高考数学一轮复习专题 三角恒等变换(学生版)

合集下载

2024年高考数学一轮复习讲练测(新教材新高考)第02讲 三角恒等变换(九大题型)(课件)

2024年高考数学一轮复习讲练测(新教材新高考)第02讲 三角恒等变换(九大题型)(课件)

题型一:两角和与差公式的证明
题型一:两角和与差公式的证明
题型二:两角和与差的三角函数公式
题型二:两角和与差的三角函数公式
题型二:两角和与差的三角函数公式
题型三:两角和与差的三角函数公式的逆用与变形
题型三:两角和与差的三角函数公式的逆用与变形
题型三:两角和与差的三角函数公式的逆用与变形
2024
高考一轮复习讲练测
第02讲 三角恒等变换
目录
CONTENTS
01
考情分析
02
网络构建
03
知识梳理 题型归纳
04
真题感悟
01
考情分析
考点要求
考题统计
(1)会推导两角差的余弦公式
(2)会用两角差的余弦公式推导
出两角差的正弦、正切公式 (3)掌握两角和与差的正弦、余 弦、正切公式,并会简单应用 (4)能运用两角和与差的正弦、 余弦、正切公式推导二倍角的正 弦、余弦、正切公式,并进行简
(1)1-cos α= 2sin2α2 ,1+cos α= 2cos2α2 .(升幂公式)
(2)1±sin α=
sin
α 2±cos
α2 2
.(升幂公式)
1-cos 2α
1+cos 2α
1-cos 2α
(3)sin2α= 2 ,cos2α= 2 ,tan2α= 1+cos 2α .(降幂公式)
常用结论
a a2+b2.
3.二倍角的正弦、余弦、正切公式
(1)公式S2α:sin 2α= 2sin αcos α .
(2)公式C2α:cos 2α= cos2α-sin2α = 2cos2α-1 = 1-2sin2α . 2tan α
(3)公式T2α:tan 2α= 1-tan2α .

2025年高考数学一轮复习-4.3-三角恒等变换【课件】

2025年高考数学一轮复习-4.3-三角恒等变换【课件】

【练一练】
1.判断正误(正确的打“√”,错误的打“×”)
(1)两角和与差的正弦、余弦公式中的角 , 是任意角.( )

(2)两角和与差的正切公式中的角 , 是任意角.( )
×
(3)存在实数 , ,使等式 成立.( )

2.(人A必修第一册 例4(1)变条件) ( )
A. B. C. D.
解析:选C.原式 .

3.(人A必修第一册 练习 变条件)若 , ,则 的值为( )
A. B. C. D.
解析:选C.因为 ,所以 ,所以 ,则 .故选C.

4.若角 的终边在第四象限,且 ,则 __.
解析:由题可知, ,所以 ,则 ,所以 .
5. 的值为_ __.
解析: .
1.公式的常用变形 , 1 ,1 , .若 ,则 .
2.升幂、降幂公式1 , . , .
【用一用】
1.已知 ,则 ( )
A. B. C. D.
解析:选C.原式 .故选C.
√2.求值: ____.解析:因为 .所以 .
考点考法:三角函数的恒等变换,主要依据三角函数的有关公式进行适当的化简,属于中档题,三角恒等变换的综合应用是高考的重点,难度中等.核心素养:直观想象、逻辑推理、数学运算
必备知识 自主排查
必备知识 自主排查
01
两角和与差的正弦、余弦、正切公式
[提醒] 二倍角公式实际就是由两角和公式中令 所得.逆用即为“降幂公式”,在考题中常有体现.
4.3 三角恒等变换
课标要求
考情分析
1.经历推导两角差余弦公式的过程,知道两角差余弦公式的意义.2.能从两角差的余弦公式推导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余、正切公式,了解它们的内在联系.3.能运用上述公式进行简单的恒等变换(包括推导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).

新高考一轮复习特训 三角恒等变换 (含答案)高中数学 高考专区 一轮复习

新高考一轮复习特训 三角恒等变换  (含答案)高中数学 高考专区 一轮复习

2025届新高考一轮复习特训 三角恒等变换一、选择题1.在ABC △中,D 为边BC 上一点,DAC ∠=4AD =,2AB BD =,且ADC △的面积为ABD ∠=( )2.sin20cos40cos20cos50+︒︒︒︒的值是( )C.3.若π0,2α⎛⎫∈ ⎪⎝⎭=α=( )4.已知25cos 2cos αα+=,()cos 2αβ+=π0,2⎛⎫∈ ⎪⎝⎭,ππ3,22β⎛⎫∈ ⎪⎝⎭,则cos β的值为( )A.cos 0θθ-=,则tan 2θ=( )A.-6.已知α为锐角,cos α=2α=( )7.已知()sin αβ-=3tan αβ=,则()sin αβ+=( )8.已知πcos6α⎛⎫-=⎪⎝⎭π26α⎛⎫+=⎪⎝⎭( )A.C.二、多项选择题9.在ABC△中,内角A,B,C所对的边分别为a,b,c,已知sin()sin()3sin2BA B A A-++=,且c==A.22cos15︒ B.sin27cos3cos27sin3︒︒+︒︒C.2sin15sin75︒11.下列化简正确是( )A.sin45cos451︒︒=B.22ππcos sin1212-=4040sin80︒+︒=三、填空题12.已知tanα,tanβ是方程2330x x--=的两个实数根,()tan22αβ+=________. 13.(1tan13)(1tan32)+︒+︒=________.14.已知()()4tan114tan17A B+-=,则()tan A B-=________.四、解答题15.已知sinα=π0,2⎛⎫∈ ⎪⎝⎭(1)求πsin4α⎛⎫+⎪⎝⎭的值;(2)若tanβ=tan2()αβ-的值.16.在ABC△=的12=(1)求C ;(2)若32a b c +=且,求的外接圆半径.17.记ABC △1sin A =+.(1)若A B =,求C ;18.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,且a =5=,cos A =(1)求B ;(2)设D 是AB 边上点,且3AB AD =,求证:CD AB ⊥.19.在ABC △中,角A ,B,C 的对边分别为a ,b ,c ,且cos b A c+=(1)求B 的大小;(2)若c =2b +=,求ABC △的面积.(3)已知πsin 3α⎛⎫+= ⎪⎝⎭π6α⎛⎫- ⎪⎝⎭的值.3a =ABC △参考答案1.答案:A解析:因为11sin 422ADC S AD AC DAC AC =⋅∠=⨯⨯=△4AC =,所以ADC △为等腰三角形,则ADC ∠=在△=sin DBBAD =∠,解得sin BAD ∠=因为ADB ∠=BAD为锐角,所以cos BAD ∠==所以()πsin sin sin 6ABD ADC BAD BAD ⎛⎫∠=∠-∠=-∠ ⎪⎝⎭ππsin cos cos sin 66BAD BAD -∠==∠故选:A 2.答案:A解析:原式sin20cos40cos20sin 40sin 60=︒︒︒︒=︒=+故选:A.3.答案:B解析:因为tan2α==π0,2⎛⎫∈ ⎪⎝⎭,所以sin02α≠,所以22cos 2cos α-=cos 1cos αα-=+,所以cos α=π0,2α⎛⎫∈ ⎪⎝⎭,所以α=α=解析:25cos 2cos αα+= ,210cos cos 30αα∴--=,cos α∴=因为π0,2α⎛⎫∈ ⎪⎝⎭,所以3cos 5α=432255α=⨯⨯=ππ,42α⎛⎫∴∈ ⎪⎝⎭(2π,3π)αβ+∈,coscos(22)cos(2)cos 2sin(2)sin 2βαβααβααβα∴=+-=+++故选:B.5.答案:Bcos 0θθ-=,得tan θ=则22tan tan 21tan θθθ===-故选:B.6.答案:D解析:法一:由题意,,又为锐角,所以,所以法二:由题意,2cos 12sin α==-22α=,将选项逐个代入验证可知D 选项满足,故选D.sin α∴=222cos sin ααα=-=()cos 2αβ+=()3sin 25αβ∴+=47324525525=-⨯+⨯=2cos 12sin α==-22sin 2α===αsin 02α>sin2α=解析:由tan 3tan αβ==cos 3cos sin αβαβ=,又()sin sin cos cos sin αβαβαβ-=-=sin αβ=cos αβ=所以()sin sin cos cos sin αβαβαβ+=+=8.答案:A解析:ππππsin 2cos 2cos 2cos26336αααα⎛⎫⎛⎫⎛⎫⎛⎫+=-=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22ππ1cos22cos 121663αα⎛⎫⎛⎫⎛⎫=-=--=⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭9.答案:AD解析:因为sin()sin()3sin 2B A B A A -++=,所以sin cos cos sin sin cos cos sin 32sin cos B A B A B A B A A A -++=⨯,即sin cos 3sin cos B A A A =.当cos 0A =,即A ===sin c C ==当cos 0A ≠时,sin 3sin B A =,由正弦定理可得3b a =,由余弦定理可得22222(3)7cos 223a b c a a C ab a a +-+-===⋅1=(负值舍去).综上,1a =或a =10.答案:BCD解析:选项A :22cos 151cos301︒=+︒=选项B :sin 27cos3cos 27sin 3sin 30︒︒+︒︒=︒=选项C :2sin15sin 752sin15cos15sin 30︒=︒︒=︒=212tan 22.51tan 4521tan 22.52︒=⋅=⋅︒=-︒故选:BCD.11.答案:BCD解析:A:因为()11sin 45cos 45sin 245sin 9022︒︒=⨯︒=︒=所以本选项不正确;B:因22ππππcos sin cos 2cos 1212126⎛⎫-=⨯== ⎪⎝⎭所以本选项正确;()4040cos 60sin 40sin 60cos 40sin 6040︒︒=︒︒+︒︒=︒+︒()sin 18080sin 80=︒-︒=︒,所以本选项正确;()11tan 222.5tan 4522=⨯︒=︒=所以本选项正确,故选:BCD 解析:tan ,tan αβ是方程2330x x --=的两个实数根,则有tan tan 3αβ+=,tan tan 3αβ=-,因此()tan tan tan 1tan tan αβαβαβ++==-()()()232tan22291tan 116αβαβαβ++===-+-.13.答案:2解析:因为()tan13tan 32tan 45tan 133211tan13tan 32︒+︒︒=︒+︒==-︒︒,整理得tan13tan 32tan13tan 321︒+︒+︒︒=,所以(1tan13)(1tan 32)1tan 32tan13tan 32tan13112+︒+︒=+︒+︒+︒︒=+=.故答案为:214.答案:4为解析:因为()()4tan 114tan 17A B +-=,所以()tan tan 41tan tan A B A B -=+⋅,所以()tan tan tan 41tan tan A BA B A B--==+⋅,故答案为:4(2)13tan(2)9αβ-=解析:(1)因为sin α=π0,2⎛⎫∈ ⎪⎝⎭,所以cos α==所以ππsin sin cos cos 44ααα⎛⎫+=+ ⎪⎝⎭3455==(2)由(1)tan α=232tan 291tan 116ααα===--所以()241tan2tan73tan 22411tan2tan 173αβαβαβ---===++⨯16.答案:(1)2π3C ==sin 2sin cos A B C B +=,且()sin sin sin cos cos sin A B C B C B C =+=+,即2sin cos 2cos sin sin 2sin cos B C B C B C B ++=,则2sin cos sin 0B C B +=,且()0,πB ∈,则sin 0B ≠,可得cos C =且()0,πC ∈,所以C =(2)因为32a b c +=且3a =,则290b c =->,可得c >由余弦定理可得2222cos c a b ab C =+-,即()()22192923292c c c ⎛⎫=+--⨯-⨯- ⎪⎝⎭,整理可得210210c c -+=,解得7c =或3c =(舍去),所以ABC△的外接圆半径2sin cR C===17.答案:(1)答案见解析(2)()0,1解析:(1)由A B=1sin A =+1sin A =+,则()2cos 1sin sin A A A =+整理得22sin sin 10AA +-=,解之得sin A =1A =-又0A <<A =B =2π3=(2)A ,B 为ABC△的内角,则1sin 0A +>1sin =+0>,则A 、B 均为锐角222cos sin 1tancos π222tan tan 1sin 42(sin cos )1tan222A A AA AB A A A A --⎛⎫====- ⎪+⎝⎭++又0B <<π42A <-<π4B =π4B <<则π22A B =-,则πsin sin 2cos 22A B B ⎛⎫=-= ⎪⎝⎭22sin 2cos 22cos 112cos 2cos 2cos cos cos b A b B B B b B b B B B-====-令cos t B =π04B ⎛<< ⎝1t <<又()2f t t =⎫⎪⎪⎭单调递增,0f =,(1)1f =可得1021t t <-<,则2cos B -)0,1,)0,1(2)详见解析解析:(1) 在ABC △中,内角A,B ,C 的对边分别为a ,b ,c ,cos 0A=>,∴sin A ==5=,∴sin sinb A B a ===又5ba =>=,A B >,∴B=(2) ()sin sin C A B =+=+=∴sin sin a Cc A===∵23CD BD BC BA BC =-=-∴(222220333CD BA BA BC BA BA BC BA ⎛⎫⋅=-⋅=-⋅=⨯-= ⎪⎝⎭,∴CD BA ⊥ ,∴CD AB ⊥.19.答案:(1)π6B =解析:(1)cos b A c = ,∴由正弦定理可得sin cos sin B A A C +=,又()sin sin sin cos cos sin ,C A B A B A B =+=+sin cos A A B =sin 0A ≠,cos B ∴=()0,πB ∈ ,π6B ∴=;(2)π6B = ,c =∴由余弦定理可得cosB ==2233b a -+=,又2a b +=,解得1a b ==,111cos 1222ABC S a B ∴==⨯=△;(3)因为απ5π36α<+<又因为π4πsin sin 353α⎛⎫+=<= ⎪⎝⎭,所以α则π3cos ,35α⎛⎫+==- ⎪⎝⎭ππππ3sin sin cos 63235ααα⎛⎫⎛⎫⎛⎫-=+-=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.。

简单的三角恒等变换-2025年高考数学大一轮复习核心题型讲与练(新高考版)

简单的三角恒等变换-2025年高考数学大一轮复习核心题型讲与练(新高考版)
2−sin
15
sin
15
,tan α=
= 15
.故选A
4
cos

(2)[2021新高考卷Ⅰ]若tan θ=-2,则
A.
6

5
B.
[解析] 解法一
2-5来自sin(1+sin2)
sin+cos
C.
因为tan θ=-2,所以
2
5
C
=(
D.
sin(1+sin2)
sin+cos
)
6
5

sin(sin+cos )2
因为tan 2α=
π
2
5
5
sin2
cos2
C.

