土的压缩性及固结理论
土的压缩性
压缩系数
土体在侧限条件下孔隙比减少量与竖向压应力增量的比
值e
e0
利用单位压力增量所
e1 △e M1
e2
△p
M2
p1e-p曲线p2
引起得孔隙比改变表 征土的压缩性高低
a de dp
p
在压缩曲线中,实 际采用割线斜率表 示土的压缩性
ae=e1 e2 p p2 p113
《规范》用p1=100kPa、 p2=200kPa
3
饱和土
土的固结(压密)
土的压缩量随时间增长的过程 在 外力作用下,孔隙水排出,土体密实,土 的抗剪强度提高
粘性土固结问题
实质是研究孔隙水压力消散 有效应力增长的全过程理论问题4
室内压缩(固结)试验 土的压缩性指标由
现场测试
5
§ 5.2固结试验及压缩性指标
研究土的压缩性大小及其特征的室内试验方法,亦称 固结试验
体积压缩系数m v 土在侧限条件下体积应变与竖向附加压应力增量的比值
m v=
e1-e2
H
1+e1 p
=
H1 P
m v=
1
a
=
ES
1+e1
m v越大土的压缩性越高
20
5.2.4回弹曲线和再压缩曲线
e
e
e0 a
残余 变形 ep
压缩曲线
c
弹性 变形
ee
再压缩曲线 b
回弹曲线
d
H0 H0/(1+e0)
8
Vv=e0 Vs=1
H1
s
p Vv=e Vs=1
H0 - H1=s
H1/(1+e)
H0 H0/(1+e0)
第4章土的压缩性及固结理论
侧限压缩试验(又称固结试验):在压缩过程 侧限压缩试验(又称固结试验):在压缩过程 ): 中只发生竖向变形,不发生侧向变形。 中只发生竖向变形,不发生侧向变形。
(1)试验装置: 试验装置:
4
(2)试验方法: 试验方法:
常规压缩试验(慢速压缩试验法),分 级 常规压缩试验(慢速压缩试验法),分5级 ), 加荷: 、 加荷:50、100、200、300、400 KPa 每级荷 、 、 、 载恒压24h 或变形速率 或变形速率<0.005mm/h,测定每级 载恒压 , 荷载稳定时的总压缩量 ⊿h ,计算出相应的稳定 孔隙比。 孔隙比。
30
∂u ∂u cv 2 = − ∂z ∂t
2
奥地利学者太沙基(K.Terzaghi,1925)公式 可用于求解一维侧限应力状态下,饱和粘性土地基 受外荷载作用下发生渗流固结过程中任意时刻的土 骨架及孔隙水的应力分布情况。
31
该方程属抛物线型偏微分方程,用分离变量法解此方 程,得通解为:
初始条件、边界条件如下:
24
(5)孔隙比的变化与有效应力的变化成正比即压缩 系数a保持不变。 (6)外荷载一次瞬时施加,且在固结过程中保持不 变。 (7)土体变形完全是孔隙水压力消散引起的。
25
2. 一维固结微分方程的建立 外荷一次施加后单位时间内流入和流出微单元体的 水量:
26
∂h q′ = kiA = k − dxdy ∂z 2 ∂h ∂ h q′′ = k − − 2 dxdy ∂z ∂z
18
4.2.3 弹性模量及其试验测定 弹性模量E: 弹性模量 :正应力与弹性(即可恢复)正应变的比值。 测定方法: 测定方法:采用三轴仪进行三轴重复压缩试验,以应力一
土力学土的压缩性与固结理论
z
1 E0
[ z
(
y
x)]
Es
z z
z
z
Es
1 E0
[
z
2k0
z
]
z
Es
β
E0
(1 2k0 )Es
(1
2
1 )Es
(1
2
2
1
)Es
E0 Es
三、土的弹性模量
土体地无侧限条件下瞬时压缩的应力应变模量,称为弹性 模量。
一般采用室内三轴压缩试验或单轴压缩无侧限抗压强度试验得到 的应力—应变关系曲线所确定的初始切线模量或相当于现场荷载 条件下的再加荷模量。
力的关系曲线,称为回弹 曲线。
回弹曲线bc并不沿压缩曲线回升,而要平缓得多,这 说明土受压缩发生变形,卸压回弹,但变形不能全部恢复,
其中可恢复的部分称为弹性变形,不能恢复的称为残余变 形。
若再重新逐级加压,则可测得再压缩曲线。土在重复
荷载作用下,在加压与卸压的每一级重复循环中都将走新
的路线,形成新的滞后环。
❖ (2) 压缩指数Cc 土体在侧限条件下孔隙比减小量与竖向有效压应力常用对数值增 量的比值,即e-lgp曲线中某一压力段的斜率。
Cc
lg
e1 p2
e2 lg
p1
Cc<0.2时, 低压缩土; 0.2≤Cc<0.4MPa-1时,中压缩性; Cc≥0.4时, 高压缩性土
❖ (3)压缩模量
