高中物理竞赛辅导之刚体动力学

合集下载

刚体动力学物理竞赛讲义 (2)

刚体动力学物理竞赛讲义 (2)

刚体动力学(二)(32届复赛)三、如图,一质量分布均匀、半径为r 的刚性薄圆环落到粗糙的水平地面前的瞬间,圆环质心速度0v 与竖直方向成θ(322ππθ<<)角,并同时以角速度0ω(0ω的正方向如图中箭头所示)绕通过其质心O 、且垂直环面的轴转动。

已知圆环仅在其所在的竖直平面内运动,在弹起前刚好与地面无相对滑动,圆环与地面碰撞的恢复系数为k ,重力加速度为g 。

忽略空气阻力。

(1)求圆环与地面碰后圆环质心的速度和圆环转动的角速度;(2)求使圆环在与地面碰后能竖直弹起的条件和在此条件下圆环能上升的最大高度;(3)若让θ角可变,求圆环第二次落地点到首次落地点之间的水平距离s 随θ变化的函数关系式、s 的最大值以及s 取最大值时r 、0v 和0ω应满足的条件。

(1)设圆环的质量为m ,它在碰撞过程中受到地面对它的水平冲量t I ;碰撞后圆环质心速度大小为v ,v 与竖直向上方向夹角为β,圆环的角速度为ω。

规定水平方向向右方向和顺时针方向分别为水平动量和角速度的正方向。

在水平方向,由动量定理有:0sin sin t mv mv I βθ-=由对质心的动量矩定理有:()()0t rm r rm r rI ωω-=-按题意,圆环在弹起前刚好与地面无相对滑动,因而此时圆环上与地面的接触点的水平速度为零,即sin 0v r βω-=由题意知:00cos cos 0v k v βθ-=-联立得:()()222222200000000max 8382816k r v r v r r r v s gωωωωω++--+=又因为1sin 1θ-<<,由上式得,当s 取最大值时,r 、0v 和0ω应满足00v r ω> (31届复赛)四、(24分)如图所示,半径为R 、质量为0m 的光滑均匀圆环,套在光滑竖直细轴OO '上,可沿OO '轴滑动或绕OO '轴旋转.圆环上串着两个质量均为m 的小球. 开始时让圆环以某一角速度绕OO '轴转动,两小球自圆环顶端同时从静止开始释放.(1)设开始时圆环绕OO '轴转动的角速度为0ω,在两小球从环顶下滑过程中,应满足什么条件,圆环才有可能沿OO '轴上滑? (2)若小球下滑至30θ=︒(θ是过小球的圆环半径与OO '轴的夹角)时,圆环就开始沿OO '轴上滑,求开始时圆环绕OO '轴转动的角速度0ω、在30θ=︒时圆环绕OO '轴转动的角速度ω和小球相对于圆环滑动的速率v .(1) 考虑小球沿径向的合加速度。

高二物理竞赛刚体力学基础课件

高二物理竞赛刚体力学基础课件

m
m2 m1
对m1 、m2分析受力。由牛顿定律:
对 m1 对 m2
T1m 1gm 1a (1) m 2gT2m 2a(2)
m
1
对滑轮分析力矩,由转动定律:
T2rT1rMf 1 2m2r (3)
关联方程:T 1T 1 , T 2T 2 (4)
①加速阶段 ②匀速阶段
③制动阶段
1 1t1 2 1t2 1 3t3
210211
21 233
1
12 21
1t1
2
3
12 23
1t3
2
而 1 + 2 + 310 2 0
2 1t11t22 1t3 200
t2 20 1 0 (t1 t3 )/2 20 /1 0 (t1 t3 )/2 1.9 8 s2 1
O 到力的作用点 P 的径矢。 M ZrF
大 M Z 小 rs F : i n F F d tr
d=rsinθ 称为力F 对转轴的力臂。
方向: 由右手螺旋定则确定。
M rFZ有o两个方向,可用正o负表Fr示。
MZ 0
MZ 0
MZ
z
o rp
F
d

o
z
r
Ft
P
F
d

Fn
2、F不在转轴平面内
2、刚体的平动: 刚体上任意两点的连线在运动中保持平行,这种 运动称为刚体的平动。平动的刚体可当作质点。 特征: 各个质点的位移、速度、加速度相等。
注意:刚体平动时,运动轨迹不一定是直线。
3、刚体的转动 : 刚体上的各点绕同一直线做圆周运动。 定轴转动 :转轴在空间的位置固定不动。 特征: 1)各点的角位移、角速度、角加速度相同。 2)各点的线位移、线速度、线加速度不同。

高中物理竞赛讲座6(刚体力学word)

高中物理竞赛讲座6(刚体力学word)

2
r
dm
r 为质点到轴的距离
I m1r12 m2 r22 mi ri 2 r 2 dm
质点对转轴 I ml 2 细圆环对经过中心的垂直于环面的转轴的转动惯量 I mR 2 匀质实心圆柱体对中心轴的转动惯量 匀质杆过中点轴的转动惯量 I
I
1 2 mR 2

t __ t
__
d dt d = = dt

若刚体做匀速转动,角速度是恒量,角加速度为零。 若刚体做变速转动,角速度随时间变化,若角加速度为恒量,则刚体做匀变速转动。 刚体做匀变速转动时的运动学公式与质点做匀变速直线运动的公式相似
0 t
mx x m c m 1 1 2 x 2 xdm mvc m1v1 m2v2 ma c m 1 a 1 m 2 a 2
4、牛顿定律 5、转动平衡 6、转动定律 7、转动惯量
F合 m 1 a 1 m 2 a 2 m c a
M=0
M I
2 I mr

M m1 ( r1 1 )r 1 m 2( r2 ) 2 r 2
v/r
因为匀速
0
A
D
vA v r 2v
x 方向: 解得
0 0 a B A 0
y 方向:
0 a A o 0
2
a
AB 杆角加速度 B A 0
OA 杆角加速度 Ao
2
a2
3、刚体的一般运动(既平动又转动) 可以看作由两部分合成:①刚体上各点随质心的平动。②绕质心的转动(也可理解为: 对地运动=对参考系的运动+参考系对地的运动) 例:圆柱体在水平地面上无滑动的匀速滚动:分解为绕轴的转动和各点随轴的平动。 因为纯滚动

高中物理竞赛培优辅导刚体动力学运动学问题精品ppt课件

高中物理竞赛培优辅导刚体动力学运动学问题精品ppt课件



lim
n
n
i
lim
n i1
mi ri2
m1
r2
2
i
r n
n
mr2 lim 2 i
n i1

r n

i
r n
2
3J
11 n42
mr
2
转轴
J 1 mr2 2 J 1 mr2 4
mr2 ml2
J

4 12

=

2n

n


i
=i

2n
y
21
4R 3 4

R2 4

1

2

3
4

1 2 3 4
4

yc


R2 4
1
3
2

3

4

4R
3
x
xc 0
8
yc


15
R
"湖震"问题
以静止水的质心为坐标原 点,建立如图所示坐标,
当振动高度为Δh时,质心 坐标为:
y
h
2
h
O
x

h2
Lh
6h
由上可得
y 6h x2 L2
由质心运动定律
y
质心沿抛物线做往复运
动,回复力为重力之分力:
F mg y x
6h x x2 x2
mg
L2
x
F回
x
O
mg
12mgh x L2
质心做谐振,周期为 T 2 L2

高中物理竞赛讲座:第一章刚体力学

高中物理竞赛讲座:第一章刚体力学


描述质点位置变化的快慢和方向 r r(t t ) r(t ) v 平均 t t
r dr v lim t 0 t dt


3
7.加速度 描述质点速度变化的快慢和速度变化 的方向 v a平均 t
v dv d r a lim 2 t 0 t dt dt
第一章 刚体力学
1-1 质点力学基础
1-2 刚体的转动
1-3 转动动能 转动惯量 1-4 转动定律
1-5 角动量守恒定律
1
1-1质点力学基础
一、描述质点运动的基本物理概念
1.质点 只有质量没有大小和形状的几何点, 理想化力学模型
2.参考系 描述某物体运动时,用来作参考的另 一物体或物体系统
3.坐标系 用来定量地确定质点的位置,描述其 运动 4.位置矢量 用来确定质点在空间的位置
x
17
A
B
解:建立坐标(如图),取微元
x
L
m dm dx dx L
得连续分布刚体的转动惯量
A L/2
C L/2
B x
IA
IC
L
0
m 1 x dx mL2 L 3
2
2
可以看出:
L 2 L 2
m 1 2 x dx mL L 12
同一刚体对不同的转轴转动惯量也不同。
2



