第3章平稳时间序列模型建立
平稳时间序列建模步骤
平稳时间序列建模步骤什么是时间序列建模时间序列建模是一种用于分析和预测时间序列数据的统计方法。
时间序列是按照时间顺序排列的一组连续观测值,例如每日销售额、每月气温、每年股票收益等。
通过建立时间序列模型,我们可以探索时间序列的内在规律和趋势,并做出相应的预测。
平稳时间序列建模是时间序列建模的一种常用方法,它假设时间序列的统计特性在时间上是不变的。
平稳时间序列具有恒定的均值、方差和自协方差,这使得我们可以应用各种经典的时间序列模型进行建模和预测。
以下是平稳时间序列建模的步骤:步骤一:数据收集和观察首先,我们需要收集要建模的时间序列数据。
可以从各种数据源获取时间序列数据,包括经济指标、物理测量、金融数据等等。
收集到数据后,我们需要对数据进行观察,检查数据的特点、趋势、异常值等,并做必要的数据清洗和准备工作。
步骤二:时间序列分解时间序列通常由趋势、季节性和随机因素组成。
为了更好地分析和建模时间序列,我们需要先对时间序列进行分解,将其拆分为这些组成部分。
常用的时间序列分解方法有加法模型和乘法模型。
加法模型假设时间序列是趋势、季节性和随机误差之和,而乘法模型假设时间序列是趋势、季节性和随机误差之积。
选择合适的分解模型可以根据时间序列的特点和趋势来确定。
步骤三:平稳性检验平稳性是时间序列建模的前提之一。
在进行建模之前,我们需要对时间序列的平稳性进行检验。
平稳性检验可以通过统计检验方法来进行,例如单位根检验、ADF检验等。
如果时间序列不平稳,我们需要进行差分处理,使其变成平稳序列。
步骤四:模型选择和拟合在确定时间序列的平稳性后,我们可以选择合适的时间序列模型进行拟合。
常见的时间序列模型包括自回归移动平均模型(ARMA模型)、自回归积分移动平均模型(ARIMA模型)等。
模型选择可以通过观察自相关图(ACF)和偏自相关图(PACF)来辅助判断。
ACF图可以显示序列之间的相关性,PACF图可以显示去除其他变量的直接相关性。
第三章平稳时间序列预测
xˆt l E Xtl Xt , Xt1,
E tl 1tl1 qtlq Xt , Xt1,
0
21
❖ MA(q)模型预测方差为
var
et l
1 12
112
2 l 1
2
q2 2
lq lq
22
例3
❖ 已知某地区每年常驻人口数量近似服从MA(3)模型 (单位:万人):
时刻t和以前时刻的观察值 xt , xt1, xt2 ,
,
我们将用已知的观察值对时刻t后的观察值xtl l 0
进行预测,记为xˆt l,称为时间序列Xt 的第 l
步预测值。
2
最小均方误差预测
❖ 考虑预测问题首先要确定衡量预测效果的标准,
一个很自然的思想就是预测值xˆt l与真值 xtl 的均
方误差达到最小,即设
et1(l 1)
xˆt1(l 1)
修正预测原理
❖ 在旧信息的基础上,Xt+l的预测值为
xˆt (l) Gli ti Glt Gl1t1 i0
❖假设新获得一个观察值Xt+1 ,则
▪ Xt+l的修正预测值为
xˆt1(l 1) Gl1 t1 Glt Gl1 t1 Gl1t1 xˆt (l)
X t 100 t 0.8t1 0.6t2 0.2t3, 2 25
最近3年的常驻人口数量及一步预测数量如下:
年份
统计人数
预测人数
2002
104
110
2003
108
100
2004
105
109
预测未来5年该地区常住人口的95%置信区间
X t 100 解t : 0.8t1 0.6t2 0.2t3, 2 25
平稳时间序列模型的建立概述
平稳时间序列模型的建立概述第一步是数据的预处理。
在建立平稳时间序列模型之前,需要对原始时间序列数据进行一些预处理,包括去除趋势、季节性和周期性等。
去趋势可以采用差分方法,即对时间序列数据进行一阶差分,得到的差分序列不再具有明显的趋势性。
去除季节性和周期性可以使用季节性差分或移动平均方法。
第二步是对预处理后的序列进行统计特性分析。
这包括计算序列的均值、方差、自相关函数和偏自相关函数等统计指标。
通过分析这些指标,可以了解序列的平稳性、周期性和相关性等统计特性。
第三步是根据统计分析结果选择适合的时间序列模型。
常用的平稳时间序列模型包括自回归移动平均模型(ARMA)、自回归模型(AR)、移动平均模型(MA)和季节性自回归移动平均模型(SARIMA)等。
选择模型的原则是使模型具有较好的拟合效果并具有良好的预测性能。
第四步是模型参数的估计与诊断。
对于选定的时间序列模型,需要估计模型的参数。
这可以通过最大似然估计或最小二乘估计等方法进行。
估计得到模型参数之后,需要对模型进行诊断检验,判断模型是否合理。
常用的诊断方法包括残差平稳性检验、残差序列的白噪声检验和残差的自相关函数和偏自相关函数检验等。
第五步是模型预测与评估。
通过已建立的平稳时间序列模型,可以对未来的序列数据进行预测。
预测的准确性可以通过计算预测误差和拟合优度等指标进行评估。
若模型的预测效果较好,则可应用该模型进行实际预测。
总之,平稳时间序列模型的建立过程包括数据的预处理、统计特性分析、模型选择、参数估计与诊断以及模型预测与评估等步骤。
通过这些步骤的实施,可以建立一个合理且具有较好预测效果的平稳时间序列模型。
平稳时间序列模型的建立概述(续)第一步是数据的预处理。
在建立平稳时间序列模型之前,需要对原始时间序列数据进行一些预处理,包括去除趋势、季节性和周期性等。
去趋势可以采用差分方法,即对时间序列数据进行一阶差分,得到的差分序列不再具有明显的趋势性。
去除季节性和周期性可以使用季节性差分或移动平均方法。
第三章线性平稳时间序列模型资料
纯随机性
(k) 0,k 0
各序列值之间没有任何相关关系,即为 “没有记忆” 的序列
方差齐性(平稳) DX t (0) 2 根据马尔可夫定理,只有方差齐性假定成立时,
