
转移速率矩阵是连续时间马尔可夫链中的关键概念,它描述了系统在各个状态之间转移的速率。
只有当连续时间马尔可夫链的转移速率矩阵满足一定条件时,系统的状态分布才会趋于稳定。
在实际应用中,连续时间马尔可夫链的稳定性常被用来分析系统的可靠性、资源分配方案以及市场行为等。
利用连续时间马尔可夫链模型,可以预测系统在不同状态下的持续时间、发展趋势以及转移概率,为决策提供科学依据。
三、连续时间马尔可夫链的应用案例1. 金融市场预测连续时间马尔可夫链可以应用于金融市场的预测和风险评估。
马尔可夫链
马尔可夫链马尔可夫过程按其状态和时间参数是连续的或离散的,可分为三类: (1) 时间,状态都是离散的马尔可夫过程,称为马尔可夫链.(2) 时间连续,状态离散的马尔可夫过程,称为连续时间的马尔可夫 (3) 时间,状态都连续的马尔可夫过程. 4.1马尔可夫链的概念及转移概率 一,定义假设马尔可夫过程},{T n X n ∈的参数集T 是离散的时间集合,即 T={0,1,2,…},其相应n X 可能取值的全体组成的状态空间是离散的状态集,...}.,{21i i I =定义4.1 设有随机过程},{T n X n ∈,若对于任意的整数T n ∈和任意的I i i i i n ∈+.,...,,,1210,条件概率满足n n n n i X i X i X i X P ====++,...,,{110011}=},{11n n n n i X i X P ==++ (4.1) 则称},{T n X n ∈为马尔可夫链,简称.马氏链.(4.1)式是马尔可夫链的马氏性(或无后效性)的数学表达式.由定义知 ],...,,{1100n n i X i X i X P =====}.,...,,{111100--====n n n n i X i X i X i X P },...,,{111100--===n n i X i X i X P =}{11--==n n n n i X i X P .},...,,{111100--===n n i X i X i X P =… =}{11--==n n n n i X i X P }{2211----==n n n n i X i X P …}{0011i X i X P ==}.{00i X P =可见,马尔可夫链的统计特性完全由条件概率}{11n n n n i X i X P ==++所决定. 二,转移概率条件概率}{1i X j X P n n ==+的直观含义为系统在时刻n 处于状态i 的条件下,在时刻n+1系统处于状态j 的概率.它相当于随机游动的质点在时刻n 处于状态i 的条件下,下一步转移到状态j 的概率.记此条件概率为).(n p ij 定义4.2 称条件概率).(n p ij = }{11n n n n i X i X P ==++为马尔可夫链},{T n X n ∈在时刻n 的一步转移概率,其中i,j I ∈,简称为转移概率. 定义4.3 若对任意i,j I ∈,马尔可夫链},{T n X n ∈的转移概率).(n p ij 与n 无关,则称马尔可夫链是齐次的,并记).(n p ij 为.ij p下面我们只讨论齐次马尔可夫链,通常将齐次两字省略.设p 表示一步转移概率.ij p 所组成的矩阵,且状态空间I={1,2,…},则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=...........................2222111211nnp p p p p p p 称为系统的一步转移概率矩阵,它有性质: (1) .,1)2(;,,0∑∈∈=∈≥Ij ij ijI i p I j i p通常称满足上述(1),(2)性质的矩阵为随机矩阵. 定义4.4称条件概率ij n p )(= )1,0,,(},{≥≥∈==+n m I j i i X j X P m n m 为马尔可夫链},{T n X n ∈的n 步转移概率,.并称)()()(n ij n p p =为马尔可夫链的n 步转移矩阵,其中(1) .,1)2(;,,0)(∑∈∈=∈≥Ij ij n ij n I i p I j i p 即也是随机矩阵.当n=1 时, .)1(ij p =.ij p ,此时一步转移矩阵.)1(p p =此外我们规定 ⎩⎨⎧=≠=.,1,,0)0(j i j i pij定理4.1设},{T n X n ∈为马尔可夫链,则对任意整数n l n <≤≥0,0和,,I j i ∈n 步转移概率.)(ij n p 具有下列性质:(1)))()()(l n kj Ik l ik n ij p p p -∈∑=; (4.2)(2) ;......112111)(j k Ik k k ik Ik n ij n n p p p p --∑∑∈∈= (4.3)(3);)1()(-=n n PP P (4.4) (4).)(n n P P =(4.5)证明(1) 利用全概率公式及马尔可夫性,有}{)(i X j X P p m n m n ij ===+=}{},{i X P j X i X P m n m m ===+}{},{.