8.运动方程 位置矢量与时间的函数关系
r r(t )

4
例题1 已知一质点是在OX轴线上运动且满足 运动方程 x 6 t 3 12 t 2 36 (m ),求 第2秒内的平均速度,第2秒末的速度 和加速度 解: x x 2 x1 x(2) x(1) 36 30 6 (m )

高二物理竞赛刚体转动动能定理PPT(课件)

高二物理竞赛刚体转动动能定理PPT(课件)

m3g
m1 a1
m1g
a2
T1 T2
讨论:当 m3
T2
T2
m2
a1
T1
a22am1m1m1ma1(22mgm1m2(2mmm12121121m2)gmm1mmm3232)3gg
m2mm12Tg12mm22g2mm1m1 2 gm2
0时
1 2
m2m3
1 2
m3
g
复习
一. 力矩
M rF
律。
已知:M0 I M1= –a |t=0=
求:(t)=?
0
解: 1)以刚体为研究对象;
M+
2)分析受力矩;
M0 I M1
3)建立轴的正方向; 4)列方程:
M0 M1 I
解:4)列方程:
M0 M1 I M0 M1 M0 a
M+ M0
M1=–a
d M0I a
dt
I
I
1 (ln M0 a ) t
分离变量:
a
M0
I
d dt M0 a I
0
d M0 a
t dt
0 I
M0
a
at
eI
M0
1 a
M0(1
at
eI
)
r 质量分别为m1,m2的物体通过轻绳挂在质量为
m3半径为 的圆盘形滑轮上。求物体m1 m2运动
的加速度以及绳子张力
T1.T2 ,(绳子质
量不计) 抵消 已知:m .m .m .r 解(二):考虑杆从水平静止转到铅直方向的过程,重力做功,角速度从 0 -
建立轴的正向:(以逆时针转动方向为正方向) 1)以刚体为研究对象;
0则 0

高中物理奥林匹克竞赛专题--刚体力学基础(共14张PPT)

高中物理奥林匹克竞赛专题--刚体力学基础(共14张PPT)

四、角动量问题举例
例 3-5 设一质量为m的滑块在水平面(Oxy)内以初速度 u0 u0i
从原点O出发沿x轴滑动.假设滑块与水平面的摩擦力 f f i
恒定不变,试求任意时刻滑块对原点O的角动量.

t=0时, u0 u0i 质点受力 f f i
滑块任意时刻t的速度
u
u0
ft m
Lrprm v
圆周运动的质点、定轴转动刚体的角动量
Lm2 rJ
上页 下页 返回 帮助
3-4 角动量 角动量守恒定律 第三章 刚体力学基础
2 角动量定理(对定轴转动刚体)
t
L
t0M dtL 0dLLL 0JJ0
3 角动量守恒定律 若系统所受合外力矩为零,则系统 角动量保持不变.
3-4 角动量 角动量守恒定律 第三章 刚体力学基础
第三章 刚体力学基础
上页 下页 返回 帮助
3-4 角动量 角动量守恒定律 第三章 刚体力学基础
一、角动量
1.
质点的角动量
质量为 m的质点以速度
v
z
在 O 的空位间矢运为动,r,某质时点刻相相对对于原原点
L
点的角动量:
O
Lrprm v x r
解 碰撞过程质点和刚体的系统动量、
O
能量皆不守恒。但是系统的对O轴合外
力矩为零,角动量守恒。有
mlu0mluJ
M
J 1 Ml2
3
u l
解以上三式,得 3m2u0
v0
(3m M )l
l mv
上页 下页 返回 帮助
上页 下页 返回 帮助
3-4 角动量 角动量守恒定律 第三章 刚体力学基础
质点以角速度 作半径为 r的圆运动,

高一物理竞赛第6讲 刚体力学.学生版

高一物理竞赛第6讲 刚体力学.学生版

第六讲刚体动力学1.刚体动力学描述方式。

2.转动惯量的理解以及转动定律的运用。

3.寇尼西定理的运用。

说明:学习刚体力学最重要的是把刚体的几个基本概念建立起来:转动惯量,质心,力矩,力矩冲量,角加速度。

质心动能,相对质心动能等等。

概念清晰了,对于公式的记忆和使用并不难,完全类比质点力学体系就可以了。

某种程度上本讲也是对质点力学体系的一次很好的复习。

比较难的问题是联立平动方程与转动方程处理的问题,不过初学的同学做起来不痛快仅仅是因为不熟练而已,本讲整体上不算难。

第一部转动惯量描述刚体运动的方法与参数引入:刚体就是不考虑形状改变的物体,生活中刚体旋转的例子很多,我们本讲带领大家学习这些现象背后的规律。

首先我们注意观察刚体的旋转的描述方式,不难发现刚体上每一个点都在绕着一个轴运动,所有的点角速度一致。

进一步的分析陀螺的运动我们会发现,我们用鞭子抽打,让陀螺越转越快,刚体的动力学也可以用伽利略的观点“力是改变运动状态的原因”去理解。

只不过,我们如何去定量描述呢?知识模块本讲提纲知识点睛1. 转动惯量:先研究一个很简单的问题:一跟长为L 的轻杆,一段可以围绕着固定点O 无阻力的转动,另一端用一个外力F 垂直作用在上面,现在在距离O 点r 远处固定一个质量为m 的质点,质点的运动情况如何?首先我们去描述这种运动,质点做圆周运动,F 的作用点与质点位移x ,速度v ,加速度a 并不一样,但是它们的转动角度θ,角速度ω,角加速度β(有些参考书用α,不过这个字母太容易和a 弄混)是一样的。

复习一下它们的关系: r v ω= 且 r a β=注意r 为到圆周运动圆心的距离。

那么解答这个问题并不难,可以使用牛顿定律进行计算,注意到轻杆受合外力为零,所以质点对杆的力必然向下,设这个力大小为N ,根据力矩平衡:Nr FL = (想不起为什么了?)再隔离质点,由牛顿定律知道: N=ma代入得: β2mr FL =写成这样的式子原因是因为这根杆角加速度一致,用这个参数更加能高效率的描述这种加速转动。

2020年高中物理竞赛辅导课件(力学)刚体的定轴转动(共23张PPT)

2020年高中物理竞赛辅导课件(力学)刚体的定轴转动(共23张PPT)

静止释放,
求:重物的加速度和两 m ,r
滑轮之间绳内的张力。
m
m ,r
2m
解:2mg T 1 2ma ①
(T T )r 1 mr2 ②
12 2
(T T )r 1 mr2
23 2

T 3 mg ma ④
a r

得 a g / 4,
T 2 5mg / 4
T2
T2
T3
T3
mg
T1
T1
2mg
例 3. 以 30N·m 的恒力矩作用在有固定轴 的飞轮上, 在 10s 内飞轮的转速由零增大到 5rad/s , 此时移去该力矩,飞轮因摩擦力距的作 用经 90s 而停止, 试计算此飞轮对其固定轴的 转动惯量。
解:
在恒力矩和摩察力矩作 用下,0 10s内有
M M r J1

1 1t1

移去力矩后,0 90s内有 :
解:J R2dm R2 dm mR2
J 是可加的,所以若为薄圆
筒(不计厚度)结果相同。
OR dm
例2、求质量为m、半径为R、厚为l 的均匀圆盘的转 动惯量。轴与盘平面垂直并通过盘心。
解:取半径为r宽为dr的薄圆环,
dm 2 r dr l
dJ r2dm 2lr3dr l
R O r dr
v
v r i
ri

mi
1 2
i
mi (ri )2
定轴
1 ( 2
i
mi ri2 ) 2
刚体的转动动能
EK
1 2
J
令 J mi ri2
i
称为刚体的转动惯量
2
二、刚体的转动惯量