是土体在完全侧限条件下,竖向附加应力与竖向应变的比值, 或称侧限模量,用Es表示。
E0
(1
2)
p1b s1
沉降影响系数 地基土的泊松比
b 承压板的边长或直径 s1 与所取定的比例界限p1相对应的沉降
第5章 土的压缩性和固结理论
5.2.1 土的压缩试验和压缩曲线
室内压缩试验是在图5-1所示的常规单向压缩仪上进行的。
图5-1 常规单向压缩仪及压缩试验示意图
5.2.1 土的压缩试验和压缩曲线
试验时,用金属环刀取高为20mm、直径为50mm(或30mm)的土样, 并置于压缩仪的刚性护环内。土样的上下面均放有透水石。在上透 水石顶面装有金属圆形加压板,供施荷。压力按规定逐级施加,后 一级压力通常为前一级压力的两倍。常用压力为:50,100,200, 400和800kPa。施加下一级压力,需待土样在本级压力下压缩基本 稳定(约为24小时),并测得其稳定压缩变形量后才能进行。(先 进的实验设备可实现连续加荷。)
上述观点还可从图5-6所示的回弹和再压缩曲线得到印证。由于土样在 pb作用下已压缩稳定,故在b点卸压后再压缩的过程中当土样上的压 力小于pb,其压缩量就较小,因而再压缩曲线段cd较压缩曲线平缓, 只有当压力超过pb,土样的压缩量才较大,曲线才变陡。
因此,土的压缩性与其沉积和受荷历史(即应力历史)有密切关系。
压缩曲线是压缩试验的主要成果,表示的是各级压力作用下 土样压缩稳定时的孔隙比与相应压力的关系。
绘制压缩曲线,须先求得对应于各级压力的孔隙比。
孔隙比的计算
由实测稳定压缩量计算孔隙比的方法如下: 设土样在前级压力p1作用下压缩稳定后的高度为H1,孔隙比为e1;
在本级压力p2作用下的稳定压缩量为ΔH(指由本级压力增量Δp= p2- p1引起的压缩量),高度为H2=H1 -ΔH ,孔隙比为e2 。
然而,与连续介质弹性材料不同,土的变形模量与试验条件, 尤其是排水条件密切相关。对于不同的排水条件,E0具有不同的值。 这与弹性力学不同,故取名为变形模量。
从压缩模量Es计算E0
土力学 第5章 土的压缩与固结
地下水 位
持力层
下卧层
工程事故——建筑物倾斜、严重下沉、墙体开裂和地基断裂
地基变形值——沉降量、沉降差、倾斜、局部倾斜 地基变形要求:地基变形值<规范允许值
土具有变形特性
荷载作用
荷载大小
地基发生沉降 一致沉降 (沉降量) 差异沉降 (沉降差)
土的压缩特性 地基厚度
建筑物上部结构产生附加应力
影响建筑物的安全和正常使用
a △ p s H 1 e1 △p s H Es
△e e1 e2 压缩系数 a △p △p
压缩模量 E S
1 e1 a
此三个公式都可以计算压缩量、沉降量
a △ p s H 1 e1
△p s H Es
F
填土
一层土的沉降量是这样 计算,
地下水位
黏土
多层土的总沉降量如何 计算呢?
工程实例 墨西哥某宫殿 存在问题: 沉降2.2米 ,且左右两 部分存在明 显的沉降差 。 地基:20多米厚的黏土
由于沉降相互影响,两栋相邻的建筑物上部接触
基坑开挖,引起地面、阳台裂缝
修建新建筑物:引起原有建筑物开裂
高层建筑物由于不均匀沉降而被爆破拆除
47m
39
150 194 199 175 87
0.9 0.8 0.7 0.6 0
△e
△p
100
200 300 400
p (kPa)
为了便于应用和比较,通常采用压力间隔由 p1 100kPa 增加 到 p 2 200kPa 时所得的压缩系数 a12 来评价土的压缩性。
(课本第77页)
压缩模量——是土在无侧向变形条件下,竖向应力 与应变的比值。 土的压缩模量可根据下式计算:
5土的压缩性和固结理论
p1=100kPa 的孔隙比。
关系式(5-5)的求证
由式(5-1)可得:压力增量 Δp=p2-p1作用下的竖向应变
增量 为 z:
z
He1 e2 H1 1e1
故由Es的定义即得:
E s p z(1e e 1 1 ) p (e 22 p 1)1 ae1
e1 、 e2——相应于p1、 p2作用下压缩稳定后的孔隙比。
用压缩系数评价土的压缩性
通常用压力间隔由p1=100kPa增加至 p2=200kPa所得的压缩系数a1-2来评 价土的压缩性:a1-2≥0.5属高压缩性;a1-2=0.1~0.5属中压缩性;a1-2 ≤0.1属低压缩性(表5-1)。
表5-1 土的压缩性评定标准
其中
1122 (1(1)1()2)1