2sincos
1−2sin2
cos
2α=
,则tan
2−sin
5
3
,且tan 2α=
1
4
由α∈(0, )得 cos α≠0,解得 sin α= , cos α=
D.
α=( A
)
15
3
cos
2sincos
cos
,所以

2−sin
1−2sin2
三角化简的标准:
三角函数名称尽量少,次数尽量低,最好不含分母,能求值的尽量求值.
化简、求值的主要技巧:
(1)寻求角与角之间的关系,化非特殊角为特殊角;
(2)正确灵活地运用公式,通过三角变换消去或约去一些非特殊角的三角
函数值.
三角函数给角求值问题的解题策略
一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变
,选正弦较好.
解题心得三角恒等变换综合应用的解题思路

高中数学一轮复习重难点 三角恒等变换(十年高考)

高中数学一轮复习重难点  三角恒等变换(十年高考)

5.2三角恒等变换考点三角恒等变换1.(2023课标II ,7)已知α为锐角,15cos 4α+=,则sin2α=().A.358B.158-+ C.354D.154-【答案】D【解析】因为21cos 12sin 24αα=-=,而α为锐角,解得:sin 2α=14==.故选:D .2.(2023课标I ,8)已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+=().A.79B.19C.19-D.79-【答案】B【解析】因为1sin()sin cos cos sin 3αβαβαβ-=-=,而1cos sin 6αβ=,因此1sin cos 2αβ=,则2sin()sin cos cos sin 3αβαβαβ+=+=,所以2221cos(22)cos 2()12sin ()12(39αβαβαβ+=+=-+=-⨯=.故选:B3.(2021全国乙文,6,5分)cos 2π−cos25π12=()A.12答案D 解析解法一:cos 2π125π12=π12=cos2π12−sin2π12=cos π6=解法二:cos 2π12−cos25πcos2−cos2=cos π4cos π6+sin π4−cos π4cos π6−sin π4×4.(2021全国甲理,9,5分)若α∈0,tan2α=cos2−sin,则tanα=()答案A解题指导:先将切化弦,再将分式化为整式,利用两角差的余弦公式及二倍角公式将异角化为同角,最后利用同角三角函数的基本关系求解.解析∵tan2α=cos2−sin,且α∈0,∴sin2cos2=cos2−sin,∴2sin2α=cosαcos2α+sinαsin2α,即4sinαcosα=cos(2α-α)=cosα,又cosα≠0,∴4sinα=1,∴sinα=14,∴cosαtanαA.疑难突破将tan2α转化为sin2cos2是本题的突破口.5.(2021新高考Ⅰ,6,5分)若tanθ=-2,则sino1+sin2psinrcos=() A.-65 B.−25 C.25 D.65答案C sino1+sin2psinrcos=sinθ(sinθ+cosθ)=sin2θ+sinθ·cossinrcos=sinosinrcosp2sinrcos=sinosin2rcos2r2sinbcospθ=sin2rsinbcossin2rcos2=tan2rtan tan2r1=(−2)2−2(−2)2+1=25.故选C.6.(2022新高考Ⅱ,6,5分)若sin(α+β)+cos(α+β)=22cosβ,则()A.tan(α-β)=1B.tan(α+β)=1C.tan(α-β)=-1D.tan(α+β)=-1答案C因为sin(α+β)+cos(α+β)=sinαcosβ+cosαsinβ+cosαcosβ-sinαsinβ,22cosβ=(2cosα-2sinα)sinβ=2cosαsinβ-2sinαsinβ,所以sinαcosβ+cosαsinβ+cosαcosβ-sinαsinβ=2cosαsinβ-2sinαsinβ,即sinαcosβ-cosαsinβ+cosαcosβ+sinαsinβ=0,进而得sin(α-β)+cos(α-β)=0,又知cos(α-β)≠0,所以tan(α-β)=-1,故选C.7.(2018课标Ⅲ,理4,文4,5分)若sin α=13,则cos 2α=()A.89B.79C.-79D.-89答案B 本题考查三角恒等变换.由sin α=13,得cos 2α=1-2sin 2α=1-2=1-29=79.故选B.8.(2017课标Ⅲ文,4,5分)已知sin α-cos α=43,则sin 2α=()A.-79B.-29C.29D.79答案A ∵(sin α-cos α)2=1-2sin αcos α=1-sin 2α=169,∴sin 2α=-79.解后反思涉及sin α±cos α,sin αcos α的问题,通常利用公式(sin α±cos α)2=1±2sin α·cos α进行转换.9.(2017山东文,4,5分)已知cos x=34,则cos 2x=()A.-14B.14C.-18D.18答案D 本题考查二倍角余弦公式.因为cos x=34,所以cos 2x=2cos 2x-1=2-1=18.10.(2016课标Ⅲ理,5,5分)若tan α=34,则cos 2α+2sin 2α=()A.6425B.4825C.1D.1625答案A当tan α=34时,原式=cos 2α+4sin αcos α=cos 2α+4sinvos sin 2α+cos 2α=1+4tan tan 2α+1=1+4×34916+1=6425,故选A.解后反思将所求式子的分母1用sin 2α+cos 2α代替,然后分子、分母同除以cos 2α,得到关于tan α的式子,这是解决本题的关键.评析本题主要考查三角恒等变换,用sin 2α+cos 2α代替1是解题关键..11.(2016课标Ⅲ文,6,5分)若tan θ=-13,则cos 2θ=()A.-45B.-15C.15D.45答案D 解法一:cos 2θ=cos 2θ-sin 2θ=cos 2θ−sin 2θcos 2θ+sin 2θ=1−tan 2θ1+tan 2θ=45.故选D.解法二:由tanθ=-13,可得sinθ=因而cos2θ=1-2sin2θ=45.评析本题考查化归与转化的能力.属中档题.12.(2015课标Ⅰ理,2,5分)sin20°cos10°-cos160°sin10°=()A.-32B.32C.-12D.12答案D原式=sin20°cos10°+cos20°@sin10°=sin(20°+10°)=sin30°=12,故选D.13.(2015重庆理,9,5分)若tanα=2tanπ5,)A.1B.2C.3D.4答案C=sinvosπ5+cosLinπ5sinvosπ5−cosLinπ5=tanrtan π5tanKtanπ5,∵tanα5故选C.14.(2015重庆文,6,5分)若tanα=13,tan(α+β)=12,则tanβ=()A.17B.16C.57D.56答案A tanβ=tan[(α+β)-α]=tan(rp−tan1+tan(rp·tan=12−131+12×13=17,故选A.15.(2013课标Ⅱ文,6,5分)已知sin2α=23,则cos2+)A.16B.13C.12D.23答案A cos2=1−sin22,把sin2α=23代入,原式=16.选A.评析本题考查了三角函数的化简求值,考查了降幂公式、诱导公式的应用.16.(2016课标Ⅱ,9,5分)若α=35,则sin2α=()A.725B.15C.-15D.-725答案D∵α=35,∴sin2α−2α2α=2cos−α-1=2-1=-725.故选D.思路分析利用诱导公式化sin2α−2α,再利用二倍角的余弦公式即可得答案.一题多解−αα+sinα)=35⇒cosα+sinα1+sin2α=1825,∴sin2α=-725.故选D.导师点睛求解三角函数的给值求值问题,关键是把待求三角函数值的角用已知角表示出来:(1)已知角有两个时,待求三角函数值的角一般表示为已知角的和或差;(2)已知角有一个时,待求三角函数值的角一般与已知角成“倍数关系”或“互补、互余关系”.17.(2022浙江,13,6分)若3sinα-sinβ=10,α+β=π2,则sinα=,cos2β=.答案45解析设a=sinα,b=sinβ=cosα,则3−=10,2+2=1,解得a b∴sinα=acos2β=1-2sin2β=1-2b2=45.18.(2016浙江,10,6分)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b=.答案2;1解析∵2cos2x+sin2x=1+cos2x+sin2x=2sin2∴A=2,b=1.19.(2018课标Ⅱ文,15,5分)已知tan=15,则tanα=.答案32解析本题主要考查两角差的正切公式.tan=tanKtan5π41+tanMan5π4=tanK11+tan=15,解得tanα=32.20.(2016课标Ⅰ文,14,5分)已知θ是第四象限角,且sin+=35,则tan−=.答案-43解析解法一:∵sin+=22×(sinθ+cosθ)=35,∴sinθ+cosθ=325①,∴2sinθcosθ=-725.∵θ是第四象限角,∴sinθ<0,cosθ>0,∴sinθ-cosθ=-1−2sinvos=-425②,由①②得sinθ=-210,cosθ=7210,∴tanθ=-17,∴tan4=tanK11+tan=-43.解法二:∵−θ=π2,∴sinθ=35,又2kπ-π2<θ<2kπ,k∈Z,∴2kπ-π4<θ+π4<2kπ+π4,k∈Z,∴cos4=45,∴θ=45,∴4θ=43,∴tan−θ=-43.评析本题主要考查了三角恒等变换,熟练掌握同角三角函数关系式及诱导公式是解题的关键.21.(2016四川理,11,5分)cos2π8-sin2π8=.答案22解析由二倍角公式易得cos2π8-sin2π8=cosπ4=22.(2015江苏,8,5分)已知tanα=-2,tan(α+β)=17,则tanβ的值为.答案3解析tanβ=tan[(α+β)-α]=tan(rp−tan1+tan(rptan=17−(−2)1+17×(−2)=3.23.(2015四川理,12,5分)sin15°+sin75°的值是.答案解析sin15°+sin75°=sin15°+cos15°=2sin(15°+45°)=2sin60°24.(2015四川文,13,5分)已知sinα+2cosα=0,则2sinαcosα-cos2α的值是.答案-1解析由sinα+2cosα=0得tanα=-2.2sin αcos α-cos 2α=2sinvosKcos 2αsin 2α+cos 2α=2tanK1tan 2α+1=2×(−2)−1(−2)2+1=−55=-1.25.(2015广东文,16,12分)已知tan α=2.(1)求tan ;(2)求sin2sin 2α+sinvosKcos2K1的值.解析(1)因为tan α=2,所以tan +=tanrtan π41−tanbtan π4=2+11−2×1=-3.(2)因为tan α=2,所以sin2sin 2α+sinvosKcos2K1=2sinvossin 2α+sinvosK(cos 2α−sin 2α)−(sin 2α+cos 2α)=2sinvos sin 2α+sinvosK2cos 2α=2tan tan 2α+tanK2=2×222+2−2=1.26.(2014江苏,15,14分)已知απ,sin α(1)求α的值;(2)求2α的值.解析(1)因为α2,π,sin α=55,所以cos α=-1−sin 2α=-255.故α=sin π4cos α+cos π4sin α=22×−+22×55=-1010.(2)由(1)知sin 2α=2sin αcos α=2×55×−=-45,cos 2α=1-2sin 2α=1-25=35,所以2α=cos 5π6cos 2α+sin 5π6sin 2α=−×35+12×−评析本题主要考查三角函数的基本关系式、两角和与差的正、余弦公式及二倍角公式,考查运算求解能力.。

第18讲 三角恒等变换(学生版) 备战2025年高考数学一轮复习考点帮(天津专用)

第18讲 三角恒等变换(学生版) 备战2025年高考数学一轮复习考点帮(天津专用)

第18讲三角恒等变换(4类核心考点精讲精练)1.5年真题考点分布【命题规律】本节内容是天津高考卷的必考内容,设题稳定,难度中档,分值为14分【备考策略】1.理解、掌握三角函数的两角和差公式,能够根据知识点灵活选择公式2.能掌握凑角求值的解题技巧3.具备数形结合的思想意识,会借助正弦型函数的图像,解决三角函数的求值与化简问题4.会解三角函数的含参问题。

