结构动力学习题分析
结构动力学题解(1)
题图
23 l 3 = 1536 EI
则系统的自振频率
ω=
1 1536 EI = mδ 23ml 3 1 1536 EI = 2 ω 1536 EI − 23ml 3ω 2 1− ω2 1536 EI 23l 3 ⋅ ⋅F 1536 EI − 23ml 3ω 2 1536 EI
2 2 1 l12 l2 l12 k1 + l2 k2 = 1 / m + 3 2 3EI (l + l ) (l + l ) k k mδ 1 2 1 2 1 2
(e) 解,考虑质体水平单位位移时的系统劲度。
k1 = k3 = k2 =
12 EI 2 h3
3EI 2 h3
令 δ t 为两支座弹簧无限刚度时单位力作用下质体的垂直位移
1 1 l1l2 2 l1l2 l12 l22 δt = × (l1 + l2 ) × × = 3 EI (l1 + l2 )2 3 (l1 + l2 )2 2 3EI (l1 + l2 )
总变形: δ = δ t + δ M 其自振频率: ω =
F (t ) = F sin ω t
y0 =
l3 3EI 3EI ml 3
题图
系统自振频率 ω =
动力系数 µ =
1 3EI = 2 ω 3EI − ml 3ω 2 1− ω2 3EI l3 Fl 3 ⋅ ⋅ F = 3EI − ml 3ω 2 3EI 3EI − ml 3ω 2
&& , Fi1 = Fi 2 = mY
两柱的侧移劲度相等为: k =
3i 3EI = 3 (单位位移下的水平剪力) l2 l
结构动力学习题解析
结构动力学习题2.1 建立题2.1图所示的三个弹簧-质点体系的运动方程(要求从刚度的基本定义出发确定体系的等效刚度)。
题2.1图2.2 建立题2.2图所示梁框架结构的运动方程(集中质量位于梁中,框架分布质量和阻尼忽略不计)。
题2.2图2.3 试建立题2.3图所示体系的运动方程,给出体系的广义质量M、广义刚度K、广义阻尼C和广义荷载P(t),其中位移坐标u(t)定义为无重刚杆左端点的竖向位移。
题2.3图2.4 一总质量为m1、长为L的均匀刚性直杆在重力作用下摆动。
一集中质量m2沿杆轴滑动并由一刚度为K2的无质量弹簧与摆轴相连,见题 2.4图。
设体系无摩擦,并考虑大摆角,用图中的广义坐标q1和q2建立体系的运动方程。
弹簧k2的自由长度为b。
题2.4图2.5 如题2.5图所示一质量为m1的质量块可水平运动,其右端与刚度为k的弹簧相连,左端与阻尼系数为c的阻尼器相连。
摆锤m2以长为L的无重刚杆与滑块以铰相连,摆锤只能在图示铅垂面内摆动。
建立以广义坐标u和θ表示的体系运动方程(坐标原点取静平衡位置)。
题2.5图2.6如题2.6图所示一质量为m1的质量块可水平运动,其上部与一无重刚杆相连,无重刚杆与刚度为k2的弹簧及阻尼系数为c2的阻尼器相连,m1右端与刚度为k1的弹簧相连,左端与阻尼系数为c1的阻尼器相连。
摆锤m2以长为L的无重刚杆与滑块以铰相连,摆锤只能在图示铅垂面内摆动。
建立以广义坐标u和θ表示的体系运动方程(坐标原点取静平衡位置,假定系统作微幅振动,sinθ=tanθ=θ)。
计算结果要求以刚度矩阵,质量矩阵,阻尼矩阵的形式给出。
3.1单自由度建筑物的重量为900kN,在位移为3.1cm时(t=0)突然释放,使建筑产生自由振动。
如果往复振动的最大位移为2.2cm(t =0.64s),试求:(1)建筑物的刚度k;(2)阻尼比ξ;(3)阻尼系数c。
3.2 单自由度体系的质量、刚度为m=875t,k=3500kN/m,且不考虑阻尼。
结构动力学题解(2)
1−ξ −1
−1 1 ξ2 = 2 = 0 解得 ξ1 = 3 − 2ξ 2
1 k1ξ1 k1 k1ξ1 2k1 ω 2 m1 把 ξ1 = 代入 ξ = 可得: ω 1= 同理 ω 2 = = = k1 2 m1 2m1 m1 m1
把计算的自振频率结果代入 K − ω 2 M φ = 0
(
)
1 T − 1 φ 1 − 1 T 11 2 = 0 ,令 φ11 = 1 解得 φ1 = 1 同理可求得 φ2 = (1 − 1) 1 φ12 2 −1 3 − 2 × 2
3、习题 2 中的结构,如果对顶层加一水平简谐力 F1 (t ) = F1 sin ω t ,试确定每层稳态振动幅 值的表达式。 解:
2 根据 K − ω M φ = F
(
)
1 − 1 1 0 y1 F1 2 k1 − ω m 1 0 = y 0 2 −1 3 2
(2)求自振频率 根据: δM −
1 I =0 ω2 1 m 0 1 1 0 EI 32 − 2 = 0 ,令 λ = 2 3 ,则行列式化为: 1 0 m ω 0 1 ω l 48
1 l3 8 EI − 1 32 1 m−λ 8 1 − m 32
第三章 多自由度系统的振动
1、计算题 3-1 图所示结构的自振频率和对应的振型并验证振型的正交性,设 EI 等于常数及 EA 等于常数。 (a) 解: (1) 用图乘法求各柔度系数:
δ11 = δ 22 =
1 1 l l 2 l 1 l 2 l l3 + l = EI 2 2 2 3 2 2 2 3 2 8EI
结构动力学课后习题答案
结构动力学课后习题答案结构动力学是研究结构在动态载荷作用下的响应和行为的学科。
它涉及到结构的振动、冲击响应、疲劳分析等方面。
课后习题是帮助学生巩固课堂知识、深化理解的重要手段。
以下内容是结构动力学课后习题的一些可能答案,供参考:习题1:单自由度系统自由振动分析解答:对于一个单自由度系统,其自由振动的频率可以通过以下公式计算:\[ f = \frac{1}{2\pi}\sqrt{\frac{k}{m}} \]其中,\( k \) 是系统的刚度,\( m \) 是系统的总质量。
系统自由振动的振幅随着时间的衰减可以通过阻尼比 \( \zeta \) 来描述,其衰减系数 \( \delta \) 可以通过以下公式计算:\[ \delta = \sqrt{1-\zeta^2} \]习题2:单自由度系统受迫振动分析解答:当单自由度系统受到周期性外力作用时,其受迫振动的振幅可以通过以下公式计算:\[ A = \frac{F_0}{\sqrt{(k-m\omega^2)^2+(m\zeta\omega)^2}} \] 其中,\( F_0 \) 是外力的幅值,\( \omega \) 是外力的角频率。
习题3:多自由度系统模态分析解答:对于多自由度系统,可以通过求解特征值问题来得到系统的模态。
特征值问题通常表示为:\[ [K]{\phi} = \lambda[M]{\phi} \]其中,\( [K] \) 是系统的刚度矩阵,\( [M] \) 是系统的质量矩阵,\( \lambda \) 是特征值,\( {\phi} \) 是对应的特征向量,即模态形状。
习题4:结构的冲击响应分析解答:对于结构的冲击响应分析,通常需要考虑冲击载荷的持续时间和冲击能量。
结构的冲击响应可以通过冲击响应谱(IRF)来分析,它描述了结构在不同频率下的响应。
冲击响应分析的结果可以用来评估结构的耐冲击性能。
习题5:疲劳分析解答:结构的疲劳分析需要考虑结构在重复载荷作用下的寿命。
结构动力学习题解答
然后积分求初始速度
̇̇ d t = θ̇0 = θ 0
0+ 0+ 0+
∫
0
∫ hδ ( t ) d t = h ∫ δ ( t ) d t = h
0 0 0+
;
再积分求初位移
̇̇ d t == h )d t = 0 ; θ0 = θ 0
0+