00.5 01,E0Es
5.2.5 土的回弹曲线与再压缩曲线
1. 土的回弹曲线和再压缩曲线(图5-6) 也通过压缩试验得到。
图5-6 土的回弹曲线和再压缩曲线
5.2.5 土的回弹曲线与再压缩曲线
2. 描述:在压缩试验过程中加压至某值 pb (图5-6(a)中b点)后逐级卸压, 土样即回弹。绘制相应的孔隙比与压力的关系曲线,称为回弹曲线, 如图中bc段所示。由于土体不是弹性体,故卸压后土样在压力 pb 作 用下发生的总压缩变形(即与 e0-eb 相当的压缩量)并不能完全恢复, 而只能恢复其一部分。可恢复的这部分变形(即与 ec-eb 相当的压缩 量)是弹性变形,不可恢复的变形(即与 e0-ec 相当的压缩量)则称 为残余变形。如卸压后又重新逐级加压至 pf ,则相应的孔隙比与压 力的关系曲线段称为再压缩曲线,如图中 cdf 所示。试验研究表明, 再压缩曲线段 df 与原压缩曲线 ab 之间的连接一般是光滑的,即 df 段与土样未经卸压和再压而直接逐级加压至 pf 的压缩曲线 abf 是基 本重合的。同样,也可在半对数坐标上绘制土的回弹曲线和再压缩 曲线,如图5-6(b)所示。
第四章-土的压缩与固结资料
土的压缩变形常用孔隙比e的变化来表示。 根据固结试验的结果可建立压力p与相应的稳 定孔隙比的关系曲线,称为土的压缩曲线。
压缩曲线可以按两种 方式绘制,一种是按 普通直角坐标绘制的 e~p曲线;另一种是 用半对数直角坐标绘 制的e~lgp曲线。
1、e~p曲线
2、e~lgp曲线
(二)压缩系数
式中:av称为压缩 系数,即割线 M1M2 的 坡 度 , 以 kPa-1 或 MPa-1 计 。 e1 , e2 为 p1 , p2 相 对应的孔隙比。
对于天然土,当OCR>1时,该土是超固结土 ;当OCR=1时,则为正常固结土。如果土在 自重应力po作用下尚未完全固结,则其现有 有效应力poˊ小于现有固结应力po,即poˊ< po,这种土称为欠固结土。对欠固结土,其 现有有效应力即是历史上曾经受到过的最大
有效应力,因此,其OCR=1,故欠固结土实 际上是属于正常固结土一类。
V1
HA H
V1 V2 (1 e1)Vs (1 e2 )Vs e1 e2
V1
(1 e1)Vs
1 e1
无侧向变形条件下的土层压缩量计算 公式为
根据av,mv和Es的定义,上式又 可表示为
所以:
无侧向变形条件下的土层压缩量计算公式为
根据av,mv和Es的定义,上式又可表示为
第4节 地基沉降计算的e~p曲线法
思考:次固结沉降由什么荷载引起?
二、土的压缩性指标
(一)室内固结试验与压缩曲线 为了研究土的压缩特性,通常可在试验室内进行 固结试验,从而测定土的压缩性指标。室内固结 试验的主要装置为固结仪,如图所示。 用这种仪器进行试验时,由于 刚性护环所限,试样只能在竖 向产生压缩,而不能产生侧向 变形,故称为单向固结试验或 侧限固结试验。
土的压缩性及固结理论
学习指导
学习目标
学习土的压缩性指标确定方法,掌握有效应力 原理、一维固结机理的分析计算方法。
学习基本要求
1.掌握土的压缩性与压缩性指标确定方法 2.掌握有效应力原理 3.掌握太沙基一维固结理论
4.1 概述 4.2 固结试验及压缩性指标 4.3 饱和土中的有效应力 4.4 土的单向固结理论
t
透水石 试样
一、e - p曲线 e
1.0 0.9 0.8 0.7 0.6 0 100 200 300 400
P
p1
p2
p3
p(kPa )
e0
e s
e1 H1 e2 H2 H3 e3
t
ei = e0 − (1 + e0 )H i / H 0
t
孔隙比e与压缩量∆H 的关系
e0 1
孔隙
ΔH
e
H H0
无粘性土 粘性土
透水性好,水易于排出
压缩稳定很快完成
透水性差,水不易排出 压缩稳定需要很长一段时间
3、有效应力:土骨架承担由颗粒之间的接触传递 应力。粘性土固结过程,实质是土中有效增长的过 程。 4、压缩性指标 室内试验 侧限压缩、三轴压缩等 (压缩系数,压缩模量) 室外试验 荷载试验、旁压试验等 (变形模量)
太沙基 – 土力学的奠基人
土体是由固体颗粒骨架、孔隙 流体(水和气)三相构成的碎 散材料,受外力作用后,总应 力由土骨架和孔隙流体共同承 受。 • 对所受总应力,骨架和孔隙 流体如何分担? • 它们如何传递和相互转化? • 它们对土的变形和强度有何 影响?
