几何发展史
几何发展史简要概括
几何发展史简要概括几何学的发展史是一个漫长而丰富多彩的过程,它伴随着人类文明的发展,不断推动着人类对自然界和宇宙的认识。
以下是几何学发展史的简要概括:1. 早期几何学:早在公元前7世纪,古希腊的数学家们就开始研究几何学。
其中,欧几里德被认为是几何学的奠基人,他的《几何原本》一书成为了数学史上的经典之作。
在这个时期,几何学主要关注平面上图形的性质和度量,如长度、角度、面积等。
2. 解析几何学:到了17世纪,笛卡尔引入了坐标系的概念,将几何图形与代数方程结合起来,从而开创了解析几何学的新纪元。
解析几何学的出现,使得几何学的研究范围从平面扩展到了空间,同时也使得代数和几何在理论上得到了统一。
3. 微分几何学:在19世纪,高斯提出了微分几何学,将几何学的研究重点放在了曲面上。
微分几何学的研究对象包括曲线、曲面以及它们之间的变化和性质。
在这个时期,几何学的研究方法也得到了极大的发展,如微积分、线性代数等数学工具的引入,使得几何学的研究更加深入和广泛。
4. 拓扑学:拓扑学是几何学的一个重要分支,它研究的是图形在连续变形下保持不变的性质。
拓扑学的研究范围非常广泛,包括图形的连通性、紧致性、同胚性等方面。
在20世纪初,随着数学的发展和各学科之间的交叉融合,拓扑学逐渐成为了一个独立的数学分支。
5. 现代几何学:进入20世纪以后,几何学的发展更加多元化和深入。
在这个时期,出现了许多新的几何学分支,如纤维丛几何、黎曼几何、辛几何等。
这些分支的出现,使得几何学的研究范围更加广泛,同时也推动了数学和其他学科的发展。
总的来说,几何学的发展史是一个不断开拓、不断创新的过程。
在这个过程中,许多杰出的数学家们为几何学的发展做出了卓越的贡献。
他们的思想和成果不仅推动了数学的发展,也对其他学科产生了深远的影响。
今天,几何学已经成为一个庞大而复杂的学科体系,它将继续引领着人类对自然界和宇宙的认识和理解。
几何学的发展史PPT
建筑设计
建筑设计是几何学应用的重要领域之一,建筑师利用几何 学原理设计出各种形状和结构的建筑物,以满足功能和审 美需求。
建筑设计中,几何学主要应用于空间布局、结构分析、材 料排布等方面,例如利用几何原理确定建筑物的平面和立 体布局,分析结构的稳定性和承重能力,以及合理排布建 筑材料以降低成本等。
工程绘图
• 文艺复兴时期的几何学:文艺复兴时期,随着科学和技术的进步,几何学也取 得了重大突破。达芬奇、伽利略和开普勒等科学家将几何学应用于天文学、物 理学和工程学等领域,推动了科学革命的发展。
• 现代几何学:19世纪以后,几何学逐渐向更高维度的空间拓展。非欧几何的 创立和发展,为几何学带来了新的研究方向和应用领域。现代几何学还包括拓 扑学、微分几何、代数几何等分支,它们在理论物理、计算机科学和数据科学 等领域中发挥着重要作用。
射影几何学的兴起
射影几何学是几何学的一个重要分支,其兴起与中世纪欧洲 的大学教育密切相关。射影几何学的研究对象是图形在投影 下的性质和问题,对于当时的建筑、绘画和工程等领域有着 重要的应用价值。
射影几何学的兴起也与当时的哲学思想有关,特别是唯理论 和经验论的争论。唯理论者认为几何学中的公理和定理是自 明的,而经验论者则强调实践和应用的重要性。射影几何学 的兴起体现了当时哲学思想的交锋和碰撞。
非欧几何学的发现
非欧几何学的发现
非欧几何学是指与欧几里得几何学不同的几何体系,其公理体系和欧几里得几何学有所 不同。在19世纪,德国数学家高斯、俄国数学家罗巴切夫斯基和匈牙利数学家波尔约 等人分别独立发现了非欧几何学。非欧几何学的发现打破了欧几里得几何学的唯一性,
使得人们开始认识到不同的公理体系可以导致不同的几何体系。
微分几何学的兴起
中国几何学发展简史
时间段
几何发展特点与重要事件
新石器时代
陶器多为圆形或其他规则形状,上有几何图案,表明几何知识的萌芽
先秦时期
《九章算术》等著作中包含几何知识,但几何学尚未成为独立学科
古希腊时期
泰勒斯等数学家将埃及实用几何带入希腊,毕达哥拉斯学派广泛研究图形,欧几里德著《几何原本》,确立了几何学的逻辑体系
明末
数学家徐光启与意大利传教士利玛窦合作翻译《几何原本》,几何学开始在中国广泛传播
清代至近代
中国数学家在几何学领域不断探索,但受西方几Biblioteka 学影响较深,缺乏自主创新现代
随着教育体制的改革和数学研究的深入,几何学在中国得到快速发展,成为数学学科中的重要分支
几何发展简史
论文:数学的发展简史作者:学号:班级:指导教师:日期:几何学发展简史几何,英文为Geometry ,是由希腊文演变而来,其原意是土地测量;“依据很多的实证,几何是埃及人创造的,并且产生于土地测量;由于尼罗河泛滥,经常冲毁界限,这样测量变成了必要的工作;无可置疑的,这类科学和其它科学一样,都发生于人类的需要;”引自1;明代徐光启1562~1633和天主教耶酥会传教士利玛窦Matteo Ricci,1552~1610翻译欧几里得的几何原本时将Geometry 一词译为几何学;几何学是研究形的科学,以视觉思维为主导,培养人的观察能力、空间想象能力与空间洞察力;几何学最先发展起来的是欧几里得几何;到17世纪的文艺复兴时期,几何学上第一个重要成果是法国数学家笛卡儿R..descartes, 1596~1650和费马 Fermat,1601~1665的解析几何;他们把代数方法应用于几何学,实现了数与形的相互结合与沟通;随着透视画的出现,又诞生了一门全新的几何学——射影几何学;到19世纪上半叶,非欧几何诞生了;人们的思想得到很大的解放,各种非欧几何、微分几何、拓扑学都相继诞生,几何学进入一个空前繁荣的时期;1 从欧几里得几何到非欧几何欧几里得Euclid,约公元前330~275的几何原本是一部划时代的着作,其伟大的历史意义在于它是用公理方法建立起演绎体系的典范;公元7世纪以前的所谓几何学,都只限于一些具体问题的解答,并且是十分粗糙的、零碎的、片段的和单凭经验的;当积累起来的几何知识相当丰富时,把这一领域的材料系统地整理,并阐明它们的关系,就显得十分必要了;由于几何学本来的对象是图形,研究它必然要借助与空间的直观性;但是直观性也有不可靠的时候,因而在明确地规定了定义和公理的基础上,排除直观性,建立合乎逻辑的几何学体系的思想在古希腊时代就已经开始;欧几里得就是在这种思想的基础上,编着完成了他的几何原本;几何原本的第一卷是全书逻辑推理的基础,给出全书最初出现的23个定义,5条公设,5条公理:定义(1)点没有部分;(2)线有长度,而没有宽度;(3)线的界限是点注:几何原本中没有伸展到无穷的线;(4)直线是同其中各点看齐的线;(5)面只有长度和宽度;(6)面的界限是线;(7)平面是与其上的直线看齐的面;(8)平面上的角是在一个平面上的两条相交直线的相互倾斜度;(9)当形成一角的两线是一直线时,这个角叫做平角;(10)~22略是关于直角、锐角、钝角、圆、三角形、四边形等的定义;23平行直线是在同一个平面内,而且往两个方向无限延长后,在这两个方向上都不会相交的直线;关于几何的基本规定的5条公设:(1)从每个点到每个其它的点必定可以引直线;(2)每条直线都可以无限延伸;(3)以任意点作中心,通过任何给定的点另一点,可以作一个圆;(4)所有的直角都