用最小二乘法得到的未知参数估计值才是准确的、
有效的
上一页 下一页 返回本节首页
(三)纯随机性检验
1.检验原理 2.假设条件 3.检验统计量 4.判别原则 5.应用举例
原假设:延迟期数小于或等于 期m 的序列
值之间相互独立
H 0:1 2 m 0,m 1
H
:至少存在某个
1
k
0,m 1,k
m
m
备择假设:延迟期数小于或等于 期的序
列值之间有相关性
上一页 下一页 返回本节首页
3.检验统计量
Q统计量 (大样本)
m
Q n
ˆ
(2)自相关图检验(判断准则)
平稳序列通常具有短期相关性。该性质用自相 关系数来描述就是随着延迟期数的增加,平稳序 列的自相关系数会很快地衰减向零。
若时间序列的自相关函数在k>3时都落入置 信区间,且逐渐趋于零,则该时间序列具有平稳 性;
若时间序列的自相关函数更多地落在置信区间 外面,则该时间序列就不具有平稳性。
严平稳
严平稳是一种条件比较苛刻的平稳性定义,它认为只 有当序列所有的统计性质都不会随着时间的推移而 发生变化时,该序列才能被认为平稳。
宽平稳
宽平稳是使用序列的特征统计量来定义的一种平稳性。 它认为序列的统计性质主要由它的低阶矩决定,所 以只要保证序列低阶矩平稳(二阶),就能保证序 列的主要性质近似稳定。
返回例题
例1居民消费价格指数自相关图
时间序列分析第三章平稳时间序列分析
注:图中,S号代表序列的观察值;连续曲线代表拟合序列曲线;虚线代表拟合序列的95%上下置信限。
所谓预测就是要利用序列以观察到的样本值对序列在未来某个时刻的取值进行估计。
目前对平稳序列最常用的预测方法是线性最小方差预测。
线性是指预测值为观察值序列的线性函数,最小方差是指预测方差达到最小。
在预测图上可以看到,数据围绕一个范围内波动,即说明未来的数值变化时平稳的。
二、课后习题第十七题:根据某城市过去63年中每年降雪量数据(单位:mm)得:(书本P94)程序:data example17_1;input x@@;time=_n_;cards;2579588397 110;proc gplot data=example17_1;plot x*time=1;symbol c=red i=join v=star;run;proc arima data=example17_1;identify var=x nlag=15minic p= (0:5) q=(0:5);run;estimate p=1;run;estimate p=1 noin;run;forecast lead=5id=time out=results;run;proc gplot data=results;plot x*time=1 forecast*time=2 l95*time=3 u95*time=3/overlay;symbol1c=black i=none v=start;symbol2c=red i=join v=none;symbol3c=green i=join v=none l=32;run;(1)判断该序列的平稳性与纯随机性该序列的时序图如下(图a)图a由时序图显示过去63年中每年降雪量数据围绕早70mm附近随机波动,没有明显趋势或周期,基本可以看成平稳序列,为了稳妥起见,做了如下自相关图(图b)图b时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值。
平稳时间序列模型的建立
第三章 平稳时间序列模型的建立
第一节 时间序列的采集 直观分析和特征分析 第二节 时间序列的相关分析 第三节 平稳时间序列的零均值处理 第四节 平稳时间序列的模型识别 第五节 平稳时间序列模型参数的矩估计 第六节 平稳时间序列模型的定阶 第七节 平稳时间序列模型的检验 第八节 平稳时间序列模型的建模方法
检验后面s个回归因子对因变量的影响是否显著
H 0 :r s 1 r s 2 r 0
设样本容量为N;上述两个模型的残差平方和分别是Q0与
Q1;则检验统计量为 FQ1Q0 s Fs,Nr
Q0 Nr
F检验定阶法
FQ1Q0 s Q0 Nr
Fs,Nr
M1: y1X12X2 rXr M2: y1X12X2 X rs rs H0: rs1 rs2 r 0
Et0, vart2, Est0,st EXst0, st
非中心化ARMAp;q模型
X t 0 1 X t 1 2 X t 2 p X t p t 1 t 1 2 t 2 q t q
ARMA模型:自回归移动平均模型
中心化ARMAp;q模型
X t1X t 12X t 2pX tpt1t 12t 2qt q X t1 1 1 1 B B 2 2B B 2 2 q p B B q p t
数据图检验法
以时间为横轴;变 量Xt的取值为纵轴
平稳的特点
无明显的趋势性或 周期性
在一直线附近做小 幅波动
1990年12月19日2008年11月6日上 证A股指数日数据除去节假日;共 4386个数据
数据图检验法
1994年1995年香港环境数 据序列
a 表示因循环和呼吸问题 前往医院就诊的人数;
第三章平稳时间序列分析
欢迎共阅t P p t tt t t x B x x B x Bx x ===---221第3章 平稳时间序列分析一个序列经过预处理被识别为平稳非白噪声序列,那就说明该序列是一个蕴含着相关信息的平稳序列。
3.1 方法性工具 3.1.1 差分运算 一、p 阶差分记t x ∇为t x 的1阶差分:1--=∇t t t x x x记t x 2∇为t x 的2阶差分:21122---+-=∇-∇=∇t t t t t t x x x x x x 以此类推:记t p x ∇为t x 的p 阶差分:111---∇-∇=∇t p t p t p x x x 二、k 步差分记t k x ∇为t x 的k 步差分:k t t t k x x x --=∇3.1.2 延迟算子 一、定义延迟算子相当与一个时间指针,当前序列值乘以一个延迟算子,就相当于把当前序列值的时间向过去拨了一个时刻。