外荷载 → 总应力 σ
Terzaghi的有效应力原理和固结理论
a c b d
e
土力学_第5章(固结与压缩)
P0 P H
③计算地基中自重应力σsz分布
不排水
孔隙水压力
孔隙水压力
(五)三轴压缩试验成果—应力--应变关系
1 3
(1 3 ) y
1 3
f
E
1
b c
②-超固结土或密实砂 b ③-正常固结土或松砂
①-理想弹塑性
a O
b点为峰值强度
土 的 本 构 模 型
线弹性-理想塑性 1 3 1 2
1
应变硬化段
应变软化段
C
s
p
lg '
(五)三轴压缩试验
三轴试验测定: 轴向应变 轴向应力 体应变或孔隙水压力
轴向加压杆 顶帽
压力室
试 样
有机玻璃罩 橡皮膜 加压进水
类型 固结排水 施加σ3时 固结
透水石 排水管
量测体应变或 孔隙水压力
阀门
施加σ1-σ3时 排水
量 测 体应变
固结不排水
不固结不排水
固结
不固结
不排水
将地基分成若干层,认为整个地基 的最终沉降量为各层沉降量之和。
n n
o
s si i H i
i 1 i 1
ΔS1 ΔS2 ΔS3 ΔS4 Δ Si ΔSn
i第i层土的
压缩应变
z v
e e1 e2 1 e1 1 e1
z
取基底中心点下的附加应力进行计算,以基底中点的沉降代
400
e-p曲线
p(kPa)
(σ')
Δp
(σ')
p(kPa)
Δ p相等而 ΔeA> ΔeB,所以曲线A的压缩性 >曲线B的压缩性
土力学—选择题
第一章:绪论•1、土力学的英语是:(A)Soil Mechanics (B)Solid Mechanics (C)Soil Foundation•2、岩土工程的英语是:(A)Rock and Soil Mechanics(B)Geotechnical Engineering(C)Rock and Soil Engineering•3、下列哪位被誉为土力学之父?(A)库仑(Coulomb) (B)朗肯(Rankine) (C)太沙基(Terzaghi)•4、土力学学科正式形成是哪一年?(A)1890 (B)1925 (C)1960•5、土力学主要研究地基那两方面的问题?(A)变形与渗流(B)变形和稳定(C)渗流与稳定•6、浙江大学曾国熙教授倡导的岩土工程学科治学方法是?(A)理论研究与工程实践相结合(B)试验研究与理论研究相结合(C)基本理论、试验研究和工程实践相结合第二章:土的物理性质与工程分类•1、土颗粒的大小及其级配,通常是用颗粒累积级配曲线来表示的。
级配曲线越平缓表示:(A)土粒大小较不均匀,级配良好(B)土粒大小均匀,级配良好(C)土粒大小不均匀,级配不良•2、土的不均匀系数Cu越大,表示土的级配:(A)土粒大小均匀,级配良好(B)土粒大小不均匀,级配良好(C)土粒大小不均匀,级配不良•3、土的三相指标包括:土粒比重、含水量、重度、孔隙比、孔隙率和饱和度,其中哪些为直接试验指标?(A)孔隙比、含水量、土粒比重(B)土粒比重、含水量、重度(C)含水量、重度、孔隙比•4、测定土的液限的标准是把具有30度锥角、质量76克的平衡锥自由沉入土体,沉入多少深度时的含水量为液限?(A)18mm (B)2mm (C)10mm•5、压实能量越小,则(A)最优含水量越大(B)土越容易压实(C)土的最大干密度越大•6、土的液限和塑限的差值(省去%符号)称为(A)液性系数(B)塑性系数(C)液性指数(D)塑性指数•7、土的含水量一般用什么测定:(A)比重瓶法(B)烘干法(C)环刀法(D)搓条法•8、某土的天然含水量为42%,液限35%,塑性指数17,孔隙比1.58,则该土应定名为:(A)淤泥(B)粉质粘土(C)淤泥质粘土•9、土的密度一般用什么方法测定:(A)比重瓶法(B)烘干法(C)环刀法(D)搓条法•10、关于土中的结合水,下列说法正确的是:(A)强结合水能传递静水压力(B)弱结合水能传递静水压力(C)强结合水和弱结合水能传递静水压力(D)强结合水和弱结合水都不能传递静水压力•11、一般来说,粗大土粒往往是岩石经过什么作用形成?(A)物理和化学风化作用(B)物理风化作用(C)化学风化作用•12、粘性土的塑限一般用什么方法测定?(A)比重瓶法(B)烘干法(C)环刀法(D)搓条法•13、土的液性指数越大,则:(A)土的渗透性越大(B)土的塑性指数越小(C)土质越软•14、土的塑性指数越小,则:(A)土的粘性越差(B)土的渗透性越好(C)土的变形越大•15、土粒比重一般用什么方法测定:(A)比重瓶法(B)烘干法(C)环刀法(D)搓条法第二章:土的物理性质与工程分类•CDBBD CCCAC DB•1、土颗粒的大小及其级配通常是用颗粒累计级配曲线来表示的,级配曲线越平缓表示:(A)土粒大小较均匀,级配良好(B)土粒大小不均匀,级配不良(C)土粒大小不均匀,级配良好(D)粒大小较均匀,级配不良•2、土的三相比例指标中,可以直接通过试验测定的有:(A)含水量、孔隙比、饱和度(B)重度、含水量、孔隙比(C)土粒比重、孔隙率、重度(D)土粒比重、含水量、重度•3、在土的颗粒大小分析试验中,对于粒径大于0.075mm和粒径小于0.075mm的土,采用的颗粒级配试验方法分别为:(A)均为筛分法(B)前者为筛分法,后者为比重计法(C)均为比重计法(D)前者为比重计法,后者为筛分法•4、砂土应为粒径大于()的颗粒含量不超过总重的50%,且粒径大于()的颗粒含量超过全重50%的土。