高二物理竞赛第4章刚体力学PPT(课件)

高二物理竞赛第4章刚体力学PPT(课件)

2 人1 O1
(一)、 刚体及其运动状态的描述
(一)、 刚体及其运动状态的描述
角 角加加速速度 度也 也 可 可2 用 用 表 表3 示 示.1 。 。 [ 4 2 ( .8 0 4 .3) 6 1 .5 2 (2 .8 1 4 .9) 6 1 2 ]
4.3 J 7
例3: 将 一 条 质 量 为 m的 细 金 属 棒 竖 直 立 地 , 然 后
( F i+ fi) ri m ia ri
Fi
fi i
o
ri
mi
i
即 : M i F is in ir i fis inir i m ir i2
对整个刚体:
n
n
n
F isin iri fisin iri( m iri2)
i 1
i 1
i 1
n
由牛顿第三定律知力,对内转轴的力矩和:为零 fi siniri=0
根据机械能守恒定律有:
mgl mgl 1(1ml2)21(1m)v2
2 5 23
25
7mgl1m2(lv2)1m2v 10 6 l2 10
得:v 21gl 8
例 4: 质 量 m 5kg ,长 度 l 1m的 细 金 属 棒 ,
O
可 绕 垂 直 于 棒 的 一 端 的 水 平 轴 O无 摩 擦 地
四、 刚体力学
(一)、 刚体及其运动状态的描述
一、刚体
定义:任何情况状 下和 ,大 形小都不会何 发生任
变化的物体。 二、刚体运动的基本形 式
1 .平动:
定义:在运动过 刚程 体中 上, 任意两点 的的 空连 间线 方向始终保持平 运行 动, 称此 平动。
A
A
A
B