记B 为延迟算子,有延迟算子的性质:1.10=B2.若c 为任一常数,有1)()(-⋅=⋅=⋅t t t x c x B c x c B3.对任意俩个序列{t x }和{t y },有11)(--±=±t t t t y x y x B4.n t t n x x B -=5.)!(!!,)1()1(0i n i n C B C B in i i nni i n-=-=-∑=其中二、用延迟算子表示差分运算 1、p 阶差分 2、k 步差分3.2 ARMA 模型的性质 3.2.1 AR 模型定义 具有如下结构的模型称为p 阶自回归模型,简记为AR(p):ts Ex t s E Var E x x x x t s t s t t p tp t p t t t ∀=≠===≠+++++=---,0,0)(,)(,0)(,0222110εεεσεεφεφφφφε(3.4)AR(p)模型有三个限制条件:条件一:0≠p φ。
这个限制条件保证了模型的最高阶数为p 。
时间序列分析第三章平稳时间序列分析
应用时间序列分析实验报告实验名称第三章平稳时间序列分析一、上机练习data example3_1;input x;time=_n_;cards;;proc gplot data=example3_1;plot xtime=1;symbol c=red i=join v=star;run;建立该数据集,绘制该序列时序图得:根据所得图像,对序列进行平稳性检验;时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值;时序图可以直观地帮助我们掌握时间序列的一些基本分布特征;根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界的特点;如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列;从图上可以看出,数值围绕在0附近随机波动,没有明显或周期,其本可以视为平稳序列,时序图显示该序列波动平稳;proc arima data=example3_1;identify var=x nlag=8;run;图一图二样本自相关图图三样本逆自相关图图四样本偏自相关图图五纯随机检验图实验结果分析:1由图一我们可以知道序列样本的序列均值为,标准差为,观察值个数为84个;2根据图二序列样本的自相关图我们可以知道该图横轴表示自相关系数,综轴表示延迟时期数,用水平方向的垂线表示自相关系数的大小;我们发现样本自相关图延迟3阶之后,自相关系数都落入2倍标准差范围以内,而且自相关系数向衰减的速度非常快,延迟5阶之后自相关系数即在值附近波动;这是一个短期相关的样本自相关图;所以根据样本自相关图的相关性质,可以认为该序列平稳;3根据图五的检验结果我们知道,在各阶延迟下LB检验统计量的P值都非常小<,所以我们可以以很大的把握置信水平>%断定该序列样本属于非白噪声序列;proc arima data=example3_1;identify var=x nlag=8minic p= 0:5q=0:5;run;IDENTIFY命令输出的最小信息量结果某个观察值序列通过序列预处理,可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列建模;建模的基本步骤如下:A:求出该观察值序列的样本自相关系数ACF和样本偏自相关系数PACF的值;B:根据样本自相关系数和偏自相关系数的性质,选择适当地ARMAp,q模型进行拟合;C:估计模型中未知参数的值;D:检验模型有效性;如果拟合模型不通过检验,转向步骤B,重新选择模型再拟合;E:模型优化;如果拟合模型通过检验,仍然转向步骤B,充分考虑各种可能,建立多个拟合模型,从所有通过检验中选择最优模型;F:利用拟合模型,预测序列的将来走势;为了尽量避免因个人经验不足导致的模型识别问题,SAS系统还提供了相对最优模型识别;最后一条信息显示,在自相关延迟阶数小于等于5,移动平均延迟阶数也小于等于5的所有ARMRp,q模型中,BIC信息量相对最小的是ARMR0,4模型,即MA4模型;需要注意的是,MINIC只给出一定范围内SBC最小的模型定阶结果,但该模型的参数未必都能通过参数检验,即经常会出现MINIC给出的模型阶数依然偏高的情况;estimate q=4;run;本例参数估计输出结果显示均值MU不显著t的检验统计量的P值为,其他参数均显著t检验统计量的P值均小于,所以选择NOINT选项,除去常数项,再次估计未知参数的结果,即可输入第二条ESTIMATE 命令:estimate q=4 noint;run;参数估计部分输出结果如图六所示:图六ESTIMATE命令消除常数项之后的输出结果显然四个未知参数均显著;拟合统计量的值这部分输出五个统计量的值,由上到下分别是方差估计值、标准差估计值、AIC信息量、SBC信息量及残差个数,如图七所示:图七ESTIMATE命令输出的拟合统计量的值系数相关阵这部分输出各参数估计值的相关阵,如图八所示:图八ESTIMATE命令输出的系数相关阵残差自相关检验结果这部分的输出格式图九和序列自相关系数白噪声检验部分的输出结果一样;本例中由于延迟各阶的LB统计量的P值均显著大于aa=,所以该拟合模型显著成立;图九ESTIMATE命令输出的残差自相关检验结果拟合模型的具体形式ESTIMA TE命令输出的拟合模型的形式序列预测forecast lead=5id=time