},{},,{i X P k X i X P k X i X P j X k X i X P m l m m Ik l m m n m l m m =========+∈+++∑}{}{i X k X P k X j X P m l m l m Ik n m =====++∈+∑=)()()()(m p l m p l ik Ik l n ij +∑∈-=)()(.l n kjIk l ik p p -∈∑. (2)在(1)中令1,1k k l ==得))1()(111-∈∑=n jkIk ik n ij p p p 这是一个递推公式,可递推下下去即得(4.3). (3)在(1).令l=1利用矩阵乘法可得. (4) 由(3),利用归纳法可证.定理4.1中的(1)式称为切普曼---柯尔哥洛夫方程,简称C-K 方程 .定义4.5设},{T n X n ∈为马尔可夫链,称 },{0j X P p j ==)(},{)(I j j X P n p n j ∈==为},{T n X n ∈的初始概率和绝对概率,并分别称}),({},,{I j n p I j p j j ∈∈为},{T n X n ∈的初始分布和绝对分布.简记为}.),({},,{n p p j j 称概率向量 )0(),...),(),(()(21>=n n p n p n P T 为n 时刻的绝对概率向量,而称)0(,...),,(21>=n p p P T为初始向量.定理4.2设},{T n X n ∈为马尔可夫链,则对任意整数I j n ∈≥,1,绝对概率).(n p j 具有下列性质:(1)))()(n ij Ii i j p p n p ∑∈=; (4.6)(2) ij Ii i j p n p p )1(-=∑∈ (4.7)(3);)0()()(n T T P P n P = (4.8) (4)P n P n P T T )1()(-= (4.9)证明(1) ===}{)(j X P n p n j},{0j X i XP n Ii ==∑∈= }{}{00i X P i X j XP nIi ===∑∈ =)(n ijIi i p p ∑∈ (2)===}{)(j X P n p n j },{1j X i X P n Ii n ==∑∈-=}{}{11i X P i X j X P n n n Ii ===--∈∑==ij Ii i p n p ∑∈-)1((3)与(4)是(1)与(2)的矩阵形式.定理4.3 设},{T n X n ∈为马尔可夫链,则对任意,1,,...,1≥∈n I i i n 有 },...{11n n i X i X P ===....11n n i i ii i p p p -∑ (4.10) 证明 由全概率公式及马氏性有},...{11n n i X i X P ===},...,,{110n n Ii i X i X i X P ===∈=},...,,{110n n Ii i X i X i X P ===∑∈=}.,{}{0110i X i X P i X P Ii ===∑∈...},...,{110--===n n n n i X i X i X P=}.,{}{0110i X i X P i X P Ii ===∑∈..}{11--==n n n n i X i X P=n n i i ii Ii i p p p 11...-∑∈.三,马尔可夫链的例子例4.1 无限制随机游动设质点在数轴上移动,每次移动一格,向右移动的概率为p,向左移动的概率为 q=1-p,这种运动称为无限制随机游动.以n X 表示时刻n 质点所处的位置,则},{T n X n ∈是一个齐次马尔可夫链,试写出它的一步和k 步转移概率. 解 },{T n X n ∈的状态空间,...},2,1,0{±±=I 其一步转移概率矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=.....................00.........0.....................p q p q P 设在第k 步转移中向右移了x 步向左移动了y 步,且经过k 步转移状态从j 进入j,则⎩⎨⎧-=-=+i j y x k y x ,.2)(,2)(i j k y i j k x --=-+=由于x,y 都只取整数,所以)(i j k -±必须是偶数.又在k 步中哪x 步向右,哪y 步向左是任意的,选取的方法有x k C 种.于是⎩⎨⎧-+-+=是奇数是偶数)(,0)(,i j k i j k q p C p y x x k k ij.例4.2赌徒输光问题.两赌徒甲,乙进行一系列赌博.赌徒甲有a 元,赌注乙有b 元,每赌一局输者给赢者1元,没有和局,直到两人中有一个输光为止.设在每一局中,甲赢的概率为p,输的概率为q=1-p,求甲输光的概率.这个问题实质上是带有两个吸收壁的随机游动,其状态空间为I={0,1,2,…,c} c=a+b.故现在的问题是求质点从a 出发到达0状态先于到达c=a+b 状态的概率.解 设i u 表示甲从状态i 出发转移到状态0的概率,要计算的是a u ..由于0和c 是吸收状态,故,10=u .0=c u i u 由全概公式).1,...,2,1(,11-=+=-+c i qu pu u i i i (4.11) 上式的含义是,甲从状态i 出发开始赌到输光的概率等于’他接下去赢了一局(概率为p)处于状态i+1后再输光”;和他接下去输一局(概率为q),处于状态i-1后再输光”这两个事件的概率.