土的压缩性及固结理论
⼟的压缩性及固结理论第4章⼟的压缩性及固结理论基本内容这是本课程的重点。
在学习⼟的压缩性指标确定⽅法的基础上,掌握地基最终沉降量计算原理和地基固结问题的分析计算⽅法。
学习要求:1. 掌握⼟的压缩性与压缩性指标确定⽅法;2.掌握有效应⼒原理;3.掌握太沙基⼀维固结理论;4.1 概述(outline)⼟在⾃重应⼒或附加应⼒作⽤下,地基⼟要产⽣附加变形,包括体积变形和形状变形。
对于⼟来说,体积变形通常表现为体积缩⼩。
我们把这种在外⼒作⽤下⼟体积缩⼩得特性称为⼟的压缩性(compressibility)。
It is well recognized that the deformations will be induced in ground soil under self-weight or net contact pressure. The load-induced soil deformations can be divided into volumetric deformation and deviatoric deformation (namely, angular distortion or deformation in shape). The volumetric deformation is mainly caused by the normal stress, which compact the soil, resulting in soil contraction instead of soil failure. The deviatoric deformation is caused by the shear stress. When the shear stress is large enough, shear failure of the soil will be induced and soil deformation will develop continuously. Usually shear failure over a large area is not allowed to happen in the ground.⼟的压缩性主要有两个特点:(1)⼟的压缩性主要是由于孔隙体积减少⽽引起的;(2)由于孔隙⽔的排出⽽引起的压缩对于饱和粘⼟来说需要时间,将⼟的压缩随时间增长的过程称为⼟的固结。
土的压缩性和固结理论.
五 土的压缩性和固结理论一、填空题1.土体的压缩性被认为是由于土体中______________减小的结果。
2.土的固结系数表达式为_________,其单位是____________;时间因数的表达式为___________。
3.根据饱和土的一维固结理论,对于一定厚度的饱和软粘土层,当t=0和0≤z ≤H 时,孔隙水压力u=______________;当t=∞和0≤z ≤H 时,孔隙水压力u=__________________。
4.在土的压缩性指标中,s E 和a 的关系为____________________;S E 和0E 的关系为_______。
对后者来说,其关系只在理论上成立,对_________土相差很多倍,对__________土则比较接近。
5.土的压缩性是指___________。
6.压缩曲线的坡度越陡,说明随着压力的增加,土孔隙比的减小愈___________,因而土的压缩性愈_________________。
反之,压缩曲线的坡度越缓,说明随着压力的增加,土的孔隙比的减小愈___________,因而土的压缩性愈___________。
《规范》采用21-a 来评价土的压缩性高低,当21-a _____________时,属低压缩性土;当21-a _____________时,属中压缩性土;21-a _____________时,属高压缩性土。
7.土的压缩指数的定义表达式为___________。
8. 超固结比OCR 指的是______和______之比;根据OCR 的大小可把粘性土分为______、______、______三类;1OCR <的粘性土属______土。
9.压缩系数______,压缩模量______,则土的压缩性越高。
这两个指标通过______试验,绘制______曲线得到。
答案:1.孔隙体积 2.wa e k γ)1(C 1V += 年2m 2T h t c vv = 3.z σ 0 4.a e E s 11+= s E E β=0 硬土 软土 5土在压力作用下体积减小的特征 6.显著 高 小 低 21-a <0.11M -pa 0.11M -pa ≤21-a <0.51M -pa 21-a ≥0.51M -pa 7.12211221C lg lg lg p p e e p p e e C -=--= 8.先期固结压力、现在土的自重应力、正常固结土、超固结土、欠固结土、欠固结土 9.越大、减小、压缩、e p -二、选择题1.下列说法中,错误的是( )。