∫
0
∫
0
̇̇ 、 θ̇ 和 θ 的瞬态响应 这样方程(6)的解就是系统对于初始条件 θ 0 0 0
1.6 求图 1-35 所示系统的固有频率。图中磙子半径为 R,质量为 M,作纯滚动。弹簧刚度 为K 。 解:磙子作平面运动, 其动能 T=T 平动 +T 转动 。
K R M 图 1-35 x
T平动 = T转动
1 ̇2; Mx 2 2 2 ̇ ⎞ 1 ⎛ MR 2 ⎞ ⎛ x ̇⎞ 1 ⎛x = I⎜ ⎟ = ⎜ ⎟⎜ ⎟ ; 2 ⎝R⎠ 2 ⎝ 2 ⎠⎝ R ⎠
U= r 2 1 1 1 1⎛ K A ϕ A 2 + K B ϕ B 2 = K Aϕ A 2 + K B ϕ B 2 = ⎜ K A + K B A 2 2 2 2 2⎜ rB ⎝
(
)
⎞ 2 ⎟ϕ ; ⎟ A ⎠
系统的机械能为
T +U = r 2 1 1⎛ ̇ A2 + ⎜ K A + K B A (m A + m B )rA 2ϕ 4 2⎜ rB 2 ⎝
d (T + U ) = 0 ,进一步得到系 dt
统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤: (1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷 的幅值 Ai 、 Ai +1 。 (2)由对数衰减率定义 δ = ln(
结构动力学习题答案
结构动力学习题答案在结构动力学中,习题答案通常涉及对结构在动态载荷下的行为进行分析和计算。
这些习题可能包括自由振动分析、受迫振动分析、随机振动分析、模态分析、响应谱分析等。
以下是一些典型的结构动力学习题答案示例。
习题一:单自由度系统的自由振动问题:一个单自由度系统具有质量m=2kg,阻尼系数c=0.5N·s/m,弹簧刚度k=800N/m。
初始条件为位移x(0)=0.1m,速度v(0)=0。
求该系统自由振动的位移时间历程。
答案:首先,确定系统的自然频率ωn:\[ \omega_n = \sqrt{\frac{k}{m}} = \sqrt{\frac{800}{2}}\text{ rad/s} \]然后,计算阻尼比ζ:\[ \zeta = \frac{c}{2\sqrt{mk}} = \frac{0.5}{2\sqrt{2 \cdot 800}} \]由于ζ < 1,系统将进行衰减振动。
可以使用以下公式计算位移时间历程:\[ x(t) = A e^{-\zeta \omega_n t} \cos(\omega_d t + \phi) \] 其中,\( \omega_d = \sqrt{\omega_n^2 - \zeta^2 \omega_n^2} \) 是阻尼频率,A是振幅,\( \phi \)是相位角。
初始条件给出x(0)=0.1m,v(0)=0,可以解出A和\( \phi \)。
最终位移时间历程的表达式为:\[ x(t) = 0.1 e^{-\zeta \omega_n t} \cos(\omega_d t) \]习题二:单自由度系统的受迫振动问题:考虑上述单自由度系统,现在施加一个简谐力F(t)=F_0sin(ωt),其中F_0=100N,ω=10 ra d/s。
求系统的稳态响应。
答案:稳态响应可以通过傅里叶级数或直接应用受迫振动的公式来求解。
对于简谐力,系统的稳态响应为:\[ x_{ss}(t) = \frac{F_0}{k - m\omega^2} \sin(\omega t + \phi) \]其中,\( \phi \) 是相位差,可以通过以下公式计算:\[ \phi = \arctan\left(\frac{2\zeta\omega}{\omega_n^2 -\omega^2}\right) \]习题三:多自由度系统的模态分析问题:考虑一个二自由度系统,其质量矩阵M和刚度矩阵K如下:\[ M = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix},\quad K = \begin{bmatrix} k_1 & -k_c \\ -k_c & k_2\end{bmatrix} \]其中,\( m_1 = 2kg \),\( m_2 = 1kg \),\( k_1 = 800N/m \),\( k_2 = 1600N/m \),\( k_c = 200N/m \)。
[美]R.克里夫《结构动力学》补充详解及习题解
前言结构动力学是比较难学的一门课程,但是你一旦学会并且融会贯通,你就会为成为结构院士、大师和总工垫定坚实的基础。
结构动力学学习的难点主要有以下两个方面。
1 概念难理解,主要表现在两个方面,一是表达清楚难,如果你对概念理解的很透彻,那么你写的书对概念的表述也会言简意赅,切中要害(克里夫的书就是这个特点),有的书会对一个概念用了很多文字进行解释,但是还是没有说清楚,也有的书受水平限制,本身表述就不清楚。
二是理解难,有点只可意会不可言传的味道,老师讲的头头是道,自己听得云山雾绕。
2 公式推导过程难,一是力学知识点密集,推导过程需要力学概念清析,并且需要每一步的力学公式熟悉;二是需要一定的数学基础,而且有的是在本科阶段并没有学习的数学知识。
克里夫《结构动力学》被称为经典的结构动力学教材,但是也很难看懂。
之所以被称为经典,主要就是对力学的概念表达的语言准确,概念清楚。
为什么难懂呢?是因为公式的推导过程比较简单,省略过多。
本来公式的推导过程既需要力学概念清楚也需要数学公式熟悉,但是一般人不是力学概念不清楚,就是数学公式不熟悉,更有两者都不熟悉者。
所以在学习过程中感觉很难,本学习详解是在该书概念清楚的基础上,对力学公式推导过程进行详细推导,并且有的加以解释,帮助你在学习过程中加深理解和记忆。
达到融会贯通,为你成为结构院士、大师和总工垫定坚实的基础。
以下黑体字是注释,其它为原书文字。
[美] R∙克里夫《结构动力学》辅导学习详解第1章结构动力学概述… …第Ⅰ篇单自由度体系第2章基本动力体系的组成… …§2-5 无阻尼自由振动分析如上一节所述,有阻尼的弹簧-质量体系的运动方程可表示为mv̈(t)+cv̇(t)+kν(t)=p(t)(2-19)其中ν(t)是相对于静力平衡位置的动力反应;p(t)是作用于体系的等效荷载,它可以是直接作用的或是支撑运动的结构。
为了获得方程(2-19)的解,首先考虑方程右边等于零的齐次方程,即mv̈(t)+cv̇(t)+kν(t)=0(2-20)mv(t)+kν(t)=0(2-20a)此处公式应该为mv(t)+kν(t)=0,因为该节是无阻尼自由振,而且(2-20)的解,式(2-21)也是公式mv(t)+kν(t)=0的解在作用力等于零时产生的运动称为自由振动,现在要研究的即为体系的自由振动反应。
结构动力学试题及答案
结构动力学试题及答案一、选择题1. 在结构动力学中,下列哪项不是描述结构动力响应的参数?A. 自然频率B. 阻尼比C. 静力平衡D. 模态阻尼2. 以下哪个不是结构动力学分析中的常用方法?A. 模态分析B. 时域分析C. 频域分析D. 静力分析二、简答题1. 简述结构动力学中模态分析的目的和重要性。
2. 描述阻尼对结构动力响应的影响。
三、计算题1. 假设一个单自由度系统,其质量为m,刚度为k,初始位移为x0,初始速度为v0。
若外力为F(t) = F0 * sin(ωt),求该系统在任意时间t的位移响应。
答案一、选择题1. 正确答案:C. 静力平衡解析:静力平衡是静力学的概念,与结构动力学无关。