相等;(5)同平面内如有一条直线与另两条直线相交,且在前一条直线的某一侧所交的两内角之和小于两直角,则后两条直线无限延长后必在这一侧相交;关于量的基本规定的5条公理:(1)等于同量的量相等;(2)等量加等量,总量相等;(3)等量减等量,余量相等;(4)彼此重合的量是全等的;(5)整体大于部分;欧几里得在此基础上运用逻辑推理,导出了许许多多的命题在几何原本中包含了465个命题,从而构成了欧几里得几何学;由前三个公设限定了用圆规和无刻度的直尺可以完成哪些作图,因此这两件仪器被称为欧几里得工具,使用它们可以完成的作图称为欧几里得作图,即尺规作图;这种作图增加了几何学的趣味性;人们花费大量的精力去解决古希腊的几何三大难题:(1)倍立方问题:求作一个立方体,使体积为已知立方体的二倍;(2)三等分角问题:三等分一个任意的已知角;(3)化圆为方问题:求作一个正方形,使其面积为已知圆的面积;尽管是徒劳的,但从各方面推动了数学的发展;将公设、公理分开是从亚里士多德开始的,现代数学将公设、公理都叫做公理;第五条公设与“在平面内过已知直线外一点,只有一条直线与已知直线不相交平行”相等价;现在把后一个命题叫做欧几里得平行公理;自几何原本问世以来,直到19世纪大半段以前,数学家一般都把欧几里得的着作看成是严格性方面的典范,但也有少数数学家看出了其中的严重缺点,并设法纠正;首先,欧几里得的定义不能成为一种数学定义,完全不是在逻辑意义下的定义,有的不过是几何对象的直观描述比如点,线,面等,有的含混不清;这些定义在后面的论证中根本是无用的;其次,欧几里得的公设和公理是远不够的;因而在几何原本中许多命题的证明不得不借助直观,或者无形中引用了欧几里得的5个公理之外的公设或公理的东西;针对欧氏几何的上述缺陷,数学家们做了大量工作来弥补这些缺陷;到19世纪末,德国数学家希尔伯特D. Hilbert,1862~1943于1899年发表了几何基础,书中成功地建立了欧几里得几何的一套完整的公理系统;首先他提出了8个基本概念,其中三个是基本对象:点、直线、面;5个是基本关系:点属于或关联直线,点属于或关联平面,一点在两点之间,两线段合同,两角合同;这些基本概念应服从5组公理:关联公理;顺序公理;合同公理;连续公理;平行公理;参见2或3;另外,人们注意到欧几里得平行公理是否与其它公理独立的问题,即平行公理可否能用其它公理推导出来;虽然有很多学者包括一些很有名的数学家曾宣称已经证明平行公理能用其它公理推导出来,但最后发现这些论证都是不正确的;于是从意大利数学家Saccheri1733开始,人们就转而猜平行公理与其它公理是独立的,即它不能从其它公理推导出来;罗巴切夫斯基Лобачевский,Н.И.,1792~1856和波尔约J,Bolyai, 1802~1860分别在1829年和1832年独立地用平行公理的反命题,即用“过给定直线外一点,存在着至少两条直线与给定的直线不相交”来代替欧几里得平行公理,并由这套新的体系演绎出一套与欧几里得几何迥然不同的命题,但并没有导致任何的矛盾,非欧几何就这样产生了;但是要人们真正信服这种纯理性的几何体系,还是应该将这种“虚”的几何学真正地构造出来,即提供这种“虚”几何的现实模型;19世纪70年代,德国数学家克莱因F. Klein, 1849~1925提出了Klein 模型,庞加莱J.H.Poincare, 1854~1912提出了上半平面Poincare模型;这些模型都能将非欧几何学在人们已经习惯的欧氏空间中实现出来;这样的非欧几何叫做双曲几何;1两个不同的点至少确定一条直线;2直线是无界的;3平面上任何两条都相交;就可得到一种相容的几何学,称为黎曼的非欧几何椭圆几何;这样的几何可以在球面上实现;由于罗巴切夫斯基和黎曼的非欧几何的发现,几何学从传统的束缚中解放出来了,从而为大批新的、有趣的几何的发展开辟了广阔的道路,并有广泛的应用,如:在爱因斯坦发现的广义相对论中,用到黎曼几何;由1947年对视空间从正常的有双目视觉的人心理上看到的空间所作的研究得出结论:这样的空间最好用罗巴切夫斯基的双曲几何来描述;如果实数系是相容的,则可以证明以上几种几何的公理系统都是各自相容的、独立的,但都不是完全的;然而奥地利数学家哥德尔K. Godel, 1906~1978证明了“对于包含自然数系的任何相容的形式体系F,存在F中的不可判定命题;”及“对于包含自然数系的任何相容的形式体系F,F的相容性不能在F中被证明;”因而想证明数学的内部相容性问题也就无望了;2 解析几何的诞生欧氏几何是一种度量几何,研究的是与长度和角度有关的量的学科;它的方法是综合的,没有代数的介入,为解析几何的发展留下了余地;解析几何的诞生是数学史上的一个伟大的里程碑;它的创始人是17世纪的法国数学家笛卡儿和费马;他们都对欧氏几何的局限性表示不满:古代的几何过于抽象,过多地依赖于图形;他们对代数也提出了批评,因为代数过于受法则和公式的约束,缺乏直观,无益于发展思想的艺术;同时,他们认识到几何学提供了有关真实世界的知识和真理,而代数学能用来对抽象的未知量进行推理,是一门潜在的方法科学;因此,把代数学和几何学中的精华结合起来,取长补短,一门新的学科——解析几何诞生了;解析几何的基本思想是用代数方法研究几何学,从而把空间的论证推进到可以进行计算的数量层面;对空间的几何结构代数化,用一个基本几何量和它的运算来描述空间的结构,这个基本几何量就是向量,基本运算是指向量的加、减、数乘、内积和外积;向量的运算就是基本几何性质的代数化;将几何对象数量化需要一座桥,那就是“坐标”;在平面上引进所谓“坐标”的概念,并借助这座桥,在平面上的点和有序实数对x,y之间建立一一对应的关系;每一对实数x,y都对应于平面上的一个点;反之,每一个点都对应于它的坐标x,y ;以这种方式可以将一个代数方程fx,y=0与平面上一条曲线对应起来,于是几何问题便可归结为代数问题,并反过来通过代数问题的研究发现新的几何结果;借助坐标来确定点的位置的思想古来有之,古希腊的阿波罗尼奥斯Apollonius of Perga,约公元前262~190关于圆锥曲线性质的推导;阿拉伯人通过圆锥曲线交点求解三次方程的研究,都蕴涵着这种思想;解析几何最重要的前驱是法国数学家奥雷斯姆,1323-1382,他在论形态幅度这部着作中提出的形态幅度原理或称图线原理,甚至接触到函数的图像表示,在此,他借用了“经度”、“纬度”这两个地理学术语来描述他的图线,相当于横坐标和纵坐标;到了16世纪,对运动与变化的研究已变成自然科学的中心问题;这就迫切地需要一种新的数学工具,导致了变量数学即近代数学的诞生;笛卡儿1637年发表了着名的哲学着作更好地指导推理与寻求科学真理的方法论,该书有三个附录:几何学、折光学和气象学,解析几何的发明包含在几何学这篇附录中;笛卡儿的出发点是一个着名的希腊数学问题——帕普斯问题:费马和笛卡儿研究解析几何的方法是大相径庭的,表达形式也截然不同:费马主要继承了希腊人的思想;尽管他的工作比较全面系统,正确地叙述了解析几何的基本思想,但他的研究主要是完善了阿波罗尼奥斯的工作,因此古典色彩很浓,并且沿用了韦达以字母代表数类的思想,这就要求读者对韦达的代数知识了解甚多;而笛卡儿则是从批判希腊的传统出发,决然同这种传统决裂,走的是革新古代方法的道路;他的方法更具一般性,也适用于更广泛的超越曲线;费马是从方程出发来研究它的轨迹;而笛卡儿则从轨迹出发建立它的方程;这正是解析几何中一个问题的正反两个方面的提法;但各有侧重,前者是从代数到几何,而后者是从几何到代数;从历史的发展来看,后者更具有突破性见5;解析几何解决的主要问题是见6:1通过计算解决作图问题;例如,分线段成已知比例;2求具有某种几何性质的曲线或曲面的方程;3用代数方法证明新的几何定理;4用几何方法解代数方程;例如,用抛物线与圆的交点解三次和四次代数方程;解析几何的诞生具有以下的伟大意义见6:1数学的研究方向发生了一次重大转折:古代以几何为主导的数学转为以代数和分析为主导的数学;2以常量为主导的数学转变为以变量为主导的数学,为微积分的诞生奠定了基础;3使代数和几何融合为一体,实现了几何图形的数量化;4代数的几何化和几何的代数化,使人类摆脱了现实的束缚,带来了认识新空间的需要,帮助人类从现实世界进入虚拟世界:从3维空间进入到更高维的空间;3 