第四章土的压缩与固结
3.压缩模量
σ Es ε
S
h2
s e 2 e1 (1 e1 ) h1
Vv 2
hv 2
Δp s/h1
e1 e 2 av
Vs
hs
av
e1 e 2 p 2 p1
4.体积压缩系数mv
av mv 1 e1
e1 e 2 1 e2
1 e1 av
卸荷和再加荷的固结试验。
Vs
S
hv1
Vv 2
hv 2
hs
h2
Vs
hs
Vv1 Ahv1 h v1 e1 Vs Ahs hs
Vv2 Ahv2 h v1 s e2 Vs Ahs hs
h v1 hse1
h1 h v1 hs
h v1 hse2 s
hs
h1 1 e1
h1 s hs 1 e2
地面
4.计算基础中心点以下 地基中竖向附加应力分布。
P p BL
P p0 p σs γd BL σz从基底算起; σz是由基底附加应力 p0引起的
自重应力
p d si p0 zi
d
基底
Hi
附加应力
5.确定计算深度
① 一般土层:σz=0.2 σs; ② 软粘土层:σz=0.1 σs;
沉降计算深度:
S 0.025S
/
S / 由计算深度向上取厚度为 z 的土层沉降计算值;
( z 可查表4-6) S—计算深度范围内各个分层土的沉降计算值的总和。 具体应用时采用试算法,先假定一个沉降计算深度zn
zn = b(2.5 - 0.4lnb)
4-5 地基沉降计算的e~lgp曲线法
土力学 第四章 土的压缩与固结
4.2土的压缩特性 (土的压缩试验与压缩性指标)
一.室内压缩试验(1)
一、室内压缩试验 土的室内压缩试验亦
称固结试验,是研究土压 缩性的最基本的方法。室 内压缩试验采用的试验装 置为压缩仪。
整理课件
试验一时.将室切内有土压样缩的环试刀验置于(刚2性护)环中,由于金属
环刀及刚性护环的限制,使得土样在竖向压力作用下只能 发生竖向变形,而无侧向变形。在土样上下放置的透水石 是土样受压后排出孔隙水的两个界面。压缩过程中竖向压 力通过刚性板施加给土样,土样产生的压缩量可通过百分 表量测。常规压缩试验通过逐级加荷进行试验,常用的分 级加荷量p为:50、100、200、300、400kPa。
2.地基土按固结分类
前期固结应力pc:土在历史上曾受到过的最大的、垂直的
有效应力 四. 土的应力历史(4)
超固结比OCR :前期固结应力与现有有效应力之比,即
OCR= pc/p1
正常固结土: OCR=1 pc=p1
超固结土: OCR>1,OCR愈大,土受到的超固结作用愈强,
在其他条件相同的情况下,其压缩性愈低。 pc> p1
作用下再压缩稳定后的孔隙比,相应地可绘制出再压
缩曲线,如图4-6(a)中cdf曲线所示。可以发现其中df
段像是ab段的延续,犹如其间没有经过卸载和再压的
过程一样。
整理课件
二. 压缩性指标(10)
(a)e-p曲线;
(b)e-lgp曲线
图 4-3 土的回弹—在压缩曲线 整理课件
三、 现场载荷试验及变形模量(1)
2.由于孔隙水的排出而引起的压缩对于饱和粘性土来说是
需要时间的,土的压缩随时间增长的过程称为土的固结。
这是由于粘性土的透水性很差,土中水沿着孔隙排出速度
高等土力学土的压缩与固结
p av 0.434
av
Cc p
lg
p2 p1
av
Cc p
0.434
2)变形模量和压缩模量的关系:
由虎克定律:
x
1 E0
x
y
z
y
1 E0
y
z
x
压缩试验时: x y 0
则可得:
x
y
1
z
K0 z
又由虎克定律:
z
1 E0
z
x
y
可得:
z
z
E0
22
1
1
对于压缩试验:
z
z
Es
所以:
z
Es
z
E0
1
2 2 1
由此可得:
E0
1
1
1
2
Es
1
2 2 1
Es
Es
5.2.3 沉降产生原因和类型
1. 引起地基沉降的可能原因
2. 沉降的类型
• 瞬时沉降Si • 固结沉降Sc • 次压缩(固结)沉降Ss
5.2.4 瞬时沉降和次压缩沉降
1、瞬时沉降
h k u vk
z w z
dQ
k
w
2u z 2
dzdxdydt
➢ dt时间内微元体的体积变化为:
dV Vv dt eVs dt 1 e dzdxdydt
t
t
1 e1 t
又由: de a:
d
则可得: e a
t t
根据有效应力原理:
e a a u au
t t
t
t
所以有:
2)固结方程
(1) 连续性条件:dt时间内微元体的排水量的变化等于微元体在dt时间内的 竖向压缩量。
土的压缩性及固结理论
土的压缩性5.1概述土体压缩性——土在压力(附加应力或自重应力)作用下体积缩小的特性。
土体压缩包括:(1)土粒本身和孔隙水的压缩; (2)孔隙气体的压缩;(3)孔隙水、气排出,使得孔隙体积减小。
上面(1)的压缩不到压缩量的1/400,忽略;(2)的压缩量也很小,忽略。