out=results;run;其中,lead是指定预测期数;id是指定时间变量标识;out是指定预测后的结果存入某个数据集;该命令运行后输出结果如下:FORECAST命令输出的预测结果该输出结果从左到右分别为序列值的序号、预测值、预测值的标准差、95%的置信下限、95%的置信上限;利用存储在临时数据集RESULTS里的数据,我们还可以绘制漂亮的拟合预测图,相关命令如下:proc gplot data=results;plot xtime=1 forecasttime=2 l95time=3 u95time=3/overlay;symbol1c=black i=none v=start;symbol2c=red i=join v=none;symbol3c=green i=join v=none l=32;run;输出图像如下:拟合效果图注:图中,S号代表序列的观察值;连续曲线代表拟合序列曲线;虚线代表拟合序列的95%上下置信限;所谓预测就是要利用序列以观察到的样本值对序列在未来某个时刻的取值进行估计;目前对平稳序列最常用的预测方法是线性最小方差预测;线性是指预测值为观察值序列的线性函数,最小方差是指预测方差达到最小;在预测图上可以看到,数据围绕一个范围内波动,即说明未来的数值变化时平稳的;二、课后习题第十七题:根据某城市过去63年中每年降雪量数据单位:mm得:书本P94程序:data example17_1;input x;time=_n_;cards;2579588397 110;proc gplot data=example17_1;plot xtime=1;symbol c=red i=join v=star;run;proc arima data=example17_1;identify var=x nlag=15minic p= 0:5q=0:5;run;estimate p=1;run;estimate p=1 noin;run;forecast lead=5id=time out=results;run;proc gplot data=results;plot xtime=1 forecasttime=2 l95time=3 u95time=3/overlay;symbol1c=black i=none v=start;symbol2c=red i=join v=none;symbol3c=green i=join v=none l=32;run;1判断该序列的平稳性与纯随机性该序列的时序图如下图a图a由时序图显示过去63年中每年降雪量数据围绕早70mm附近随机波动,没有明显趋势或周期,基本可以看成平稳序列,为了稳妥起见,做了如下自相关图图b图b时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值;时序图可以直观地帮助我们掌握时间序列的一些基本分布特征;根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界的特点;如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列;样本的自相关图我们可以知道该图横轴表示自相关系数,综轴表示延迟时期数,用水平方向的垂线表示自相关系数的大小;我们发现样本自相关图延迟2阶之后,自相关系数都落入2倍标准差范围以内, 自相关图显示该序列自相关系数一直都比较小,1阶开始控制在2倍的标准差范围以内,可以认为该序列自始自终都在零轴附近波动,这是随即性非常强的平稳时间序列;纯随机性检验见下图:图c图c根据图c的检验结果我们知道,在6阶延迟下LB检验统计量的P值显著小于,所以我们可以以很大的把握置信水平>95%断定这个拟合模型的残差序列属于非白噪声序列;2如果序列平稳且非白躁声,选择适当模型拟合该序列的发展;模型识别如下图图d图d假如某个观察值序列通过序列预处理,可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列建模;建模的基本步骤如下:1:求出该观察值序列的样本自相关系数ACF和样本偏自相关系数PACF的值;2:根据样本自相关系数和偏自相关系数的性质,选择适当地ARMAp,q模型进行拟合;3:估计模型中未知参数的值;4:检验模型有效性;如果拟合模型不通过检验,转向步骤B,重新选择模型再拟合;5:模型优化;如果拟合模型通过检验,仍然转向步骤B,充分考虑各种可能,建立多个拟合模型,从所有通过检验中选择最优模型;6:利用拟合模型,预测序列的将来走势;最后一条信息显示,在自相数迟阶数小于等于5,移动平均延迟阶数也小于等于5的所有ARMAp,q模型中,BIC信息量相对最小的是ARMA1,0模型,既AR1模型;它们的自相关系数都呈现出拖尾性和呈指数衰减到零值附近的性质;自相关系数是按负指数单调收敛到零;利用拟合模型,预测该城市未来5年的降雪量.由2可以知道该模型是AR1模型;预测结果如下图图e由图得未来564-68年的降雪量分别为、、、、;18. 