2017年九年级数学中考模拟试卷

合集下载

【中考模拟2017】天津市 2017年九年级数学中考模拟试卷 六(含答案)

【中考模拟2017】天津市 2017年九年级数学中考模拟试卷 六(含答案)

2017年九年级数学中考模拟试卷一、选择题:1.若│x│=2,│y│=3,则│x+y│的值为( )A.5B.-5C.5或1D.以上都不对2.在Rt△ABC中,∠C=90°,AC=3,AB=4,那么cosA的值是()A. B. C. D.3.下列说法中错误的是().A.成中心对称的两个图形全等B.成中心对称的两个图形中,对称点的连线被对称轴平分C.中心对称图形的对称中心是对称点连线的中心D.中心对称图形绕对称中心旋转180°后,都能与自身重合4.已知数349028用四舍五入法保留两个有效数字约是3.5×105,则所得近似数精确到()A.十位B.千位C.万位D.百位5.由5个大小相同的小正方体拼成的几何体如图所示,则下列说法正确的是()A.主视图的面积最小B.左视图的面积最小C.俯视图的面积最小D.三个视图的面积相等6.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:①log216=4;②log525=5;③log20.5=﹣1.其中正确的是()A.①②B.①③C.②③D.①②③7.若,则w=()8.方程x2﹣x﹣1=0的解的情况是()A.有两个不相等的实数根 B.没有实数根C.有两个相等的实数根 D.有一个实数根9.下列各式中,一定能成立的是()A. B.C. D.10.如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形,且它的一条直角边等于斜边的一半.这样的图形有()A.4个B.3个C.2个D.1个11.下列函数中,是反比例函数的为()A.y=B.y=C.y=2x+1D.2y=x12.将函数y=x2+x的图象向右平移a(a>0)个单位,得到函数y=x2-3x+2的图象,则a的值为()A.1B.2C.3D.4二、填空题:13.若二次三项式x2+(2m-1)x+4是一个完全平方式,则m= .14.式子在实数范围内有意义,则x的范围是.15.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球个.16.已知正比例函数的图象在第二、第四象限,则m的值为17.如图,点P是RtΔABC斜边AB上的任意一点(A、B两点除外)过点P作一条直线,使截得的三角形与RtΔABC相似,这样的直线可以作条.18.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过(﹣3,0),对称轴直线为x=﹣1,给出四个结论:①16a﹣4b+c>0;②abc>0;③一元二次方程ax2+bx+c=5没有实数根;④(x1,y1),(x2,y2)是抛物线上的两点,且x1<﹣1<x2,﹣1﹣x1<x2+1,则y1>y2.其中结论正确的个数为三、解答题:19.解不等式组:.20.今年4月,我市某中学举行了“爱我中国•朗诵比赛”活动,根据学生的成绩划分为A、B、C、D四个等级,并绘制了如下两种不完整的统计图.根据图中提供的信息,回答下列问题:(1)参加朗诵比赛的学生共有人,并把条形统计图补充完整;(2)扇形统计图中,m= ,n= ;C等级对应扇形的圆心角为度;(3)学校准备从获A等级的学生中随机选取2人,参加市举办的朗诵比赛,请利用列表法或树形图法,求获A 等级的小明参加市朗诵比赛的概率.21.如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=30°.(1)求∠APB的度数;(2)当OA=3时,求AP的长.22.如图,随着我市铁路建设进程的加快,现规划从A地到B地有一条笔直的铁路通过,但在附近的C处有一大型油库,现测得油库C在A地的北偏东60°方向上,在B地的西北方向上,AB的距离为250(+1)米.已知在以油库C为中心,半径为200米的范围内施工均会对油库的安全造成影响.问若在此路段修建铁路,油库C 是否会受到影响?请说明理由.23.某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x元(x为10的整数倍).(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;(2)设宾馆一天的利润为w元,求w与x的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?24.在正方形ABCD中,连接BD.(1)如图1,AE⊥BD于E.直接写出∠BAE的度数.(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.①依题意补全图1;②用等式表示线段BM、DN和MN之间的数量关系,并证明.(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF分别与BD交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)25.如图,已知在平面直角坐标系中,点A(4,0)是抛物线y=ax2+2x﹣c上的一点,将此抛物线向下平移6个单位后经过点B(0,2),平移后所得的新抛物线的顶点记为C,新抛物线的对称轴与线段AB的交点记为P.(1)求平移后所得到的新抛物线的表达式,并写出点C的坐标;(2)求∠CAB的正切值;(3)如果点Q是新抛物线对称轴上的一点,且△BCQ与△ACP相似,求点Q的坐标.参考答案1.C2.B3.B4.C5.B6.B7.D8.A9.A10.B11.A12.B13.答案为:2.5或-1.5.14.答案为:x≥1且x≠2.15.答案为:8.16.答案为:-2;17.略18.3个;19.,不等式①的解集为:x<4,不等式②的解集为:x>2.故不等式组的解集为:2<x<4.20.解:(1)48,0.81;(2)P=0.8;21.答案为:∠APB=60°AP=322.【解答】解:过点C作CD⊥AB于D,∴AD=CD•cot45°=CD,BD=CD•cot30°=CD,∵BD+AD=AB=250(+1)(米),即CD+CD=250(+1),∴CD=250,250米>200米.答:在此路段修建铁路,油库C是不会受到影响.23.24.解:(1)∵BD是正方形ABCD的对角线,∴∠ABD=∠ADB=45°,∵AE⊥BD,∴∠ABE=∠BAE=45°,(2)①依题意补全图形,如图1所示,②BM、DN和MN之间的数量关系是BM2+MD2=MN2,将△AND绕点D顺时针旋转90°,得到△AFB,∴∠ADB=∠FBA,∠BAF=∠DAN,DN=BF,AF=AN,∵在正方形ABCD中,AE⊥BD,∴∠ADB=∠ABD=45°,∴∠FBM=∠FBA+∠ABD=∠ADB+∠ABD=90°,在Rt△BFM中,根据勾股定理得,FB2+BM2=FM2,∵旋转△ANE得到AB1E1,∴∠E1AB1=45°,∴∠BAB1+∠DAN=90°﹣45°=45°,∵∠BAF=DAN,∴∠BAB1+∠BAF=45°,∴∠FAM=45°,∴∠FAM=∠E1AB1,∵AM=AM,AF=AN,∴△AFM≌△ANM,∴FM=MN,∵FB2+BM2=FM2,∴DN2+BM2=MN2,(3)如图2,将△ADF绕点A顺时针旋转90°得到△ABG,∴DF=GB,∵正方形ABCD的周长为4AB,△CEF周长为EF+EC+CF,∵△CEF周长是正方形ABCD周长的一半,∴4AB=2(EF+EC+CF),∴2AB=EF+EC+CF ∵EC=AB﹣BE,CF=AB﹣DF,∴2AB=EF+AB﹣BE+AB﹣DF,∴EF=DF+BE,∵DF=GB,∴EF=GB+BE=GE,由旋转得到AD=AG=AB,∵AM=AM,∴△AEG≌△AEF,∠EAG=∠EAF=45°,和(2)的②一样,得到DN2+BM2=MN2.25.。