十八、十九世纪的几何对于几何学,十八世纪数学家们着眼于分析方法的应用,及与此相联系的坐标几何的发展;虽然早先已有部分结果,但形成为独立的学科主要是在十八世纪;伯努利兄弟以及欧拉、拉格朗日等在确定平面曲线曲率、拐点、渐伸线、渐屈线、测地线及曲线簇包络等方面做出许多贡献;蒙日自1771年起发表的一系列工作,则使微分几何在十八世纪的发展臻于高峰; 解析几何的基本课题是对称的坐标轴概念、平面曲线的系统研究等;帕伦于1705年、1713年将解析几何推广至三维情形,该项工作被克莱罗所继续;解析几何突破了笛卡儿以来作为求解几何难题的代数技巧的界限;对综合几何的兴趣直到十八世纪末才被重新唤起,这主要归功于蒙日的画法几何学;蒙日指出画法几何只是投影几何的一个方面,这促进了更一般的投影几何学与几何变换理论的发展;投影几何在十九世纪整整活跃了一个世纪,而几何变换则已成为现代几何学的基本概念;十九世纪是数学史上创造精神和严格精神高度发扬的时代;复变函数论的创立和数学分析的严格化,非欧几何的问世和射影几何的完善,群论和非交换代数的诞生,是这一世纪典型的数学成就;它们所蕴含的新思想,深刻地影响着二十世纪的数学;十九世纪最富革命性的创造当属非欧几何;自古希腊时代始,欧氏几何一直被认为是客观物质空间惟一正确的理想模型,是严格推理的典范;16世纪后的数学家在论证代数或分析结果的合理性时,都试图归之为欧氏几何问题;但欧氏几何的平行公设曾引起数学家的持久的关注,以弄清它和其他公理、公设的关系;这个烦扰了数学家千百年的问题,终于被高斯、罗巴切夫斯基和波尔约各自独立解决;高斯在1816年已认识到平行公设不可能在欧氏几何其他公理、公设的基础上证明,得到在逻辑上相容的非欧几何,其中平行公设不成立,但由于担心受人指责而未发表;1825年左右,波尔约和罗巴切夫斯基分别得到同样的结果,并推演了这种新几何中的一些定理;罗巴切夫斯基1829年的文章论几何基础是最早发表的非欧几何着作,因此这种几何也称为罗巴切夫斯基几何;这项发现的技术细节是简单的,但观念的变革是深刻的,欧氏几何不再是神圣的,数学家步入了创造新几何的时代;非欧几何对人们认识物质世界的空间形式提供了有力武器,但由于它背叛传统,创立之初未受到数学界的重视;只是当高斯有关非欧几何的通信和笔记在他1855年去世后出版时,才因高斯的名望而引起数学家们的关注;十九世纪前半叶最热门的几何课题是射影几何;1822年,彭赛列发表论图形的射影性质,这是他1813~1814年被俘关在俄国时开始研究的总结;他探讨几何图形在任一投影下所有截影共有的性质,他的方法具有象解析几何那样的普遍性;1827年左右,普吕克等人引进齐次坐标,用代数方法研究射影性质,丰富了射影几何的内容;对纯几何问题兴趣的增长,并未减弱分析在几何中的应用;高斯从1816年起参与大地测量和地图绘制工作,引起他对微分几何的兴趣;1827年他发表的关于曲面的一般研究,为这一数学分支注入了全新的思想,开创了微分几何的现代研究;参考书目1КостинВ.И.,几何学基础,苏步青译,商务印书馆,19562沈纯理等,经典几何,科学出版社,20043郑崇友等,几何学引论第二版,高等教育出版社,20054李文林,数学史概论第二版,高等教育出版社,20025吴文俊主编,世界着名数学家传记,科学出版社,20036张顺艳,数学的美与理,北京大学出版社,2004。
解析几何的发展简史
解析几何的发展简史解析几何学是数学的一个分支,研究点、线、面及其相互关系的形状和性质。
它起源于古代文明,随着时间的推移,逐渐发展成为现代数学的一部分。
下面是解析几何发展的简史。
古代:解析几何的起源可追溯到古埃及和古希腊时期。
古埃及人以地理测量和土地标记为目的,开始研究几何学。
而在古希腊,数学家毕达哥拉斯和欧几里得作出了关于点、线和面的基本定义和公理,为几何学建立了坚实的基础。
17世纪:解析几何在17世纪得到了重要的发展。
法国数学家笛卡尔提出了坐标系,将代数与几何学相结合,从而建立了现代解析几何的基础。
笛卡尔坐标系将点的位置通过坐标表示,使得几何问题可以转化为代数方程。
这为后来的数学家们提供了研究平面和空间中几何图形的新方法。
19世纪:19世纪是解析几何学发展的黄金时代。
法国数学家拉格朗日和欧拉等人进一步发展了解析几何的方法和理论。
此外,高斯、黎曼和庞加莱等数学家的研究推动了解析几何学的进一步发展。
他们建立了非欧几何学,推翻了欧几里得几何学的一些公理,为后来的几何学发展开辟了新的方向。
20世纪:20世纪是几何学发展的一个重要时期。
在这一时期,解析几何研究的焦点逐渐从平面和空间的几何图形转向了更抽象的代数和拓扑几何。
19世纪末和20世纪初,法国数学家庞加莱提出了拓扑学的概念,这是一种研究几何形状变化的新方法。
庞加莱的工作对后来拓扑学的发展产生了重要影响。
当代:在当代,随着计算机技术的发展,解析几何学得到了进一步发展和应用。
计算机辅助几何设计(CAGD)是解析几何的一个重要应用领域,它将几何形状的描述和计算机图形学相结合,用于工程设计、制造和动画等领域。
总结起来,解析几何经历了几个重要的发展阶段。
古代时期几何学的基本概念和公理得到确立;17世纪随着笛卡尔坐标系的引入,解析几何开始研究代数与几何的关系;19世纪期间,非欧几何学和拓扑学的发展对解析几何的发展起到了重要作用;20世纪以来,解析几何进一步发展和应用于计算机技术。
浅谈几何的发展历程
前言:
几何学是一门古老而实用的科学,是自然科学的 重要组成部分。在史学中,几何学的确立和统一经 历了二千多年,数百位数学家做出了不懈的努力。
•
ቤተ መጻሕፍቲ ባይዱ
几何这个词最早来自于希腊语“γ ε ω μ ε τ ρ ία ”,由“γ έα ”
(土地)和“μ ε τ ρ ε ĭν ”(测量)两个词合成而来,指土地的测量
柏拉图主张:"只有循数学一途,才能了解实体世界 的真面目,而科学之成为科学,在於它含有数学的份." 就是因为希腊时代的一些学者对於自然的这种看法和 确立了依循数学研究自然的做法,给食腊时代本身及后 来世世代代的数学创见提供了莫大的诱因.而在数学的 领域中,几何学是最接近实际的描述.对希腊人而言,几 何学的原则是宇宙结构的具体表现,本身正一门实际空 间的科学.几何学就是数学,研究的中心.