某地区连续74年的谷物产量单位:千吨data example18_1;input x;time=_n_;cards;;proc gplot data=example18_1;plot xtime=1;symbol c=red i=join v=star;run;proc arima data=example18_1;identify var=x nlag=18minic p= 0:5q=0:5;run;estimate q=1;run;forecast lead=5id=time out=results;run;proc gplot data=results;plot xtime=1 forecasttime=2 l95time=3 u95time=3/overlay; symbol1c=black i=none v=start;symbol2c=red i=join v=none;symbol3c=green i=join v=none l=32;run;1判断该序列的平稳性与纯随机性该序列的时序图如下图f图f时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值;时序图可以直观地帮助我们掌握时间序列的一些基本分布特征;根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界的特点;如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列;由时序图显示过去74年中每年谷物产量数据围绕早千吨附近随机波动,没有明显趋势或周期,基本可以看成平稳序列,为了稳妥起见,做了如下自相关图图g图g样本的自相关图我们可以知道该图横轴表示自相关系数,综轴表示延迟时期数,用水平方向的垂线表示自相关系数的大小;我们发现样本自相关图延迟2阶之后,自相关系数都落入2倍标准差范围以内,自相关图显示该序列自相关系数一直都比较小,1阶开始控制在2倍的标准差范围以内,可以认为该序列自始自终都在零轴附近波动,这是随即性非常强的平稳时间序列;纯随机性检验见下图:图h图h根据图h的检验结果我们知道,在各阶延迟下LB检验统计量的P值显著小于,所以我们可以以很大的把握置信水平>95%断定这个拟合模型的残差序列属于非白噪声序列;选择适当模型拟合该序列的发展;如果序列平稳且非白躁声,选折适当模型拟合序列的发展模型识别如下图图i图i假如某个观察值序列通过序列预处理,可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列建模;建模的基本步骤如下:A:求出该观察值序列的样本自相关系数ACF和样本偏自相关系数PACF的值;B:根据样本自相关系数和偏自相关系数的性质,选择适当地ARMAp,q模型进行拟合;C:估计模型中未知参数的值;D:检验模型有效性;如果拟合模型不通过检验,转向步骤B,重新选择模型再拟合;E:模型优化;如果拟合模型通过检验,仍然转向步骤B,充分考虑各种可能,建立多个拟合模型,从所有通过检验中选择最优模型;F:利用拟合模型,预测序列的将来走势;最后一条信息显示,在自相数迟阶数小于等于5,移动平均延迟阶数也小于等于5的所有ARMAp,q模型中,BIC信息量相对最小的是ARMA1,0模型,既AR1模型;它们的自相关系数都呈现出拖尾性和呈指数衰减到零值附近的性质;自相关系数是按负指数单调收敛到零;利用拟合模型,预测该地区未来5年的谷物产量,预测结果如下图图j 由2可知,该模型为AR1模型;图j未来5年的谷物产量一次为,,,;19. 现有201个连续的生产记录data example19_1;input x;time=_n_;cards;图l时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值;时序图可以直观地帮助我们掌握时间序列的一些基本分布特征;根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界的特点;如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列;样本的自相关图我们可以知道该图横轴表示自相关系数,综轴表示延迟时期数,用水平方向的垂线表示自相关系数的大小;我们发现样本自相关图延迟1阶之后,自相关系数都落入2倍标准差范围以内, 自相关图显示该序列自相关系数一直都比较小,1阶开始控制在2倍的标准差范围以内,可以认为该序列自始自终都在零轴附近波动,这是随即性非常强的平稳时间序列;纯随机性检验见下图:图m根据图m的检验结果我们知道,在各阶延迟下LB检验统计量的P值显著小于,所以我们可以以很大的把握置信水平>95%断定这个拟合模型的残差序列属于非白噪声序列;2如果序列平稳且非白躁声,选折适当模型拟合序列的发展模型识别如下图图n某个观察值序列通过序列预处理,可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列建模;建模的基本步骤如下:1、求出该观察值序列的样本自相关系数ACF和样本偏自相关系数PACF的值;2、根据样本自相关系数和偏自相关系数的性质,选择适当地ARMAp,q模型进行拟合;3、估计模型中未知参数的值;4、检验模型有效性;如果拟合模型不通过检验,转向步骤B,重新选择模型再拟合;5、模型优化;如果拟合模型通过检验,仍然转向步骤B,充分考虑各种可能,建立多个拟合模型,从所有通过检验中选择最优模型;6、利用拟合模型,预测序列的将来走势;最后一条信息显示,在自相数迟阶数小于等于5,移动平均延迟阶数也小于等于5的所有ARMAp,q模型中,BIC信息量相对最小的是ARMA0,1模型,即MA1模型;利用拟合模型,预测该城市下一时刻95%的置信区间;由2可得,该模型为MA1模型;下一时刻95%的置信区间,;实验小结:给定一个序列,我们首先应该判断平稳性,如果平稳,再检查是否是纯随机序列,如果序列平稳且非白躁声,选折适当模型拟合序列的发展,选择AR,MA,或ARMA模型,然后可以对该序列进行预测;三、实验体会通过本次实验使我掌握了一些对时间序列的处理,运用不同的语句对一个样本序列的平稳性检验和随机性检验,这对我们处理数据有很大的帮助;在生活中我们往往会遇到这样的现象,当我们所得到的样本信息太少,并且没有其他的辅助信息时,通常这种数据结构式没法进行分析的,但是序列平稳性的概念的提。
第三章平稳时间序列分析-(2)
~
n
n
t
用迭代法,求得使其达最小的参数值。
最小二乘估计的特点