【命题预测】本节内容是天津高考卷的必考内容,一般给与正余弦定理结合,在解三角形中灵活运用两角和差。

知识点.两角和与差二倍角公式1.两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin βcos(α+β)=cos αcos β-sin αsin βsin(α-β)=sin αcos β-cos αsin βsin(α+β)=sin αcos β+cos αsin βtan(α-β)=tan α-tan β1+tan αtan βtan(α+β)=tan α+tan β1-tan αtan β2.二倍角公式sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;tan 2α=2tan α1-tan 2α.3.辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ),其中tan φ=ba.4.三角函数公式的关系5.升幂与降幂公式(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α.(3)公式的常用变形:tan α±tan β=tan(α±β)(1∓tan αtan β),1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin1.(2024·黑龙江哈尔滨·模拟预测)已知sinLin =cosLin,则tan 2=()A.2−3B.−2−3C.2+3D.−2+32.(2024·浙江·三模)若sin −+cos −=22sin sin ,则()A.tan−=−1B.tan−=1C.tan+=−1D.tan+=11.(2023·全国·高考真题)已知为锐角,cos=sin2=().2.(2024·青海海西·模拟预测)已知cos cos2的值为()A.13B.23C.−15D.−133.(2024·全国·高考真题)已知cos(+p=s tanMan=2,则cos(−p=()A.−3B.−3C.3D.34.(2024·江西九江·三模)若2sin+=cos tan−=()A.−4−3B.−4+3C.4−3D.4+31.(2024·安徽六安·模拟预测)2cos65°cos15°tan15°cos10°+sin10°的值为()B.12D.32sin2+50∘=()2.(2024·陕西安康·模拟预测)若sin−20∘=A.18B.−18C.−78D.781.(2024·全国·模拟预测)sin80°+cos50°−=()2.(2024·山东泰安·模拟预测)若1+tan(Kπ4)1−tan(Kπ4)=12,则sin2的值为()A.−35B.35C.−45D.453.(2024·广东·二模)tan7.5°−tan82.5°+2tan15°=()A.−2B.−4C.−23D.−434.(2024·河北承德·二模)已知tan=13,则sin cos3cos2+sin cos2cos=.5.(2024·河北邯郸·二模)正五角星是一个非常优美的几何图形,其与黄金分割有着密切的联系,在如图所示的五角星中,以s s s s为顶点的多边形为正边边形,设∠B=,则cos+cos2+cos3+ cos4=,cos cos2cos3cos4=.1.(2024·辽宁·模拟预测)已知sin+1,则sin2+.2.(23-24高三上·天津宁河·期末)已知cos−=13,则sin−2=.1.(2024·吉林长春·模拟预测)已知cos2=−55,sin+=−∈0,∈−π2,0,则−=()A.π4B.3π4C.5π4D.π4或3π2.(2024·山西·三模)若sin2=−=且∈π,∈π则cos+=()3.(2024高三·全国·专题练习)已知tan−=12,tan=−17,且,∈(0,p,则2−=()A.−34B.4C.34D.−44.(2024·山东·模拟预测)已知cos−−cos=45,则sin2=()A.725B.−725C.2425D.−24255.(2024·湖南衡阳·模拟预测)已知cos−=13,则sin2=()A.7B.−7D.−1.(23-24高三下·云南·阶段练习)已知函数=2sin+cos在0处取得最大值,则cos0=()A.25B.25C.5D.52.(2024·陕西铜川·三模)已知函数=sin2−cos2,则下列说法中不正确的是()A.的最小正周期为πB.的最大值为2C.在区间−π4π4D.−π8=−π81.(2024·湖北·二模)函数=3cos−4sin,当取得最大值时,sin=()A.45B.−45C.35D.−35对称,则=2.(2024·四川成都·模拟预测)函数op=Lin+cos的图象关于直线=−π63.(2024·河南新乡·三模)已知函数op=sin B−3cos B(>0),若存在1∈[0,π],使得o1)=−2,则的最小值为.4.(2024·全国·模拟预测)已知=4sin sin−3cos+1相邻的两个零点分别为1,2,则cos1−2=.5.(2024·浙江宁波·模拟预测)已知函数op=2cos2B+sin2B−1(>0)1=2=21−2的最小值为2π3,则=()A.12B.1C.2D.31.(22-23高三上·天津滨海新·期中)若是第三象限角,且sin+cos−sin cos+=−513,则tan等于()A.−5B.−512C.512D.52.(23-24高三上·云南昆明·开学考试)已知tan(−π4)=4,则sin2=()A.2B.−2C.1517D.−15173.(23-24高三上·天津南开·期中)已知sin−=sin+tan=.4.(23-24高三上·天津河东·阶段练习)△B中,已知cos2=45,则sin=.5.(22-23高三上·天津滨海新·期中)已知角的终边经过点−2,1,则tan=,cos2K2sin2cos2=.(23-24高三上·陕西西安·阶段练习)已知tan=13,tan=−17,且s∈0,π,则2−=.6.7.(23-24高三上·天津滨海新·阶段练习)已知2sin+cos=0.(1)求tan−(3)当是第四象限角时,求cos+1.(23-24高三上·天津河西·阶段练习)已知tan+=−3)A.23B.0C.−2D.22.(23-24高三上·天津和平·阶段练习)函数=sin+3cos在区间0上的最小值为()A.3B.2C.1D.23.(23-24高三上·天津南开·阶段练习)锐角,满足+2=2π3,tan2tan=2−3,则和中的较小角等于.4.(23-24高三上·宁夏银川·阶段练习)若tan=−cos3+sin,则sin2=.5.(23-24高三上·天津河东·阶段练习)已知函数=sin+sin+cos+的最大值为1,(1)求常数的值;(2)求函数的单调递减区间;6.(23-24高三上·天津·期中)已知函数=2cos2sin−+>0,图象的两条相邻对称轴之间的距离为π2.(1)求的单调递减区间;(2)若o2)=−35,且∈[−π6,5π6],求sin(−5π6)的值.7.(23-24高三上·天津河北·期中)已知函数op=sin(2−π6)−cos2,∈R.(1)求函数的最小正周期;(2)求函数的对称轴方程;(3)求函数在[0,π2]上的单调区间.1.(2024·全国·高考真题)已知coscos K sin=3,则tan+=()A.23+1B.23−1D.1−32.(2022·全国·高考真题)若sin(+p+cos(+p=22cos sin,则()A.tan(−p=1B.tan(+p=1C.tan(−p=−1D.tan(+p=−13.(2023·全国·高考真题)已知sin−=13,cosLin=16,则cos2+2=().A.79B.19C.−19D.−794.(2024·全国·高考真题)已知为第一象限角,为第三象限角,tan+tan=4,tanMan=2+1,则sin(+p=.。

2024年高考数学一轮复习课件(新高考版) 第4章 §4.4 简单的三角恒等变换

2024年高考数学一轮复习课件(新高考版)  第4章 §4.4 简单的三角恒等变换

2024年高考数学一轮复习课件(新高考版)第四章 三角函数与解三角形§4.4 简单的三角恒等变换考试要求能运用两角和与差的正弦、余弦、正切公式推导二倍角的正弦、余弦、正切公式,并进行简单的恒等变换(包括推导出积化和差、和差化积、半角公式,这三组公式不要求记忆).内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练第一部分1.二倍角的正弦、余弦、正切公式(1)公式S 2α:sin 2α= .(2)公式C 2α:cos 2α= = = .(3)公式T 2α:tan 2α= .2sin αcos αcos 2α-sin 2α2cos 2α-11-2sin 2α2.常用的部分三角公式(1)1-cos α=,1+cos α= .(升幂公式)(2)1±sin α= .(升幂公式)(3)sin2α=,cos2α=,tan2α= .(降幂公式)判断下列结论是否正确(请在括号中打“√”或“×”)(1)半角的正弦、余弦公式实质就是将倍角的余弦公式逆求而得来的.( )(2)存在实数α,使tan 2α=2tan α.( )√√√√√2.若角α满足sin α+2cos α=0,则tan 2α等于√√第二部分√思维升华(1)三角函数式的化简要遵循“三看”原则:一看角,二看名,三看式子结构与特征.(2)三角函数式的化简要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的联系点.命题点1 给角求值例2 计算:(1)sin 10°·sin 30°·sin 50°·sin 70°;命题点2 给值求值√命题点3 给值求角思维升华(1)给值(角)求值问题求解的关键在于“变角”,使其角相同或具有某种关系,借助角之间的联系寻找转化方法.(2)给值(角)求值问题的一般步骤①化简条件式子或待求式子;②观察条件与所求式子之间的联系,从函数名称及角入手;③将已知条件代入所求式子,化简求值.跟踪训练2 (1)已知α∈(0,π),sin 2α+cos 2α=cos α-1,则sin 2α等于√∵sin 2α=2sin αcos α,cos 2α=2cos2α-1,∴2sin αcos α+2cos2α=cos α,当cos α=0 时,等式成立,此时sin 2α=0;√∴sin(60°+α)=sin[90°-(30°-α)]思维升华(1)进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意公式的逆用和变形使用.(2)形如y=a sin x+b cos x化为y= sin(x+φ),可进一步研究函数的周期性、单调性、最值与对称性.因为2tan2β-tan β-1=(2tan β+1)(tan β-1)=0,第三部分√12345678910111213141516。