,即测地术。后来拉丁语化为“geometria”。中文中的“几何”一词,最
早是在明代利玛窦、徐光启合译《几何原本》时,由徐光启所创。当时并
未给出所依根据,后世多认为一方面几何可能是拉丁化的希腊语GEO的音译
,另一方面由于《几何原本》中也有利用几何方式来阐述数论的内容,也
可能是magnitude(多少)的意译,所以一般认为几何是geometria的音、
解析几何的诞生
解析几何是变量数学最重要的体现。解析几何的基本 思想是在平面上引入“坐标”的概念,并借助这种坐标在 平面上的点和有序实数对(x,y)建立一一对应的关系,于是 几何问题就转化为代数问题。
解析几何的真正创立者应该是法国数学家迪卡儿和费 马。1637年迪卡儿在《更好的指导推理和寻求科学真理的 方法论》的附录《几何学》中清晰的体现了解析几何的思 想。而费马则是在论平面和立体的轨迹引论中阐述了解析 几何的原理,他在书中提出并使用了坐标的概念,同时建立 了斜坐标系和直角坐标系。
微分几何发展史
微分几何是现代数学的一个重要分支,它研究曲线和曲面在微分意义上的几何性质。
其发展历程可以追溯到十七世纪,经过几代数学家的努力,微分几何不断完善并发展成为一门独立的学科。
在早期的微分几何研究中,欧拉、拉格朗日等数学家对曲线的弧长、曲率、曲率半径等概念进行了深入的研究,并且发展了微分形式的有关理论。
这些工作为微分几何的发展奠定了基础。
在十九世纪,微分几何得到了迅速的发展。
首先,法国数学家柯西和黎曼在曲线论方面做出了重要的贡献,他们引入了正则曲线概念,建立了柯西积分公式和曲率中心的概念。
此外,法国数学家魏尔斯特拉斯提出了曲线的一般理论,对微分几何的发展产生了深远的影响。
进入二十世纪,微分几何继续快速发展。
德国数学家闵可夫斯基引入了“空间”和“联络”等概念,建立了现代微分几何学的基础。
随后,苏联数学家巴甫洛夫斯基于二十世纪初创立了向量场的理论,将向量场推广到任意映射上。
另外,陈省身和卡拉西奥多里对微分几何的研究做出了重要贡献,将复变函数论的概念和方法应用于曲面的整体性质研究,进一步推进了微分几何的发展。
微分几何的研究范围非常广泛,包括光滑曲线和曲面的理论、各种特殊形状(如正曲率、常平均曲率形状)的性质以及它们在物理学、化学、生物学和工程学中的应用等等。
同时,微分几何与代数几何、拓扑学等其他数学分支的联系和交叉也得到了广泛的研究。
微分几何的发展和应用领域不断扩大,它不仅在数学领域中有着重要的地位,而且在物理学、工程学、计算机科学等领域也有着广泛的应用。
例如,在计算机图形学中,微分几何用于描述三维物体的形状和表面,而在机器人学中,微分几何的方法也用于分析和控制三维空间中的物体运动。
总之,微分几何的发展历程充满了曲折和辉煌,它从早期的简单概念和理论逐渐发展成为一门独立的学科,并不断拓展其应用领域。
未来,随着数学和其他学科的交叉和融合,微分几何将继续发挥其重要作用。
几何学发展史简介
“几何”一词,拉丁文是geometric,其源于希腊文ycouerpua(土地测量术)。
我国明末科学家徐光启(1562-1637)与意大利传教士利玛窦(R.Matteo,1553- 1610)1607年合译《几何原本》时首次采用。
几何学是一门古老而崭新的数学分支,其产生可追溯到距今8000年前的新石器时代。
最早始于人类生存及生产的需要,在长期生活、生产实践中,人们逐渐对图形有了一定的认识,形成了一些粗略的几何概念,归纳出一些有关图形的知识和经验,产生了初步的几何。
再经历代数学家的提炼和加工,逐渐形成了一门研究现实世界空间形式,即物体形状、大小和位置关系的数学分支,进而发展成为研究一般空间结构的数学分支。
几何学的发展大致经历了4个基本阶段。
1.实验几何的形成与发展几何学最早的产生可以用“积累几何事实,并企图建立起各个事实间的某种联系”来概括和描述。
源于人们观察天体位置、丈量土地、测量容积、制造生产工具等实践活动。
据考古资料记载,出土的十万年前的一些器皿上已出现的简略几何图案。
相传公元前2000年前大禹治水时,就已经能够使用规和矩等绘图工具进行测量和设计工作。
另外,从现存的古埃及、古巴比伦等国的史料可看出,在天文、测量中也大量地反映了几何图形与计算的知识。
然而,这一历史时期,尽管人们在观察实验的基础上积累了丰富的几何经验。
但在现存的史料中,未见这一时期总结出几何知识真实性的推理证明;某些计算公式仅是粗略和近似的;直至公元前7世纪以前,可以说是单纯地由经验积累,通过归纳而产生几何知识的阶段,被称为实验(归纳)几何阶段。
2.理论几何的形成与发展到了公元前7世纪,随着古埃及、古希腊之间贸易与文化的交流,埃及的几何知识逐渐传入希腊并得到巨大的发展。
这一时期,人们对几何知识开始了逻辑推理与论证,古希腊的泰勒斯(Thales,约公元前625一前547)首先证明了“对顶角相等”、“等腰三角形两底角相等”、“半圆上的圆周角是直角”等,因而被人们称为第一位几何学家;毕达哥拉斯(Pythagoras,公元前580一前501)学派首先证明了“三角形内角和等于二直角”、“勾股定理”、“只有五种正多面体”等。
第二章源头之一几何原本
《几何原本》后面各篇不再列出其它公理。这一 篇在公理之后,用48个命题讨论了关于直线和由直 线构成的平面图形的几何学,其中第47命题就是著 名的勾股定理:“在直角三角形斜边上的正方形(以 斜边为边的正方形) 等于直角边上的两个正方形。”
几何学的发展简史
几何学的发展历经了四个基本阶段:
一是经验事实的积累和初步整理
据考证西方的几何学就是起源于测地术.“几何 学”这个名词是我国明朝徐光启(1562—1633年) 译的,这个词的原义无论在拉丁文或希腊文都含“测 地术”的意思.