由于p+q=1,(4.11)实质上是一个差分方程.1,...,2,1),(11-=-=--+c i u u r u u i i i i (4.12)其中pqr =,其边界条件为.0,10==c u u (4.13) 先讨论r=1,即p=q=1/2的情况,(4.12)成为 .1,...,2,1),(11-=-=--+c i u u r u u i i i i 令,01α+=u u 得,2012αα+=+=u u u …,01ααi u u u i i +=+=- …,01ααc u u u c c +=+=-将,1,00==u u c 代于最后一式,得参数,1c-=α所以.1,...,2,1,1-=-=ci ciu i 令i=a, 求得甲输光的概率为.1ba bc a u a +=-= 由于甲,乙的地位是对称的,故乙输光的概率为.ba a u a +=再讨论1≠r ,即q p ≠的情况.由(4.12)式得到)(11--=-=-∑i c k i i k c u u r u u =)(011u u r c ki i-=∑-=.1)1(1r r r u ck ---= (4.14) 令k=0,由于,0=c u 有rr u c---=11)1(11即,11)1(1crru --=- 代入(4.14)式,得.1,...,2,1,1-=--=c k rr r u cck k 令k=a,得到输光的概率,1cca a rr r u --= 由对称性,乙输光的概率为.,11111q p r r r r u c cb b =--= 由于,1=+b a u u 因此在1≠r 时,即q p ≠时两个人中也总有一个人要输光的. 例4.3 天气预报问题设昨日,今日都下雨,明日有雨的概率为0.7;昨日无雨今日有雨,明日有雨的概率为0.5;昨日有雨,今日无雨明日有雨的概率为0.4;昨日,今日均无雨,明日有雨的概率为0.2.若星期一星期二均下雨,求星期四下雨的概率.解 设昨日,今日连续两天有雨称为状态0(RR),昨日无雨今日有雨称为状态1(NR),昨日有雨今日无雨称为状态2(RN),昨日今日无雨称为状态3(NN),于是天气预报模型可看作一个四状态的马尔可夫链,其中转移概率为 7.0}{}{}{00====今昨明今昨明今连续三天有雨R R R P P R R R R P p , )(0}{01不可能事件今昨明今==R R R N P p ,,3.07.01}{}{02=-===今昨明今昨明今R R N P R R N R P p)(0}{03不可能事件今昨明今==R R N N P p ,其中R 代表有雨,N 代表无雨.类似地可得到所有状态的一步转移概率,于是它的一步转移概率矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=33323130232221201312111003020100p p p p p p p p p p p p p p p p P =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡8.002.006.004.0005.005.003.007.0其中两步转移矩阵为==P P P .)2(⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡8.002.006.004.0005.005.003.007.0.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡8.002.006.004.0005.005.003.007.0 = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡.64.010.016.010.048..020.012.020.030.015.020.035.018.021.012.049.0 由于星期四下雨意味着过程所处的状态为0或1,因此星期一星期二连续下雨,星期四下雨的概率为.61.012.049.0)2(01)2(00=+=+=p p p例 4.4 设质点在线段[1,4]上作随机游动,假设它只能在时刻T n ∈发生移动,且只能停留在1,2,3,4点上.当质点转移到2,3点时,它以1/3的概率向左或向右移动一格或停留在原处.当质点称动到点1时,它以概率1停留在原处.当质点移动到点4时,它以概率1移动到点3.若以n X 表示质点在时刻n 所处的位置,则},{T n X n ∈ 是一个齐次马尔可夫链,其转移概率矩阵为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=0100313131003131310001P 例中的点1称为吸收壁,即质点一旦到达这种状态后就被吸收住了,不再移动;点4称为反射壁,即质点一旦到达这种状态后,必然被反射出去.例4.5生灭链.观察某种生物群体,以n X 表示在时刻n 群体的数目,设为i 个数量单位,如在时刻n+1增生到i+1个单位的概率为i b ,减灭到i 个数量单位的概率为i a ,保持不变的概率为)(1i i i b a r +-=,则}0,{≥n X n 为齐次马尔可夫链,I={0,1,2,…,}.其转移概率为⎪⎩⎪⎨⎧+==+==.1,,,1,i j a j i r i j b p ii i ij称此马尔可夫链为生灭链. 4.2 遍历性设齐次马氏链的状态空间为I,若对于所有,,I a a j i ∈转移概率)(n P ij 存在极限 j ij n n P π=∞→)(lim (不依赖于i)或 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡→=................................................)