2. 正确答案:D. 静力分析解析:静力分析是分析结构在静载荷作用下的响应,而结构动力学分析动态载荷下的结构响应。
二、简答题1. 模态分析的目的在于识别结构的自然振动特性,包括自然频率、阻尼比和模态形状。
它的重要性在于:- 预测结构在动态载荷下的响应。
- 为控制结构的振动提供基础数据。
- 优化设计,提高结构的抗震性能。
2. 阻尼对结构动力响应的影响主要表现在:- 减少振动幅度,提高结构的稳定性。
- 改变系统的自然频率和模态形状。
- 影响系统的动态响应时间。
三、计算题1. 单自由度系统的位移响应可以通过以下步骤求解:- 写出系统的动力学方程:m * d²x/dt² + c * dx/dt + k * x = F(t)- 应用初始条件:x(0) = x0, v(0) = v0- 应用外力:F(t) = F0 * sin(ωt)- 通过傅里叶变换或拉普拉斯变换求解方程。
- 应用逆变换得到位移响应的解析解或数值解。
位移响应的一般形式为:x(t) = X * cos(ωt - φ) + Y *sin(ωt - φ),其中X和Y是与系统参数和初始条件有关的常数,φ是相位角。
具体的数值需要根据系统参数和初始条件进行计算。
结构动力学习题解答(三四章)
第三章 多自由度系统3.1试求图3-10所示系统在平衡位置附近作微振动的振动方程。
图3-10解:〔1〕系统自由度、广义坐标图示系统自由度N=2,选x1、x2和x3为广义坐标; 〔2〕系统运动微分方程根据牛顿第二定律,建立系统运动微分方程如下:;)(;)()(;)(34233332625323122222121111x K x x K x m x K x K x x K x x K xm x x K x K xm ---=------=---= 整理如下;0)(;0)(;0)(3432333332653212222212111=++-=-++++-=-++x K K x K xm x K x K K K K x K xm x K x K K xm 写成矩阵形式;000)(0)(0)(00000321433365322221321321⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+++--++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡x x x K K K K K K K K K K K K x x x m m m 〔1〕 〔3〕系统特征方程设)sin(,)sin(,)sin(332211ϕωϕωϕω+=+=+=t A x t A x t A x 代入系统运动微分方程〔1〕得系统特征方程;000)(0)(0)(321234333226532222121⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+++---+A A A m K K K K m K K K K K K m K K ωωω〔2〕 〔4〕系统频率方程系统特征方程〔2〕有非零解的充要条件是其系数行列式等于零, 即;0)(0)(0)(234333226532222121=-+---+++---+ωωωm K K K K m K K K K K K m K K展开得系统频率方程;0))(())(()))(())(()((21212323432223432265322121=-+--+--+-+++-+ωωωωωm K K K m K K K m K K m K K K K m K K进一步计算得;0;0)()())()(()))(())((())()()(()()()()())(()())(())(())()(())(())(()))(()()())((())(())(()))(())(()((02244662123432265324321236532214321231233224316532214332216321231232123232243226321421434322124321243165322165324323653221653243212121232343222343421221265322165322121212323432223432265322121==++++-+-+++++++++++-++-+++++++++++-=++-++--++++++-++++++++-++++-+++++=-+--+--+++-+++-++++=-+--+--+-+++-+a a a a K K K K K K K K K K K K K K m K K K K K K K K K K m m m K m K m m K K K K m m K K m m K K m m m m m K K K K m K K K K m m m m m K K m m K K K K K K m m m K K K K m K K K K K K m K K K K K K K K K K K K K K m K K K m K K K m K K m m K K m K K K K m K K K K K K m K K K m K K K m K K m K K K K m K K ωωωωωωωωωωωωωωωωωωωωωωωωωω (3)其中;3216m m m a -= ;)()()(316532214332214m m K K K K m m K K m m K K a +++++++=;))(())((36532214321231233222m K K K K K K K K K K m m m K m K a ++++-++-+=);()())()((21234322653243210K K K K K K K K K K K K K K a +-+-+++++=求解方程〔3〕得系统固有频率;)3,2,1(),,,,,,,,,(654321321==i K K K K K K m m m f i i ω 〔4〕 〔5〕系统固有振型 将系统固有频率代入系统特征方程〔2〕得系统固有振型, 即各阶振型之比:)3(3)3(1)3(3)3(2)3(1)3(2)2(3)2(1)2(3)2(2)2(1)2(2)1(3)1(1)1(3)1(2)1(1)1(21,1;1,1,1,1A A A A A A A A A A A A ======γγγγγγ 〔5〕 〔6〕系统振动方程)sin()sin()sin()sin()sin()sin(33)3(1)3(3)3(1)3(2)3(122)2(1)2(3)2(1)2(2)2(111)1(1)1(3)1(1)1(2)1(133)3(3)3(2)3(122)2(3)2(2)2(111)1(3)1(2)1(1321ϕωγγϕωγγϕωγγϕωϕωϕω+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧t A A A tA A A tA A A t A A A t A A A t A A A x x x 〔6〕在方程〔6〕中含有6个待定常数:)1(1A 、)2(1A 、)3(1A 、1ϕ、2ϕ和3ϕ。
克拉夫《结构动力学》习题答案汇总