刚体的运动学与动力学问题

刚体的运动学与动力学问题

刚体的运动学与动力学问题(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--刚体的运动学与动力学问题编者按中国物理学会全国中学生物理竞赛委员会 2000 年第十九次会议对《全国中学生物理竞赛内容提要》作了一些调整和补充,并决定从 2002 年起在复赛题与决赛题中使用提要中增补的内容.一、竞赛涉及有关刚体的知识概要1. 刚体在无论多大的外力作用下,总保持其形状和大小不变的物体称为刚体.刚体是一种理想化模型,实际物体在外力作用下发生的形变效应不显著可被忽略时,即可将其视为刚体,刚体内各质点之间的距离保持不变是其重要的模型特征.2 . 刚体的平动和转动刚体运动时,其上各质点的运动状态(速度、加速度、位移)总是相同的,这种运动叫做平动.研究刚体的平动时,可选取刚体上任意一个质点为研究对象.刚体运动时,如果刚体的各个质点在运动中都绕同一直线做圆周运动,这种运动叫做转动,而所绕的直线叫做转轴.若转轴是固定不动的,刚体的运动就是定轴转动.刚体的任何一个复杂运动总可看做平动与转动的叠加,刚体的运动同样遵从运动独立性原理.3. 质心质心运动定律质心这是一个等效意义的概念,即对于任何一个刚体(或质点系),总可以找到一点C,它的运动就代表整个刚体(或质点系)的平动,它的运动规律就等效于将刚体(或质点系)的质量集中在点C,刚体(或质点系)所受外力也全部作用在点C时,这个点叫做质心.当外力的作用线通过刚体的质心时,刚体仅做平动;当外力作用线不通过质心时,整个物体的运动是随质心的平动及绕质心的转动的合成.质心运动定律物体受外力 F 作用时,其质心的加速度为aC,则必有F=maC,这就是质心运动定律,该定律表明:不管物体的质量如何分布,也不管外力作用点在物体的哪个位置,质心的运动总等效于物体的质量全部集中在此、外力亦作用于此点时应有的运动.4 . 刚体的转动惯量J刚体的转动惯量是刚体在转动中惯性大小的量度,它等于刚体中每个质点的质量mi与该质点到转轴的距离ri的平方的乘积的总和,即J=miri2.从转动惯量的定义式可知,刚体的转动惯量取决于刚体各部分的质量及对给定转轴的分布情况.我们可以利用微元法求一些质量均匀分布的几何体的转动惯量.5. 描述转动状态的物理量对应于平动状态参量的速度v、加速度a、动量p=mv、动能Ek=( 1 / 2 )mv2;描述刚体定轴转动状态的物理量有:角速度ω角速度的定义为ω=Δθ/Δt.在垂直于转轴、离转轴距离r处的线速度与角速度之间的关系为v=rω.角加速度角加速度的定义为α=Δω/Δt.在垂直于转轴、离转轴距离r处的线加速度与角加速度的关系为at=rα.角动量L角动量也叫做动量矩,物体对定轴转动时,在垂直于转轴、离转轴距离r处某质量为m的质点的角动量大小是mvr=mr2ω ,各质点角动量的总和即为物体的角动量,即L=miviri=(miri2)ω=Jω.转动动能Ek当刚体做转动时,各质点具有共同的角速度ω及不同的线速度v,若第i个质点质量为mi,离转轴垂直距离为ri,则其转动动能为( 1 / 2 )mivi2=( 1 / 2 )miri2ω2,整个刚体因转动而具有的动能为所有质点的转动动能的总和,即Ek=( 1 / 2 )(miri2)ω2=( 1 / 2 )Jω2.6 . 力矩M力矩的功W冲量矩I如同力的作用是使质点运动状态改变、产生加速度的原因一样,力矩是改变刚体转动状态、使刚体获得角加速度的原因.力的大小与力臂的乘积称为力对转轴的力矩,即M=Fd.类似于力的作用对位移的累积叫做功,力矩的作用对角位移的累积叫做力矩的功.恒力矩M的作用使刚体转过θ角时,力矩所做的功为力矩和角位移的乘积,即A=Mθ.与冲量是力的作用对时间的累积相似,力矩的作用对时间的累积叫做冲量矩,冲量矩定义为力矩乘以力矩作用的时间,即I=MΔt.7. 刚体绕定轴转动的基本规律转动定理刚体在合外力矩M的作用下,所获得的角加速度与合外力矩大小成正比,与转动惯量J成反比,即M=Jα.如同质点运动的牛顿第二定律可表述为动量形式,转动定理的角动量表述形式是M=ΔL/Δt.转动动能定理合外力矩对刚体所做的功等于刚体转动动能的增量,即W=( 1 / 2 )Jω12-( 1 / 2 )Jω O2.该定理揭示了力矩作用对角位移的积累效应是改变刚体的转动动能.角动量定理转动物体所受的冲量矩等于该物体在这段时间内角动量的增量,即MΔt=L1-L0=Jωt-Jω0.该定理体现了力矩作用的时间积累效应是改变刚体转动中的动量矩.角动量守恒定律当物体所受合外力矩等于零时,物体的角动量保持不变,此即角动量守恒定律.该定律适用于物体、物体组或质点系当不受外力矩或所受合外力矩为零的情况.在运用角动量守恒定律时,要注意确定满足守恒条件的参照系.如果将上述描述刚体的物理量及刚体的运动学与动力学规律与质点相对照(如表 1 所示),可以发现它们极具平移对称性,依据我们对后者的熟巧,一定可以很快把握刚体转动问题的规律.表 1质点的直线运动刚体的定轴转动位移s角位移θ速度vv=Δs/Δt角速度ωω=Δθ/Δt加速度aa=Δv/Δt角加速度αα=Δω/Δt匀速直线运动s=vt匀角速转动θ=ωt匀变速直线运动v1=v0+ats=v0t+( 1 / 2 )at2vt2-v02= 2 as匀变速转动ω1=ω0+αtθ=ω0t+( 1 / 2 )αt2ω t2-ω O2= 2αθ牛顿第二定律F=ma转动定理M=Jα动量定理Ft=mvt-mv0(恒力)角动量定理Mt=Jωt-Jω0动能定理Fs=( 1 / 2 )mvt2-( 1 / 2 )mv02转动动能定理Mθ=( 1 / 2 )Jω t2-( 1 / 2 )Jω O2动量守恒定律mv=常量角动量守恒定律Jω=常量二、确定物体转动惯量的方法物体的转动惯量是刚体转动状态改变的内因,求解转动刚体的动力学问题,离不开转动惯量的确定.确定刚体的转动惯量的途径通常有:1. 从转动惯量的定义来确定对于一些质量均匀分布、形状规则的几何体,计算它们关于对称轴的转动惯量,往往从定义出发,运用微元集合法,只需要初等数学即可求得.例 1 如图 1 所示,正六角棱柱形状的刚体的质量为M,密度均匀,其横截面六边形边长为a.试求该棱柱体相对于它的中心对称轴的转动惯量.图 1分析与解这里求的是规则形状的几何体关于它的中心对称轴的转动惯量.从转动惯量的定义出发,我们可将棱柱沿截面的径向均匀分割成n(n→∞)个厚度均为(/ 2 )·(a/n)、棱长为l的六棱柱薄壳,确定任意一个这样的薄壳对中心轴的元转动惯量Ji,然后求和即可,有J=Ji.图 2现在,先给出一矩形薄板关于与板的一条边平行的轴OO′的转动惯量.板的尺寸标注如图 2 所示,质量为m且均匀分布,轴OO′与板的距离为h,沿长为b的边将板无限切分成n条长为l、宽为b/n的窄条,则有J板=lim(m/bl)·(b/n)·l[h2+(ib/n)2]=m[(h2/n)+(i2/n3)b2]=m(h2+(b2/ 3 )).回到先前的六棱柱薄壳元上,如图 1 所示,由对称性可知其中第i个薄壳元的hi=ia/ 2 n,b=ia/ 2 n.薄壳元对轴OO′的转动惯量是 1 2 J板,即Ji =1 2ρl(a/ 2 n)(ia/ 2 n)[(ia/ 2 n)2+( 1 / 3 )(ia/ 2 n)2].式中,ρ是六棱柱体的密度,即ρ=M/ 6 ×( 1 / 2 )·a2·(/ 2 )l= 2 M/ 3 a2l.则六棱柱体对中心对称轴OO′的转动惯量为J= 1 2 ρl·(a/n)·(/ 2 )·(ia/ 2 n)[((ia/n)·(/2 ))2+( 1 /3 )(ia/ 2 n)]= 1 2 ρl·(a4/ 4 )·(i3/n4)·[ 3 / 4 + 1 / 1 2 ]=( 5 Ma2/ 3 )i3/n4=( 5 Ma2/ 3 )( 1 /n4)( 1 3+ 2 3+…+n3)=( 5 Ma2/ 3 )( 1 /n4)·(n2(n+ 1 )2/ 4 )= 5 Ma2/ 1 2 .2 . 借助于平行轴定理在刚体绕某点转动时,需对过该点的轴求转动惯量,借助于平行轴定理,可以解决这样的问题:已知刚体对过质心的轴的转动惯量,如何求对不通过质心但平行于过质心转轴的轴的转动惯量.平行轴定理:设任意物体绕某固定轴O的转动惯量为J,绕过质心而平行于轴O的转动惯量为JC,则有J=JC+Md2,式中 d 为两轴之间的距离,M为物体的质量.图 3证明:如图 3 所示,C为过刚体质心并与纸面垂直的轴,O为与它平行的另一轴,两轴相距为d,在与轴垂直的平面内以质心C为原点,过CO的直线为x轴,建立xCy坐标系.Mi代表刚体上任一微元的质量,它与轴C及轴O的距离依次为Ri和ri,微元与质心连线与x轴方向的夹角为θi,由转动惯量的定义知,刚体对轴O的转动惯量应为J=miri2=mi(Ri2+d2- 2 dRicosθ)=miRi2+mid2- 2 dmiRicosθi.上式中第一项即为刚体对质心C的转动惯量JC;第二项J=mid2=d2mi=Md2,M是刚体的总质量;而第三项中miRicosθi=mixi,xi是质量元在xCy平面坐标系内的x坐标,按质心的定义,有mixi= 0 ,所以J=JC+Md2.在上述例 1 中,我们已求得正六棱柱关于其中心轴的转动惯量,利用平行轴定理,我们还可求得六棱柱相对于棱边的转动惯量为J′=( 5 / 1 2 )Ma2+Ma2=( 17 / 1 2 )Ma2.3. 运用垂直轴定理对任意的刚体,任取直角三维坐标系Oxyz,刚体对x、y、 z 轴的转动惯量分别为Jx、Jy、J2,ri是质元到坐标原点的距离.z,可以证明Jx+Jy+Jz= 2 miri图 4证明:如图 4 所示,质元mi的坐标是xi、yi、zi,显然,ri2=xi2+yi2+zi2.