地基土的压缩实质土的固结——土体在压力作用下其压缩量随时间增长的过程。
土体的压缩性指标:压缩系数、压缩模量。
压缩性指标测定方法:(1)室内试验测定,如侧限条件的固结试验;(2)原位测试测定,如现场[静]载荷试验。
5.2固结试验及压缩性指标 一、固结试验及压缩性指标 1.压缩试验和压缩曲线减少。
会被压缩,也会被排出部分);)不变;但会被排出(孔隙水体积(不变;土粒体积(v as V V V V ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧ω)a s E(1)侧限压缩试验(固结试验)侧限——限制土样侧向变形,土样只能发生竖向压缩变形。
通过金属环刀来实现。
试验目的——研究测定试样在侧限与轴向排水条件下的变形和压力,或孔隙比和压力的关系,变形和时间的关系,以便计算土的各项压缩指标。
试验设备——固结仪(压缩仪)。
试验方法:逐级加压固结,以便测定各级压力作用下土样压缩稳定后的孔隙比。
(2)e -p 曲线要绘制e -p 曲线,就必须求出各级压力作用下的孔隙比。
如何求?看示意图:设试样截面积为A ,如图:依侧限压缩试验原理可知:土样压缩前后试样截面积A 不变,土粒体积不变,令,有或——分别为土粒比重、土样的初始含水量和初始密度。
利用上式计算各级荷载作用下达到的稳定孔隙比,可绘制如i p i e i p i e i e s V 1=sV iii i i i e H H e H e H e A H e A H +∆-=+=+⇒⎭⎬⎫+=+=1111100000)1(1000000e H H e e e e e H H ii i i +∆-=⇒+-=∆1)1(000-+=ρρωws G e 00ρω、、s G i p i e下图所示的e -p 曲线,该曲线亦被称为压缩曲线。
高等土力学复习要点——土体的变形
土体的变形第一部分 影响因素一. 土的压缩性1.定义:土在压力作用下体积缩小的特性称为土的压缩性。
土的压缩——土中孔隙体积的减少,在这一过程中,颗粒间产生相对移动,重新排列并互相挤紧,同时,土中一部分孔隙水和气体被挤出。
土体完成压缩过程所需的时间与土的透水性有很大的关系。
土的固结——土的压缩随时间增长的过程,称为土的固结。
2.土的侧限压缩试验:不允许土样产生侧向变形(侧限条件)的室内压缩试验3.侧限条件:侧向限制不能变形,只有竖向单向压缩的条件。
侧限条件的适用性:自然界广阔土层上作用着大面积均布荷载的情况;土体的天然土的自重应力作用下的压缩性。
4.侧限压缩试验的方法:试验方法:加荷载,让土样在50、100、200和400kpa 压力作用下只可能发生竖向压缩,而无侧向变形。
测定各级压力作用下土样高度的稳定值,即压缩量。
将压缩量换算成每级荷载后土样的孔隙比e 。
则可整理的压缩试验的结果,压缩曲线e-p 、e-logp 。
)1(000e H s e e +-=5.侧限压缩性指标压缩系数——e-p 曲线上任一点的切线斜率a ,即 dp de a -= 物理意义:压缩系数a 越大,曲线愈陡,说明随着压力的增加,土孔隙比的减小愈显著,因而土的压缩性愈高。
为了便于应用和比较,通常采用压力间隔由p 1=100kpa 增加到p 2=200kpa 时所得的压缩系数a 1-2来评定土的压缩性如下:当 a 1-2 < 0.1Mpa -1时,属于低压缩性土0. 1≤a 1-2 < 0.5Mpa -1时,属于中压缩性土a 1-2 ≥ 0.5Mpa -1时,属于高压缩性土。
压缩指数——土的e-p 线改绘成半对教压缩曲线e-logp 曲线时,它的后段接近直线,其斜率Cc 称为土的压缩指数。
同压缩系数a 一样,压缩指数Cc 值越大,土的压缩性越高压缩模量(侧限压缩模量)——土在完全侧限条件下的竖向附加压应力σz 与相应的应变εz 之比值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1 概述
一、土的压缩性 土的压缩性是指土在压力作用下体积缩小的特性。
压缩量的组成 固体颗粒的压缩 占总压缩量的1/400不 土中水的压缩 到,忽略不计 空气的排出 压缩量主要组成部分 水的排出 说明:土的压缩被认为只是由于孔隙体积减小的结果
透水性好,水易于排出
2、土的固结:饱和土在压力作用下,水体积减小的 过程。对于透水性大的无粘性土,其压缩过程在很短 时间内就可以完成。而透水性小的粘性土,其压缩稳 定所需的时间要比砂土长得多。
4.2 固结试验及压缩性指标
4.2.1、固结试验和压缩曲线 1、固结试验和压缩曲线 (1)固结试验 土的室内侧限压缩试验称固结试验,是研究土体压 缩性的最基本的方法。 (2)压缩曲线 定义:表示土的孔隙比与压力关系的曲线。
(3)固结试设备与试验过程
1)、侧限压缩仪(固结仪) 变形测量 固结容器
) ) )
压缩性指标
压缩性不同的土,曲线形状不同,曲线愈陡,土的孔隙比减少 得愈显著,土的压缩性愈高。 根据压缩曲线可以得到三个压缩性指标
1.压缩系数a 2.压缩模量Es 3.体积压缩系数mv
e