第二章 自由振动分析2-1(a ) 由例22T π=22()W K T gπ= 因此 max ()()D t kT νν= 其中 k=0、1、2……T D =0.64sec 如果ξ 很小,T D =T∴ 222200()49.9/0.64sec 386/sec kipsk kips in in π==⇒ 50/k kips in = (b )211lnln n n v v v v δ+≡=δξ=→=1.2ln 0.3330.86δ==0.0529ξ==0.33320.05302δπξξπ=→==⇒ 5.3%ξ= (a ’)D ω=2T πω=T T =249.950/1k kips in ξ==- (c)2c m ξω=W m g=2T πω=4c T gπωξ=T T =241W c Tg πξξ=- 2240.05292000.64sec386/sec 10.0529kipsc in π=-0.539sec/c kips in =⋅ T=T D0.538sec/c kips in =⋅ ⇒0.54sec/c kips in =⋅2-22k mω=→4.47ω== (1/sec ) (0)(0)()sin (0)cos tD D Dv v t et v t ξωξωνωωω-⎡⎤⎛⎫+⎢⎥ ⎪=+⎢⎥ ⎪⎝⎭⎣⎦∴ (0)(0)()sin (0)(0)(0))cos t D D D v v t e t v v v t ξωξωνξωωξωξωωω-⎛⎫⎡⎤+⎧⎫⎡⎤ ⎪⎢⎥=-++-⎨⎬⎢⎥ ⎪⎢⎥⎣⎦⎩⎭⎣⎦⎝⎭()22(0)(0)()(0)cos sin D t D D Dv v t e v t t ξωξωξωωνωωω-⎛⎫⎡⎤++ ⎪⎣⎦=- ⎪ ⎪⎝⎭D ω=→()(0)cos (0)(0)sin t D D D t e v t v v t ξωωνωξωωω-⎛⎫⎡⎤=-+ ⎪⎢⎥⎣⎦⎝⎭()(0)cos tD D t ev t t ξωνωω-⎛⎫⎪= ⎪⎝⎭0.055922(2)(4.47)c cc m ξω=== (a) c=0→0ξ=→D ωω=∴ 5.6(1)sin 4.470.7cos 4.47 1.384.47v t in ==+=- (1) 5.6cos 4.47 4.47(0.7)sin 4.47 1.69/sec v t in ==-=⇒(1) 1.4v in =-,(1) 1.7/sec v in = (b)c=2.8→0.0559(2.8)0.157ξ==4.41D ω== (1/sec ) (0.157)(4.41)5.60.7(0.157)(4.47)(1)sin 4.410.7cos 4.414.41t e ν-⎡+⎤⎛⎫==+⎪⎢⎥⎝⎭⎣⎦(1)0.764t in ν==-(0.157)(4.41)(1) 5.6cos 4.41 4.41t e ν-⎛⎫== ⎪⎝⎭(1) 1.10/sec t in ν==⇒(1)0.76v in =-,(1) 1.1/sec v in =第三章 谐振荷载反应3-1根据公式有 ()()21sin sin 1R t w t wt ββ⎡⎤=-⎢⎥-⎣⎦0.8wwβ== ()()2.778sin 0.8sin1.25R t wt wt=-将t ω以80°为增量计算)(t R 并绘制曲线如下:80° 160° 240° 320° 400° 480° 560° 640° 720° 800° 00.547 1.71 -0.481 -3.214 0.357 4.33 -0.19 -4.9244.9241.25w w =tω)(t R3-2解:由题意得:22m kips s in =⋅ , 20k kips in = , (0)(0)0v v == ,w w =3.162w rad ===8wt π=(a )0c =()()1sin cos 2R t wt wt wt =-将8wt π=代入上式得:()412.566R t π=-=- (b )0.5c k s =⋅0.50.0395222 3.162c c c c mw ξ====⨯⨯()()(){}1exp 1cos exp sin 2R t wt wt wt wt ξξξξ=--+-⎡⎤⎡⎤⎣⎦⎣⎦将8wt π=代入上式得:()7.967R t =- (c ) 2.0c k s =⋅2.00.1582223.162c c c c mw ξ====⨯⨯()()(){}1exp 1cos exp sin 2R t wt wt wt wt ξξξξ=--+-⎡⎤⎡⎤⎣⎦⎣⎦将8wt π=代入上式得:() 3.105R t =-3-3解:(a ):依据共振条件可知:10.983sec w w rad =====由2L T V w π==得:10.9833662.96022wL V ft s ππ⨯===(b ):()()()122max2221212tgo v v ξββξβ⎡⎤+⎢⎥=⎢⎥-+⎣⎦1w w β==0.4ξ= 1.2go v in =代入公式可得:max 1.921tv in =(c ):2L T V w π=='45min 66V h ft s ==226611.51336V w rad s ec L ππ⨯'===11.5131.04810.983w w β'===0.4ξ=代入数据得 :()()()122max22212=1.85512tgov v in ξββξβ⎡⎤+⎢⎥=⎢⎥-+⎣⎦3-4解:按照实际情况,当设计一个隔振系统时,将使其在高于临界频率比β=在这种情况下,隔振体系可能有小的阻尼。
结构动力学习题+讲解
&&(t ) + (ω2 – n2 )S (t) = 0 --------------------------------------------(5) S
1.当 n >ω时(强阻尼) 方程(5)的解为: S (t) = A1sh n − ω t +A2ch n − ω t
2 2 2 2
从而,方程(4)的解为:
若时间 t 不是从 0 开始,而是从τ开始的,则(9)式写为:
y (t ) =
p∆t sinω(t-τ) mω
---------------------------------------(10)
写作: ,记ω2 =
K m
,2n =
C ,又可写作: m
& &(t ) + 2n y & (t ) +ω2 y (t ) = 0 y
利用常数变易法,令 y (t ) = e
− nt
---------------------------------------------(4)
S (t ) 代入方程(4)中 得:
K/2 VBA
48i/7L
2
A
取横梁为研究对象,Σ X=0,得:K= 4)振动方程
24 EI L3
即,
&(t ) - K y(t ) + Psinθt = 0 y - 2 m& &(t ) + y 2 m&
24 EI y(t ) = Psinθt L3
一、 无阻尼的自由振动
振动方程
&(t ) +K y (t ) = 0 , m& y & &(t ) + y K y (t ) = 0 m
结构动力学参考答案
m u + c u + ku = Pu (t ) 2.13 一根均匀杆,图 P2.13 其单位体积质量密度 ρ ,并具有顶部质量 M,应 用假定法ψ ( x) = x L 来推导该系统轴向自由振动的运动方程。假定 AE = 常数。 解:
.. 1 EA ( ρAL + M ) u + u = P(t ) 3 L
结构动力学习题 参考答案
1
2.3 一根刚梁 AB,用力在弹簧 BC 上去激励它,其 C 点的运动规定为 Z(t),如 图 P2.3. 按 B 点的垂直运动 u 来确定系统的运动方程,假定运动是微小的。 解: 4M u + 3c u + (3k1 + 12k 2 )u = 12k 2 Z (t )
.. .