三角恒等变换(和差公式、倍角公式、升降幂公式、辅助角公式)(学生版) 2025年高考数学一轮复习学案

三角恒等变换(和差公式、倍角公式、升降幂公式、辅助角公式)(学生版) 2025年高考数学一轮复习学案

第02讲三角恒等变换(和差公式、倍角公式、升降幂公式、辅助角公式)(14类核心考点精讲精练)1. 5年真题考点分布2. 命题规律及备考策略【命题规律】本节内容是新高考卷的必考内容,设题稳定,难度较中等或偏难,分值为5-11分【备考策略】1.推导两角差余弦公式,理解两角差余弦公式的意义2.能从两角差的余弦公式推导出两角和与差的正弦、余弦、正切公式3.能推导二倍角的正弦、余弦、正切公式,能运用公式解决相关的求值与化简问题【命题预测】本节内容是新高考卷的必考内容,一般会考查两角和与差的正弦、余弦、正切公式及倍角公式变形应用和半角公式变形应用,需加强复习备考1.正弦的和差公式()βαsinβααβ=sin++sincoscos ()ββαsinααβ-=sincoscossin-2.余弦的和差公式()βαβαβαsin sin cos cos cos -=+()βαβαβαsin sin cos cos cos +=-3.正切的和差公式()βαβαβαtan tan 1tan tan tan -+=+()βαβαβαtan tan 1tan tan tan +-=-4.正弦的倍角公式⇒=αααcos sin 22sin ααα2sin 21cos sin =5.余弦的倍角公式()()αααααααsin cos sin cos sin cos 2cos 22-+=-=升幂公式:αα2sin 212cos -=,1cos 22cos 2-=αα降幂公式:22cos 1sin 2αα-=,22cos 1cos 2αα+=6.正切的倍角公式ααα2tan 1tan 22tan -=7.半角公式(1)sin α2=(2)cos α2=(3)tan α2=±=sin α1+cos α=1-cos αsin α.以上称之为半角公式,符号由α2所在象限决定.8.万能公式22222tan1tan 2tan222sin cos tan 1tan1tan 1tan 222x x x x x x xxx -===++-9.和差化积与积化和差公式sin sin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=2sin cos sin()sin()A B A B A B =++-2cos cos cos()cos()A B A B A B =++-2sin sin cos()cos()A B A B A B =--+10.推导公式2)cos (sin )cos (sin 22=-++αααα11.辅助角公式x b x a y cos sin +=,)0(>a )sin(22ϕ++=⇒x b a y ,其中a b =ϕtan ,)2,2(ππϕ-∈1.(福建·高考真题)sin15cos 75cos15sin105°°+°°等于( )A .0B .12C .1D2.(全国·高考真题)o o o o sin 20cos10cos160sin10-=A.BC .12-D .123.(2020·全国·高考真题)已知πsin sin =31q q æö++ç÷èø,则πsin =6q æö+ç÷èø( )A .12BC .23D4.(2024·全国·高考真题)已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 1αβ+,则sin()αβ+=.1.(2024高三·全国·专题练习)sin 435=o .2.(23-24高三下·山东菏泽·阶段练习)已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点(P -,则πsin 6αæö-=ç÷èø( )A .12-B .12C D .13.(2024高三·全国·专题练习)化简:ππsin cos cos sin 33æöæö+-+=ç÷ç÷èøèøαααα.4.(2024·河南·三模)若1sin()6αβ-=,且tan 2tan αβ=,则sin()αβ+=( )A B C .23D .125.(2024·云南·模拟预测)若πsin sin 3q q æö++=ç÷èøπsin 6q æö+=ç÷èø( )A .12B C .13D1.(高考真题)()sin163sin223sin253sin313 °°+°°=A .12B .12-C D .2.(2024·全国·高考真题)已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=( )A .3m-B .3m-C .3m D .3m3.(2023·全国·高考真题)已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+=( ).A .79B .19C .19-D .79-1.(2024·山东枣庄·模拟预测)已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点ππcos ,sin 33P æöç÷èø,则πcos 6αæö-=ç÷èø( )A .0B .12C D 2.(2024·宁夏石嘴山·三模)已知35=cos α,π0,2αæö∈ç÷èø,12sin 13β=,π,π2βæö∈ç÷èø,则()cos αβ-=( )A .3365B .5665C .6365D .1665-3.(2024·四川宜宾·模拟预测)若πcos cos 13ααæö-+=-ç÷èø,则πcos 6αæö-=ç÷èø( )A .BCD .4.(23-24高三下·江苏扬州·开学考试)已知()1cos 3αβ+=,1tan tan 4αβ=,则()cos 22αβ-=( )A .3181B .59C .3181-D .59-5.(2024·全国·模拟预测)已知π,02q æö∈-ç÷èø,32tan 25sin2q q =,则πcos 4q æö-=ç÷èø( )A B C .D .1.(2019·全国·高考真题)tan255°=A .-2B .-C .2D .2.(重庆·高考真题)若11tan ,tan()32ααβ=+=,则tan =βA .17B .16C .57D .563.(2024·全国·高考真题)已知cos cos sin ααα=-πtan 4αæö+=ç÷èø( )A .1+B .1C D .14.(2020·全国·高考真题)已知2tan θ–tan(θ+π4)=7,则tan θ=( )A .–2B .–1C .1D .25.(2022·全国·高考真题)若sin()cos()sin 4παβαβαβæö+++=+ç÷èø,则( )A .()tan 1αβ-=B .()tan 1αβ+=C .()tan 1αβ-=-D .()tan 1αβ+=-1.(2024·山西吕梁·二模)已知角α的顶点在原点,始边在x 轴的正半轴上,终边经过点(),则tan π6αæö-=ç÷èø( )A .B .CD 2.(2024·重庆·三模)已知ππcos 3cos 44ααæöæö-=+ç÷ç÷èøèø,则tan α=( )A .2B .12C .3D .133.(2024·江苏·模拟预测)若3sin 4cos 5αα+=,则πtan 4αæö+=ç÷èø( )A .7-B .7C .17D .17-4.(2024·福建泉州·模拟预测)已知()()()1sin 2cos ,tan 2αβαβαβ-=+-=,则tan tan αβ-=( )A .35B .53C .45D .655.(2024·贵州黔东南·二模)已知0παβ<<<,且()()sin 2cos αβαβ+=+,sin sin 3cos cos 0αβαβ-=,则()tan αβ-=( )A .1-B .C .12-D .121.(2024·四川·模拟预测)已知π,π2αæö∈ç÷èø,π1sin 65αæö+=ç÷èø,则sin α=( )A B C D2.(浙江·高考真题)若0<α<,﹣<β<0,cos (+α)=,cos (﹣)=,则cos (α+)=( )A .B .﹣C .D .﹣3.(23-24高三下·浙江金华·阶段练习)已知()1cos 3αβ-=,1sin sin 12αβ=-,则22cos sin αβ-=( )A .12B .13C .16D .184.(22-23高一下·江西景德镇·期中)已知()0,πα∈,ππ,22βæö∈-ç÷èø满足π1sin 33αæö+=ç÷èø,πcos 6βæö-ç÷èø则()sin 2αβ+=( )A B C D .1.(2024·河北石家庄·三模)已知角,αβ满足()1tan ,2sin cos sin 3αβαβα==+,则tan β=( )A .13B .16C .17D .22.(2024·山西·三模)若()sin 2αβα=-=,且π3π,π,π,42αβéùéù∈∈êúêúëûëû,则()cos αβ+=( )A B C D3.(2024·重庆·模拟预测)已知,αβ都是锐角,1cos sin()7ααβ=+cos 2β的值为( )A .12-B .12C .D1.(23-24高三上·贵州铜仁·阶段练习)已知sin αβ=α和β均为钝角,则αβ+的值为( )A .π4B .5π4C .5π4或7π4D .7π42.(2024高三·全国·专题练习)已知()1tan 2αβ-=,1tan 7β=-,且α,(0,)βπ∈,则2αβ-=( )A .34π-B .4πC .34πD .4π-3.(22-23高三·全国·期末)已知()()π0,cos 2cos 212cos cos 2αβαβαβαβ<<<++=-++,则( )A .π6αβ+=B .π3αβ+=C .π6βα-=D .π3βα-=1.(2023高三·全国·专题练习)已知cos α=sin β=,且0,2παæö∈ç÷èø,0,2πβæö∈ç÷èø,则αβ+的值是( )A .34πB .4πC .74πD .54π2.(22-23高三上·山东青岛·期中)已知ππ4α££,3ππ2β££,4sin 25α=,()cos αβ+=则βα-=( )A .3π4B .π4C .5π4D .π23.(2024·吉林长春·模拟预测)已知cos 2α=()sin αβ+=π0,2αéù∈êúëû,π,02βéù∈-êúëû,则αβ-=( )A .π4B .3π4C .5π4D .π4或3π41.sin15cos15=o o ( )A .14B .14-C D .2.(2024·河南·二模)已知1sin cos 3x x +=,则πcos 22x æö-=ç÷èø( )A .35-B .35C .89D .89-3.(2024·四川自贡·三模)已知角α满足1cos 23sin 2αα-=,则sin 2α=( )A.BC .35-D .351.(2024·山东济南·三模)若sin cos αα-=,则tan α=( )A .1B .1-C .2D .2-2.(2024·山东·模拟预测)已知4sin25α=-,则tan2πtan 4αα=æö+ç÷èø( )A .4B .2C .2-D .4-1.(山东·高考真题)已知3cos 4x =,则cos 2x =( )A .14-B .14C .18-D .182.(2022·北京·高考真题)已知函数22()cos sin f x x x =-,则( )A .()f x 在,26ππæö--ç÷èø上单调递减B .()f x 在,412ππæö-ç÷èø上单调递增C .()f x 在0,3πæöç÷èø上单调递减D .()f x 在7,412ππæöç÷èø上单调递增3.(2021·全国·高考真题)22π5πcoscos 1212-=( )A .12BCD4.(全国·高考真题)函数44()cos sin f x x x =-的最小正周期是A .2πB .πC .2πD .4π1.(2020·全国·高考真题)若2sin 3x =-,则cos 2x =.2.(2024·北京顺义·三模)已知函数()22cossin 22x xf x =-,则( )A .()f x 为偶函数且周期为4πB .()f x 为奇函数且在ππ,412æö-ç÷èø上有最小值C .()f x 为偶函数且在π0,3æöç÷èø上单调递减D .()f x 为奇函数且π,04æöç÷èø为一个对称中心3.(2022·浙江·高考真题)若3sin sin 2παβαβ-=+=,则sin α=,cos 2β=.1.(浙江宁波·期末)12πsin 2=A B C .34D .142.(2024·浙江·模拟预测)若8tan 3cos αα=,则cos 2=α .3.(2024·浙江·三模)已知ππ1cos cos 23264q q æöæö+-=ç÷ç÷èøèø,则πcos 23q æö+=ç÷èø( )A .12-B .12C .D4.(2024·全国·模拟预测)已知,αβ为锐角,满足()1sin sin 9αβαβ+=+=-,则sin 2αβ+= ,()cos αβ-=.1.(2024·浙江绍兴·二模)若5π1sin 123αæö+=ç÷èø,则πcos 26αæö-=ç÷èø( )A B .C .79D .79-2.(2024·安徽合肥·三模)已知2sin 1αα=+,则πsin 26αæö-=ç÷èø( )A .18-B .78-C .34D .783.(2024·黑龙江哈尔滨·模拟预测)已知π1sin 35ααæö+=ç÷èø,则sin 26παæö-=ç÷èø .4.(2024·黑龙江·三模)已知()11cos ,sin sin 23αβαβ-==,则()cos 22αβ+=.5.(2024·湖南长沙·二模)已知 ππ12cos 2cos cos312124x x x æöæö+--=ç÷ç÷èøèø ,则 πcos 23x æö+=ç÷èø1.(2024高三·全国·专题练习)若1tan(π)2α-=,则tan 2α= .2.(2024·安徽合肥·三模)已知ππ20,,tan tan 243q q q æöæö∈+=-ç÷ç÷èøèø,则tan 2q = .3.(23-24高三上·广东湛江·阶段练习)已知π(0,)2q ∈,且sin sin 2sin cos qq q q=+,则tan q =( )A1B1C1D11.(2024高三·全国·专题练习)2π1tan 8πtan 8-=.2.(2024·辽宁沈阳·二模)已知()0,πa ∈,且1sin cos 5a a +=,则tan2a =( )A .127B .127-C .247D .247-3.(2024·全国·模拟预测)已知π0,2q æö∈ç÷èø,2π1sin 842q æö+=ç÷èøπtan 24q æö-=ç÷èø( )A .113B .1731C .3117D .131.(2023·全国·高考真题)已知α为锐角,cos αsin 2α=( ).A B C D 2.(2024·湖南邵阳·二模)已知α为锐角,若1sin 4α=,则2cos2α=( )A B C D 3.(2023·浙江·二模)数学里有一种证明方法叫做Proofwithoutwords ,也被称为无字证明,是指仅用图象而无需文字解释就能不证自明的数学命题,由于这种证明方法的特殊性,无字证时被认为比严格的数学证明更为优雅与有条理.如下图,点C 为半圆O 上一点,CH AB ^,垂足为H ,记COB q Ð=,则由tan BHBCH CHÐ=可以直接证明的三角函数公式是( )A .sin tan 21cos qq q =-B .sin tan 21cos qq q =+C .1cos tan2sin qq q-=D .1cos tan2sin qq q+=1.(2024·全国·模拟预测)已知角α是第二象限角,且终边经过点()3,4-,则tan 2α=( )A .3B .12C .2D .12或22.(2023·全国·模拟预测)已知α是锐角,1cos 3α=,则πcos 26αæö+=ç÷èø( )A .12B .12C -D 3.若3sin 5q =,5π3π2q <<,则tan cos 22q q+=( )A .3+B .3C .3D .31.(2024·全国·高考真题)函数()sin f x x x =在[]0,π上的最大值是 .2.(2020·北京·高考真题)若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为 .3.(全国·高考真题)设当x q =时,函数()sin 2cos f x x x =-取得最大值,则cos q = .4.(2024高三·湖北·二模)在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,1cos 3C =,8c =,则当a b +取得最大值时,sin A = .1.(2024·湖北·二模)函数()3cos 4sin f x x x =-,当()f x 取得最大值时,sin x =( )A .45B .45-C .35D .35-2.(2024·四川南充·二模)已知函数()3sin 4cos f x x x =+.设x q =时,()f x 取得最大值.则πcos 4q æö+=ç÷èø( )AB.CD.3.(2024·山东·模拟预测)若函数()()πcos sin 3f x x x ϕæö=-++ç÷èø的最大值为2,则常数ϕ的一个取值为 .4.(2024·河北保定·三模)已知锐角α,β(αβ¹)满足sin 2cos sin 2cos ααββ+=+,则sin()αβ+的值为( )ABC .35D .451.(21-22高三上·四川成都·阶段练习)已知α为锐角且tan 23tan 4απα=-æö+ç÷èø,则sin 22παæö+ç÷èø的值是 .2.(2023·江苏徐州·模拟预测)已知πsin(212α-ππtan()tan()312αα++=.1.(2022·四川眉山·模拟预测)若0,2παæö∈ç÷èø,2sin 2cos αα=,则cos 2α的值为( )A .35-B .12-C .0D .352.(2024高三·全国·专题练习)已知ππsin 2sin 44ααæöæö+=-ç÷ç÷èøèø,则πsin 24αæö-=ç÷èø( )A .BCD .1.(2024高三·全国·专题练习)已知43cos cos ,sin sin 55αβαβ+=-=-,则()tan αβ-的值为( )A .247-B .724-C .724D .2472.(2024·安徽阜阳·一模)已知()sin sin ,cos cos 0a b ab αβαβ+=+=¹,则()cos αβ-= ,()sin αβ+= .3.(2024·广东·一模)已知()2211cos cos ,sin 124αβαβ-=--=,则()cos 22αβ+=( )A .79-B .79C .29-D .291.(2024·山东·模拟预测)已知1sin cos cos sin 2x y x y +=,1cos 2cos 24x y -=,则()sin x y -=( )A .12B .14C .34-D .14-2.(2024·全国·模拟预测)已知角A ,B ,C 满足πA B C ++=,且cos cos cos 1A B C ++=,则(1cos A -)(1cos B -)(1cos C -)=( )A .0B .1CD1.(23-24高二上·湖南长沙·期末)函数()(1cos )f x x x =+的最大值为( )ABC .58D .942.(2024·新疆·一模)已知: ()()()sin 20sin 20sin 400q q q -+++-=o o o,则tan q =( )A.B.CD3.(2024·全国·模拟预测)已知角,αβ满足:()sin sin 5sin αβαβ+=-,其中π2πk αβ-¹+,π2πk α¹+,()π2πk k β¹+∈Z ,则tan 2tan2αβ=( )A .1B .32C .2D .524.(2024·辽宁丹东·一模)已知π(0,)2α∈1=,则sin 2α=( )ABCD1.(2024·安徽阜阳·一模)已知()sin sin ,cos cos 0a b ab αβαβ+=+=¹,则()cos αβ-= ,()sin αβ+= .2.(2024·重庆·三模)已知函数()f x 满足()1tan sin 2f x x=.若12x x 、是方程2202420240x x +-=的两根,则12()()f x f x += .3.(2024·湖北荆州·三模)设π02αβ<<<,tan tan m αβ=,()3cos 5αβ-=,若满足条件的α与β存在且唯一,则m =, tan tan αβ=.4.(2024·四川成都·三模)若ABC V 为锐角三角形,当2tan 9tan 17tan A B C ++取最小值时,记其最小值为m ,对应的tan A n =,则mn =.1.(2024·上海·高考真题)下列函数()f x 的最小正周期是2π的是( )A .sin cos x x +B .sin cos x x C .22sin cos x x+D .22sin cos x x-2.(2024·河北保定·二模)若154tan sin αα=,则cos2α=( )A .18B .18-C .78D .78-3.(2024·江苏徐州·模拟预测)已知2πsin2,0,34ααæö=∈ç÷èø,则πsin 4αæö+=ç÷èø( )A B .56C D 4.(2024·黑龙江哈尔滨·模拟预测)已知ππsin sin cos sin 63ααααæöæö+=-ç÷ç÷èøèø,则πtan 24αæö+=ç÷èø( )A .2B .2-C .2D .2-+5.(2024·江苏扬州·模拟预测)若ππ44αβ-<<<,且1cos sin 2αβ=,tan 2tan 3αβ=,则()cos αβ-=( )A B .C D .6.(2024·陕西·模拟预测)已知ππ,24αæö∈--ç÷èø,若3tan 2tan 24πααæö=-+ç÷èø,则2sin 22cos tan ααα+=( )A .185-B .25-C .25D .185二、填空题7.(2024·广东深圳·模拟预测)计算:()cos 72cos 36°-°= .8.(2024·上海·模拟预测)已知7cos 9α=-,3(π,π)2α∈,则cos 2α= .9.(2024·江苏苏州·三模)函数()|sin |cos f x x x =+的值域是.10.(2024·湖南·模拟预测)已知tan 3α=,tan()5αβ+=-,则tan(2)αβ+=.1.(2024·山东·模拟预测)已知π4cos cos 35ααæö--=ç÷èø,则πsin 26αæö+=ç÷èø( )A .725B .725-C .2425D .2425-2.(2024·河北衡水·三模)已知sin(3)sin()tan(2)tan m n αβαβαβα-=--=,,则m ,n 的关系为( )A .2m n=B .1m n m+=C .1m n m =-D .11m n m +=-3.(2024·安徽合肥·模拟预测)已知()()()cos 10cos 50cos 50ααα-+°°-°=+,则tan α=( )A B .C D .4.(2024·湖北襄阳·模拟预测)设,αβ∈R ,则“()()cos 2cos sin 2sin sin cos cos sin 4444ππππαββαββααααæöæöæöæö+++=+--+-ç÷ç÷ç÷ç÷èøèøèøèø”是“ππ8k α=+,()k ∈Z ”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要5.(2024·福建泉州·二模)若π3,0,,tan tan ,sin()25m αβαβαβæö∈=-=ç÷èø,且α与β存在且唯一,则tan tan m αβ+=( )A .2B .4C .12D .146.(2024·江苏南通·模拟预测)已知π02βα<<<,()4sin 5αβ-=,tan tan 2αβ-=,则sin sin αβ=( )A .12B .15C .25D7.(2024·山西吕梁·三模)设函数()sin 1f x x x =++.若存在实数,,a b ϕ使得()()1af x bf x ϕ+-=对任意x ∈R 恒成立,则a b -=( )A .1-B .0C .1D .1±8.(2024·重庆·模拟预测)(多选)在ABC V 中,若22sin sin 1A B +=,则下列说法正确的是( )A .sin cos A B=B .π2A B +=C .sin sin A B ×的最大值为12D .tan tan 1A B ×=9.(2024·山东菏泽·模拟预测)已知π,(0,)2a β∈,sin(2)2sin αββ+=,2tan 3α=,则tan()αβ+= .10.(2024·山东泰安·模拟预测)已知()()()cos 20cos 20cos 400q q q °-+°+-°-=,则tan q = .1.(2023·全国·高考真题)过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=( )A .1BCD2.(2021·北京·高考真题)函数()cos cos 2f x x x =-是A .奇函数,且最大值为2B .偶函数,且最大值为2C .奇函数,且最大值为98D .偶函数,且最大值为983.(2021·浙江·高考真题)已知,,αβg 是互不相同的锐角,则在sin cos ,sin cos ,sin cos αββg g α三个值中,大于12的个数的最大值是( )A .0B .1C .2D .34.(2020·全国·高考真题)已知πsin sin =31q q æö++ç÷èø,则πsin =6q æö+ç÷èø( )A .12BC .23D5.(2020·全国·高考真题)已知2tan θ–tan(θ+π4)=7,则tan θ=( )A .–2B .–1C .1D .26.(2020·浙江·高考真题)已知tan 2q =,则cos 2q =;πtan(4q -= .7.(2020·江苏·高考真题)已知2sin ()4πα+ =23,则sin 2α的值是 .8.(2020·全国·高考真题)若2sin 3x =-,则cos 2x =.9.(2019·全国·高考真题)已知α ∈(0,π2),2sin2α=cos2α+1,则sinα=A .15BCD10.(2019·江苏·高考真题)已知tan 2π3tan 4αα=-æö+ç÷èø,则πsin 24αæö+ç÷èø的值是 .11.(2019·北京·高考真题)函数f (x )=sin 22x 的最小正周期是.12.(2019·全国·高考真题)函数3π()sin(2)3cos 2f x x x =+-的最小值为 .13.(2018·全国·高考真题)已知51tan 45παæö-=ç÷èø,则tan α= .14.(2018·全国·高考真题)已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+ .15.(2018·全国·高考真题)若1sin 3α=,则cos2α=A .89B .79C .79-D .89-16.(2018·全国·高考真题)函数()2tan 1tan xf x x=+的最小正周期为A .4πB .2πC .πD .2π17.(2018·全国·高考真题)已知函数()222cos sin 2f x x x =-+,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为4。