而刚体对x、y、z轴的转动惯量依次为Jx=mi(yi2+zi2),Jy=(xi2+zi2),Jz=mi(xi2+yi2).则Jx+Jy+Jz= 2 mi(xi2+yi2+zi2)= 2 miri2.这个结论就是转动惯量的垂直轴定理,或称正交轴定理.这个定理本身及其推导方法对转动惯量求解很有指导意义.例 2 从一个均匀薄片剪出一个如图 5 所示的对称的等臂星.此星对C轴的转动惯量为J.求该星对C1轴的转动惯量.C和C1轴都位于图示的平面中,R和r都可看做是已知量.图 5分析与解设星形薄片上任意一质元到过中心O而与星平面垂直的轴O距离为ri,则星对该轴的转动惯量为miri2 = JO,由于对称性,星对C轴及同平面内与C轴垂直的D轴的转动惯量相等,均为已知量J;同样,星对C1轴及同平面内与C1轴垂直的D1轴的转动惯量亦相等,设为J1,等同于垂直轴定理的推导,则JC+JD= 2 J=JO,JC1+JD1= 2 J1=JO,于是有 2 J= 2 J1,即J1=J.4 . 巧用量纲分析法根据转动惯量的定义J=miri2,其量纲应为[ML2],转动惯量的表达式常表现为kma2形式,m是刚体的质量,a是刚体相应的几何长度,只要确定待定系数k,转动惯量问题便迎刃而解.例 3 如图 6 甲所示,求均匀薄方板对过其中心O且与x轴形成α角的轴C的转动惯量.图 6分析与解如图 6 (甲所示为待求其转动惯量的正方形薄板,设其边长为l,总质量为M,对C轴的转动惯量为J=kMl2,过中心O将板对称分割成四个相同的小正方形,各小正方形对过各自质心且平行于C的轴的转动惯量为(kM/ 4 )·(l/ 2 )2=kMl2/ 1 6 .如图 6 乙所示,小正方形的轴与C轴距离为D或d,由平行轴定理,它们对C轴的转动惯量应分别为(kMl2/ 1 6 )+(M/ 4 )D2(两个质心与C轴距离为D的小正方形)或(kMl2/ 1 6 )+(M/ 4 )d2(两个质心与C轴距离为d的小正方形),则有下列等式成立,即kMl2= 2 ((kMl2/ 1 6 )+(M/ 4 )D2)+ 2 ((kMl2/ 1 6 )+(M/4 )D2).整理可得( 3 / 2 )kl2=(D2+d2).而由几何关系,可得D=(l/ 2 )·(/ 2 )sin(π/ 4 +α),d=(l/ 2 )·(/ 2 )sin(π/ 4 -α),故有( 3 / 2 )kl2=(l2/ 8 )[sin2(π/ 4 +α)+sin2(π/ 4 -α)],则k= 1 / 1 2 .于是求得正方形木板对过其中心O的轴的转动惯量为J=( 1 / 1 2 )Ml2,且与角α无关.5 .一些规则几何体的转动惯量一些规则几何体的转动惯量如表 2 所示.表 2三、刚体运动问题例析根据今年将实行的CPhO新提要,刚体运动问题应该要求运用质心运动定理、角动量定理及角动量守恒定律等刚体基本运动规律来求解刚体转动的动力学与运动学问题.下面就此展示四个例题.例 4 在平行的水平轨道上有一个缠着绳子且质量均匀的滚轮,绳子的末端固定着一个重锤.开始时,滚轮被按住,滚轮与重锤系统保持静止.在某一瞬间,放开滚轮.过一定的时间后,滚轮轴得到了固定的加速度a,如图 7 甲所示.假定滚轮没有滑动,绳子的质量可以忽略.试确定:( 1 )重锤的质量m和滚轮的质量M之比;( 2 )滚轮对平面的最小动摩擦因数.图 7分析与解与处理质点的动力学问题一样,处理刚体转动的力学问题,要清楚了解力矩与转动惯量对刚体运动的制约关系.( 1 )当滚轮轴亦即滚轮质心纯滚动而达到恒定的加速度a时,其角加速度为α=a/R,R为滚轮的半径.滚轮可看做质量均匀的圆盘,其关于质心的转动惯量为( 1 / 2 )MR2,分析滚轮受力情况如图 7 乙所示,可知以轮与水平轨道的接触点C为瞬时转动轴考察将比较方便,因为接触点处的力对刚体的这种转动不产生影响.关于C轴,对滚轮形成转动力矩的只有绳子上的张力T,张力T可以通过重锤的运动来确定:相对于接触点C,滚轮的质心的水平加速度为a,重锤相对滚轮质心的线加速度也为a,且方向应沿绳子向下,这两个加速度是由重锤所受到的重力与绳子拉力提供的,重锤的加速度为这两个加速度的矢量和.由牛顿第二定理,有mgtanθ=ma,(mg/cosθ)-T′=ma,则T=T′=m-ma.再研究滚轮,注意到C点到张力T的作用线之距离的几何尺寸,滚轮对C轴的转动惯量可用平行轴定理转换为( 3 / 2 )MR2,对滚轮运用转动定律,有(m-ma)( 1 -(a/))R=( 3 / 2 )MR2·(a/R).解之得m/M= 3 a/ 2 (-a)2.( 2 )对滚轮应用质心运动定理,滚轮质心加速度为a,方向水平,则应有f-Tsinθ=Ma,N-Tcosθ=Mg,其中sinθ=a/,cosθ=g/,那么,动摩擦因数满足μ≥f/N=a/g.在上面解答中,确定滚轮与重锤的相关加速度是本题的“题眼”所在.例 5 如图 8 甲所示,在光滑地面上静止地放置着两根质量均为m,长度均为l的均匀细杆,其中一杆由相等的两段构成,中间用光滑的铰链连接起来,两段在连接点可以弯折但不能分离.在两杆的一端,各施以相同的垂直于杆的水平冲量I.试求两细杆所获得的动能之比.图 8分析与解本题的求解方向是通过质心的动量定理与刚体的角动量定理,求得杆的质心速度及绕质心的角速度,进而求出杆由于这两个速度所具有的动能.如图 8 乙所示,设杆 1 在冲量I作用下,质心获得的速度为vC,杆的角速度为ω,由质心的动量定理,得I=mvC,由刚体的角动量定理,得I·l/ 2 =Jω=( 1 / 1 2 )ml2ω.则杆 1 的动能为Ek 1 =( 1 / 2 )mvc2+( 1 / 2 )Jω2=( 1 / 2 )m(I/m)2+( 1 / 2 )J(Il/ 2 J)2=(I2/ 2 m)+( 3 I2/ 2 m)= 2 I2/m.如图 8 丙所示为杆 2 的左、右两段受力情况,当在杆 2 左端作用冲量I时,在两段连接处,有一对相互作用的冲量I1与I1′,它们大小相等,方向相反.由于两段受力情况不同,各段的质心速度及角速度均不同,但在连接处,注意到“不分离”的条件,左段的右端与右段的左端具有相同的速度.现对两段分别运用动量定理和角动量定理,对杆 2 左段,有I-I1=(m/ 2 )vC1,(I+I1)·(l/ 4 )=(ml2/ 9 6 )ω1,对杆 2 右段,有I1′=(m/ 2 )vC 2 ,I1′·l/ 4 =(ml2/ 9 6 )ω2.由连接处“不分离”条件得左、右两段的速度与角速度的关系是vC 1 -ω1·(l/ 4 )=ω2·(l/ 4 )+vC 2 ,由以上各式,可得ω1= 1 8 I/ml,ω2=- 6 I/ml,vC 1 = 5 I/ 2 m,vC 2 =I/ 2 m,于是可计算杆 2 的动能为Ek 2 =( 1 / 2 )·(m/ 2 )(vC 1 2+vC 2 2)+( 1 / 2 )·(J/ 2 )(ω12+ω22)= 7 I2/ 2 m.易得 1 、 2 两杆的动能之比为E1∶E2= 4 ∶7 .本题求解中,抓住杆 2 左、右两段连接处速度相同的相关关系,全盘皆活.例 6 形状适宜的金属丝衣架能在如图 9 所示的平面里的几个平衡位置附近做小振幅摆动.在位置甲和位置乙里,长边是水平的,其它两边等长.三种情况下的振动周期都相等.试问衣架的质心位于何处摆动周期是多少(第 13 届IPhO试题)图 9图 10分析与解本题涉及刚体做简谐运动的问题,即复摆的运动规律.一个在重力作用下绕水平轴在竖直面内做小角度摆动的刚体称为复摆或物理摆.我们先来推导复摆的周期公式.如图 1 0 所示,设O为转轴(悬点),质心C与转轴距离(等效摆长)为l,质量为m,对转轴的转动惯量为J,最大偏角θ<5°.由机械能守恒定律,可得mgl( 1 -cosθ)=( 1 / 2 )Jω′2.①ω′是刚体的质心通过平衡位置时的角速度.对摆长l、质量m的理想单摆而言,有mgl( 1 -cosθ)=( 1 / 2 )mv2=( 1 / 2 )m(lω)2=( 1 / 2 )m(Aω0)2.②②式中ω0是摆球(质点)通过平衡位置时的角速度,A是振幅(A = l),ω0是摆球振动的圆频率.可知ω0=.将①式变形为mgl( 1 -cosθ)=( 1 / 2 )Jω′2=( 1 / 2 )m(l·ω′)2=( 1 / 2 )m(Aω0′)2,比较②式,即对复摆与单摆作等效变换,可得复摆小幅振动(亦为谐振)的圆频率为ω0′=ω0=,那么复摆的周期公式为T= 2π.图 11由题设条件确定衣架的质心位置及转动惯量,依据复摆周期公式,即可确定三种情况下相同的摆动周期T.如图 11 所示,质心O到转轴A、B、C的距离设为a、b、c,由图 9 甲所示衣架的平衡位置可知,质心O必在衣架长边的中垂线AB上,在三种情况下衣架对转轴A、B、C的转动惯量依次为JA=JO+ma2,JB=JO+mb2,JC=JO+mc2.式中JO为所设衣架对质心O的转动惯量,m是衣架总质量.因为三种情况下的周期相同,故有(JO+ma2)/mga=(JO+mc2)/mgc,即(JO-mac)(c-a)= 0 ,显然c≠a,则可知JO=mac;又有(JO+ma2)/mga=(JO+mb2)/mgb,即(JO-mab)(b-a)= 0 ,此式中因c>b,故(JO- mab)≠ 0 ,则必有a=b,即质心位于AB之中点.衣架周期为T = 2π= 2π.根据图 9 标注的尺寸可知a= 5 cm,c=cm≈ 2 1 . 6 cm,代入后得T≈1. 0 3 s.本题是国际物理奥林匹克的一道赛题,题意简洁,解答方法也很多,笔者给出的这种解法应该说比较严密且巧妙.最后,我们再尝试解答另外一道比较繁难的国际物理奥林匹克竞赛试题,该题涉及动量矩守恒定律的运用.例 7 如图 1 2 所示,一个质量为m,半径为RA的均匀圆盘A在光滑水平面xOy内以速度v沿x轴方向平动,圆盘中心至x轴的垂直距离为b.