最小二乘估计充分应用了每一个观察值 所提供的信息,因而它的估计精度高; 不需总体分布,便于实现,所以条件最 小二乘估计方法使用率最高。
实际中,为便于计算,很多时候看作服从多元正态分 布
3、最小二乘估计
原理
使残差平方和达到最小的那组参数值即为最 小二乘估计值
n t 1 n
ˆ) 2 Q( t ( xt 1 xt 1 p xt p 1 t 1 q t q )2
c2 4 , c 2 ˆ2 1 12 2 2 , c ˆ1 1 c2 4 ,c 2 2
矩估计
c ˆ ˆ 2 , ˆ 1 1 ˆ 1 c
矩估计的特点:
优点 估计思想简单直观 不需要假设总体分布 计算量小(低阶模型场合) 缺点 信息浪费严重 只依赖p+q个样本自相关系数信息,其他信 息都被忽略 估计精度较差 通常矩估计方法被用作极大似然估计和最小二乘 估计迭代计算的初始值
【例3.7】考察ARMA模型的自相关性
ARMA(1,1): xt 0.5xt 1 t 0.8t 直观地考察该模型自相关系数和偏自相关系 数的性质。
样本自相关图
样本偏自相关图
显然,自相关系数和偏自相关系数拖尾
这也是直观选择拟合模型的 常用方法之一
ARMA模型相关性特征:
模型 自相关系数 偏自相关系数
1, , p ,1, ,q , ,
2
第3章 平稳时间序列分析(1)
第3章 平稳时间序列分析本章教学内容与要求:了解时间序列分析的方法性工具;理解并掌握ARMA 模型的性质;掌握时间序列建模的方法步骤及预测;能够利用软件进行模型的识别、参数的估计以及序列的建模与预测。
本章教学重点与难点:利用软件进行模型的识别、参数的估计以及序列的建模与预测。
计划课时:21(讲授16课时,上机3课时、习题3课时) 教学方法与手段:课堂讲授与上机操作§3.1 方法性工具一个序列经过预处理被识别为平稳非白噪声序列,那就说明该序列是一个蕴含着相关信息的平稳序列。
在统计上,我么通常是建立一个线性模型来拟合该序列的发展,借此提取该序列中的有用信息。
ARMA(auto regression moving average)模型是目前最常用的一个平稳序列拟合模型。
时间序列分析中一些常用的方法性工具可以使我们的模型表达和序列分析更加简洁、方便。
一、差分运算 (一)p 阶差分相距一期的两个序列值之间的减法运算称为1阶差分运算。
记▽t x 为t x 的1阶差分:▽1t t t x x x --=对1阶差分后的序列再进行一次1阶差分运算称为2阶差分,记▽2t x 为t x 的2阶差分:▽2t x =▽t x -▽1-t x以此类推,对p-1阶差分厚序列再进行一次1阶差分运算称为p 阶差分。
记▽p t x 为t x 的p 阶差分:▽p t x =▽p-1t x -▽p-11-t x (二)k 步差分相距k 期的两个序列值之间的减法运算称为k 步差分运算。
记▽k t x 为t x 的k 步差分:▽k =k t t x x --例:简单的序列:t x :6,9,15,43,8,17,20,38,4,10,10,,1t =1阶差分:▽3x x x 122=-= ▽6x x x 233==-=……▽6x x x 91010=-=,即1阶差分序列▽t x :3,6,28,-35,9,3,18,-34,6,10,,2t =2阶差分:▽23x =▽3x -▽2x =3▽24x =▽4x -▽3x =22……▽210x =▽10x -▽9x =-40即2阶差分序列▽2t x :3,22,-63,-54,-6,16,-52,-40,10,,3t =2步差分:▽29x x x 133=-=▽234x x x 244=-=……▽2-28x x x 81010=-=即2步差分序列:9,34,-7,-26,12,21,-16,-28 二、延迟算子(滞后算子) (一)定义延迟算子类似于一个时间指针,当前序列值乘以一个延迟算子,就相当于把当前序列值的时间向过去拨去了一个时刻。
平稳时间序列模型的建立概述
ˆk *N 1 kN k 1 kytyyt ky,k0 ,1 ,...
ˆk
ˆk ˆ0
,k 0,1,...
ˆk*
ˆk* ˆ0
,k
0,1,...
1)ˆ
* k
后的模型与原来的模型之间是否存在显著性差异。做法是:
拟合 ARMA(p,q)和 ARMA(p-1,q-1)模型,并记模
型的残差平方和为
Q0
和
Q1
,
df
0
和
df 1
分别为其自由度。检验
的原假设为:
H 0: p 0, q 0 ; H1: p 0或 q 0
检验的统计量
F Q1 Q0 df1 df2
1
2 - 0.0252
2 - 0.2782
0.1075
i 1,2,....1, 0时,ˆ3 -0.125 ,ˆ4 -0.037 ..., ˆ12 0.042 ,满足 ˆki 0.1075
的比例为
7 10
70%
,大于
68.3%。因此该序列自相关函数在
4
3
2
1
0
-1
-2
-3
0
20
40
60
80
100
120
根据数据可以得出, N 100, M 100 10, ˆki ,i 1,2,...10
k 1时,
1 N
(1
q
2
s 1
1/ 2
ˆ
2 s
)
1 10
第3章平稳时间序列分析
时间序列分析
(1) X t = X t −1 − 0.5 X t − 2 + at
• 自相关函数呈现出“伪周期”性
• 理论偏自相关函数
⎧2 ,k =1 ⎪3 ⎪ φkk = ⎨−0.5 , k = 2 ⎪0 ,k ≥ 3 ⎪ ⎩
• 样本偏自相关图
时间序列分析
(2) X t = − X t −1 − 0.5 X t − 2 + at
由于格林函数描述了系统的动态性,那么在随 机扰动序列已知的情况下,格林函数就完全 能够确定系统的行为,从而根据已知的扰动 序列和格林函数便可确定系统的响应 拟合AR(p)模型的过程也就是使相关序列独立 化的过程.