2025年高考数学一轮复习-5.3.2-简单的三角恒等变换【课件】

2025年高考数学一轮复习-5.3.2-简单的三角恒等变换【课件】

因为由二倍角公式可知:cos
因为tan




1+cos
2
2
θ=2cos -1,所以cos =
,因此(3)错误;
2
2

2


sin 2 2sin 2 cos 2
sin
sin 2 2sin 2 cos 2 1−cos
= =
,tan = =
,所以(4)正确.
=
=
2
2
2 cos
π
提醒:以上变换,结合二倍角公式可将2x的三角函数与 ±x的三角函数联系在一起.
4
角度3
给值求角
[例4](1)已知α为锐角,且sin α·( 3-tan 10°)=1,则α= 40°
【解析】由已知得sin α=
=
cos10°
=
sin80°
2sin50° 2sin50°
1
3−tan10°
2sin40°cos40°
考向
高考命题常以角为载体,考查二倍角公式、升幂降幂公式、半角公
考法
式;三角函数求值是高考热点,常以选择题或填空题的形式出现.
预测
高考可能单独考查,也可能与三角函数的图象与性质、向量等知识
综合考查,选择题、填空题、解答题中均有可能出现.
必备知识·逐点夯实
知识梳理·归纳
1.二倍角的正弦、余弦、正切公式

(2cos2 −1)2
cos2 2
=
=
π
π
π
4sin( 4 −)cos( 4 −) 2sin( 2 −2)
cos2 2 1
=
= cos
2cos2 2

2023年新高考数学大一轮复习专题18 三角恒等变换 (解析版)

2023年新高考数学大一轮复习专题18 三角恒等变换 (解析版)