大约公元前1650年,埃及人阿默斯 (Ahrmes,生卒年月不详)手抄了一本书,即 后人所称的“阿默斯手册”,最早发现于埃及 底比斯的废墟中.公元1858年由英国的埃及学 者莱因德﹝A. H. Rhind﹞购得,故又名“莱因 德纸草书”.此书中载有很多关于面积的测量 法以及关于金字塔的几何问题.
第十三篇共有18个命题,主要研究五种正多面 体,并且证明了(凸的)正多面体不能多于五种。
第五公设的试证
在摆脱第五公设(也称平行公设)困扰的努力 中,第一个有影响的工作是由古希腊天文学家托 勒密完成的。在这次认真的尝试中,托勒密采取 的方式是直接证明法。他试图通过欧几里得的其 他九个公理、公设直接推导出第五公设。
第十篇是篇幅最大的一篇,包括115个
题.占全书四分之一,主要讨论无理量(与给定
的量不可通约的量),但是只涉及相当于 之类的无理量。
a b
第十一篇讨论空间的直线与平面的各种关系, 共有39个命题。
第十二篇利用穷竭法证明了“圆面积的比等于 直径平方的比”,还证明了棱锥之间、圆锥之间、 圆柱之间和球体之间的体积之比。值得指出的是: 欧几里得在任何地方都没有给出圆面积、球体积等 的计算。这并非他不知道早已存在的近似计算方法, 而是在他看来,这种计算属于实际测量而不用于理 论几何。
几何学的发展简史
几何学的发展简史
几何学是学习和研究几何形状的一门科学,它涉及几何形状和大小之间的关系。
研究者们说,几何学的发展可以追溯到公元前3000年的古埃及时期,当时古埃及人就开始使用几何图形学习和研究几何形状。
大约公元前2000年,古希腊人开始大量使用几何图形,发展出一套完整的几何学理论。
主要几何学家包括欧几里得、毕达哥拉斯和斐波纳契等,他们将几何学推向了新高度。
欧几里得是古希腊几何学家,他发明了欧几里得几何,提出了五条几何定理,还提出了欧几里得算法,以求解重要的几何问题。
此外,欧几里得还发明了三角函数,为微积分提供了重要的基础。
毕达哥拉斯是一位古希腊几何学家,在他的《几何原本》中,他以极其精准的数学演算方法推导出许多几何定理,重新定义了几何学的研究方法。
斐波纳契是一位意大利几何学家,他建立了三角学的新体系,提出了斐波纳契公式,证明了欧几里得几何的许多定理。
公元一世纪,此后几何学发展得很快,特别是在17世纪,古典几何学得到了进一步发展。
17世纪的古典几何学家开始用抽象几何学来研究几何形状,这使得几何学进入了新的阶段。
更近代的几何学家,特别是20世纪末以来的数学家。
几何学发展简史范文
几何学发展简史范文
从古代到现代,几何学已经经历了长达数千年的飞跃发展。
几何学的
起源可以追溯到古埃及、古巴比伦、古希腊以及古印度的文明。
古埃及几何学的起源可以追溯到公元前2000年左右,早期埃及文明
就发现了关于面积的几何原理,包括长方形和三角形。
他们也对多边形和
复杂图形进行了研究,发现了有关它们的性质,并记录了构造这些图形所
需要的步骤。
古埃及人也研究了所谓的“平行规则”,即两条平行线之间
相等的角度。
他们还发现了投影几何法,可以利用它来把三维物体转换成
二维图形。
古巴比伦几何学的研究追溯到公元前1600年左右,同古埃及人一样,古巴比伦人也研究了几何学。
他们发现了所谓的“正方形定理”,即关于
正方形的对角线之间的关系。
古巴比伦人还发现了“勾股定理”,即对于
给定的一个正整数,可以构造一个三角形,其三边的长度分别是那个正整
数的平方数和另外两个正整数的乘积。
古希腊几何学的发展可以追溯到公元前六世纪左右,可以说古希腊几
何学是关于几何学最重要的突破性发展。
古希腊几何学家发现了圆周率的
存在,以及圆周率在计算圆的面积和周长时的作用。
古希腊几何学家盖比
卢斯发现了直角三角形的勾股定理。
几何发展史
波恩哈德· 黎曼
•
黎曼流形上的几何学。德国数学家G.F.B.黎曼19世纪中 期提出的几何学理论。1854年黎曼在格丁根大学发表的题 为《论作为几何学基础的假设》的就职演说,通常被认为 是黎曼几何学的源头。在这篇演说中,黎曼将曲面本身看 成一个独立的几何实体,而不是把它仅仅看作欧几里得空 间中的一个几何实体。他首先发展了空间的概念,提出了 几何学研究的对象应是一种多重广义量 ,空间中的点可 用n个实数(x1,……,xn)作为坐标来描述。这是现代n 维微分流形的原始形式,为用抽象空间描述自然现象奠定 了基础。这种空间上的几何学应基于无限邻近两点(x1, x2,……xn)与(x1+dx1,……xn+dxn)之间的距离, 用微分弧长度平方所确定的正定二次型理解度量。亦即 (gij)是由函数构成的正定对称矩阵。这便是黎曼度量。 赋予黎曼度量的微分流形,就是黎曼流形。
平面几何
• 最早的几何学当属 平面几何。平面几何就 是研究平面上的直线和二次曲线(即圆锥 曲线,就是椭圆、双曲线和抛物线)的几 何结构和度量性质(面积、长度、角度)。 平面几何采用了公理化方法,在数学思想 史上具有重要的意义。 平面几何的内容也 很自然地过渡到了三维空间的立体几何。 为了计算体积和面积问题,人们实际上已 经开始涉及微积分的最初概念。
几何发展史
几何来源
• 几何这个词最早来自于希腊语“γεωμετρία”,由“γέα”(土地)和 “μετρε ĭν”(测量)两个词合成而来,指土地的测量,即测地术。后来拉 丁语化为“geometria”。中文中的“几何”一词,最早是在明代利玛窦、
徐光启合译《几何原本》时,由徐光启所创。当时并未给出所依根据,后 世多认为一方面几何可能是拉丁化的希腊语GEO的音译,另一方面由于 《几何原本》中也有利用几何方式来阐述数论的内容,也可能是 magnitude(多少)的意译,所以一般认为几何是geometria的音、意并 译。 1607年出版的《几何原本》中关于几何的译法在当时并未通行,同时代也 存在着另一种译名——形学,如狄考文、邹立文、刘永锡编译的《形学备 旨》,在当时也有一定的影响。在1857年李善兰、伟烈亚力续译的《几何 原本》后9卷出版后,几何之名虽然得到了一定的重视,但是直到20世纪 初的时候才有了较明显的取代形学一词的趋势,如1910年《形学备旨》第 11次印刷成都翻刊本徐树勋就将其改名为《续几何》。直至20世纪中期, 已鲜有“形学”一词图形