(212121j j jn P n P πππππππππ则称此链具有遍历性.又若∑=jj 1π,则同时称,...),(21πππ=为链的极限分布.齐次马氏链在什么条件下才具有遍历性?如何求出它的极限分布?这问题在理论上已经解决,但是要较多的篇幅.下面对有限链的遍历性给出一个充分条件. 定理4.4设齐次马氏链},{T n X n ∈的状态空间为P a a a I n },,...,,{21=是它的一步转移概率矩阵,如果存在正整数m,使对任意的j i a a ,都有 ,,...,2,1,,0)(N j i m p ij =>则此链具有遍历性,且有极限分布, ),,...,,(21N ππππ=它是方程组 P ππ=或即ij Ni i j p ∑==1ππ的满足条件∑==>Nj j j 11,0ππ的唯一解.在定理条件下马氏链的极限分布又是平稳分布.即若用π作为链的初始分布,即π=)0(p ,则链在任一时刻T n ∈的分布)(n p 永远与π一致,事实上ππππ======-P P P n P p n p n n ...)()0()(1 例4..6 设马尔可夫链的转移概率矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=9.005.005.01.08.01.02.01.07.0P 解 容易证明满足定理4.4条件.可得方程组⎪⎪⎩⎪⎪⎨⎧=++++=++=++=1,9.01.02.0,05.08.01.0,05.01.07.0321321332123211πππππππππππππππ解上述方程组得平稳分布为.5882.0,2353.0,1765.0321===πππ。
连续时间markov链的原理
连续时间markov链的原理连续时间马尔可夫链是一个随机过程,其状态空间是离散的(有限个或可数个状态),并且状态的转移是依赖于连续时间而非离散的。
这种类型的马尔可夫链在许多应用中具有重要的作用,例如物理、生物、金融等领域都可以使用连续时间马尔可夫链对系统的动态特性进行建模和分析。
连续时间马尔可夫链的基本原理是状态之间的转移是基于指数分布的。
具体来说,对于一个连续时间马尔可夫链,每个状态都有一个转移率,表示从当前状态转移到其他状态的速率。
这些转移率可以表示为矩阵的形式,称为转移率矩阵。
转移率矩阵中的每个元素都代表了从一个状态转移到另一个状态的速率。
连续时间马尔可夫链的数学模型可以通过一组微分方程来描述。
假设该马尔可夫链有n个状态,那么对于任意时刻t,我们可以定义n个状态的概率分布向量P(t),其中P(t)的元素表示在时刻t处于各个状态的概率。
那么离散时间马尔可夫链的转移概率矩阵可以表示为Q,其中Q(i,j)表示从状态i转移到状态j 的速率。
那么状态向量P(t)满足以下微分方程:dP(t)/dt = P(t)Q上述方程表明,在给定的时刻t,状态向量P(t)在单位时间内的变化量等于当前状态向量P(t)与转移概率矩阵Q的乘积。
这个微分方程系统可以通过求解得到状态向量P(t)在任意时刻t的概率分布。
连续时间马尔可夫链的数学模型还与特定的概率分布函数相关联。
具体来说,假设某个状态的转移率为λ,那么从该状态转移到其他状态的时间间隔符合指数分布,其概率密度函数为f(t) = λexp(-λt),其中λ是转移率。
这个指数分布的性质使得连续时间马尔可夫链在模拟和预测系统状态的改变方面具有许多有用的特性。
在实际应用中,连续时间马尔可夫链可用于模拟和分析一些复杂的系统。
例如,在金融领域中,我们希望根据历史数据预测未来的市场走势。
通过构建一个连续时间马尔可夫链模型,我们可以根据当前市场状态和转移率矩阵预测未来的股票价格或市场波动性。
连续时间马尔可夫链例题
连续时间马尔可夫链连续时间马尔可夫链(Continuous-time Markov Chain)是马尔可夫链在连续时间下的一种模型。
它受到时间的连续性限制,可以用于描述一些随机过程。
马尔可夫链基本概念马尔可夫链是指具有“无记忆性”的随机过程。
在离散时间中,马尔可夫链指的是一个随机变量序列,其中每个随机变量的取值依赖于其前一时刻的取值。
这个过程可以用一个状态转移概率矩阵来描述。
在连续时间中,马尔可夫链则是一个具有无记忆性的连续随机过程。
与离散时间不同,连续时间马尔可夫链的状态在一定时间段内可以发生任意多次的改变。
连续时间马尔可夫链的定义连续时间马尔可夫链是一个随机过程,其状态空间为有限个数。
该过程在任意时刻处于某个状态,并且满足无记忆性的马尔可夫性质。
连续时间马尔可夫链的演变是通过指数分布来描述的。
在每个状态之间的转移时间服从指数分布,转移时间的参数与当前状态有关。
连续时间马尔可夫链的转移速率矩阵与离散时间马尔可夫链中的状态转移矩阵类似,连续时间马尔可夫链使用转移速率矩阵来描述状态之间的转换关系。
设连续时间马尔可夫链的状态空间为{1, 2, …, n},转移速率矩阵为Q。
矩阵Q的元素qij表示从状态i到状态j的速率,且满足以下条件:•qij≥0, i≠j;•对于每一个状态i,有qii = -∑qij(i≠j)。
在连续时间马尔可夫链中,从状态i到状态j的转移概率为pij(t),t表示时间。
转移概率在给定时间段内满足以下等式:equation1其中X(t)表示在时刻t的状态,P表示概率。
