1基本图形及其位置关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
章节第四章课题基本图形及其位置关系课型复习课教法讲练结合
教学目标(知识、能力、教育)1.了解线段、射线、直线、角等简单平面图形,了解平面上两条直线的平行和垂直关系.了解线段、平行、垂直的有关性质
2.会进行有关角度的换算.了解补角、余角J顶角,知道等角的余角相等,等角的补角相等、对顶角相等.掌握直线平行的条件以及平行线的特征.
教学重点线段、平行、垂直的有关性质
教学难点直线平行的判定方法
教学媒体
教学过程
一:【课前预习】
(一):【知识梳理】
1.直线、射线、线段之间的区别:
联系:射线是直线的一部分。线段是射线的一部分,也是直线的一部分.
2.直线和线段的性质:
(1)直线的性质:①经过两点直线,即两点确定一条直线;
②两条直线相交,有交点.
(2)线段的性质:两点之间的所有连线中,线段最短,即两点之间,线段最短.
3.角的定义:有公共端点的所组成的图形叫做角;角也可以看成是由
一条射线绕着它的端点旋转而成的图形.
(1)角的度量:把平角分成180份,每一份是1°的角,1°=6 0′,1′= 6 0″
(2)角的分类:
(3)相关的角及其性质:
①余角:如果两个角的和是直角,那么称这两个角互为余角.
②补角:如果两个角的和是平角,那么称这两个角互为补角.
③对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.
④互为余角的有关性质:①∠1+∠2=90° ∠1、∠2互余;②同角或等角的余角相等,如果∠l十∠2=90○,∠1+∠3= 90○,则∠2 ∠3.
⑤互为补角的有关性质:①若∠A +∠B=180○ ∠A、∠B互补;②同角或等角的补角相等.如果∠A+∠C=180○,∠A+∠B=180°,则∠B ∠C.
⑥对顶角的性质:对顶角相等.
(4)角平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.
4.同一平面内两条直线的位置关系是:相交或平行
5.“三线八角”的认识:三线八角指的是两条直线被第三条直线所截而成的八个角.正确认识这八个角要抓住:同位角即位置相同的角;内错角要抓住“内部,两旁”;
同旁内角要抓住“内部、同旁”.
6.平行线的性质:(1)两条平行线被第三条直线所截,角相等,角相等,同旁内角互补.(2)过直线外一点直线和已知直线平行.(3)两条平行线之间的距离是指在一条直线上
7.任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离.
8.平行线的定义:在同一平面内.的两条直线是平行线。
9.如果两条直线都与第三条直线平行,那么.这两条直线互相平行.
10.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错
角相等.那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.这三个条件都是由角的数量关系(相等或互补)来确定直线的位置关系(平行)的,因此能否找到两直线平行的条件,关键是能否正确地找到或识别出同位角,内错角或同旁内角.11.常见的几种两条直线平行的结论:
(1)两条平行线被第三条直线所截,一组同位角的角平分线平行.
(2)两条平行线被第三条直线所截,一组内错角的角平分线互相平行.
(二):【课前练习】
1.如果线段AB=5cm,BC= 3cm,那么A、C两点间的距离是()
A.8 cm B、2㎝ C.4 cm D.不能确定
2.计算:⑴132°19′42″+ 2 6°3 0′28″=_____⑵34.51°= 度分秒.
⑶92 o3″-5 5°2 0′4 4″=_______;⑷33 °15′16″×5=_____
3.下列说法中正确的个数有()
①线段AB和线段BA是同一条线段;②射角AB和射线BA是同一条射线;
③直线AB和直线BA是同一条直线;④射线AC在直线AB上;⑤线段AC在
射线AB上.A.1个B.2个C.3个D.4个
4.如图,直线a ∥b,则∠A CB=________
5.如果一个角的补角是150○,那么这个角的余角是____________
二:【经典考题剖析】
1.已知线段AB=20㎝,C为 AB中点,D为CB 上一点,E为DB的中点,且EB=3 ㎝,
则CD= ________cm.
解:4 点拨:由题意,BC=0.5AB=10cm,DB=2 EB=6cm,则CD=BC-DB=10-6=4(cm
2.如图所示,AC为一条直线,O是AC上一点,∠AOB=120°
OE、OF分别平分∠AOB和∠BOC,.
(1)求∠EOF的大小;
(2)当OB绕O旋转时,OE、OF仍为∠AOB和∠BOC平分线,
问:OF、OF有怎样的位置关系?你能否用一句话概括出这个命题
3.将一长方形纸片,按图的方式折叠,BC、BD为折痕,则∠CBD
的度数为()
A.60° B.75° C.90° D.95°
4.如图,AB∥EF∥DC,EG∥BD,则图中与∠1相等的角共有()
A.6个 B.5个 C.4个 D.2个
5.如图,直线AD与AB、CD相交于 A、D两点,EC、BF与
AB、CD交于点E、C、B、F,且∠l=∠2,∠B=∠C,
求证:∠A=∠D.
三:【课后训练】
1.下列每组数分别是三根小木棒、的长度,用它们能摆成三角形的一组是()
A.1cm,2cm,3cm B.3cm,4cm,5cm
C.5cm,7cm,13cm D.7cm,7cm,15cm
2.如图,AB⊥CD,AC⊥BC,图中与∠CAB互余的角有()
A.0个 B.l个 C.2个 D.3个
3.如图,已知∠AOC与∠B都是直角,∠BOC=59○.
(1)求∠AOD的度数;
(2)求∠AOB和∠DOC的度数;
(3)∠A OB与∠DOC有何大小关系;
(4)若不知道∠BOC的具体度数,其他条件不变,这种关系仍然成立吗?
4.如图,AB∥CD,直线EF分别交A B、CD于点E、F,EG平分∠B EF,交CD于点G,
∠1=50○求∠2的度数.
8.如图,已知B D⊥AC,EF⊥AC,D、F为垂足,G是AB上一点,且∠l=∠2.
求证:∠AGD=∠ABC.
四:【课后小结】