几何学的发展史范文
几何学的发展史范文几何学是数学的一个重要分支,它研究空间中的形状、大小、相对位置以及变换等问题。
几何学的发展可以追溯到古代文明时期,可以说是人类文明和科学发展的重要组成部分。
下面将就几何学的发展史进行详细介绍。
古埃及和古巴比伦是几何学的发源地之一、早在公元前3000年左右,古埃及人就开始应用几何学知识,主要用于土地的测量和建筑设计。
他们的几何学重点是以直线和圆为基础的平面几何学,如土地的测量和建筑设计中的正方形、矩形和金字塔等。
另一方面,古巴比伦人对几何学的研究主要是为了解决日常生活中的实际问题,如土地的测量、建筑设计、运输和贸易等。
他们通过观察天空中的星星和行星的运动,发现了几何学规律,并应用于农业和航海等领域。
古希腊是几何学发展的重要阶段。
早在公元前前6世纪,古希腊人就开始研究几何学,并对几何学进行了抽象化的处理。
最著名的古希腊数学家是毕达哥拉斯和欧几里德。
毕达哥拉斯创立了毕达哥拉斯定理,这个定理是几何学中最基本的定理之一、而欧几里德则编写了一本名为《几何原本》的著作,这是几何学的经典著作,对后来的几何学研究产生了深远影响。
中世纪时期,几何学的研究进入了一个相对停滞的阶段。
由于宗教和哲学的主导,科学的发展受到了限制,几何学的研究也受到了影响。
然而,一些数学家还是在这一时期对几何学进行了研究和发展。
其中最著名的是中世纪数学家奥马尔·海亚姆,他借鉴了古希腊数学的思想,开创了代数几何学的研究,并对直线、曲线和平面的交点进行了研究。
16世纪到17世纪,几何学经历了一场革命性的变革。
最重要的贡献来自法国数学家笛卡尔和法国几何学家拉伯尔。
笛卡尔提出了用代数表达几何问题的方法,他的方法被称为笛卡尔坐标系,它将几何问题转化为代数问题,使几何学与代数学相结合,开创了代数几何学。
而拉伯尔则通过对旋转曲线的研究,创立了解析几何学,奠定了现代几何学的基础。
18世纪到19世纪,几何学通过对微积分的发展和应用而进一步发展。
几何学发展史
几何学发展史如何研究大自然中丰富多彩的“形”和人为创造的各式各样的“形”呢?人们从观察和实验开始,从简单到复杂,从具体到抽象,从整体到局部,从局部到整体;不断地积累几何学的知识;不断地整理零散的、孤立的知识;不断地构建一个又一个的几何学理论体系;不断地发掘几何学与其他学科的联系和实际应用。
到今天,几何学已经是一个大的学科,其中包含绚丽多彩的各种分支。
归纳与经验的几何学最初的一些几何概念和知识要追溯到史前时期,它们是在实践活动的进程中产生的。
大自然为人们提供了丰富多彩的几何形体。
例如,基本几何图形——球、平面、直线等;基本几何量——长度、面积和体积等。
公元前7世纪,几何学从埃及传到了希腊。
在希腊人手里,几何学发生了质的变化。
演绎数学就在希腊诞生。
欧几里得曾在柏拉图学院受过教育,后来移居亚历山大城从事教学活动。
他把亚里士多德的逻辑、结构、证明和推理的严密性应用到数学中。
欧几里得至少有10部著作,其中5部被相当完整地保存了下来,但是,使他名垂不朽的是《几何原本》。
欧几里得的《几何原本》(Euclid,约公元前330-前275)的出现是数学史上的一个伟大的里程碑.它是古希腊数学成果、方法、思想和精神的结晶。
它是数学史上第一个逻辑结构严谨、体系宏伟的演绎系统,是数学知识系统化的开端,对后世数学、科学的发展起了不可估量的示范作用。
从它刚问世起就受到人们的高度重视.自1482年第一个印刷本出版以后,至今已有一千多种版本. 在西方世界,古希腊人已经在艺术和数学之间建立了密切的联系,因为数学和艺术构成他们世界观的主要部分。
但是,在宗教统治的中世纪,这种观点被抛弃了。
直至文艺复兴时期,重新唤起了人们对艺术和数学的渴望,唤起了人性的觉醒,人们重新恢复了对大自然的兴趣,渴望描述真实的世界,数学成为了反映世界和描述艺术的工具。
那个时期,艺术家都是工程师和建筑师,他们具有良好的数学基础,可以说他们本身就是数学家。
画家们在发展聚焦透视体系的过程中引入了新的几何思想,并促进了数学的一个全新方向的发展,这就是射影几何。
数学趣史立体几何的发展与应用
数学趣史立体几何的发展与应用数学趣史:立体几何的发展与应用数学在人类的历史长河中占据着重要的地位,而立体几何作为数学的一个分支,更是对人类认识空间的探索起到了重要的推动作用。
本文将为大家介绍立体几何的发展历程和其在实际生活中的应用。
一、古希腊时代的发展古希腊是数学发展的重要时期,立体几何的奠基人欧几里得就生活在这个时代。
他的著作《几何原本》成为了后来研究几何学的经典著作。
欧几里得通过系统的逻辑推理,证明了许多几何命题,建立了几何学的基本原理和体系,为立体几何的后续研究打下了坚实的基础。
二、立体几何在现代的发展1. 向量方法的引入19世纪末20世纪初,随着向量方法的引入,立体几何的研究取得了长足的进步。
向量的运算和空间的矢量运算为几何学提供了更加灵活和强大的工具。
数学家们通过向量分析的方法,深入研究了立体几何的性质和定理,并提出了一系列新的理论和定理。
2. 矩阵理论的应用在20世纪中期,矩阵理论的发展为立体几何的研究带来了新的突破。
矩阵的运算和变换为几何学的分析提供了更加精确和高效的手段。
数学家们通过矩阵理论的方法,研究了立体几何的各种特性和性质,并应用于计算机图形学、机器人学等领域。
三、立体几何的应用1. 建筑设计在建筑设计中,立体几何起着重要的作用。
建筑师通过对立体几何的研究和运用,能够更好地理解和描述建筑物的结构和形态。
立体几何的原理可以帮助建筑师设计出更加合理和美观的建筑物,提高建筑的功能性和艺术性。
2. 工程测量立体几何在工程测量中也扮演着重要的角色。
工程测量师利用立体几何的原理和方法,测量物体的长度、面积、体积等参数,为工程建设提供准确的数据支持。
例如,通过测量立体几何中的角度和距离,工程师可以绘制出精确的地图和工程图纸。