连续时间马尔可夫链的性质连续时间马尔可夫链有许多属性与离散时间马尔可夫链类似。
•遍历性:如果状态空间中的每一个状态在有限时间内是可达的,则称连续时间马尔可夫链是遍历的。
•稳态概率分布:马尔可夫链可能存在稳态概率分布,对于连续时间马尔可夫链也是如此。
稳态概率分布表示在长时间内各个状态的概率分布。
•等距离转换概率:等距离转换概率描述了在任意的相同时间间隔内,从一个状态转移到另一个状态的概率。
随机过程(七)-马氏链
第四章Markov过程主要内容⏹离散时间Markov链⏹转移概率⏹平稳分布⏹状态分类⏹极限定理⏹连续时间Markov链⏹Kolomogrov微分方程⏹连续时间马氏过程第一节 离散时间Markov 链一、Markov 链的定义⏹ 直观含义:要确定过程将来的状态,只需知道过程现在的状态就足够了,并不需要知道过程以往的状态。
⏹ 定义:随机过程{,0,1,2,}n X n =⋅⋅⋅称为马氏链(Markov 链),若它只取有限或可列个值E 0, E 1,E 2,…,且对任意的n ≥0及状态011,,,,,n i j i i i -⋅⋅⋅有10011111{|,,,,}{|}n n n n n n P X j X i X i X i X i P X j X i +--+===⋅⋅⋅=====用条件概率的语言来说11011{,,|,,,}{,,|}n n k k n k k n P X j X j X X X P X j X j X ++==⋅⋅⋅===注:1、E 0, E 1,E 2,…称为Markov 链的状态,通常用0,1,2,…来标记E 0, E 1,E 2,…。
{0,1,2,…}称为过程的状态空间,记为S 。
2、若Markov 链的状态是有限的,则称为有限链,否则称为无限链。
2、条件概率11{|}n n n n P X i X i --==,n =1,2,……称为Markov 链的一步转移概率。
3、若转移概率1{|}n n P X j X i -==只与状态,i j 有关,而与时间n 无关,则称该Markov 链是时齐Markov 链,并记1{|}ij n n p P X j X i -===,否则称Markov 链是非时齐的。
矩阵000102101112012()ij ij Sn n n p p p p p p P p p p p ∈⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭称为转移矩阵。
4、(){|}k ij n k n p P X j X i +===称为k 步转移概率,()k P 称为k 步转移矩阵。
连续时间马尔可夫链
于是,记:
P X ( s t ) j X ( s ) i pij ( s, t )
2、齐次马氏链:
pij (s, t ) pij (t s)
齐次马氏链的转移矩阵:
P(t ) pij (t )
t1 0, t2 0, t3 这些点处取状态值 0,
pij (t ) t
i
对跳变现象,考察转移概率:pij (t ),i j
以及跳变强度
t 0
lim
,i j
(二) 停留现象(P75)
引入“停留之前停留在状态
f (t ) vi e
pii (0) 1, pij (0) 0, 当i j
为了以后能对转移概率 pij (t ) 作微分运算
(即,对连续时间变量 t ,分析
(t )与pij (t ) pij
的关系,找到它们之间的等量表达式。)
它是一个微分方程。 需要作出正则性规定,才能保证其一致连续性。 正则性条件的物理意义: P 74
可以看出,连续时间下,马尔可夫链的状态是“跳
跃式”变化。
3、跃变(或跳变)与停留现象
X(t)
..………….....
i2 …… i1
t
0
t1
t2
t3
t4
t5
(一)跳变现象: 跳变时刻
t1 , t2 , t3 , 与跳变强度都是随机的。
) xt
(为连续性考虑,一般认为X(t)在跃变点是右连续的, 即X(t)在
1 E i vi
vi t
i 的时间。
i 服从指数分布(参数为 v i ), 其特征是无记忆性。
连续时间Markov链
q11 q12 ... q1i ...
q21
q22 ... q2i ...
Q ...
... ... ... ...
qi1 ...
Hale Waihona Puke qi2 ... qii ...
称为连续时间Markov链的Q-矩阵. 当矩阵元素满足
qii ji qij 时,称该矩阵为保守的.
补充说明: Q-矩阵就是转移矩阵的密度矩阵.
P(X st j, X0 i) P(X0 i)
P( X 0 i, X t k, X st j)
kS
P(X0 i)
P( X 0 i, X t k) P( X 0 i, X t k, X st j)
kS P( X 0 i)
P(X0 i, Xt k)
jS pik (t) pkj (s).
定理:
(1) lim 1 t 0
pii (t) t
qii
;
(2) lim t 0
pij (t) t
qij<
.
注: (1) 由定理易知:(a) qii pii(0); (b)qij pij(0)
(2) qij 称作从状态i转移到j的转移概率.
推论: 对有限状态的时齐连续时间的Markov链,有
上面的定理给出 pij (t) 的概率性质, 接下来我们讨论它的
分析性质,即把 pij (t)看作是t的函数,再考虑这个函数 的性质.
Go on
定理: 对给定的i, jS, pij(t)是关于t ( 0)的一致连续函数.