4
4.17 在振动的结构上一个点,已知其运动为 Ζ = Ζ1 cos(Ω1t ) + Ζ 2 cos(Ω 2 t ) =
0.05 cos ( 60π t ) + 0.02 cos(120π t ) 。
(a)用一加速度计其阻尼因数 ξ = 0.70 和 20 KHz 共振频率来确定振动记录 w p (t ) 。 (b) 加速度计是否会引起有效幅值或相位畸变? 解: (a) w p (t ) = w p1 (t ) + w p 2 (t ) = 6.339 × 10 −11 A1 cos 60π (t − 1.1145 × 10 −5 ) + 6.339 × 10 −11 A2 • cos 120π (t − 1.1146 × 10 −5 ) (b) w p (t ) = C[ A1 cos Ω1 (t − τ ) + A2 cos Ω 2 (t − τ )] A1 , A2 分别表示 Z1 , Z 2 的加速度幅值,所以输出 w p (t ) 与加速度输 入成正比,所以不会发生幅值畸变或相位畸变。 5.2 运送一件仪器设备重 40 1b,是用泡沫包装在一容器内。该容器的有效刚度 k=100 1b/in,有效阻尼因数 ξ = 0.05 ,若整个容器和它的包装以垂直速度 V=150 in/s 碰撞在地面上,求泡沫包装在仪器设备的最大总应力。 (如图 P5.2 所示) 解: f max = 451.739 (1b) 6.5 例 题 4.3 中的 车辆 , 已知 k = 400 × 10 3 , m = 1200kg , ξ = 0.4。 当满 载时以
结构动力学_克拉夫(第二版)课后习题
例题E2-1 如图E2-1所示,一个单层建筑理想化为刚性大梁支承在无重的柱子上。
为了计算此结构的动力特性,对这个体系进行了自由振动试验。
试验中用液压千斤顶在体系的顶部(也即刚性大梁处)使其产生侧向位移,然后突然释放使结构产生振动。
在千斤顶工作时观察到,为了使大梁产生0.20in[0.508cm]位移需要施加20 kips[9 072 kgf]。
在产生初位移后突然释放,第一个往复摆动的最大位移仅为0.16 in[0. 406 cm],而位移循环的周期为1.4 s。
从这些数据可以确定以下一些动力特性:(1)大梁的有效重量;(2)无阻尼振动频率;(3)阻尼特性;(4)六周后的振幅。
2- 1图E2-1所示建筑物的重量W为200 kips,从位移为1.2 in(t=0时)处突然释放,使其产生自由振动。
如果t=0. 64 s时往复摆动的最大位移为0.86 in,试求(a)侧移刚度k;(b)阻尼比ξ;(c)阻尼系数c。
2-2 假设图2- la 所示结构的质量和刚度为:m= kips ·s 2/in ,k=40 kips/in 。
如果体系在初始条件in 7.0)0(=υ、in/s 6.5)0(=υ&时产生自由振动,试求t=1.0s 时的位移及速度。
假设:(a) c=0(无阻尼体系); (b) c=2.8 kips ·s/in 。
2-3 假设图2- 1a 所示结构的质量和刚度为:m=5 kips ·s 2/in ,k= 20 kips/in ,且不考虑阻尼。
如果初始条件in 8.1)0(=υ,而t=1.2 s 时的位移仍然为1.8 in ,试求:(a) t=2.4 s 时的位移; (b)自由振动的振幅ρ。
例题E3-1 一种便携式谐振荷载激振器,为在现场测量结构的动力特性提供了一种有效的手段。
用此激振器对结构施以两种不同频率的荷载,并分别测出每种情况下结构反应的幅值与相位。
由此可以确定单自由度体系的质量、刚度和阻尼比。
《结构动力学》-第0章-习题课解读
《例》一质量为M、半径为r的均质实心圆柱体在质 量为m的车子上无滑动地滚动。车辆用弹簧常数为 k1、k 2的弹簧连接,并在水平表面自由滑动。用拉 格朗日方程求系统的运动微分方程。
解:系统的动能为
1 1 1 2 2 2 T mx1 Mx 2 J O O 2 2 2
JO 1 Mr 2 2
[(2k1 k 2 ) m1 2 ] X 1 k 2 X 2 m e 2 2 k X ( k m ) X2 0 2 2 2 1
me 2 (k 2 m2 2 ) X2 2 [(2k1 k 2 ) m1 2 ](k 2 m2 2 ) k 2
第 0章
习题课
《例》 如图所示,半径为r的均质圆柱可在半径为R的圆轨 面内无滑动地、以圆轨面最低位置o为平衡位置左右微摆, 试导出柱体的摆动方程,并求其固有频率。 解:系统的势能为
U mg( R r )(1 cos )
系统的动能为
T 1 1 1 2 2 2 J A A mv C J C C 2 2 2 JC 1 2 mr 2
干扰力的频率为:
2 n 2 3.14 500 52.3(rad/s) 60 60 动力放大系数为:
1
2 1 2 n
1 3.4 2 52.3 1 62.3 2
梁中点的最大弯矩为:
M max 35 4 3.4 10 4 M M 69kN m 4 4
《例》用第一瑞利商和第二瑞利商求图示系统 的第一阶固有频率估值。
《例》用矩阵迭代法求图示系统的第一阶固有 频率和振型,精确到小数点后两位有效数字。 假设初始振型向量为{1 3 4}。
《例》 一长度为L的杆,一端紧固,另一端用常数为k的 弹簧连结,如图示。推导系统的频率方程。 解:杆的纵向振动一般表达式:
结构动力学试题及答案
结构动力学试题及答案一、选择题(每题2分,共10分)1. 结构动力学中,动力响应分析通常不包括以下哪一项?A. 自振频率分析B. 模态分析C. 静力分析D. 动力放大系数分析答案:C2. 在结构动力学中,下列哪一项不是确定结构动力特性的基本参数?A. 质量B. 刚度C. 阻尼D. 材料强度答案:D3. 单自由度振动系统的动力平衡方程中,下列哪一项是正确的?A. m\(\ddot{x}\) + c\(\dot{x}\) + kx = F(t)B. m\(\ddot{x}\) + c\(\dot{x}\) + kx = 0C. m\(\ddot{x}\) + c\(\dot{x}\) + kx = FD. m\(\ddot{x}\) + c\(\dot{x}\) + kx = F(t) - F答案:A4. 对于多自由度振动系统,下列哪一项不是求解动力响应的方法?A. 模态叠加法B. 直接积分法C. 能量守恒法D. 振型分解法答案:C5. 在结构动力学中,阻尼比通常用来描述阻尼的相对大小,其定义为:A. 临界阻尼比B. 阻尼比C. 阻尼比的倒数D. 阻尼比的平方答案:B二、填空题(每题2分,共10分)1. 结构动力学中,当外力作用频率与结构的_________相等时,结构会发生共振。