专题18 三角恒等变换【考点预测】知识点一.两角和与差的正余弦与正切 ①sin()sin cos cos sin αβαβαβ±=±;②cos()cos cos sin sin αβαβαβ±=;③tan tan tan()1tan tan αβαβαβ±±=;知识点二.二倍角公式 ①sin22sin cos ααα=;②2222cos2cos sin 2cos 112sin ααααα=-=-=-;③22tan tan 21tan ααα=-; 知识点三:降次(幂)公式2211cos 21cos 2sin cos sin 2;sin ;cos ;222ααααααα-+===知识点四:半角公式sin22αα== sin 1cos tan.21cos sin aαααα-==+知识点五.辅助角公式)sin(cos sin 22ϕααα++=+b a b a (其中abb a a b a b =+=+=ϕϕϕtan cos sin 2222,,). 【方法技巧与总结】 1.两角和与差正切公式变形)tan tan 1)(tan(tan tan βαβαβα ±=±; 1)tan(tan tan )tan(tan tan 1tan tan ---=++-=⋅βαβαβαβαβα.2.降幂公式与升幂公式ααααααα2sin 21cos sin 22cos 1cos 22cos 1sin 22=+=-=;;; 2222)cos (sin 2sin 1)cos (sin 2sin 1sin 22cos 1cos 22cos 1αααααααααα-=-+=+=-=+;;;.3.其他常用变式αααααααααααααααααααsin cos 1cos 1sin 2tan tan 1tan 1cos sin sin cos 2cos tan 1tan 2cos sin cos sin 22sin 222222222-=+=+-=+-=+=+=;;.3. 拆分角问题:①=22αα⋅;=(+)ααββ-;②()αββα=--;③1[()()]2ααβαβ=++-; ④1[()()]2βαβαβ=+--;⑤()424πππαα+=--.注意 特殊的角也看成已知角,如()44ππαα=--.【题型归纳目录】题型一:两角和与差公式的证明 题型二:给式求值 题型三:给值求值 题型四:给值求角题型五:正切恒等式及求非特殊角 【典例例题】题型一:两角和与差公式的证明例1.(2022·山西省长治市第二中学校高一期末)(1)试证明差角的余弦公式()C αβ-:cos()cos cos sin sin αβαβαβ-=+;(2)利用公式()C αβ-推导:①和角的余弦公式()C αβ+,正弦公式()S αβ+,正切公式()T αβ+; ②倍角公式(2)S α,(2)C α,(2)T α.【答案】(1)证明见解析;(2)①答案见解析;②答案见解析 【解析】 【分析】在单位圆里面证明()C αβ-,然后根据诱导公式即可证明()C αβ+和()S αβ+,利用正弦余弦和正切的关系即可证明()T αβ+;用正弦余弦正切的和角公式即可证明对应的二倍角公式.【详解】(1)不妨令2,k k απβ≠+∈Z . 如图,设单位圆与x 轴的正半轴相交于点1,0A ,以x 轴非负半轴为始边作角,,αβαβ-,它们的终边分别与单位圆相交于点()1cos ,sin P αα,()1cos ,sin A ββ,()()()cos ,sin P αβαβ--.连接11,A P AP .若把扇形OAP 绕着点O 旋转β角,则点,A P 分別与点11,A P 重合.根据圆的旋转对称性可知,AP 与11A P 重合,从而,AP =11A P ,∴11AP A P =. 根据两点间的距离公式,得:()()2222[cos 1]sin (cos cos )(sin sin )αβαβαβαβ--+-=-+-,化简得:()cos cos cos sin sin .αβαβαβ-=+ 当()2k k απβ=+∈Z 时,上式仍然成立.∴,对于任意角,αβ有:()cos cos cos sin sin αβαβαβ-=+. (2)①公式()C αβ+的推导: ()()cos cos αβαβ⎡⎤+=--⎣⎦()()cos cos sin sin αβαβ=-+-cos cos sin sin αβαβ=-.公式()S αβ+的推导:()sin cos 2παβαβ⎛⎫+=+- ⎪⎝⎭cos 2παβ⎡⎤⎛⎫=-- ⎪⎢⎥⎝⎭⎣⎦cos cos sin sin 22ππαβαβ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭cos sin sin cos αβαβ=+正切公式()T αβ+的推导:()()()sin tan cos αβαβαβ++=+sin cos cos sin cos cos sin sin αβαβαβαβ+=-tan tan 1tan tan αβαβ+=-②公式()2S α的推导:由①知,()sin2sin cos sin sin cos 2sin cos ααααααααα=+=+=. 公式()2C α的推导:由①知,()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-.公式()2T α的推导:由①知,()2tan tan 2tan tan2tan 1tan tan 1tan ααααααααα+=+==-⋅-.例2.(2022·云南·昭通市第一中学高三开学考试(文))已知以下四个式子的值都等于同一个常数 22sin 26cos 343sin 26cos34+-; 22sin 39cos 213sin 39cos 21+-;()()22sin 52cos 1123sin 52cos112-+--;22sin 30cos 303sin 30cos30+-.(1)试从上述四个式子中选择一个,求出这个常数.(2)根据(1)的计算结果,推广为三角恒等式,并证明你的结论. 【答案】(1)选第四个式子,14;(2)证明见解析. 【解析】 【分析】(1)选第四个式子,由1sin 30,cos302︒=︒=(2)由题意,设一个角为α,另一个角为60α︒-,应用两角差的余弦公式展开三角函数,由同角正余弦的平方和关系化简求值 【详解】(1)由第四个式子:221331sin 30cos 303sin 30cos304444+-=+-= (2)证明:()()22sin cos 603sin cos 60αααα+---2211sin cos cos 22αααααα⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭2222133sin cos cos sin cos sin 442αααααααα=++-14=【点睛】本题考查了三角函数,利用特殊角的函数值求三角函数式的值,应用两角差余弦公式展开三角函数式及同角的正余弦平方和关系化简求值,属于简单题例3.(2022·陕西省商丹高新学校模拟预测(理))如图带有坐标系的单位圆O 中,设AOx α∠=,BOx β∠=,AOB αβ∠=-,(1)利用单位圆、向量知识证明:cos()cos cos sin sin αβαβαβ-=+(2)若π,π2α⎛⎫∈ ⎪⎝⎭,π0,2β⎛⎫∈ ⎪⎝⎭,4cos()5αβ-=-,5tan 12α=-,求cos β的值【答案】(1)证明见解析;(2)6365. 【解析】(1)根据向量的数量积公式即可证明;(2)根据角的范围分别求出正弦和余弦值,利用两角和的余弦公式计算得出答案. 【详解】(1)由题意知:||||1OA OB ==,且OA 与OB 的夹角为αβ-, 所以·11cos()cos()OA OB αβαβ=⨯⨯-=-, 又(cos ,sin )OA αα=,(cos ,sin )OB ββ=, 所以·cos cos sin sin OA OB αβαβ=+, 故cos()cos cos sin sin αβαβαβ-=+.(2)π,π2α⎛⎫∈ ⎪⎝⎭且5tan 12α=-,则512sin ,cos 1313αα==-;π0,2β⎛⎫∈ ⎪⎝⎭,则,02πβ⎛⎫-∈- ⎪⎝⎭,又π,π2α⎛⎫∈ ⎪⎝⎭,()0,αβπ∴-∈,4cos(),sin()553αβαβ-=--=,()()()1245363cos cos cos cos sin sin 13513565βααβααβααβ⎛⎫=--=-+-=-⨯-+⨯=⎡⎤ ⎪⎣⎦⎝⎭【点睛】本题主要考查平面向量的数量积的定义,考查平面向量数量积的坐标运算,考查两角和与差的余弦公式,属于中档题.例4.(2022·全国·高三专题练习)如图,考虑点(1,0)A ,1(cos ,sin )P αα,2(cos ,sin )P ββ-,(cos(),sin())P αβαβ++,从这个图出发.(1)推导公式:cos()cos cos sin sin αβαβαβ+=-;(2)利用(1)的结果证明:1cos cos [cos()cos()]2αβαβαβ=++-,并计算sin 37.5cos37.5︒︒⋅的值.【答案】(1)推导见解析;(2【解析】 【分析】(1)根据图象可知2212AP PP =,再展开化简,得到两角和的余弦公式;(2)首先令ββ=-,求()cos αβ-,再代入所证明的公式;首先根据二倍角公式和诱导公式化简为11sin 37.5cos37.5sin 75cos1522⋅==,再根据两角差的余弦公式化简. 【详解】(1)因为12(cos ,sin ),(cos ,sin ),(cos(),sin())P P P ααββαβαβ-++, 根据图象,可得2212AP PP =,即2212||AP PP =, 即2222(cos()1)sin ()(cos cos )(sin sin )αβαββαβα+-++=-++. 即cos()cos cos sin sin αββαβα+=-.(2)由(1)可得cos()cos cos sin sin αββαβα+=-, ① cos()cos cos sin sin αββαβα-=+ ②由①+②可得:2cos cos cos()cos()βααβαβ=++- 所以1cos cos [cos()cos()]2βααβαβ=++-,所以()111sin 37.5cos37.5sin 75cos15cos 4530222︒︒︒︒︒︒===-.()1cos 45cos30sin 45sin 302=+1122⎫==⎪⎪⎝⎭【点睛】本题考查两角和差余弦公式的证明,以及利用三角恒等变换求值,重点考查逻辑推理证明,公式的灵活应用,属于基础题型.【方法技巧与总结】推证两角和与差公式就是要用这两个单角的三角函数表示和差角的三角公式,通过余弦定理或向量数量积建立它们之间的关系,这就是证明的思路.题型二:给式求值例5.(2022·全国·高三专题练习)已知sin α=()cos αβ-=且304πα<<,304πβ<<,则sin β=( )A B C D 【答案】A 【解析】易知()()sin sin βααβ=--,利用角的范围和同角三角函数关系可求得cos α和()sin αβ-,分别在()sin αβ-=和sin β,结合β的范围可确定最终结果.【详解】2sin α=<且304πα<<,04πα∴<<,5cos 7α∴==.又304πβ<<,344ππαβ∴-<-<,()sin αβ∴-==当()sin αβ-=()()()()sin sin sin cos cos sin βααβααβααβ=--=---57==304πβ<<,sin 0β∴>,sin β∴=不合题意,舍去;当()sin αβ-=sin β=.综上所述:sin β=故选:A . 【点睛】易错点睛:本题中求解cos α时,易忽略sin α的值所确定的α的更小的范围,从而误认为cos α的取值也有两种不同的可能性,造成求解错误.例6.(2020·四川·乐山外国语学校高三期中(文))已知sin 15tan 2102α⎛⎫︒-=︒ ⎪⎝⎭,则()sin 60α︒+的值为( )A .13B .13-C .23D .23-【答案】A 【解析】根据题意得到sin 152α⎛⎫︒- ⎪⎝⎭进而得到26cos 1529α⎛⎫︒-= ⎪⎝⎭,()1cos 303α︒-=,从而有()()()sin 60sin 9030cos 30ααα⎡⎤︒+=︒-︒-=︒-⎣⎦.【详解】∵sin 15tan 2102α⎛⎫︒-=︒ ⎪⎝⎭,∴()sin 15tan 210tan 18030tan302α⎛⎫︒-=︒=︒+︒=︒= ⎪⎝⎭则226cos 151sin 15229αα⎛⎫⎛⎫︒-=-︒-= ⎪ ⎪⎝⎭⎝⎭,()221cos 30cos 15sin 15223ααα⎛⎫⎛⎫︒-=︒--︒-= ⎪ ⎪⎝⎭⎝⎭,∴()()sin 60sin 9030αα⎡⎤︒+=︒-︒-⎣⎦ ()1cos 303α=︒-=, 故选A. 【点睛】本题主要考查二倍角公式,同角三角函数的基本关系,诱导公式,属于基础题.例7.(2020·全国·高三专题练习)若7cos(2)38x π-=-,则sin()3x π+的值为( ).A .14B .78 C .14±D .78±【答案】C 【解析】 【分析】利用倍角公式以及诱导公式,结合已知条件,即可求得结果. 【详解】∵27cos(2)cos[2()]2cos ()13668x x x πππ-=-=--=-, ∴1cos()64x π-=±,∵1sin()cos[()]cos()32364x x x ππππ+=-+=-=±,故选:C. 【点睛】本题考查利用三角恒等变换解决给值求值问题,属基础题.(多选题)例8.(2022·全国·高三专题练习)设sin()sin 6πββ++=sin()3πβ-=( )AB .12C .12-D. 【答案】AC 【解析】 【分析】利用三角恒等变换化简已知条件,结合同角三角函数的基本关系式,求得sin 3πβ⎛⎫- ⎪⎝⎭.【详解】依题意sin()sin 6πββ++=sin()sin 3233ππππββ⎛⎫-++-+= ⎪⎝⎭1cos()sin )3233πππβββ⎛⎫-+--= ⎪⎝⎭1sin )233ππββ⎛⎫--= ⎪⎝⎭)sin 2cos()133ππββ⎛⎫-+-⎪⎝⎭,)1sin cos()3πβπβ⎛⎫-- ⎪-=22sin cos 133ππββ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,)221sin 1sin 3πβπβ⎛⎫⎡⎤⎢⎥⎛⎫-+= ⎪⎝⎭-- ⎪⎦⎣,化简得(()(28sin 2sin 3033ππββ⎛⎫⎛⎫+----+= ⎪ ⎪⎝⎭⎝⎭,2,(24sin 2sin 033ππββ⎛⎫⎛⎫-+--= ⎪ ⎪⎝⎭⎝⎭,2sin 12sin 033ππββ⎡⎤⎡⎛⎫⎛⎫-+-= ⎪ ⎪⎢⎥⎢⎝⎭⎝⎭⎣⎦⎣, 解得1sin 32πβ⎛⎫-=- ⎪⎝⎭或sin 3πβ⎛⎫-=⎪⎝⎭. 故选:AC例9.(2022·全国·模拟预测(文))已知,0,2παβ⎛⎫∈ ⎪⎝⎭,3cos25β=,()4cos 5αβ+=,则cos α=___________.【解析】 【分析】 由,0,2,()4cos 5αβ+=,即可求得()sin αβ+,用二倍角公式即可求得sin β 和cos β ,用拼凑角思想可表示出()ααββ=+-,用三角恒等变换公式求解即可. 【详解】因为()4cos 5αβ+=,且,0,2,所以()3sin 5αβ+=.又因为23cos 212sin 5ββ=-=,解得sin β=则cos β==故()()()cos cos cos cos sin sin ααββαββαββ=+-=+++⎡⎤⎣⎦4355==. 例10.(2022·上海静安·模拟预测)已知sin 4πα⎛⎫+= ⎪⎝⎭,则sin 2α的值为_____________.【答案】12##0.5 【解析】 【分析】由倍角公式以及诱导公式求解即可. 【详解】231cos 212sin 124442ππαα⎛⎫⎛⎫+=-+=-⨯=- ⎪ ⎪⎝⎭⎝⎭cos 2cos 2sin 242ππααα⎛⎫⎛⎫+=+=- ⎪ ⎪⎝⎭⎝⎭1sin 22α∴=故答案为:12例11.(2022·江苏泰州·模拟预测)若0θθ=时,()2sin2cos f θθθ=-取得最大值,则0sin 24πθ⎛⎫+= ⎪⎝⎭______.【解析】 【分析】首先利用二倍角公式和辅助角公式,化简,再代入求值. 【详解】()()111sin 21cos2sin 2cos2222f θθθθθ=-+=--()112222θθθϕ⎫---⎪⎝⎭(其中cos ϕsin ϕ=, 当()f θ取最大值时,022πθϕ-=,∴022πθϕ=+0sin 2sin cos 2πθϕϕ⎛⎫=+= ⎪⎝⎭0cos2cos sin 2πθϕϕ⎛⎫=+=-= ⎪⎝⎭∴0sin 24πθ⎛⎛⎫+== ⎪ ⎝⎭⎝⎭⎝⎭【方法技巧与总结】给式求值:给出某些式子的值,求其他式子的值.解此类问题,一般应先将所给式子变形,将其转化成所求函数式能使用的条件,或将所求函数式变形为可使用条件的形式.题型三:给值求值例12.(2022·福建省福州第一中学三模)若3sin 5α=-,且3ππ,2α⎛⎫∈ ⎪⎝⎭,则1tan21tan2αα-=+( )A .12 B .12-C .2D .-2【答案】D 【解析】 【分析】由2222sin cos2tan222sin 2sincos22sin cos tan 1222ααααααααα===++,可解得tan 2α,即可求解 【详解】3sin 2sincos225ααα==-,故2222sincos2tan32225sin cos tan 1222αααααα==-++, 可解得1tan23α=-或tan 32α=-,又3ππ,2α⎛⎫∈ ⎪⎝⎭,故tan 32α=-,故1tan 221tan2αα-=-+, 故选:D例13.(2022·湖北武汉·模拟预测)已知1sin 64x π⎛⎫-= ⎪⎝⎭,则cos 23x π⎛⎫-= ⎪⎝⎭( )A .78-B .78C.D【答案】B 【解析】 【分析】根据题意得sin 6x π⎛⎫- ⎪⎝⎭的值,再根据2cos 212sin 36x x ππ⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭求解即可.【详解】因为sin sin 66x x ππ⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭,所以1sin 64x π⎛⎫-=- ⎪⎝⎭,2217cos 2cos 212sin 1236648x x x πππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=--= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.故选:B.例14.(2022·湖北·模拟预测)已知,22ππα⎛⎫∈- ⎪⎝⎭,且1cos 42πα⎛⎫-= ⎪⎝⎭,则cos2α=( )A. B.C .12D【答案】D【解析】 【分析】由已知α的取值范围,求出4πα-的取值范围,再结合1cos 42πα⎛⎫-= ⎪⎝⎭即可解得α的值,cos2α即可求解 【详解】 因为22ππα-<<,所以3444πππα-<-< 又1cos 42πα⎛⎫-= ⎪⎝⎭,所以43ππα-=-,所以12πα=-所以cos 2cos cos 66ππα⎛⎫=-==⎪⎝⎭故选:D例15.(2022·全国·模拟预测)已知1sin 35πα⎛⎫+= ⎪⎝⎭,则cos 23πα⎛⎫-= ⎪⎝⎭( )A .2325B .2325-C D . 【答案】B 【解析】 【分析】利用诱导公式化简,然后利用二倍角公式即得. 【详解】因为1sin cos cos 3665πππααα⎛⎫⎛⎫⎛⎫+=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以22123cos 2cos22cos 121366525πππααα⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=⨯-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:B .例16.(2022·黑龙江·哈师大附中三模(文))已知()3sin 455α︒+=,45135α︒<<︒,则cos2=α( )A .2425B .2425-C .725D .725-【答案】B 【解析】 【分析】首先根据同角三角函数的基本关系求出()cos 45α︒+,再利用二倍角公式及诱导公式计算可得; 【详解】解:因为45135α︒<<︒,所以9045180α︒<+︒<︒,又()3sin 455α︒+=,所以()4cos 455α︒+==-,所以()()()3424sin 2452sin 45cos 4525525ααα⎛⎫︒+=︒+︒+=⨯⨯-=- ⎪⎝⎭。

2025高考数学一轮复习-4.3.2-简单的三角恒等变换【课件】

2025高考数学一轮复习-4.3.2-简单的三角恒等变换【课件】
=6sin2α+sisnin2αα+cocsosα2-α 2cos2α =6tant2aαn+2αta+n1α-2=0, 即 6tan2α+tan α-2=0,解得 tan α=-23或 tan α=12,
2x+π 3
7 =__3_2_____.
解析 由题意可得 4sinx+π6=1, 令 x+π6=t,则 sin t=41,x=t-π6, 所以原式=sin(π-t)cos 2t=sin t(1-2sin2t)=372.
角度3 给值求角
例3
(Hale Waihona Puke )已知cosα=17,cos(α-β)=1134,且
0<β<α<π2,则
π 6
=45× 23-35×12=4
3-3 10 .
万能公式
sin
α α=12+tatnan22α2,cos
α=11-+ttaann22αα22,tan
α α=12-tatnan22α2.
注意 (1)上述三个公式统称为万能公式.
(2)上述公式左右两边定义域发生了变化,由左向右定义域缩小了.

(1)已知 α,β∈(0,π),tan
=2sicnoπ2s2-2x2x=2ccooss222xx=12cos 2x.
3.(tan 10°-
cos 3)·sin
5100°°=___-__2___.
解析
原式=sin
10°- cos
3cos 10°
10°·scinos5100°°
=-s2insin505°0°=-2.
4.化简:( 1 函数 tan
28°
= c3ocsos282°8°= 3.
2.化简:22taconsπ44x--x2scions22xπ4++12x=_12_c_o_s__2_x_.

专题 三角恒等变换(学生版)

专题  三角恒等变换(学生版)

专题 三角恒等变换1.(2023·河南开封·统考三模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P (-4,3),则sin 3π2+2α =()A.-2425B.-725C.725D.24252.(2023·河南·襄城高中校联考三模)已知π<α<3π2,sin2α1+sin β +1-cos2α cos β=0,则sin α+βcos α=()A.-2B.-1C.12D.13.(2023·广东深圳·校考二模)已知tan α2=2,则1+cos αsin α的值是()A.22B.2C.2D.124.(2023·宁夏石嘴山·平罗中学校考模拟预测)若tan α+π4=15,则tan α=()A.-23B.23C.-13D.135.(2023·福建厦门·统考模拟预测)已知sin α+sin α+2π3 =sin π3-α ,则sin α=()A.0B.±217C.±22D.±326.(2023·吉林延边·统考二模)下列化简不正确的是()A.cos82°sin52°+sin82°cos128°=-12B.sin15°sin30°sin75°=18C.cos 215°-sin 215°=32D.tan48°+tan72°1-tan48°tan72°=37.(2023·江西上饶·统考二模)已知α∈0,π2,tan α=3,则cos α-π4 =()A.55B.255C.31010D.-558.(2023·湖南长沙·雅礼中学校考模拟预测)已知tan α+tan β=3,sin α+β =2sin αsin β,则tan α+β =()A.4B.6C.-32D.-69.(多选题)(2023·广东广州·广州六中校考三模)若函数f (x )=sin 4x +cos 4x ,则()A.函数f (x )的一条对称轴为x =π4B.函数f (x )的一个对称中心为π4,0 C.函数f (x )的最小正周期为π2D.若函数g (x )=8f (x )-34,则g (x )的最大值为210.(多选题)(2023·全国·模拟预测)若tan α=34,α∈(0,π),则()A.sin α>cos αB.0<αtan α<1C.tan α2=13D.cos 2α+π4 =-1725011.(多选题)(2023·安徽黄山·统考二模)若sin θ⋅cos2θsin θ+cos θ=-35,则tan k π2+θk ∈Z 的值可能是()A.12 B.13C.2D.312.(多选题)(2023·湖南邵阳·统考二模)若函数f x =2cos ωx cos ωx -sin ωx -1ω>0 的最小正周期为π,则()A.f -π24 =-62B.f x 在π2,3π4上单调递增C.f x 在0,5π2内有5个零点D.f x 在-π4,π4上的值域为-1,1 13.(2021•全国)函数y =cos 2x +sin x cos x 图像的对称轴是()A.x =k π2+π8(k ∈Z ) B.x =k π2-π8(k ∈Z )C.x =k π+π4(k ∈Z )D.x =k π-π4(k ∈Z )14.(2021•甲卷)若α∈0,π2 ,tan2α=cos α2-sin α,则tan α=()A.1515B.55C.53 D.15315.(2021•乙卷)cos 2π12-cos 25π12=()A.12B.33C.22D.3216.(2020•新课标Ⅲ)已知2tan θ-tan θ+π4=7,则tan θ=()A.-2B.-1C.1D.217.(2020•新课标Ⅲ)已知sin θ+sin θ+π3 =1,则sin θ+π6=()A.12B.33C.23D.2218.(2020•新课标Ⅰ)已知α∈(0,π),且3cos2α-8cos α=5,则sin α=() A.53B.23C.13D.5919.(2022•浙江)若3sin α-sin β=10,α+β=π2,则sin α=,cos2β=.20.(2022•北京)若函数f (x )=A sin x -3cos x 的一个零点为π3,则A =;f π12=.21.(2020•江苏)已知sin 2π4+α=23,则sin2α的值是.22.(2020•浙江)已知tan θ=2,则cos2θ=,tan θ-π4=.23.(2023·海南海口·海南华侨中学校考模拟预测)已知tan π4-α=13,则2sin2α-cos 2α=.24.(2023·河南·襄城高中校联考三模)若sinα2+cos α22+3cos α=52,则sin α+π3=.25.(2023·河南·襄城高中校联考三模)若sinα2+cos α22+3cos α=52,则cos 2α+2π3=.26.(2023·安徽合肥·合肥一中校考模拟预测)已知a ,b 都是锐角,tan (α+β)=-1,则cos β-α -sin (α+β)cos αcos β=.27.(2023·天津滨海新·统考三模)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,b =27,c =2,B =π3.(1)求a 的值;(2)求sin A 的值;(3)求sin B -2A 的值.28.(2023·天津和平·耀华中学校考一模)已知α∈0,π4,tanα+π4= 2cos2α.(1)求α的大小;(2)设函数f x =sin x+2α,x∈0,π,求f x 的单调区间及值域.29.(2023·北京海淀·统考二模)已知函数f(x)=a sin x cos x+cos2x+π6,且f π4 =12.(1)求a的值和f(x)的最小正周期;(2)求f(x)在[0,π]上的单调递增区间.30.(2021•浙江)设函数f (x )=sin x +cos x (x ∈R ).(1)求函数y =f x +π22的最小正周期;(2)求函数y =f (x )f x -π4 在0,π2上的最大值.。