3. 计算机图形学计算机图形学是立体几何的一个重要应用领域。
利用立体几何的原理和算法,计算机可以生成三维模型并进行渲染,从而实现虚拟现实、动画制作、游戏开发等方面的应用。
几何学的发展简述
几何学的发展历程几何学是一门历史悠久、源远流长的学科。
因为它与人类的生活密切相关,所以在人类的早期文明里,它凭借丰富的直观形象和深奥的内在本质,成为当之无愧的老大哥。
在人类历史的长河中,无论在思想领域的突破上,还是在科学方法论的创建上,几何学总扮演着“开路先锋”的角色。
下面就来了解一下几何学的发展史。
一、欧几里得与《几何原本》欧几里得是古希腊数学的集大成者, 是古希腊亚历山大学派的创始人。
从公元前7 世纪到公元前4 世纪, 伴随着哲学的发展, 古希腊数学, 特别是几何学获得了充分的发展, 积累了丰富的材料。
要进一步促进数学的发展, 同时满足教学的需要, 如何把这些材料整理成/ 逻辑严密的系统知识就成了当时希腊数学家的非常重要且非常艰巨的一项任务。
欧几里得总结了前人的经验和教训, 巧妙地把亚里士多得的/ 逻辑学和数学结合起来, 精细地选择命题和公理, 合理地安排知识的顺序, 使之能从很少的几个原始命题( 或说公理) 开始逻辑地展开。
于是, 人类历史上的第一部( 我们可以这样认为) 数学理论著作---《几何原本》诞生了, 第一个公理化的逻辑体现出现了。
它共有十三卷, 包含了465 个命题, 所涉及到的知识包含平面几何、立体几何、比例论、初等数论、无理数等知识。
欧几里得几何从此成为经典几何的代名词。
二、非欧几何的诞生直到18世纪末,几何领域仍然是欧几里得一统天下.虽然解析几何实现了几何学研究方法的革命,但没有从本质上改变欧氏几何本身的内容。
然而,这个近乎科学“圣经”的欧几里得几何并非无懈可击。
到1800年时,平行线公理已经成了几何学瑕站的标志。
因此,从古希腊时代开始,数学家们就一直没有放弃消除对第五公设疑问的努力。
来自不同国家的三位数学家相继独立地发现了非欧几何学.他们是德国的高斯句牙利的J.波尔约和俄国的罗巴切夫斯基。
.从18世纪90年代起,高斯就一直对平行线理论和几何学的基础感兴趣.在1805年的一个笔记本里,高斯考虑到了已知直线距离一定的点的轨迹未必是一条直线.他还曾经证明:非欧假设隐含着绝对长度单位的存在性.但他在生前从未发表过他关于这个问题的观点。
几何发展简史范文
几何发展简史范文几何学作为数学的一个重要分支,是研究空间和形状的科学。
几何学的发展可以追溯到古代文明,许多早期文明如埃及、巴比伦和古希腊都在几何学领域做出了重要贡献。
下面是几何学发展的简史。
公元前3000年左右,古埃及人开始应用几何学的概念来解决土地测量和建筑问题。
埃及人发展了许多几何图形的测量方法,例如三角形和圆形。
另一方面,古巴比伦人也在几何学领域取得了重要进展。
他们用几何学的原理来解决土地测量、建筑和农业方面的问题。
公元前6世纪的古希腊被认为是几何学的黄金时期。
希腊哲学家毕达哥拉斯是几何学的奠基人之一,他提出了著名的毕达哥拉斯定理,即直角三角形的斜边平方等于两直角边平方的和。
欧几里德是另一位希腊几何学家,他在其著作《几何原本》中系统地总结了古希腊几何学的基本原理和定理。
在古希腊几何学的基础上,印度和伊斯兰世界也分别取得了重要的几何学成就。
印度的数学家阿耶尔巴塔在其著作《仰面问题》中提出了许多几何学问题,并给出了解决方法。
同时,阿拉伯数学家穆罕默德·阿卜杜拉·马修也在几何学领域做出了重要贡献,他的著作《数学基础》被翻译成拉丁文后传入欧洲,对欧洲的几何学发展产生了深远影响。
到了16世纪,几何学经历了一场革命。
法国数学家勒内·笛卡尔提出了坐标几何学的概念,将几何学与代数学相结合,创立了解析几何学。
这种新的方法使得几何学的研究更加直观和易于推理,并为后来的数学发展奠定了基础。
19世纪的几何学发展无可争议地是非欧几何学的出现和发展。
德国数学家卡尔·弗里德里希·高斯和俄国数学家尼古拉·罗巴切夫斯基独立地发展了非欧几何学的理论,他们的工作打破了古典几何学的框架,证明了几何学中的平行公设是不必要的。
这些发现对数学和哲学产生了深远的影响,也为几何学带来了新的研究领域。
20世纪的几何学发展进入了更加抽象和高度理论化的阶段。
具有革命性影响的工具是变换群理论,它将对称性和变化的研究纳入几何学的范畴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
就是这样,那欧几里得的乐园的美梦被打破,但醒来之后就获得了累累硕果。
3.今天
“幾何的發展從一開始只能掌握正規的圖形,到牛頓時代藉由微積分開始去瞭解彎曲的情形,接著高斯與黎曼的時代建立了內在幾何的觀點,最後由愛因斯坦集其大成,提出相對論理論,使人類更進一步瞭解自己所生存的時空.”以上这段文字概括了1、2的内容。那么,今天的几何学的研究是些什么呢?
1欧几里得的乐园
古希腊,一个民主的国度。在那片土地上,孕育出了理性和智慧的果实。柏拉图把逻辑学的思想方法引入了几何,使原始的几何知识受逻辑学的指导逐步趋向于系统和严密的方向发展。柏拉图在雅典给他的学生讲授几何学,已经运用逻辑推理的方法对几何中的一些命题作了论证。亚里士多德被公认是逻辑学的创始人,他所提出的“三段论”的演绎推理的方法,对于几何学的发展,影响更是巨大的。到今天,在初等几何学中,仍是运用三段论的形式来进行推理。
数学家寇赫从一个正方形的“岛”出发,始终保持面积不变,把它的“海岸线”变成无限曲线,其长度也不断增加,并趋向于无穷大。以后可以看到,分维才是“寇赫岛”海岸线的确切特征量,即海岸线的分维均介于1到2之间。
这些自然现象,特别是物理现象和分形有着密切的关系,银河系中的若断若续的星体分布,就具有分维的吸引子。多孔介质中的流体运动和它产生的渗流模型,都是分形的研究对象。这些促使数学家进一步的研究,从而产生了分形几何学。
由于证明第五公设的问题始终得不到解决,人们逐渐怀疑证明的路子走的对不对?第五公设到底能不能证明?