1.0 0.9 0.8 0.7 0.6 0
de Δe = a=− dp Δp
Δp Es = Δε z
Δp
t
透水石 试样
一、e - p曲线 e
1.0 0.9 0.8 0.7 0.6 0 100 200 300 400
P
p1
p2
p3
p(kPa )
e0
e s
e1 H1 e2 H2 1 + e0 )H i / H 0
t
孔隙比e与压缩量∆H 的关系
e0 1
孔隙
ΔH
e
H H0
a c b d
e
重新逐级加压,则相应地可绘 制出再压缩曲线。 卸载段和再压缩段的平均斜率 称为回弹指数。
p(kPa )
二、e - lgp曲线
1 特点1:有一段较长的直线段
Cc
e
0.9 0.8 0.7 0.6
指标:
Δe Cc = Δ (lg p)
压缩指数
1 Ce
Ce
回弹指数(再压缩指数)
Ce << Cc,一般Ce≈0.1-0.2Cc
1、浅层平板载荷试验及土的变形模量
载荷试验一般在现场试坑内进行。在拟压表面用不超过 20mm厚的粗、中砂层找平。试坑的宽度一般规定不小于承压 板宽度或直径的三倍,以满足半空间地基表面受荷边界条件 的要求。
反压重物
反力梁
千斤顶 百分表 荷载板 基准梁
试验设备:
加荷稳压装置、反力装置和观测装置三部分组成。 (1)加荷稳压装置:主要有刚性承压板及千斤顶等,承压板的 底面积一般规定采用0.25~0.50m2。 (2)反力装置:目前常用的有地锚和堆载两种系统(图4—8)。 (3)观测装置:包括百分表及固定支架等。
无粘性土 粘性土
透水性好,水易于排出
压缩稳定很快完成
透水性差,水不易排出 压缩稳定需要很长一段时间
3、有效应力:土骨架承担由颗粒之间的接触传递 应力。粘性土固结过程,实质是土中有效增长的过 程。 4、压缩性指标 室内试验 侧限压缩、三轴压缩等 (压缩系数,压缩模量) 室外试验 荷载试验、旁压试验等 (变形模量)
a1-2 (MPa-1) 0.5 0.1-0.5 <0.1
单向压缩试验的各种参数的关系
指标 指标 a mv Es
a 1 a/(1+e0) (1+e0)/a
mv mv(1+e0) 1 1/mv
Es (1+e0)/Es 1/Es 1
土的回弹和再压缩曲线 卸载阶段的e-p关系曲线,如图 中bc曲线所示,称为回弹曲线 (或膨胀曲线)。
固体颗粒 1
受压前后土粒体积不变、土样横截面面积不变
H 0 A ⋅1 ( H 0 − H ) A ⋅1 = 1 + e0 1+ e e0 − e H = = εz H0 1 + e0
e = e0 −
H (1 + e0 ) H0
e e0
曲线A 曲线B 曲线A压缩性>曲线B压缩性
e p e-p曲线 p
固结容器: 环刀、护环、导环、透水 石、加压上盖和量表架等 加压设备 加压设备:杠杆比例1:10 变形测量设备 支架
2)、试验过程
•施加荷载,静置至变形稳定 •逐级加大荷载 试验结果:
测定: 轴向应力 轴向变形
百分表 P3 传压板 水槽
P
P1
P2
e0
e s
e1 s1 e2 s2 s3 e3
t
环刀 内环
第4章 土的压缩性
学习指导
学习目标
学习土的压缩性指标确定方法,掌握有效应力 原理、一维固结机理的分析计算方法。
学习基本要求
1.掌握土的压缩性与压缩性指标确定方法 2.掌握有效应力原理 3.掌握太沙基一维固结理论
4.1 概述 4.2 固结试验及压缩性指标 4.3 饱和土中的有效应力 4.4 土的单向固结理论
1)承压板周围的土明显的侧向挤出; 2)沉降急骤增大,荷载-沉降曲线出现陡降段; 3)24小时内沉陷速率不能达到稳定标准; 4)s/b>0.06(b为承压板宽度或直径)。
加载方案:
(1)逐级施加,加载等级不应少于8级; (2)施加的荷载总量接近地基的预计极限荷载; (3)第一级荷载(包括设备重)宜接近所卸除土的自重,其相 应的沉降量不计; (4) 每级加荷取极限荷载的1/8~1/10; (5)最大加载量不应少于荷载设计值的两倍。
试验的量测标准 (1)每级加载后,按间隔10、10、10、15、15分钟,以 后每半小时读一次沉降量、当连续两小时内,每小 时的沉降量小于0.1mm时,则认为变形已趋稳定, 可施加下一级荷载。 (2)试验终止条件:
C c < 0 .2
低压缩性土; 高压缩性土。
C c > 0 .4
100 1000
p(kPa , lg)
4.2.2 现场荷载试验及土的变形模量
为更确切地评定土在天然状态下的压缩性,可在现场进行 原位荷载试验。通过载荷试验或旁压试验所测得的地基沉降与 压力之间近似的比例关系,从而利用弹性力学公式来反算土的 变形模量。
压缩系数,KPa-1,MPa-1 侧限压缩模量,KPa ,MPa
Δe
Δe Δε z = 1 + e0
Es = 1 + e0 a
100
200 300 400
p(kPa )
Δε V Δε z 1 a 体积压缩系数, mv = = = = Δp Δp Es 1 + e0 KPa-1 ,MPa-1
土的类别 a1-2常用作 比较土的压 缩性大小 高压缩性土 中压缩性土 低压缩性土