圆盘A与另一静止的、其中心位于坐标原点O的均匀圆盘B相碰.圆盘B的质量与A相同,半径为RB.假定碰撞后两圆盘接触处的切向速度分量(垂直于连心线方向的速度)相等,并假设碰撞前后两圆盘沿连心线方向的相对速度大小不变.在发生碰撞的情况下,试求:( 1 )碰后两圆盘质心速度的x分量和y分量,结果要以给定的参量m、RA、RB、v和b表示;( 2 )碰后两圆盘的动能,结果要以给定的参量m、RA、RB、v和b表示.(第 24 届IPhO试题)分析与解( 1 )本题情景是质量相同的运动圆盘A与静止圆盘B在水平面上发生非弹性斜碰.碰撞前后,质心动量守恒——系统不受外力;对O点的角动量守恒——外力冲量矩为零;动能不守恒——碰撞后两圆盘接触处的切向速度分量相等,必有摩擦力存在,动能有损失.本题给出诸多的附加条件,除了根据动量守恒与角动量守恒列出基本方程外,还必须根据附加条件给出足够的补充方程,并适当选用速度分量,方可最终得解.图 12 图 13如图 13 所示,设碰撞时两盘质心连线与x轴成θ角,由几何关系可知b = (RA + RB)sinθ.对系统,在法向与切向动量均守恒,即mvsinθ=mvAt+mvBt,mvcosθ=mvAn+mvBn,式中,vAt、vBt、vAn、vBn是A、B盘碰撞后沿切向与径向的质心速度;系统对O点的角动量守恒即mvb=JAωA+mvAt(RA+RB)+JBωB,该式中,JA=( 1 / 2 )mRA 2 ,JB=( 1 / 2 )mRB 2 ,ωA、ωB为两盘碰撞后的角速度(待定).注意碰撞后A盘既有转动又有平动,对O点的角动量由两部分组成,而B盘质心在O点,故角动量仅为JBωB.上述三个方程涉及六个未知量,需列出补充方程.根据两盘接触处切向速度相同有vAt-ωARA=vBt+ωBRB,根据两盘法向相对速度不变有vcosθ=vBn-vAn.对B盘,由动量定理和角动量定理,摩擦力f的作用是f·Δt=mvBt,f·RB·Δt=JBωB,即mvBtRB=JBω B.由上述六个方程,解得ωA=vsinθ/ 3 RA,ωB=vsinθ/ 3 RB,vAt=( 5 / 6 )vsinθ,ωBt=( 1 / 6 )vsinθ,vAn= 0 ,vBn=vcosθ.碰后两盘的质心速度的x分量分别为vAx=vAtsinθ+vAncosθ=( 5 / 6 )vsin2θ,vBx=vBtsinθ+vBncosθ=( 1 / 6 )vsin2θ+vcos2θ,碰后两盘的质心速度的y分量分别为vAy=vAtcosθ-vAnsinθ=( 5 / 6 )vsinθcosθ,vBy=vBtcosθ-vBnsinθ=-( 5 / 6 )vsinθcosθ,其中sinθ=b/(RA+RB),cosθ=/(RA+RB).( 2 )各圆盘的动能是各盘质心平动动能与圆盘转动动能之和,这里不再赘述,答案是EA= 3 mv2b2/ 8 (RA+RB),EB=( 1 / 2 )mv2( 1 -( 11 b2/ 1 2 (RA+RB)2)).四、CPhO竞赛训练题1 .如图 1 4 所示,质量为m的均匀圆柱体的截面半径为R,长为2 R.试求圆柱体绕通过质心及两底面边缘的转轴(如图中的Z1、Z2轴)的转动惯量J.图 14 图 152 .如图 15 所示,匀质立方体的边长为a,质量为m.试求该立方体绕对角线轴PQ的转动惯量J.3 .椭圆细环的半长轴为A,半短轴为B,质量为m(未必匀质),已知该环绕长轴的转动惯量为JA,试求该环绕短轴的转动惯量JB.4 .在一根固定的、竖直的螺杆上有一个螺帽,螺距为s,螺帽的转动惯量为J,质量为m.假定螺帽与螺杆间的动摩擦因数为零,螺帽以初速度v0向下移动,螺帽竖直移动的速度与时间有什么关系这是什么样的运动重力加速度为 g .5 .如图 16 所示,两个质量和半径均相同的实心圆柱轮,它们的质心轴互相平行,并用一轻杆相连,轴与轴承间的摩擦忽略不计.两轮先以共同的初速度v0沿水平方向运动,两轮的初角速度为零,如图1 6 甲所示.然后同时轻轻地与地面相接触,如图 1 6 乙所示,设两轮与地面之间的动摩擦因数分别为μ1和μ2(μ1>μ2).试求两轮均变为纯滚动所需的时间及纯滚动后的平动速度大小.图 16 图 176 .如图 17 所示,光滑水平地面上静止地放着质量为M、长为l的均匀细杆.质量为m的质点以垂直于杆的水平初速度v0与杆的一端发生完全非弹性碰撞.试求:( 1 )碰后系统质心的速度及绕质心的角速度;( 2 )实际的转轴(即静止点)位于何处7 .如图 1 8 所示,实心圆柱体从高度为h的斜坡上由静止做纯滚动到达水平地面上,且继续做纯滚动,与光滑竖直墙发生完全弹性碰撞后返回,经足够长的水平距离后重新做纯滚动,并纯滚动地爬上斜坡.设地面与圆柱体之间的动摩擦因数为μ,试求圆柱体爬坡所能达到的高度h′.图 18 图 198 .如图 19 所示,半径为R的乒乓球绕质心轴的转动惯量为J=( 2 / 3 )mR2,m为乒乓球的质量.乒乓球以一定的初始条件在粗糙的水平面上运动,开始时球的质心速度为vC0,初角速度为ω0,两者的方向如图 1 8 所示.已知乒乓球与地面间的动摩擦因数为μ.试求乒乓球开始做纯滚动所需的时间及纯滚动时的质心速度.9 .一个均匀的薄方板的质量为M,边长为a,固定它的一个角点,使板竖直悬挂,板在自身的重力作用下,在方板所在的竖直平面内摆动.在通过板的固定点的对角线上距固定点的什么位置(除去转动轴处之外),粘上一个质量为m的质点,板的运动不会发生变化已知对穿过板中心而垂直于板的轴,方板的转动惯量为J=( 1 / 6 )Ma2.图 201 0 .如图 20 所示,一个刚性的固体正六角棱柱,形状就像通常的铅笔,棱柱的质量为M,密度均匀.横截面呈六边形且每边长为a.六角棱柱相对于它的中心轴的转动惯量为J=( 5 / 12 )Ma2,相对于棱边的转动惯量是J′=( 17 / 1 2 )Ma2.现令棱柱开始不均匀地滚下斜面.假设摩擦力足以阻止任何滑动,并且一直接触斜面.某一棱刚碰上斜面之前的角速度为ωi,碰后瞬间角速度为ωf,在碰撞前后瞬间的动能记为Eki和Ekf,试证明:ωf=sωi,Ekf=rEki,并求出系数s和r的值.(第 2 9 届IPhO试题)五、训练题简答图 21 图 221 .解:如图2 1 所示,对图所示的Z1、Z2、Z坐标系与Z3、Z4、Z坐标系运用正交轴定理,有J1+J2+J5=J3+J4+J5,J3=( 1 / 2 )mR2,J4=( 7 / 1 2 )mR2,J1=J2,则J1=J2=( 13 / 24 )mR2.2 .解:将立方体等分为边长为a/ 2 的八个小立方体,依照本文例3 分析法用量纲求解,有kma2= 2 ·k(m/ 8 )(a/ 2 )2+ 6 ·[k(m/ 8 )(a/ 2 )2+(m/ 8 )(a/)2],则k= 1 / 6 ,J=( 1 / 6 )ma2.3 .解:由正交轴定理JA+JB=mi(xi2+yi2)及椭圆方程(x2/A2)+(y2/B2)= 1 ,得JB=mA2-(A2/B2)JA.4 .解:由机械能守恒,得mgs=( 1 / 2 )J(ω t2-ω O2)+( 1 / 2 )m(vt2-v02),又ωt/vt=ω0/v0= 2π/s,可得vt2-v02= 2 m/(( 4π2J/s2)+m)g= 2 g′s.故螺帽沿螺杆竖直向下做匀加速直线运动,有vt=v0+g′t,g′=m/((4π2J/s2)+m).5 .解:两轮相对于地面动量守恒,因为μ1>μ2,轮 1 先做纯滚动,轮 2 做纯滚动所需时间为t,则系统从触地到均做纯滚动时对地面角动量守恒,得2 mv0R= 2 mvtR+ 2 ·( 1 / 2 )mR2ω,又vt=ωR,解得vt=( 2 / 3 )v0,ω= 2 v0/ 3 R,t=ω/α2=ωR/ 2μ2g=v0/ 3 μ2g.6 .解:碰后系统质心位置从杆中点右移为Δx=(m/(M+m))·(l/ 2 ).由质心的动量守恒,求得质心速度为vC=(m/(M+m))v0.由角动量守恒并考虑质心速度与角速度关系,求得瞬时轴在杆中心左侧x=l/ 6 处,ω= 6 mv0/(M+ 4 m)l.7 .解:纯滚动时,无机械能损失,v=Rω.非纯滚动时,运用动量定理及角动量定理,求上坡前的质心速度及角速度,根据机械能守恒即可求得.h′=h/ 9 .8 .解:乒乓球与地接触点O即滚动又滑动且达到纯滚动时,由角动量守恒,得mRvC 0 -Jω0=mRvC+Jω,即vC 0 -vC=( 2 / 3 )R(ω0+ω),达到纯滚动时,有vC=Rω,可得到纯滚时质心速度为vC=( 3 / 5 )vC 0 -( 2 / 3 )Rω0.其中,若vC 0 >( 2 / 3 )Rω0,纯滚动后,球向右顺时针方向做纯滚动;vC 0 <( 2 / 3 )Rω0,则纯滚动后,球向左逆时针方向做纯滚动.质心做匀加速运动,达到纯滚时间设为t,由vC=vC 0 -μgt,可得t= 2 (vC 0 +Rω0)/ 5 μg.9 .解:原薄方板对悬点的转动惯量J0=( 2 / 3 )Ma2,粘上质量为m的质点后有J=( 2 /3 )Ma2+m·x2.振动周期相同,应有J0/Mgl=J/(M+m)gl′,l′=(mx+Ml)/(M+m),l=(/ 2 )a,解得x=( 2 / 3 )a.1 0 .解:设以某棱为轴转动时间Δt,此碰撞瞬间前后的角速度分别为ωi、ωf,时间短,忽略重力冲量及冲量矩,知矢量关系如图23 所示.图 23对质心有NΔt=Ma(ωf-ωi)sin 3 0 °,-fΔt=Ma(ωf-ωi)cos 3 0 °,对刚体有fΔtacos 3 0 °-NΔtasin 3 0 °=( 5 / 1 2 )Ma2(ωf-ωi).解得ωf=( 11 / 17 )ωi,s= 11 / 17 ,r=s2= 1 2 1 / 28 9 .21。