答案:自振频率2. 多自由度振动系统的振型是指系统在自由振动时的_________。
答案:位移分布模式3. 动力响应分析中,_________是指在给定的外力作用下,结构的响应随时间变化的过程。
答案:动力响应4. 在结构动力学中,_________是指结构在动力作用下,其响应与外力作用的关系。
答案:动力特性5. 阻尼比越大,结构的_________越小,振动衰减越快。
答案:振幅三、简答题(每题5分,共20分)1. 简述结构动力学中模态分析的目的和意义。
答案:模态分析的目的是确定结构的自振频率和振型,意义在于了解结构的动力特性,为结构设计提供依据,以及评估结构在动力作用下的安全性和稳定性。
结构动力学基础知识(典型例题分析)
分析:
图 2a
图 2b
(1)由于结构对称,质量分布对称,所以质点 m 无水平位移,只有竖向位移,此桁架为单 自由度体系。
( ) ∑ (2)
挠度系数: δ 11
=
1 EA
FN2l
=
l EA
1+
2
(3) 自振频率:ω = 1 mδ11
3. 计算图 3a 结构的自振频率,设各杆的质量不计。
图 3a
图 3b
一、自由度 1. 判断自由度的数量。
典型例题分析(动力学)
二、单自由度体系的自振频率 1. 试列出图 1a 结构的振动方程,并求出自振频率。EI=常数。
分析:
图 1a
图 1b M1
图 1c M2
(1) 质点 m 的水平位移 y 为由惯性力和动荷载共同作用引起: y = δ11 (− m&y&) + δ12 Fp (t ) 。
( M 2 = Y (2)T MY (2) = 1 4.6)⎢⎣⎡20m m0 ⎥⎦⎤⎜⎜⎝⎛ 41.6⎟⎟⎠⎞ = 22.16m
F1(t) = Y (1)T Fp (t) = (1
−
0.44)⎜⎜⎝⎛
Fp (t
0
)⎟⎟⎠⎞
=
Fp
(t
)
F2 (t) = Fp (t)
(6)
求正则坐标:突加荷载时ηi (t)
y2 (t) = −0.44η1(t) + 4.6η2 (t)
五、能量法求第一自振频率
1. 试用能量法求 1a 梁具有均布质量 m=q/8 的最低频率。
[ ] 已知:位移形状函数:Y (x) = q 3l 2 x2 − 5lx3 + 2x4 48EI
结构动力学习题分析
第九章 结构动力计算一、是非题1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。
2、忽略直杆的轴向变形,图示结构的动力自由度为4个。
3、仅在恢复力作用下的振动称为自由振动。
4、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。
5、图 a 体 系 的 自 振 频 率 比 图 b 的 小 。
l /2l /2l /2l /2(a)(b)6、单 自 由 度 体 系 如 图 ,W =98.kN ,欲 使 顶 端 产 生 水 平位 移 ∆=001.m ,需 加 水 平 力 P =16kN ,则 体 系 的 自振 频 率 ω=-40s 1。
∆7、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。
8、由于阻尼的存在,任何振动都不会长期继续下去。
9、桁 架 ABC 在 C 结 点 处 有 重 物 W ,杆 重 不 计 ,EA 为 常 数 ,在 C 点 的 竖 向 初 位 移 干 扰 下 ,W 将 作 竖 向 自 由 振 动 。
AC10、不 计 阻 尼 时 ,图 示 体 系 的 运 动 方 程 为 :m m X X h EI EI EI EI X X P t 00148242424012312⎡⎣⎢⎤⎦⎥⎧⎨⎩⎫⎬⎭+--⎡⎣⎢⎤⎦⎥⎧⎨⎩⎫⎬⎭=⎧⎨⎩⎫⎬⎭()二、选择题1、图 示 体 系 ,质 点 的 运 动 方 程 为:hA .()()()y l Ps in my EI =-77683θ t /;B .()()my EI y lPs in /+=19273θ t ;C .()()my EI y l Ps in /+=38473θ t ;D .()()()y l Ps in my EI =-7963θ t / 。
2、在 图 示 结 构 中 ,若 要 使 其 自 振 频 率 ω增 大 ,可 以A .增 大 P ;B .增 大 m ;C .增大 E I ; D .增 大 l 。
结构动力学习题解答
ω2 =
1 192 EI EI = = 13.86 , ρ2 = 1 3 mδ 11 ml ml
l/4 P=1 3l/16
δ11 =
1 1 3l l 2 l 1 5l l 1 l ( × × × × − × × × × ) EI 2 16 2 3 2 2 32 2 3 2 7l 3 = 768 EI
结构力学Ⅱ
习题解答
14-14 试求图示刚架的 自振频率和主振型
m 正对称
l/2 m l/2 l/2 l/2 反对称
14-14 试求图示刚架的自振频率和主振型
l/8 P=1 l/8
l/8 P=1
2 1 l l 2 l 1 l l 1 l ( × × × × − × × × × ) δ 11 = EI 2 8 2 3 4 2 8 2 3 4 Mp l3 = 192 EI
FI0 = 1
ql 12
反对称
y2 = δ11 (− m&&2 ) + δ12 y
4l 4 δ12 = 768EI
q sin θt 2
ql 2 32
7l 3 δ11 = 768EI
l/2
P=1
7 ml 3 2ql 4 0 ( 2− ) FI 1 = θ 768EI 768EI 1
FI02 =
2ql 9
kθ1 − Py1 = 0
代入几何关系