时间序列分析
• 平稳性的Green函数判别法
欲使序列平稳,则格林函数应满足
当j → ∞时,有G j → 0
ρ k 减小,且以指数速度减小,越来越与0接近,
这种现象称为拖尾.
时间序列分析
4、AR(1)的PACF (1) PACF的求解
AR (1)的 PACF 按照 PACF的递推公式有:
ρ 2 − ρ1φ11 φ12 − φ12 φ11 = ρ1; φ 22 = = =0 2 1 − ρ1φ11 1 − φ1 φ21 = φ11 − φ 22φ11 = φ1 ρ 3 − ρ 2φ 21 − ρ1φ 22 φ13 − φ12φ1 − 0 = =0 φ33 = 2 1 − ρ1φ 21 − ρ 2φ 22 1 − φ1 − 0
时间序列分析
(三)AR(1)的统计特征
1、 AR(1)的方差:
• 平稳AR(1)模型的传递形式为
∞ ∞ at i Xt = = ∑ (φ1 B) at = ∑ φ1i at −i 1 − φ1 B i =0 i =0
第三章平稳时间序列分析-2
例3.5 (1)xt 0.8xt1 t
理论偏自相关系数 样本偏自相关图
kk
0.8 0
,k 1 ,k 2
例3.5 (2)xt 0.8xt1 t
理论偏自相关系数 样本偏自相关图
kk
0.8 0
,k 1 ,k 2
例3.5 (3)xt xt1 0.5xt2 t
理论偏自相关系数 样本偏自相关图
三、平稳AR模型的统计性质
均值 方差 协方差 自相关系数 偏自相关系数
1、均值
如果AR(p)模型满足平稳性,则有 E(xt ) E(0 1xt1 p xt p t )
因平稳序列均值为常数,且{εt} 为白噪声序列,有
E(xt ) , E(t ) 0 ,t T
则
E(xt )
xt G j t j j0
两边求方差得
Var(xt )
G
2j
2
,
G j为Green函数
j0
特征根λ=φ1 平稳时,<1
【例3.2】求平稳AR(1)模型的方差
平稳AR(1)模型的传递形式为
xt
t 1 1B
i0
p
kjij ti
j1
(1B)i t
i0
1i ti
i0
Green函数为 Gj 1 j , j 0,1,
平稳AR(P)模型的自相关系数递推公式
k 1k1 2 k2 L p k p
可推得:常用平稳AR模型自相关系数递推公式
AR(1)模型
k 1k , k 0
AR(2)模型
1,
k
1
1 2
1k1 2 k2
k 0 k 1 k2
平稳AR模型自相关系数的拖尾性
平稳时间序列模型的建立
例题
• 例1
– 检验1964年——1999年中国纱年产量序列的 平稳性
• 例2
–检验1962年1月——1975年12月平均每头奶牛 月产奶量序列的平稳性
• 例3
–检验1949年——1998年北京市每年最高气温 序列的平稳性
AIC (M
)
n
ln
ˆ
2 a
2M
式中:ˆ
2 a
是残差方差
2 a
的极大似然估计值。
• Eviews输出的Akaike info criterion与上述形 式略有差别(参见Eviews help),其定义为:
AIC(M ) 2 ln(极大似然函数) 2M
n
n
其中:n是实际观察值的个数。
4.1.2 BIC准则
例1 时序图
例1 自相关图
例2 时序图
例2 自相关图
例3 时序图
例3 自相关图
二、纯随机性检验
(一)纯随机序列的定义
• 纯随机序列也称为白噪声序列,它 满足如下两条性质
(1)EXt , t T
2 ,t s
(2) (t, s)
, t, s T
0,t s
(二)纯随机性检验
4、最佳准则函数定阶法
• 最佳准则函数法,即确定出一个准则函数 ,该函数既要考虑某一模型拟合时对原始 数据的接近程度,同时又要考虑模型中所 含待定参数的个数。
• 建模时,使准则函数达到极小的是最佳模 型。
4.1 赤池的AIC准则和BIC准则
4.1.1 AIC 准则(Akaike iformationcriterion)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 6N
N i1
X
i S*
X
3
标准峰度系数: g 2
N
1
2 4 N
N i1
X
i S*
X
4
3
第二节 时间序列的相关分析
时间序列的相关分析
相关分析:
纯随机性检验 平稳性检验 正态性检验
纯随机性检验
定义:纯随机性检验,又称白噪声检验,是检验
时间序列观察值之间是否具有相关性.
时间序列数据的预处理
预处理:
直观分析 特征分析 相关分析
直观分析
直观分析包括:离群点的检验和处理,缺损值的补足, 指标计算范围的统一等等.
离群点(outlier):指一个时间序列中远离序列一般水 平的极端大值和极端小值。通常是由于系统外部干扰 而形成的,可以根据序列值与平滑值两者间的差异来 判断.