高中物理奥林匹克竞赛专题——刚体力学(69张)

高中物理奥林匹克竞赛专题——刚体力学(69张)



故刚体上角速度矢量的大小和方向都相同,与基点无关。11
§2、 刚体的质心及其运动定理
㈠刚体的质心
y
(1)质心计算公式


• 质量分散分布:rC m iri/ m i
o
x
xC m ixi/ m i yC m iyi/m i zCm izi/m i • 质量连续分布:rCrdm /dm
• 转动惯量的大小取决于刚体质量对转轴的分 布情况,单位是:kg.m2
• 把转动定理 M外Iβ和质心定理 F 外m a C 进行对照,可知:
m是物体平动时惯性大小的量度,I 则是物体转 动时惯性大小的量度,因此称为转动惯量。
I:\桌面\演示内容\刚体力学\曲面桌滚盘演示.rmvb桌面\1演8 示内容
dr
I2
R 2
r3d r2
R 1
1 4r4|R R 1 21 2
(R 22 m R 12)(RFra bibliotek24R 14)
1 2m (R 12R 22) ( 证 毕 )
令 R1R2R,即得细圆环的转动惯量:I mR2

R10,R2R,即得圆盘的转动惯量: I

x B m m B A x A [R 2 (R /(2 R )2 /2 )2 ]R 2 1 3 R 2 R 6
13
例8.3:求半径为a的匀质半球的质心。
解:建立图示坐标系o-xyz,由对
称性分析,质心必在 z 轴上,即
xc= 0 , yc= 0 ,在坐标 z 处,取高 dz 为 dz 的薄圆盘状质元
x C x/ d d ,y m m C y/ d d ,z m C m z/ d dm m

2020人大附中高中物理竞赛辅导课件02刚体力学:平行轴定理(共15张PPT)

2020人大附中高中物理竞赛辅导课件02刚体力学:平行轴定理(共15张PPT)
则有:J=JC+md2。
这个结论称为平行轴定理。
右图所示刚体对经过棒端 且与棒垂直的轴的转动惯量
mL
如何计算?(棒长为L、球半
径为R)
mO
J L1
1 3
mL L2
Jo
2 5
mo R2
J L2 J0 m0d 2 J0 m0(L R)2
J
1 3
mL L2
2 5
mo R2
mo (L R)2、转动定律解:棒下摆为加速过程,外
力矩为重力对O的力矩。 棒 O
上取质元dm,当棒处在下摆
l
角时,该质量元的重力对轴
的元力矩为
dM l cosgdm gl cosdl
dm dl
gdm
dM l cosgdm gl cosdl O
重力对整个棒的合力矩为
l
M= dM
L
0 gl
cosdl
gL2 cos 1 m gLcos
2
2
代入转动定律,可得
M
1 mgLcos
2
3g cos
J
1 m L2
2L
3
dm dl
gdm
M J J d J d d J d dt d dt d
Md Jd
代入M=1 mglcos
2
1 m gLcosd Jd
2
1 mgLcosd
Jd
02
0
1 m gLsin 1 J 2
2
2
mgL sin 3g sin
J
L
J 1 m L2 3
i
i
i
合 外 力 矩M
M J
0 M J
J
M J
M J

2020届高中物理竞赛力学部分 第7章 刚体力学(共96张ppt)

2020届高中物理竞赛力学部分 第7章 刚体力学(共96张ppt)
上页 下页 返回 结束
第七章 刚体力学
§7.3 刚体定轴转动的角动量·转动惯量
§7.3.1 刚体定轴转动对轴上一点的角动量
1.转轴为对称轴
z
如L1图,对r1O 点m1v1 L2 r2 m2v2
L1 r1m1v1 L2 r2m2v2
因m1= m2= m
r1
vc
v


r
v
C
vc


r
A
x
y
vc
P


r
O
实际上,当柱体绕中心转动,其中心轴前进的距离
yc r
r
微分 vc r
C

r
y
ac r
2r
上页 下页 返回 结束
第七章 刚体力学
上页 下页 返回 结束
第七章 刚体力学
[例题] 如图所示, 初时方轮一尖角在链槽夹角处,经转
回到原来变量 y,有 y R[1 1 ch(k 2x / R)] 2 它表示链座曲线为一悬链连.
上页 下页 返回 结束
第七章 刚体力学
§7.2 刚体的动量和质心运动定理
§7.2.1 刚体的质心 §7.2.2 刚体的动量和质心运动定理
上页 下页 返回 结束
第七章 刚体力学
§7.2 刚体的动量和质心运动定理

vB

v
刚体绕过基点的角速度
v r
v

vB


r
上页 下页 返回 结束
第七章 刚体力学
4.无滑滚动(纯滚动)条件
(1)有滑动滚动和无滑动滚动
有滑滚动——接触面之间有相对滑动的滚动(摩擦力不够大).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

其轴的转动惯量与圆盘的相同。
球体绕其直径的转动惯量
将均质球体分割成一系
列彼此平行且都与对称轴垂
直得圆盘,则有
JO
1 dm r 2 2
1 2
r 2dz
r
2
R 1( R2 z2 )2 dz
R 2
8 R5 2 mR2
15
5
z
r
z
dz R
om
JO
2 mR2 5
设任意物体绕某固定轴O的转动惯量为J,绕 通过质心而平行于轴O的转动惯量为Jc,则有
0 t 2 gt R
达到纯滚动时有: vc R
解得作纯滚动经历的时间:
t v0 2g h R
3 g
3 g
2)达到纯滚动时经历的距离:
x
v0t
1 2
at 2
v02
3 g
1 2
g
v02
3g 2
5v02
5h R
18 g 9
例 5 质量为 mA 的物体 A 静止在光滑水平面上,
和一质量不计的绳索相连接,绳索跨过一半径为 R、质
J 1 ml2 3
球壳: 转轴沿直径
J 2 mr2 3
竿









飞轮的质量为什么

大都分布于外轮缘?