到了十九世纪二十年代,俄国喀山大学教授罗巴切夫斯基在证明第五公设的过程中,他走了另一条路子。他提出了一个和欧式平行公理相矛盾的命题,用它来代替第五公设,然后与欧式几何的前四个公设结合成一个公理系统,展开一系列的推理。他认为如果这个系统为基础的推理中出现矛盾,就等于证明了第五公设。我们知道,这其实就是数学中的反证法。
在二十世纪七十年代,法国数学家曼德尔勃罗特在他的著作中探讨了英国的海岸线有多长?这个问题这依赖于测量时所使用的尺度。
如果用公里作测量单位,从几米到几十米的一些曲折会被忽略;改用米来做单位,测得的总长度会增加,但是一些厘米量级以下的就不能反映出来。由于涨潮落潮使海岸线的水陆分界线具有各种层次的不规则性。海岸线在大小两个方向都有自然的限制,取不列颠岛外缘上几个突出的点,用直线把它们连起来,得到海岸线长度的一种下界。使用比这更长的尺度是没有意义的。还有海沙石的最小尺度是原子和分子,使用更小的尺度也是没有意义的。在这两个自然限度之间,存在着可以变化许多个数量级的“无标度”区,长度不是海岸线的定量特征,就要用分维。
这篇论文到这已经算完了,但还是不足以囊括几何史这个庞大的对象,只能算是从高中生的角度出发的导引性文章。
教师评语:
关于几何发展史的认识,相当部分同学都只是循教材编辑设置有些了解。现通过网络和阅读文献等手段,主动参与和博览,对几何的总体结构有了较清晰的体会,培养了学生自主探究的科学态度和钻研精神。有助于文理科方法的互补整合提高,也为同学学好文化科,用发展的观点看知识的发展更新,符合科学发展观。这是一篇较好的研究报告。
但是,尽管那时候已经有了十分丰富的几何知识,这些知识仍然是零散的、孤立的、不系统的。真正把几何总结成一门具有比较严密理论的学科的,是希腊杰出的数学家欧几里得。
欧几里得在公元前300年左右,曾经到亚历山大城教学,是一位受人尊敬的、温良敦厚的教育家。他酷爱数学,深知柏拉图的一些几何原理。他非常详尽的搜集了当时所能知道的一切几何事实,按照柏拉图和亚里士多德提出的关于逻辑推理的方法,整理成一门有着严密系统的理论,写成了数学史上早期的巨著——《几何原本》。它是用公理法建立起演绎的数学体系的最早典范。由极少数的几条公理出发,演绎出整个的几何体系,成为万世师表。
但是,在他极为细致深入的推理过程中,得出了一个又一个在直觉上匪夷所思,但在逻辑上毫无矛盾的命题。最后,罗巴切夫斯基得出两个重要的结论:
第一,第五公设不能被证明。
第二,在新的公理体系中展开的一连串推理,得到了一系列在逻辑上无矛盾的新的定理,并形成了新的理论。这个理论像欧式几何一样是完善的、严密的几何学。
1、问题提出:
作为一名中学生,已经学了好几年几何了。可是,我们对几何的历史地位的认识有很大的不足。我们不知道它对文明的意义是什么,不知道为什么要学习这门课(别说是为了高考!)那么,就让我们来研究一下它的历史吧!然而对象确实有些庞大,`因此我们的研究论文只是指引性的。
2、研究目的:(三个有助于)
(1)有助于对几何的总体的结构认识
还有拓扑学、微分几何等,这些几何分支的纯学术研究和应用,构成了当代几何的内容。
有关时空观念,人们对其又有了新的理解。
4.接下来,我们要进行讨论,主要包括2点:
几何学的发展模式
空间、时间观念的更新
从以上的文段中,我们可以知道,整个几何学的历史,大致分为4个时期:
1、欧几里得几何
2、解析几何、画法几何、射影几何
20世纪初,爱因思坦在解决狭义相对论与牛顿万有引力定律的矛盾时,提出了一种新思想。这就是认为,我们生活在其中的现实空间,由于物质具有质量而被弯曲。非欧几何中的黎曼几何正是描述它的良好工具。
后来,这种思想发展为一个完备的理论——广义相对论。由此又可以引出“宇宙大爆炸”模型,彻底改变了我们对时空、宇宙的观念。
2.美梦该醒了
费马、笛卡儿创立了解析几何,以及画法几何的创始人蒙日的学生彭赛列创立射影几何。关于平直空间的几何理论日臻完善。无数人仰望着欧几里得的乐园。
但是,风雨前总是平静的。
门,就是第五公设。
一些数学家提出,第五公设能不能不作为公设,而作为定理?能不能依靠前四个公设来证明第五公设?这就是几何发展史上最著名的,争论了长达两千多年的关于“平行线理论”的讨论。
(2)有助于认清几何学在人类文明中的地位
(3)有助于文、理科方法的综合(历史和数学)
3、研究方法:
(1)搜集资料,阅读文献,记下心得;
(2)各组员按上述要求研究,最后由组长汇总;
(3)认真分析总结,写成论文.
4、正文
几何史研究
杨锦波
以下的这篇文章,将简要地介绍几何的成长过程,最后作出总结,其中包括研究结论和问题。在阅读前,最好先看附录。
客观自然界中许多事物,具有自相似的“层次”结构,在理想情况下,甚至具有无穷层次。适当的放大或缩小几何尺寸,整个结构并不改变。不少复杂的物理现象,背后就是反映着这类层次结构的分形几何学。
客观事物有它自己的特征长度,要用恰当的尺度去测量。用尺来测量万里长城,嫌太短;用尺来测量大肠杆菌,又嫌太长。从而产生了特征长度。还有的事物没有特征尺度,就必须同时考虑从小到大的许许多多尺度(或者叫标度),这叫做“无标度性”的问题。
其实,推动几何学发展的数学家,学者,还有许多。如阿波罗尼阿斯、托勒密、帕布斯等等。
后来,由于罗马人、基督教的兴起、回教徒征服,古希腊的几何学衰退了。直到文艺复兴时期才得以再次发扬光大。
到这里为止,欧几里得几何学建立了。她是直观清晰和严谨逻辑的完美结合,代表着人类对空间的一个时代的认识。世界是有序的,平直的,而这种时空观在上世纪才被打破。
那个时代被誉为“数学王子”的高斯也发现第五公设不能证明,并且研究了非欧几何。但是高斯害怕这种理论会遭到当时教会力量的打击和迫害,不敢公开发表自己的研究成果,只是在书信中向自己的朋友表示了自己的看法,也不敢站出来公开支持罗巴切夫斯基、鲍耶他们的新理论。
虽然如此,但人们认为,新几何与我们的现实世界里的空间毫不相干,直到那个时候……
电子计算机图形显示协助了人们推开分形几何的大门。这座具有无穷层次结构的宏伟建筑,每一个角落里都存在无限嵌套的迷宫和回廊,促使数学家和科学家深入研究。
法国数学家曼德尔勃罗特这位计算机和数学兼通的人物,对分形几何产生了重大的推动作用。他在1975、1977和1982年先后用法文和英文出版了三本书,特别是《分形——形、机遇和维数》以及《自然界中的分形几何学》,开创了新的数学分支——分形几何学。
如物理学中的湍流,湍流是自然界中普遍现象,小至静室中缭绕的轻烟,巨至木星大气中的涡流,都是十分紊乱的流体运动。流体宏观运动的能量,经过大、中、小、微等许许多度尺度上的漩涡,最后转化成分子尺度上的热运动,同时涉及大量不同尺度上的运动状态,就要借助“无标度性”解决问题,湍流中高漩涡区域,就需要用分形几何学。
(2、3间相对独立的有微分几何、拓扑学,后来成为重要一支)
3、非欧几何(罗巴切夫斯基几何、黎曼几何)、分形几何
4、现代的几何研究
几何学在“公理化”时期后进入4。
在那段时期,数学上有3个派别:逻辑主义、直觉主义、形式主义。我们经研究后发现,数学这门逻辑性极强的学科,竟是如此地背离逻辑地发展。粗略来说,在不同阶段,三者发挥的作用各不相同。
Байду номын сангаас几何发展史
组长:杨锦波高一13班
组员:李晓、梁荣华、徐丽敏、林伟文、梁博文、郭碧云
指导老师:李朗庭
英语摘要
As a middle school student, has learned a good few years of the geometry. However, we geometric understanding of the historical status Have great deficiencies. We do not know its civilization What is the significance, I do not know why we should learn from this class (other That is to the college entrance examination! ), Let us look into its history! However, there are really some massive object, ` Therefore, we only research papers of the guidelines