证明:由上定理中的(3), 知
pij (t h) pij (t) kS pik (h) pkj (t) pij (t) ki pik (h) pkj (t) pij (t)(1 pii (h)),
随机过程Ch5连续时间的马尔可夫链ppt课件
由柯尔莫哥洛夫向前方程旳矩阵形式可得
例:设有一参数连续,状态离散的马尔可夫
过程X t,t 0,状态空间为I 1,2,, N,
当i j,时qij 1,i, j 1,2,, N,
当i 1,2,, N时,qii (N 1),求pij t 。
则器件在0, t 正常工作,即寿命超过t的概率为: PX t exdx et
t
已知器件用了t小时,器件寿命超过t h,
即在t,t h器件不坏的概率为:
p00h PX t h / X t
PX
t h, X
PX t
t
PX t h PX t
e t h et
eh
1 h
5.2柯尔莫哥洛夫微分方程
一.连续性条件(正则性条件)
规定lim t 0
pij t ij
1 0
i j i j
或lim Pt I t 0
称此为连续性条件(正则性条件)
阐明:过程刚进入某状态不可能立即又 跳跃到另一状态,这恰好阐明一种物理系统要 在有限时间内发生无限屡次跳跃,从而消耗无 穷多旳能量这是不可能旳,亦即经过很短时间 系统旳状态几乎是不变旳。
定理:设pij (t)是齐次马尔可夫过程的转移概率, 则下列极限存在:
dpij t
dt
t 0
lim
h0
pij h
h
pij 0
lim
h0
pij h ij
h
Hale Waihona Puke qij即: 1dpii t
dt
t 0
lim
h0
pii h 1
h
4 马氏链
P X1 1, X 2 1, X 3 1| X 0 0
7.2 马尔可夫链的状态分类
设 { Xn , n >0 } 是齐次马尔可夫链,其状态空间
I = { 0, 1, 2, … },转移概率是 pij , i , j I
1
7 1
8
1
9
1
1 1/3 121源自3615
2/3
4
1
(1)状态的周期性
2
设初始分布p1 0 P X 0 1 , p0 0 P X 0 0 1 ,
若系统经n级传输后输出为 1,求原发字符也是 1的概率。
0.9 0.1 0.82 0.18 2 解:(1)P , P 2 P , 0.1 0.9 0.18 0.82 0.756 0.244 3 P 3 P 0.244 0.756
马尔可夫链
内容提要
马尔可夫链的概念及转移概率 马尔可夫链的状态分类 状态空间的分解
pij(n) 的渐近性质与平稳分布
马尔可夫过程的四种类型
马尔可夫链(马氏链)
时间、状态都离散 时间连续、状态离散
连续时间马氏链
马尔可夫序列
时间离散、状态连续
时间、状态都连续
连续时间马尔可夫过程(或扩散过程)
[定义] 如集合 { n : n 1, pii(n) > 0 } 非空,则称该集合
的最大公约数 d = d(i) = G.C.D{ n : pii(n) > 0 }为状态 i
则称 { Xn , n T } 为马尔可夫链,简称马氏链。
马氏性 (无后效性)
09第五章连续时间马尔可夫链
P{X (s t ) j | X (s) i} P ij (t )
Q矩阵和柯尔莫哥洛夫方程
引理5.1
设齐次马尔可夫过程满足正则性条件,则对 于任意固定的i,j∈I,pij(t)是t的一致连续函数。
Q矩阵和柯尔莫哥洛夫方程
定理5.3 设pij(t)是齐次马尔可夫过程的转移概率且满 足正则性条件,则下列极限存在: 1.
t
例题5.3:机器维修问题
设例题5.2中状态0代表某机器正常工作,状 态1代表机器出故障。状态转移概率与例题5.2相 同,即在h时间内,及其从正常工作变为出故障 的概率为p01(h)=λ h+o(h);在h时间内,机器从 有故障变为经修复后正常工作的概率为 p10(h)=h+o(h),试求在t=0时正常工作的机器, 在t=5时为正常工作的概率。
其转移概率矩阵简记为
P(t ) ( pij (t ))
在0时刻马尔可夫链进入状态i,而且在接 下来的s个单位时间中过程未离开状态i,问在 随后的t个单位时间中过程仍不离开状态i的概 率是多少?