例1 一长为 l 质量为 m 匀质细杆竖直放置,其
下端与一固定铰链 O 相接,并可绕其转动. 由于此竖
直放置的细杆处于非稳定平衡状态,当其受到微小扰
动时,细杆将在重力作用下由静止开始绕铰链O 转动.
压力N 和刹车片与圆盘间的摩擦系数均已被实验测出.试
问经过多长时间圆盘才停止转动?
解: 在圆盘上取面积微元,
0
面积元所受对转轴的摩擦力矩
大小
rdFf
r
N πR2
dldr
dr r dFf
dl
刹车片
面积微元所受摩擦力矩 圆环所受摩擦力矩
rdFf
r
N πR2
dldr
dM rdFf
圆盘所受摩擦力矩
mBg FT2 mBa
RFT2 RFT1 J
a R
a
mB g
mA mB mC 2
FT1
mA
mAmB g mB mC
2
A mA
FT1C mC FT2Fra bibliotekFT2
(mA mC 2)mB g mA mB mC 2
如令 mC 0,可得
mB B
FT1
FT2
mAmB g mA mB
(2) B由静止出发作匀加速直线运动,下落的速率
v 2ay
2mB gy
mA mB mC / 2
(3) 考虑滑轮与轴承间的
摩擦力矩 Mf ,转动定律
RFT2 RFT1 Mf J
结合(1)中其它方程
FT1 mAa
mBg FT2 mBa
RFT2 RFT1 M f J
a R
FT1
M f FT2
FT2
FN
mB PB
mAFT1 PA
Nrdr
πR 2
2 πr 0
dl
2Nr 2dr
R2
M
dM
R 2Nr 2dr
0 R2
2 NR
3
圆盘角加速度 M 4 N
J 3 MR
停止转动需时 t 0 3 mR0 4 N
0
R
dr r dFf
dl
* 例3 如图一斜面长 l = 1.5m, 与水平面的夹角 = 5o.
有两个物体分别静止地位于斜面的顶端, 然后由顶端沿
试计算细杆转动到与竖直线成 角时的角加速度和角
速度.
解 细杆受重力和
铰链对细杆的约束力
FN
作用,由转动定律得
1 mgl sin J
2
m FN
l2
l oP
1 mgl sin J
2 式中 J 1 ml2
3
得 3g sin
2l
由角加速度的定义
d d d d dt d dt d
O
Or
l 2 O´ dr l 2
O´ dr l
r 设棒的线密度为 ,取一距离转轴 OO´ 为 处的
质量元 dm dr dJ r2dm r2dr
转轴过中心垂直于棒 J 2 l / 2 r 2dr 1 ml2
0
12
转轴过端点垂直于棒
J l r 2dr 1 ml2
0
3
圆盘、圆柱绕中心轴的转动惯量
J 1 mr2 2
圆柱体: 转轴沿几何轴
J 1 mr2 2
细棒: 转轴通过中心与棒垂直
J 1 ml 2 12
球体: 转轴沿直径
J 2 mr2 5
转轴沿直径
J 1 mr2 2
圆筒:
转轴沿几何轴
J
1 2
m(r12
r22 )
圆柱体:
转轴通过中心与几何轴垂直
J 1 mr2 1 ml2
4
12
细棒: 转轴通过端点与棒垂直
对于质量为m 、半径为 R 、厚为 l 的均匀圆盘
取半径为 r 宽为 dr 的薄圆环,则有
Z
dm 2 rdr l
dJ r2dm 2lr3dr
O r dr
lR
J dJ R 2 lr3dr 1 R4l
0
2
由于
m
R2l
则有 J 1 mR2 2
可见,转动惯量与厚度 l 无关。所以,实心圆柱对
y
N
x
C
Ff mg
aC
质心运动方程
mg sin Ff maC
转动定律 Ff R J
角量、线量关系
y
N
x
C
Ff mg
aC
a aC R
ma
mg
sin
Ja R2
a
mgR 2 mR 2
s in
J
a1 2g sin 3 a2 g sin 2
实心圆拄 t1 2l a1 空心圆筒 t2 2l a2
➢ 刚体的运动形式:平动、转动.
➢ 平动:若刚体中所有点的运动 轨迹都保持完全相同,或者说刚 体内任意两点间的连线总是平行 于它们的初始位置间的连线.
刚体平动
质点运动
➢ 定轴转动:刚体中所有的点都绕同一直线做圆周 运动 . 转动又分定轴转动和非定轴转动 .
➢ 刚体的平面运动 .
+ ➢ 刚体的一般运动 质心的平动 绕质心的转动
J Jc md 2
n
n
J miri2 mi Ri2 d 2 2dRi cos
i 1
i 1
y
0 n
n
nn
mi Ri2 mid 2 2d mmiiRxii cosi
i 1
i 1
ii11
Ri mi
C θi
ri
dO
x
Ma 2 J圓 2
J杆 Jc M 2a 2
Ma2 4Ma2 3
有许多现象都可以用角 动量守恒来说明. 它是自然 界的普遍适用的规律.
➢花样滑冰 ➢跳水运动员跳水
飞轮
2
航天器调姿
1
例1 两个转动惯量分别为 J1 和 J2 的圆盘 A和 B. A 是机器上的飞轮, B 是用以改变飞轮转速的离合器圆
盘. 开始时, 他们分别以角速度ω1 和ω2 绕水平轴转
动. 然后,两圆盘在沿水平轴方向力的作用下.啮合为 一体, 其角速度为 ω, 求 齿轮啮合后两圆盘的角速度.
它们间的摩擦力矩为
mB B
M f 再求线加速度及 绳的张力.
A
mA
FT1
FN
mA FT1
PA
O
x
FT1
FC
PC
FT2
C
mC FT2
mB B
FT2
O
mB PB y
解 (1)隔离物体分 别对物体A、B 及滑轮作 受力分析,取坐标如图, 运用牛顿第二定律 、转 动定律列方程 .
FT1 mAa
解: 系统角动量守恒
J11 J22 (J1 J2 )
J11 J 22
(J1 J2 )
例2 一杂技演员 M 由距水平跷板高为 h 处自由下
落到跷板的一端 A, 并把跷板另一端的演员 N 弹了起来.
设跷板是匀质的, 长度为 l , 质量为 m', 跷板可绕中部
支撑点 C 在竖直平面内转动, 演员的质量均为 m. 假定
例4 有一缓慢改变倾角的固定斜面,如图所示。 一质量为m ,半径为R 的匀质圆柱体从高h 处由静止 沿光滑斜面滑下,紧接着沿粗糙水平面运动。已知
水平面与圆柱体间的摩擦系数,求:
1)圆柱体沿水平面运动多长时间后开始作纯滚动。 2)圆柱体达到纯滚动前经历的水平距离。
C
h
r N
CC
r
x
f mgr
解:1)沿
Mf 2
R
三 角动量定理与角动量守恒
刚体定轴转动的角动量
L mirivi ( miri2 )
z
i
i
L J
刚体定轴转动的角动量定理
M dL d(J)
dt dt
O ri vi
mi
t2 Mdt
t1
L2 L1
dL
J2
J1
非刚体定轴转动的角动量定理
t2 t1
Mdt
J 22
J11

刚体定轴转动的角动量定理
t2 t1
Mdt
J2
J1
三 刚体定轴转动的角动量守恒定律
➢ 若 M 0 ,则 L J 常量 .
相关文档
最新文档