k k 2 y1 − y2 − Py1 = 0 a a k k − y1 + 2 y2 − Py2 = 0 a a
k k 2 P − 4 P + 3( ) = 0 a a k 3 a k P= , 故PCR = k a a
2
2
5ql 2 96
(完整版)结构动力学-习题解答
解
11
5 48
l3 EI
;
3.098
EI ml 3
;
l/2
ml 3 T 2.027 ;
EI
m
EI y1(t)
l
l/2 l/2
l/4
7-1(b)试求图示体系的自振频率与周期。
解: 求柔度系数: 用位移法或力矩分配法 求单位力作用引起的弯矩图(图a); 将其与图b图乘,得
48EI 2k
T 2 ( 1 l3 1 )m
48 EI 2k
m
k EI
k
l/2
l/2
7-3 试求图示体系质点的位移幅值和最大弯矩值。
已知 0.6
l
解:
yst
FPl 3 EI
m
y1(t)
1
1
2
/
2
1.5625
位移幅值
A
yst
1.5625
FPl 3 EI
2l
yst
11
5 3
l3 EI
1 11
l
X11 0.4612 ; X12 4.336
X 21
X 22
12 7.965 EI / ml 3
2 2
65.53EI
/
ml 3
1 2.822 EI / ml3
8-6.试求图示刚架的自振频率和振型。设楼面质量分别为m1=120t和m2=100t,
柱的质量已集中于楼面, 柱的线刚度分别为i1=20MN.m和i2=14MN.m,横梁
m 2 A 0.3375 FP
l/2
EI=常数
FP sin t
2l
FP
FPl
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 结构动力计算一、是非题1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。
2、忽略直杆的轴向变形,图示结构的动力自由度为4个。
3、仅在恢复力作用下的振动称为自由振动。
4、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。
5、图 a 体 系 的 自 振 频 率 比 图 b 的 小 。
l /2l /2l /2l /2(a)(b)6、单 自 由 度 体 系 如 图 ,W =98.kN ,欲 使 顶 端 产 生 水 平位 移 ∆=001.m ,需 加 水 平 力 P =16kN ,则 体 系 的 自振 频 率 ω=-40s 1。
∆7、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。
8、由于阻尼的存在,任何振动都不会长期继续下去。
9、桁 架 ABC 在 C 结 点 处 有 重 物 W ,杆 重 不 计 ,EA 为 常 数 ,在 C 点 的 竖 向 初 位 移 干 扰 下 ,W 将 作 竖 向 自 由 振 动 。
AC10、不 计 阻 尼 时 ,图 示 体 系 的 运 动 方 程 为 :m m X X h EI EI EI EI X X P t 00148242424012312⎡⎣⎢⎤⎦⎥⎧⎨⎩⎫⎬⎭+--⎡⎣⎢⎤⎦⎥⎧⎨⎩⎫⎬⎭=⎧⎨⎩⎫⎬⎭()二、选择题1、图 示 体 系 ,质 点 的 运 动 方 程 为:hA .()()()y l Ps in my EI =-77683θ t /;B .()()my EI y lPs in /+=19273θ t ;C .()()my EI y l Ps in /+=38473θ t ;D .()()()y l Ps in my EI =-7963θ t / 。
2、在 图 示 结 构 中 ,若 要 使 其 自 振 频 率 ω增 大 ,可 以A .增 大 P ;B .增 大 m ;C .增大 E I ; D .增 大 l 。
lt )3、单 自 由 度 体 系 自 由 振 动 的 振 幅取 决 于 :A .初 位 移 ;B .初 速 度 ;C .初 位 移 、初 速 度 与 质 量 ;D .初 位 移 、初 速 度 与 结 构 自 振 频 率 。
4、考 虑 阻 尼 比 不 考 虑 阻 尼 时 结 构 的 自 振 频 率 :A .大 ;B .小 ;C .相 同 ;D .不 定 ,取 决 于 阻 尼 性 质 。
5、已 知 一 单 自 由 度 体 系 的 阻 尼 比 ξ=12.,则 该 体系 自 由 振 动 时 的位 移 时 程 曲 线 的 形 状 可能为 :D.C.B.A.6、图 a 所 示 梁 ,梁 重 不 计 ,其 自 振 频率 ()ω=76873EI ml /;今 在 集 中 质量 处 添 加 弹 性 支 承 ,如 图 b 所 示 ,则 该 体 系 的 自 振 频 率 ω为 :A .()76873EI ml k m //+;B .()76873EI ml k m //-; C .()76873EI ml k m //-; D .()76873EI ml k m //+ 。
l l /2/2l l /2/2(a)(b)7、图 示 结 构 ,不 计 阻 尼 与 杆 件 质 量 ,若 要 其 发 生 共 振 ,θ 应 等 于A .23k m ;B .k m3;C .25k m ; D .km5 。
tsin θl /2l /2l /28、图 示 两 自 由 度 体 系 中 ,弹 簧 刚 度为 C ,梁 的 EI = 常 数 ,其 刚 度 系 数 为 :A .k EI l k C k k 113221221480====/,, ; B .k EI l C k C k k C11322122148=+===-/,, ; C .k EI l C k C k k C 11322122148=+===/,, ;D .k EI l k C k k C 11322122148====/,, 。
9、图 为 两 个 自 由 度 振 动 体 系 ,其 自振 频 率 是 指 质 点 按 下 列 方 式 振 动 时 的 频率 :A .任 意 振 动 ;B .沿 x 轴 方 向 振 动 ;C .沿 y 轴 方 向 振 动 ;D .按 主 振 型 形 式 振 动 。