三角恒等变换(八大题型+精准练习)(学生版)-2025届高三数学

三角恒等变换(八大题型+精准练习)(学生版)-2025届高三数学

三角恒等变换(八大题型+精准练习)题型归类题型一、两角和与差的三角函数公式的应用题型二、两角和与差的三角函数公式的逆用与变形题型三、角的变换问题题型四、二倍角公式的应用题型五、给角求值题型六、给值求值题型七、给值求角题型八、三角恒等变换的综合应用题型一、两角和与差的三角函数公式的应用知识要点两角和与差的正余弦与正切①sin (α±β)=sin αcos β±cos αsin β;②cos (α±β)=cos αcos β∓sin αsin β;③tan (α±β)=tan α±tan β1∓tan αtan β;精准练习1.(24-25高三·山东泰安·开学考试)已知sin α+β =13,sin α-β =12,则tan αtan β=()A.15B.-15C.5D.-52.(24-25高三上·安徽·开学考试)已知sin α+β =-35,1tan α+1tan β=2,则sin αsin β=()A.-310B.15C.-15D.3103.(24-25高三·重庆·阶段练习)已知cos α+β =13,cos αcos β=12,则cos 2α-2β =()A.23B.19C.-19D.-134.(2025·广东·一模)已知sin α+π3 -sin α=23,则cos 2α+π3 =()A.-59B.-19C.19D.595.(2024·江西九江·二模)已知α,β∈0,π2 ,cos α-β =56,tan α⋅tan β=14,则α+β=()A.π3B.π4C.π6D.2π36.(24-25高三上·江苏徐州·开学考试)已知sin α-β =2cos α+β ,tan α-β =13,则tan α-tan β=()A.47 B.74C.45D.767.(2025·黑龙江大庆·一模)已知0<α<β<π,且sin α+β +cos α+β =0,sin αsin β=6cos αcos β,则tan α-β =()A.-1B.-12C.-16D.-178.(24-25高三上·河北张家口·开学考试)已知sin (α-β)=13,tan αtan β=4,则sin (α+β)=.题型二、两角和与差的三角函数公式的逆用与变形知识要点1、两角和与差的正切公式的变形tan α±tan β=tan (α±β)(1∓tan αtan β);tan α⋅tan β=1-tan α+tan βtan (α+β)=tan α-tan βtan (α-β)-1.2、辅助角公式a sin α+b cos α=a 2+b 2sin (α+ϕ)(其中sin ϕ=ba 2+b2,cos ϕ=aa 2+b2,tan ϕ=ba精准练习9.(23-24高一·黑龙江齐齐哈尔·期末)tan13°+tan32°+tan13°tan32°=()A.tan19°B.1C.-tan19°D.-110.(2024·福建泉州·模拟预测)若sin θ+3cos θ=2,则tan θ=()A.-3B.-33C.33D.3题型三、角的变换问题知识要点拆分角问题:①α=2⋅α2;α=(α+β)-β;②α=β-(β-α);③α=12[(α+β)+(α-β)];④β=12[(α+β)-(α-β)];⑤π4+α=π2-π4-α .注意:特殊的角也看成已知角,如常用的拆角、配角技巧:2α=(α+β)+(α-β);α=(α+β)-β=(α-β)+β;β=α+β2-α-β2=(α+2β)-(α+β);α-β=(α-γ)+(γ-β);15°=45°-30°;π4+α=π2-π4-α 等.11.(24-25高三·安徽·阶段练习)若cosα+βcosβ=1m,tanα+β=3cosβsinβ,则cos2α=()A.32m2-1 B.16m2-1 C.4m2-1 D.2m2-112.(2024·江苏镇江·三模)已知角α,β满足tanα=2,2sinβ=cos(α+β)sinα,则tanβ=()A.13B.17C.16D.213.(24-25高三·福建福州·开学考试)已知α,β∈(0,π),且cosα=35,sin(α-β)=513,则cosβ=()A.5665B.1665C.3365D.636514.(23-24高一·江苏南京·期末)若sin(α+β)=cos2αsin(α-β),则tan(α+β)的最大值为()A.62B.64C.22D.2415.(2024·黑龙江双鸭山·模拟预测)已知α,β∈0,π4,cos2α-sin2α=17,且3sinβ=sin(2α+β),则α+β的值为()A.π12B.π6C.π4D.π316.(23-24高三·天津·阶段练习)已知角α,β为锐角,tanα=32,sin(α-β)=2114,则tan2α-β的值为.17.(24-25高三·福建·阶段练习)已知tanα+β=4,tanα-β=-3,则tan2β=.题型四、二倍角公式的应用知识要点1、二倍角公式①sin2α=2sinαcosα;②cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α;③tan2α=2tanα1-tan2α;2、降次(幂)公式sinαcosα=12sin2α;sin2α=1-cos2α2;cos2α=1+cos2α2;3、半角公式sinα2=±1-cosα2;cosα2=±1+cosα2;tanα2=sinα1+cosα=1-cosαsin a.18.(2025·安徽·模拟预测)sin 2π12-sin 27π12=( ).A.32B.12C.-12D.-3219.(24-25高三·安徽亳州·开学考试)已知a ∈0,π2 ,sin3α=5sin a cos2α,则tan α值为()A.3B.32C.22D.120.(24-25高三·广西·阶段练习)已知sin π4+α =3sin π4-α ,则cos2α=()A.-45B.-35C.35D.4521.(24-25高三·云南昆明·阶段练习)已知3sin θ+π3 =cos θ+π6 ,则cos2θ=()A.-12B.17C.12D.3222.(23-24高一·江苏无锡·阶段练习)已知函数f (x )=cos 2ωx +sin ωx cos ωx -12(ω>1)的一个零点是π2,且f (x )在-π6,π16 上单调,则ω=()A.54B.74C.94D.11423.(24-25高三·江苏徐州·阶段练习)已知sin2α=23,α∈0,π4 ,则cos α+π4 =()A.66B.56C.306D.15324.(24-25高三·全国·阶段练习)已知4tan π121+tan2π12cos αsin β+π3=1,则tan (β-α)=()A.3B.33C.1D.23325.(多选)(2024·辽宁·模拟预测)已知α∈π2,π ,β∈0,π ,cos2α=-35,cos β-α =-210,则()A.tan α=-12B.sin β-α =-7210C.α+β=5π4D.cos αcos β=-3210题型五、给角求值知识要点(1)给角求值问题求解的关键在于“变角”,使其角相同或具有某种关系,借助角之间的联系寻找转化方法.(2)给角求值问题的一般步骤①化简条件式子或待求式子;②观察条件与所求之间的联系,从函数名称及角入手;③将已知条件代入所求式子,化简求值.精准练习26.(23-24高三·甘肃·阶段练习)计算12cos 35π+cos 25πcos 45π()A.2B.-12C.-1D.-227.(多选)(23-24高三·安徽合肥·阶段练习)下列代数式的值为14的是()A.cos 275°-sin 275°B.tan15°1+tan 215°C.cos36°cos72°D.2cos20°cos40°cos80°28.(23-24高三·吉林长春·阶段练习)cos20°1+cos20°tan20°+3 =.29.(2024·广东深圳·模拟预测)计算:cos72°cos -36° =.30.(23-24高三·安徽·期中)tan20°+4sin20°=.31.(2024高三·全国·专题练习)化简求值:cos36°cos72°+sin50°1+3tan10° -cos20°cos80°1-cos20°.32.(2024高一·湖南株洲·竞赛)1-2sin 25°2sin10°-2cos10°=.33.(11-12高一·全国·课后作业)3tan12°-34cos 212°-2 sin12°=.题型六、给值求值知识要点给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系,解题的基本方法是:①将待求式用已知三角函数表示;②将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角之间的相互关系,并根据这些关系来选择公式精准练习34.(2024·河南新乡·模拟预测)设cos20°=a ,则13tan50°-1=()A.1-a 23B.a 2+12C.aD.a 235.(24-25高三上·江苏徐州·开学考试)已知sin α+π3 +sin α=23,则cos 2α+π3=()A.-1927B.-19C.19D.192736.(24-25高三·湖南衡阳·开学考试)已知cosα+β=6-24,sinα⋅sinβ=24,则cos2α-2β=()A.12B.22C.32D.137.(24-25高三·云南昆明·阶段练习)若sin160°=m,则sin40°=()A.-2mB.-2m1-m2C.-2m1+m2D.2m1-m238.(24-25高三·四川绵阳·开学考试)已知sin4θ2-cos4θ2=35,θ∈0,π,则1+sin2θcos2θ-sin2θ+cosθ=()A.-2635B.-325C.-314D.-172839.(24-25高三·安徽·阶段练习)若cosα+βcosβ=1m,tanα+β=3cosβsinβ,则cos2α=()A.32m2-1 B.16m2-1 C.4m2-1 D.2m2-140.(24-25高三·贵州黔东南·开学考试)已知α∈0,π,且cosα+π4=13,则cos2α=()A.429B.±429C.79D.±7941.(2024·山东淄博·二模)设β∈0,π2,若sinα=3sin(α+2β),tanβ=22,则tan(α+2β)=()A.-24B.24C.-22D.2242.(2024·江西宜春·模拟预测)已知α∈π2,3π4,tanπ4+α=12tanπ4-α,则1-sin2α4cos2α=() A.6+42 B.6-42 C.17+122 D.17-12243.(2024·湖南衡阳·模拟预测)已知cosπ5-α=13,则sin11π10+2α=()A.79B.-79C.429D.-42944.(2024·安徽合肥·三模)已知2sinα=1+23cosα,则sin2α-π6=()A.-18B.-78C.34D.7845.(2024·河北保定·三模)已知锐角α,β(α≠β)满足sin α+2cos α=sin β+2cos β,则sin (α+β)的值为()A.31010B.255C.35D.4546.(2024·福建泉州·模拟预测)已知α,β均为锐角,sin 2α-β =253cos α+sin β,则sin α-β =()A.255B.55C.23D.5347.(2024·重庆·三模)已知α∈0,π3,且2sin2α=4cos α-3cos 3α,则cos2α=()A.29B.13C.79D.22348.(2024·山西·三模)若sin2α=33,sin β-α =66,且α∈π4,π ,β∈π,3π2 ,则cos α+β =()A.5+26B.306C.63D.25-26题型七、给值求角知识要点给值求角:解此类问题的基本方法是:先求出“所求角”的某一三角函数值,再确定“所求角”的范围,最后借助三角函数图像、诱导公式求角.精准练习49.(23-24高一·江苏盐城·期中)已知tan α=-13,tan β=2,且α,β∈0,π ,则α+β的值为()A.π4B.3π4C.5π4D.7π450.(23-24高一·河南·阶段练习)已知0<α<π2,1+sin2α sin π7=2cos 2π14cos2α,则α=()A.3π14B.5π28C.π7D.π1451.(多选)(2023·山西·模拟预测)已知0<β<α<π4,且sin α-β =13,tan α=5tan β,则()A.sin αcos β=56B.sin βcos α=112C.sin2αsin2β=536D.α+β=π352.(2024·陕西铜川·模拟预测)若α∈-π2,π2 ,且cos2α=sin π4-α ,则α的值为.53.(2024高三·江苏·专题练习)已知α为锐角,且sin α+sin α+π3 +sin α+2π3=3,则α=.54.(23-24高三·河北石家庄·阶段练习)若α,β∈0,π2 ,cos α-β2=32,sin α2-β =-12,则α+β=.题型八、三角恒等变换的综合应用知识要点(1)进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意公式的逆用和变形使用.(2)形如y =a sin x +b cos x 化为y =a 2+b 2sin (x +φ),可进一步研究函数的周期性、单调性、最值与对称性.精准练习55.(2024·广东珠海·一模)函数f x =23sin 2ωx +sin 2ωx +2π3,其中ω>0,其最小正周期为π,则下列说法错误的是()A.ω=1B.函数f x 图象关于点π3,3对称C.函数f x 图象向右移φφ>0 个单位后,图象关于y 轴对称,则φ的最小值为5π12D.若x ∈0,π2,则函数f x 的最大值为3+156.(22-23高三上·河北唐山·开学考试)已知α,β∈0,π2 ,且1+sin βcos β=tan π4+α ,则()A.2α=βB.α=βC.α+β=π2D.α+β=π57.(2024·宁夏吴忠·模拟预测)下列四个函数中,最小正周期为2π的是()A.f x =cos 2x +sin x cos xB.f x =1-cos2x2sin x cos xC.f x =cos x +π3+cos x -π3 D.f x =sin x +π6cos x +π6 58.(多选)(2023·河北保定·三模)已知f x =23cos 2x +2sin x cos x -3,则()A.f x =2cos 2x -π6B.f x 的图象的对称轴方程为x =2k π-π3k ∈Z C.f 2023π =3D.f x 在-3π2,-π2上单调递减59.(2024高三·全国·专题练习)设f x =2sin x cos x -2sin 2x -π4.当x ∈0,π2 时,f x +π6 =-13,则cos2x 的值为.60.(24-25高三上·河南·开学考试)已知函数f x =sin2x +sin 2x -π3在区间0,m 上有且仅有2个零点,则实数m 的取值范围为.61.(24-25高三·福建·阶段练习)已知函数f x =22cos 2x +22sin x cos x .(1)将f x 化成f x =A cos ωx +φ +B A >0,ω>0,φ <π 的形式;(2)求f x 的单调区间;(3)若f x 在α,α+π4上的值域为a ,b ,求b -a 的取值范围.62.(24-25高三·北京·开学考试)已知函数f x =cos x 23sin x +cos x -sin 2x .(1)求函数f x 的最小正周期和单调递增区间;(2)若f (x )在区间[0,m ]上有且只有两个零点,求m 的取值范围.63.(22-23高三·陕西榆林·阶段练习)已知平面向量m =sin x -π6 ,12 ,n =cos x ,12.(1)若m ⊥n ,x ∈0,π2,求实数x 的值;(2)求函数f (x )=m ⋅n的单调递增区间.64.(24-25高一·全国·期末)设f (x )=2sin x cos x +2sin x +π4 ⋅sin π4-x .(1)当x ∈-π2,0时,求f (x )的最大值和最小值;(2)已知f -α2 =33,且当π2≤α≤2π时,求f (α)的值.。