状态i持续时间τ 状态i
i
0
s
s+t
时间轴
P{ i s t | i s} P{ i t}
上式中条件概率可以写成转移概率的形式ijst的转移概率与s无关则称连续时间马尔可夫链具有平稳的或齐次的转移概率此时转移概率简记为其转移概率矩阵简记为ijij状态i状态i持续时间在0时刻马尔可夫链进入状态i而且在接下来的s个单位时间中过程未离开状态i问在随后的t个单位时间中过程仍不离开状态i的概率是多少
iI
(t2 t1 ) pin1in (tn tn1 )
例题5.1: 证明:泊松过程{X(t)}为连续时间齐次马尔可夫 链。 (1)先证明马氏性
三节连续时间马尔可夫链
P '(t) Q P(t)
方程 pij '(t) qik pkj (t) k
j (t) pi pi j (t) i
j '(t) k (t) qkj k
Q 0
15
6 两个定理
定理3.2
一种连续时间旳齐次马氏链,系统处于同一状态旳连续 时间服从负指数分布
j(t)=P(X(t)=j)= pi pi j (t)
由初始分布与t时间i 区间转移概率矩阵求t时刻绝对 分布
j '(t) k (t) qkj
初值:i (0) pi
为求瞬时k 概率分布函数旳方程组
10
5 平稳分布
定义
若lim t
j
(t)
j
( j E) 存在,且 j 1
,则{j}称为齐次
2 K-C方程
1.K-C方程: pij (t s) pik (t) pkj (s)
写成矩阵旳形式:
k
P(t+s)=P(t)·P(s)
2. K氏前向方程 P '(t) P(t) Q pij '(t) pik (t) qkj k
3. K氏后向方程 P '(t) Q P(t) pij '(t) qik pkj (t)
k
P(nm) Pn Pm
P( X n i)
pk
p(n) ki
k
(n) i
(0) i
P(n)
(n1) i
P
P ( I ) P 0
pij (t s) pik (t) pkj (s) k
P(t s) P(t) P(s)
前向 方程
后向
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X (n) i 有关,而与以前的状态 X(n 1 ) in1 ,…, X( 0 ) i0 无关。
一、连续时间马尔科夫链的有关定义及其性质
现在讨论时间连续状态离散的马尔可夫过程,取时间参数 t 0 ,状态空间 I={0,1,2,…} 定义 4.17 设随机过程 { X (t ), t 0} 的状态空间为 I={in,n0},若对任意的 0t1<t2<…<tn<tn+1,及 i1 , i2 ,
pij ( s,t ) P{ X (t s ) j | X ( s ) i }
它表示系统在 s 时刻处于状态 i,经过时间 t 后转移到状态 j 的转移概率。 若上述概率与 s 无关,则称连续时间马尔科夫链为齐次马尔科夫链,此时转移概率简 记为
pij ( s,t ) pij (t )
定义 4.16 设随机过程 { X(t),t T } ,其中时间 T={0,1,…},状态空间 I={0,1,2,…}, 若对任一时刻 n,以及任意状态 i0 ,i1, ,in1,i,j ,
1 2014 年 12 月 11 日星期四 大连海事大Байду номын сангаас数学系
第五章 连续时间马氏链
有 P{ X(n 1 ) j | X(n) i, X(n 1 ) in1 ,
定义 4.18 对于任一 t0,记
p j (t ) P{ X (t ) j }
p j p j (0) P{ X (0) j }, j I
分别称 { p j (t ), j I } 和 { p j , j I } 为齐次马氏链的绝对概率分布和初始概率分布。 性质 2:对任意 0 t0 t1 tn , i0 ,i1, ,in I ,有
t 0
lim
1 pii ( t) qii , ( 0 qi ) ,并且对任意 t 0 ,有 t
0
1 pii (t) qii t
(2) lim
t 0
pij ( t) t
qij
qij
证明:略。 注 1:若 qii 0 ,则有 pii(t) 1 即 i 为吸收态。 注 2:当 | t | 较小时
p00 ( h) ,或 p01 (h), p10 (h), p11 (h)
(2)在时刻 t,机器正常工作的概率是多少? p0 (t )
转移概率 绝对概率
机器维修问题 2 设有 m 台机床,s 个维修工人(s<m) 。机床或者工作,或者损坏等待修理,机床损坏 后,空着的维修工人立即来修理,若维修工人不空,则机床按先坏先修排队等待维修。 假定在 h 时间内,每台机床从工作转到损坏的概率的 t t ,每台修理的机床转到 工作的概率为 t (t ) 。 当已知 m,,后,怎样合理安排维修工人人数 s?
(j=1,2,…,n)
研究的问题:无论从哪个状态出发,经过时间 t 转移到状态 j 的概率。 如何求 P(t),在实际问题中往往是很困难, 但考虑到密度矩阵 Q (qij ) ,是由
P(t) (pij ) 在 t 0 的导数组成,所以实际问题中先得到 (qij ) ,再算 P(t) 。
注 2:费勒已经证明了向后方程与向前方程有同一解 pij (t ) ,但具体应用哪一个方程 组求解,要看具体问题而定。 例 3 两状态链 机器维修问题 1 设状态 0 代表某机器正常工作,状态 1 代表机器出故障。在 h 时间内,机器由正常工 作变为出故障的概率为 p01 (h) 1 e 变为正常工作的概率为 p10 (h) 1 e
第五章 连续时间马氏链
4.5 连续时间马尔科夫链
应用实例
机器维修问题 1 设状态 0 代表某机器正常工作,状态 1 代表机器出故障。在 h 时间内,机器由正常工 作变为出故障的概率为 p01 (h) h o(h) ; 在 h 时间内, 机器由故障经修复后变为正常工 作的概率为 p10 (h) h o(h) 。 研究的问题: (1)在 t=s 时正常工作,在 t=s+h 时仍然正常工作的概率是多少?