10、图 示 三 个 主 振 型 形 状 及 其 相 应的 圆 频 率 ω,三 个 频 率 的 关 系 应 为:A.ωωωa b c <<; B .ωωωb c a <<; C .ωωωc a b <<; D .ωωωa b c >> 。
(a)(b)(c)ωaωb ωc三、填充题1、不 计 杆 件 分 布 质量 和 轴 向 变 形 ,刚 架 的 动力 自 由 度 为 :(a) ,(b) ,(c),(d) ,(e) ,(f) 。
(d)2、图示组合结构,不计杆件的质量,其动力自由度为 个。
3、图 示 简 支 梁 的 EI = 常 数 ,其 无 阻 尼 受 迫 振 动 的 位 移 方 程 为 。
/3l /3l /3l4、图 示 体 系 的 自 振 频 率 ω= 。
ll5、图 示 体 系 中 ,已 知 横 梁 B 端侧 移 刚 度 为 k 1 ,弹 簧 刚 度 为 k 2 ,则 竖 向 振 动 频 率 为 。
26、在 图 示 体 系 中 ,横 梁 的 质 量 为 m ,其 EI 1=∞;柱 高 为l ,两 柱 EI = 常 数 ,柱 重 不 计 。
不 考 虑 阻 尼 时 ,动 力 荷 载 的 频 率 θ= 时将 发 生 共 振 。
P sin tθ 7、单 自 由 度 无 阻 尼 体 系 受 简 谐 荷 载 作 用 ,若 稳 态 受 迫 振 动 可 表 为 y y t =⋅⋅μθst sin ,则 式 中 μ 计 算 公 式 为 , y s t 是 。
8、图 示 体 系 不 计 阻 尼 ,θωω=2(为 自 振 频 率 ),其 动 力 系 数 =μ 。
9、图 示 体 系 竖 向 自 振 的 方 程 为:y I I y I I 11111222211222=+=+δδδδ,, 其 中 δ22等 于 。
m 12m10、多 自 由 度 体 系 自 由 振 动 时 的 任何 位 移 曲 线 ,均 可 看 成 的 线 性 组 合 。
四、计算题1、图示梁自重不计,杆件无弯曲变形,弹性支座刚度为k ,求自振频率ω。
2、求图示体系的自振频率ω。
3、求图示体系的自振频率ω。
EI = 常数。
ll 0.54、求图示结构的自振频率ω。
l l5、求图示体系的自振频率ω。
EI =常数,杆长均为l 。
6、求图示体系的自振频率ω。
杆长均为l 。
7、图示梁自重不计,W EI ==⨯⋅2002104kN kN m 2,,求自振圆频率ω。
B2m2m8、求图示单自由度体系的自振频率。
已知其阻尼比ξ=0.05。
m9、图示刚架横梁∞=EI 且重量W 集中于横梁上。
求自振周期T 。
EIEIWEI 210、求图示体系的自振频率ω。
各杆EI = 常数。
aaa11、图示两种支承情况的梁,不计梁的自重。
求图a 与图b 的自振频率之比。
l /2l/2(a)l /2l /2(b)12、图示桁架在结点C 中有集中重量W ,各杆EA 相同,杆重不计。
求水平自振周期T 。
3m3m13、忽略质点m 的水平位移,求图示桁架竖向振动时的自振频率ω。
各杆EA = 常数。
m 4m4mllm0.50.515、图示体系2cm kN, 480020==I W 。
求质点处最大动位移和最大动弯矩。
W4mm2sin P t16、图示体系,已知质量m = 300kg ,EI l =⨯⋅=910462N m m , ;支座B 的弹簧刚度系数k EI l 0348=/,干扰力幅值P =20kN ,频率θ=80s -1。
试计算该体系无阻尼时的动力放大系数μD1和当系统阻尼比ξ=005.时的有阻尼动力放大系数μD2 。
17、求图示体系在初位移等于l/1000,初速度等于零时的解答。
θωω=020.( 为自振频率),不计阻尼。
m18、图示体系受动力荷载作用,不考虑阻尼,杆重不计,求发生共振时干扰力的频率θ。
kN, s kN/cm -125,20,1024==⨯=P EI θ/3P tsin( )19、已知:m P ==38t, kN ,干扰力转速为150r/min ,不计杆件的质量,EI =⨯⋅6103kN m 2。
求质点的最大动力位移。
2m2m20、图示体系中,电机重kN 10=W 置于刚性横梁上,电机转速n r =500/min ,水平方向干扰力为) sin(kN 2)(t t P θ⋅=,已知柱顶侧移刚度kN/m 1002.14⨯=k ,自振频率ω=-100s1。
求稳态振动的振幅及最大动力弯矩图。
( )P t m21、图示体系中,kN 10=W ,质点所在点竖向柔度917.1=δ,马达动荷载P t t ()sin()=4kN θ,马达转速n r =600/min 。
求质点振幅与最大位移。
22、图示单自由度体系,欲使支座A 负弯矩与跨中点D 的正弯矩绝对值相等,求干扰力频率θ。
EI =常数。
ll /2l23、求图示体系支座弯矩M A 的最大值。
荷载P t P t (),.==004sin θθω 。
/2/224、求图示体系稳态阶段动力弯矩幅值图。
θωω=05.( 为自振频率),EI = 常数,不计阻尼。
lll振 幅 方 程 。
226、图示对称刚架质量集中于刚性横粱上,已知:m 1=m ,m 2=2m 。
各横梁的层间侧移刚度均为k 。
求自振频率及主振型。
m 1m 22127、求图示体系的自振频率并画出主振型图。
m28、求图示体系的自振频率和主振型。
EI = 常数。
l l29、求 图 示 体 系 的 自 振 频 率 及 绘 主 振 型 图 。
已 知 EI 24960010=⨯⋅kN cm2, m l ==24kg m , 。
.ll30、图示体系,设质量分别集中于各层横梁上,数值均为m 。
求第一与第二自振频率之比ωω12:。
231、求图示体系的自振频率和主振型。
m m m m 122==,。
32、求图示体系的频率方程。
l33、图示体系分布质量不计,EI = 常数。
求自振频率。
34、图示简支梁EI = 常数,梁重不计,m m m m 122==,,已求出柔度系数()δ123718=a EI /。
求自振频率及主振型。
aaa35、求图示梁的自振频率及主振型,并画主振型图。
杆件分布质量不计。
aaam36、图示刚架杆自重不计,各杆EI = 常数。
求自振频率。
2m2m2m37、求图示体系的自振频率及主振型。