数据图检验法
1994年-1995年香港环境数 据序列
(a) 表示因循环和呼吸问题 前往医院就诊的人数;
(b) 表示二氧化硫的日平均 水平;
(c) 表示二氧化氮的日平均 水平;
(d) 表示可吸入的悬浮颗粒 物的日平均水平
数据图检验法
优点:简单,方便,直观 缺点:主观性强
自相关和偏相关系数图检验法
2 i
X
2
S
*2 N
1 N 1
N i 1
Xi X
2
1 N 1
N i 1
X
2 i
N X2 N 1
样本标准差:S*
1N
2
N 1 i1 X i X
分布特征参数
偏度:
S k
1 N
N i1
X
i S*
X
3
峰度:
K
1 N
N i1
X
i S*
X
4
标准偏度系数: g 1
模型
模型方程 自相关系数 偏相关系数
AR(p)
φ(B)Xt=εt
拖尾
p步截尾
MA(q)
Xt=θ(B)εt
q步截尾
拖尾
ARMA(p,q) φ(B)Xt=θ(B)εt
检验原理:
拖尾
拖尾
若序列Xt的样本自相关系数和偏相关系数既不截尾,又 不拖尾,则可以肯定该序列是非平稳的。
自相关和偏相关系数图检验法
一般取k ≈
平稳性检验
时间序列的平稳性是时间序列建模的重要前提。 目的:检验相关序列值{Xt}之间是否是平稳的 检验的对象:
序列是否具有常数均值和常数方差? 序列的自相关函数是否仅与时间间隔有关,而与时间的
起止点无关?
平稳性检验
常用的检验方法:
Q统计量:Box和Pierce共同推导出
原假设:延迟期数小于或等于m的序列值之间相互独立
结论: H 0 : 1 2 m 0 , m 1
当Q<χ21-α(k)时,接受原假设,认为序列{Xt}是独立的,不用 进行建模了。
当统计量的相伴概率p>0.05时,接受原假设;当p<0.05时,拒 绝原假设,{Xt}是平稳非白噪声序列,尝试建立ARMA模型。
第三章 平稳时间序列模型的建立
第三章 平稳时间序列模型的建立
第一节 时间序列的采集、直观分析和特征分析 第二节 时间序列的相关分析 第三节 平稳时间序列的零均值处理 第四节 平稳时间序列的模型识别 第五节 平稳时间序列模型参数的矩估计 第六节 平稳时间序列模型的定阶 第七节 平稳时间序列模型的检验 第八节 平稳时间序列模型的建模方法
尝试拟合AR(1)模型
尝试拟合MA(1)模型
自相关和偏相关系数图检验法
尝试拟合AR(1),MA(1), ARMA (1,1) 模型
自相关和偏相关系数图检验法
自相关和偏相关系数图检验法
特征根检验法
原理:
自回归部分特征方程的特征根在复平面的单位圆内
检验步骤:
先拟合适应性模型; 求出该模型自回归部分特征方程的特征根; 若特征根|λi|<1,则该序列平稳.
数据图检验法 自相关和偏相关系数图检验法 特征根检验法 参数检验法 逆序检验法 游程检验法
数据图检验法
以时间为横轴,变 量Xt的取值为纵轴
平稳的特点
无明显的趋势性或 周期性
在一直线附近做小 幅波动
1990年12月19日-2008年11月6日上 证A股指数日数据(除去节假日, 共4386个数据)
第一节 采集、直观分析和特征分析
时间序列的建模流程
数
直
特
相
据
观
征
关
的
分
分
分
采
析
析
析
集
时间序列的预处理
确定性分析 随机分析
数据的采集
方法:
直接采样 累计采样 特征采样 阈值采样
原理:
采样间隔越小,采样值越多,信息损失就越小,数据处 理量越大,处理时间、人力、财力消耗越大.
采样间隔越大,采样值越少,信息损失就越多,数据处 理的时间、人力、财力消耗越小.
特征参数包括:
位置特征参数,散度特征参数,分布特征参数
位置特征参数
样本均值: X
1 N
N
Xi
i1
极小值:
X
1
m in
1 i N
X
i
极大值:
X
N
m ax
1 i N
X
i
散度特征参数
极差:
L X N X 1
样本方差:
S
2 N
1 N
N i 1
Xi X
2
1 N
N i 1
X
Bartlett定理:
如果一个时间序列是纯随机的,得到一个观察期数为n
的观察序列,那么该序列的延迟非零期的样本自相关系
数
ˆk ~&N0,1n, k0
若 ˆk1.96 n2 n, k0,则自相关系数为零的
可能性是95%,可认为数据是不相关的.
纯随机性检验
检验统计量:
k
Q
Nˆi
2
:
2k
i1
缺损值(missing value):指在采集时间序列时,由于仪 器故障、操作失误、观察问题等种种原因引起在某些 观测点上未能记录的观察值.
特征分析
定义:
特征分析就是在对数据序列进行建模之前,通过从时 间序列中计算出一些有代表性的特征参数,用以浓缩、 简化数据信息,以利于数据的深入处理,或通过概率 直方图和正态性检验分析数据的统计特征.
特征根检验法
特征根检验法
游程检验法
平稳性的非参数检验法-----游程检验法
可用SPSS软件计算 Analyze→Nonparametric Tests→Runs ∣Z∣≤1.96,则该时间序列平稳。
平稳性检验
常用的检验方法:
数据图检验法 自相关和偏相关系数图检验法 特征根检验法 参数检验法 逆序检验法 游程检验法
第三节 平稳时间序列的零均值处理
ARMA模型:自回归移动平均模型
中心化ARMA(p,q)模型