故叫做连续时间齐次马氏链的切普曼—柯尔莫哥洛夫方程
例 1 考虑一个电话总机接到的呼唤流,以 X(t) 表示这个总机在[0,t]中接到的呼唤次 数,由于呼唤流在不相交的时间区间中接到的呼唤次数是相互独立的,且 X(t) 服从泊松 分布, 所以 X(t) 是一个时间连续状态离散的马氏过程, 而且是齐次的。 写出它的转移概率。 解:其状态空间 I={0,1,2,…},当呼唤次数 i j 时,转移概率
qij t 加上一个比t 高阶的无穷小量。
推论: (1)对任意 i I , 0
i j
qij qi
(2)对时间连续的齐次有限马氏链, i I ,有
q
i j
ij
qi
密度矩阵
由跳跃强度 qij 构成的矩阵
q00 Q q10
q01 q11
它表明系统从状态 i 出发,是继续留在状态 i,还是跳跃到状态 j,在不计一个高阶无 穷小时,决定于 qii 与 qij 。 称 qij 为齐次马氏链从状态 i 到状态 j 的转移速率或跳跃强度。定理中的极限的概率意 义为:在长为t 的时间区间内,过程从状态 i 转移到另一其他状态的概率为 1 pii ( t) , 等于 qii t 加上一个比t 高阶的无穷小量;而从状态 i 转移到状态 j 的概率 pij ( t ) ,等于
这个条件称为正则性条件。正则性条件说明:过程刚进入某状态不可能立即又跳跃到 另一个状态。这正好说明一个物理系统要在有限时间内发生无限多次跳跃,从而消耗无穷 多的能量是不可能的。
定理 4.17 设 pij (t ) 是连续时间齐次马氏链的转移矩阵,则对任意 i, j I , i j ,下 列极限存在 (1)
iI
pin1in (tn tn 1 )
例 2 证明齐次泊松过程 { X (t ),t 0} 为连续时间齐次马氏链。 证明 略。
二、Q 矩阵
对于转移概率 pij (t ) ,一般假定它满足:对任意的 i, j I ,有
i j 1 lim pij(h) δij h0 0 , i j
4 2014 年 12 月 11 日星期四 大连海事大学数学系
第五章 连续时间马氏链
t 0
lim
1 pii ( t) qii t
等价 pii ( t) 1 qii t ο( t)
t 0
lim
pij ( t) t
qij
等价 pij ( t) qij t ο( t)
( pi1(t), pi2 (t),
(向前方程)
(t)) ( pi1(t), pi 2 (t), , pin
P(t) QP(t)
, pin (t))Q
(i=1,2,…,n)
研究的问题:从状态 i 出发经过时间 t ,转移到任意一个状态 j 的概率. (向后方程)
j (t) p1 p1 j (t) j (t) p2 p2 j (t) Q p (t) p (t) nj nj
jI j
(3) p j (t )
p p (t ) ;
iI i ij
(4) p j (t )
p (t ) p ( ) ;
iI i ij
(5) P{ X (t1 ) i1 , X (t2 ) i2 ,
, X (tn ) in }
pi pii1 (t1 ) pi1i2 (t2 t1 )
q
i j
ij
qii ,对任意
5
2014 年 12 月 11 日星期四
大连海事大学数学系
第五章 连续时间马氏链
i,j I 和 t 0 ,有
(t) (1) pij
p
k j
ik
(t)qkj q jj pij (t )
sup {qi }
i
(t) (2) pij
pin1in
注:连续时间齐次马氏链的有限维概率分布由它的初始分布和转移矩阵所确定。
性质 3:齐次马氏链的绝对概率及有限维概率分布具有下列性质: (1) p j (t ) 0 ;
3 2014 年 12 月 11 日星期四 大连海事大学数学系
第五章 连续时间马氏链
(2)
p (t ) 1 ;
q
k i
ik
pkj (t) qii pij (t)
证明: (2) pij (t h)
p
kI
ik
(h) pkj (t )
pij (t h) pij (t ) pik ( h) pkj (t ) [1 pii ( h)] pij (t )
k i
lim
P{ X( t i0 , X ( 1t) i1 ,, X ( n t ) in } 0)
P{X(t 0 ) i0 } pi0i1(t1 t0 ) pin1in (tn tn1 )
注:性质 2 对应于离散时间 P{ X 0 i0 , X 1 i1 ,, X n in } pi0 (0) pi0i1 pi1i2
称为时间连续马氏链的密度矩阵或 Q 矩阵。 若对一切 i I ,有
q
i j
ij
qii
则称 Q 矩阵为保守的 ,也称连续马氏链是保守的。 由定理 4.17 推论可知,时间连续的齐次有限马氏链是保守的。
三、柯尔莫哥洛夫定理
定理 4.18 设 { X (t ), t 0} 是时间连续的齐次马氏链,
, in1 I ,有
, X (tn ) in }