2024版高考数学一轮总复习第4章三角函数第5节三角恒等变换课件

2024版高考数学一轮总复习第4章三角函数第5节三角恒等变换课件
解析:因为
=tan
1−tan 1° tan 44°
1
2
3
(1°+44°)=tan 45°=1.
4
5
3.已知sin α+cos
1
π
2
α= ,则sin
3
4
1
A.
18
)
17
B.
18
8
C.
9
B
− 等于(
D.
解析:由sinα+cos
2
9
1
α= ,两边平方得1+sin
3
8
=- ,
9
π
2
所以sin
4
π

1−cos 2 −2
6
=7,则cos −
π
3
=(
1
A.-
2
1
B.
4
2
C.
7
2
D.
5
)
B
解析:因为cos 2 +
所以2 1
− 2 sin2

π
+
6
化简得, 4 sin +
π
6
π
3
π
=1-2sin2 +
=7sin +
− 1 sin
π
6
π
+
6

+ 2 =0.
因为sin +
π
6
∈[-1,1],所以sin +
考点1
公式的简单应用——基础性
1.sin (-260°)cos 35°-sin 10°sin 145°=(
A.
2
2
1

2025高考数学一轮复习-20.2-三角恒等变换【课件】

2025高考数学一轮复习-20.2-三角恒等变换【课件】

=2cosθ(sin θ+cos θ).




2sin 2cos
θ(sin θ(sin
θ+cos θ+cos
θ) θ)

2cos 2sin
θ(sin θ(sin
θ+cos θ+cos
θ) θ)

sin cos
θ θ

cos sin
θ θ

sin2θ+cos2θ sinθcos θ

sin
1 θcos
θ=sin22θ=右边.
新视角 积化和差与和差化积公式
1.积化和差
sin αcos β=12[sin (α+β)+sin (α-β)] cos αsin β=12[sin (α+β)-sin (α-β)] cos αcos β=12[cos (α+β)+cos (α-β)] sin αsin β=-12[cos (α+β)-cos (α-β)]
2.
三角恒等式的证明
2 已知2tan2β=tan2α-1,求证:sin2α-cos2α=sin2β.
【解析】因为 2tan2β=tan2α-1,所以 tan2α=2tan2β+1,即csoins22αα=2×csoins22ββ+1.去分母, 得 sin2αcos2β=2cos2αsin2β+cos2αcos2β. 又 2cos2αsin2β + cos2αcos2β = 2cos2α(1 - cos2β) + cos2αcos2β = 2cos2α - cos2αcos2β = cos2α(2 - cos2β) = cos2α(1 + sin2β) , 所 以 sin2αcos2 β = cos2α(1 + sin2β) , 即 sin2α(1 - sin2β) = cos2α + cos2αsin2β , 所 以 sin2α - sin2αsin2β = cos2α + cos2αsin2β , 于 是 sin2α - cos2α=(sin2α+cos2α)sin2β=sin2β,故sin2α-cos2α=sin2β.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角恒等变换专题【整体感知】:三角恒等变换是我们学习了三角函数之后的两角和差公式以及二倍角公式的运用。

所以在考试中经常和三角函数的图像与性质一起考查。

尤其是二倍角公式的运用。

【热点点击】:高考中对于三角恒等变换中的二倍角公式考查的是比较多的,也是高考的一个热点。

注意公式的正用和逆用以及变用。

【本章考点】:两角和差的三角函数公式、二倍角公式、三角恒等变换的化简与证明。

【高考命题趋势】:1.考查两角和差的三角函数公式,经常以小题形式出现,难度不大;2考查二倍角公式的运用,题型可以是小题,也可以是大题,为中档题;3.考查三角恒等变换的化简与求值问题,一般都放在大题中进行考查;4.解答题数中高档题目.对三角恒等变换的考查形式有稳重求变、求活,以“能力立意”的命题趋势.【高考复习建议】:1.首先熟练记忆三角函数的两角和差的正弦公式和余弦公式、正切公式;2.联系三角函数的有关的图像以及性质,往往先化简后,然后利用三角函数的性质求解,因此化简的过程就是三角恒等变换的重要体现。

特别是二倍角的余弦公式。

注重通法通解的训练,不要只注重技巧.第1讲 两角和差的正弦、余弦、正切公式【知识精讲】两角和、差的正弦,余弦、正切公式及其变形;二倍角、半角的正弦、余弦、正切公式;升降幂公式;万能公式;.【基础梳理】1.两角和与差的三角函数()βαβαβαsin cos cos sin sin +=+ ()βαβαβαsin cos cos sin sin -=-()cos cos cos sin sin αβαβαβ+=- ()βαβαβαsin sin cos cos cos +=-2.二倍角公式: αααcos sin 22sin =22222cos sin12sin 2cos 11tan cos22tan tan2αααααααα-=-=--== 3. 半角公式2cos 12sin αα-±= 2cos 12cos αα+±=tan 2α=ααααsin cos 1cos 1sin -=+4. 万能公式:22tan 2sin 1tan 2ααα=+ 221tan 2cos 1tan 2ααα-=+ 22tan 2tan 1tan 2ααα=-5. 积化和差: ()()[]βαβαβα-++=sin sin 21cos sin ()()[]βαβαβα--+=sin sin 21sin cos ()()[]βαβαβα-++=cos cos 21cos cos ()()[]βαβαβα--+-=cos cos 21sin sin 6. 和差化积: ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=+2cos 2sin 2sin sin y x y x y x ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-2sin 2cos 2sin sin y x y x y x ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=+2cos 2cos 2cos cos y x y x y x ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+-=-2sin 2sin 2cos cos y x y x y x 7.三角形内角定理的变形由A +B +C =π,知A =π-(B +C )可得出:sin A =sin (B +C ),cos A =-cos (B +C ). 而222C B A +-=π.有:2cos 2sin C B A +=,2sin 2cos C B A +=.8.方法:1.三角函数式的化简:(1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。

(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数2.三角函数的求值类型有三类:(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。

10.重要结论:1.sin α±cos)4πα±.sin()2.tan tan tan()(1tan tan )cos cos αβαβαβαβαβ±±=±= 3.a sin α+b cos(α+φ(α-φ1),.4.(sin α±cos α)2=1±sin2α. 5.21cos sin 22αα-=.6.21cos cos 22αα+= . 7. 1tan tan().1tan 4απαα±=± 【要点解读】要点一 三角函数两角和差公式【例1】 不查表求sin 220°+cos 280°+3cos20°cos80°的值.【命题立意】本题主要考查两角和、二倍角公式及降幂求值的方法,对计算能力的要求较高【标准解析】熟知三角公式并能灵活应用【误区警示】公式不熟,计算易出错.【变式训练】已知tan2α=2,求 (I )tan()4πα+的值; (II )6sin cos 3sin 2cos αααα+-的值. 【标准解析】考查两角公式和同角公式的综合运用【技巧点拨】注意名称间的转换,以及两角和公式的运用。

【例2】已知02πβαπ<<<<,且129cos()βα-=-,223sin()αβ-=,求cos()αβ+的值. 【命题立意】考查三角函数的两角和差公式的运用.【标准解析】先构造角,然后结合函数名称进行求值。

【误区警示】两角和差公式的准确应用.【变式训练】已知35sin()cos cos()sin αβααβα---=,那么2cos β的值为() A 、725 B 、1825 C 、725- D 、1825-【标准解析】考查两角公式的变用【技巧点拨】注意角的整体性,以及两角和公式的运用。

要点二 三角函数二倍角公式【例3】已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值 【命题立意】考查三角函数的二倍角公式的运用.【标准解析】先分析角,然后结合函数名称进行化简求值。

【误区警示】二倍角余弦公式的准确应用.【变式训练】已知在△ABC 中,sinA (sinB +cosB )-sinC =0,sinB +cos2C =0,求角A 、B 、C 的大小.【标准解析】考查在三角形中的二倍角共识的运用。

【技巧点拨】 先统一角,然后结合两角和差公式求解运算。

【例4】=+-)12sin 12)(cos 12sin 12(cos ππππ( ) A .23- B .21-C .21D .23 【命题立意】考查三角函数的二倍角公式的逆用.【标准解析】先分析角,然后结合二倍角的余弦公式进行化简求值。

【误区警示】二倍角余弦公式的准确应用.【变式训练】已知14462sin(x )sin(x ),x (,)ππππ+-=∈,则4sin x =____。

【标准解析】考查在三角形中的二倍角公式的运用。

【技巧点拨】先统一角,然后结合两角和差公式求解运算。

【原创题探讨】【原创精典1】(20XX 年广东卷文)函数1)4(cos 22--=πx y 是A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数【原创精典2】(2009江西卷理)若函数()(1)cos f x x x =+,02x π≤<,则()f x 的最大值为A .1B .2C 1D 2新动向前瞻【样题1】已知关于x 的方程221)0x x m -+=的两根为sin ,cos ,(0,2)θθθπ∈,求:(1)sin cos 1cot 1tan θθθθ+--的值;(2)m 的值;(3)方程的两根及此时θ的值.【样题2】(1tan 20)(1tan 21)(1tan 24)(1tan 25)++++= ( )()A 2 ()B 4 ()C 8 ()D 16第2讲 简单的三角恒等变换【知识精讲】1.利用三角公式进行恒等变形的方法(变角、变次数、变函数名称、变运算关系等);2.证明角相等的方法和证明三角恒等式的方法;.【知识梳理】三角等式的证明:(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端的化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。

【要点解读】要点三 三角函数两角和差公式求值【例5】已知1cos(75)3α+=,α是第三象限角,求cos(15)sin(15)αα-+-的值. 【命题立意】本题主要考查两角和公式及诱导公式的求值的方法,对计算能力的要求较高【标准解析】熟知三角公式并能灵活应用【误区警示】公式不熟,计算易出错.【答案】【变式训练】已知8cos(2)5cos 0αββ++=,求tan()tan αβα+⋅的值.【标准解析】考查在三角形中的两角和差的运用。

【技巧点拨】先统一角,然后结合两角和差公式求解运算。

【答案】要点四 三角函数的化简与证明【例6】化简:(1)23tan123sin12(4cos 122)--; (2)(cot tan )(1tan tan )222αααα-+⋅; (3(1sin cos )(sincos ))θθθθθπ++-<<. 【命题立意】本题主要考查两角和公式及二倍角公式的化简的方法【标准解析】熟知三角公式并能灵活应用,多个名称要切化弦进行。

【误区警示】公式的准确运用使我们解决问题的关键。

【变式训练】1sin 4cos 41sin 4cos 4αααα++=+- () ()A cot α ()B cot 2α ()C tan α ()D tan 2a【标准解析】考查在三角函数的二倍角公式的化简的运用。

【技巧点拨】先合理组合表达式,运用三角公式进行化简求解。

【例7】证明:(1)222(3cos 4)tan cot 1cos 4x x x x++=-; (2)sin(2)sin 2cos()sin sin A B B A B A A +-+=. 【命题立意】本题主要考查两角和公式证明恒等式。

【标准解析】由等式两边的差异知:若选择“从左证到右”,必定要“切化弦”;若“从右证到左”,必定要用倍角公式.【误区警示】公式不熟,计算易出错.【变式训练】222cos 12tan()sin ()44αππαα-=-+ 1 .【标准解析】考查在三角函数的两角和差的运用。

相关文档
最新文档