陕西省中考数学模拟试卷(含解析)-人教版初中九年级全册数学试题

陕西省中考数学模拟试卷(含解析)-人教版初中九年级全册数学试题

2017年某某省中考数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣的相反数是()A.﹣2017 B.2017 C.D.2.下列立体图形中,主视图、左视图和俯视图都是矩形的是()A.B.C. D.3.下列计算正确的是()A.a3•a2=a5B.(﹣2a2)3=8a6C.2a2+a2=3a4D.(a﹣b)2=a2﹣b24.如图,已知直线AB∥CD,BC平分∠ABD,∠1=63°,则∠2的度数是()A.63° B.60° C.54° D.53°5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象经过的象限为()A.二、三、四B.一、二、四C.一、三、四D.一、二、三6.点G是△ABC的重心,如果AB=AC=5,BC=8,那么AG的长是()A.1 B.2 C.3 D.47.在平面直角坐标系中,将直线l1:y=﹣3x﹣2向左平移1个单位,再向上平移3个单位得到直线l2,则直线l2的解析式为()A.y=﹣3x﹣9 B.y=﹣3x﹣2 C.y=﹣3x+2 D.y=﹣3x+98.如图,在矩形ABCD中,点O为对角线AC、BD的交点,点E为BC上一点,连接EO,并延长交AD于点F,则图中全等三角形共有()A.5对B.6对C.8对D.10对9.如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,连接CD,则∠ACD=()A.10° B.15° C.20° D.25°10.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+m,则m的值是()A.1或7 B.﹣1或7 C.1或﹣7 D.﹣1或﹣7二、填空题(本大题共4小题,每小题3分,共12分)11.不等式﹣x+1<﹣2的解集是.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.一个正六边形的内角和为度.B.如图,小华在一建筑物的标牌处看到该建筑高137米,他在地面上的B处用测角仪测得该建筑物顶部A处的仰角为49°,那么B处距离该建筑物米(结果保留整数,测角仪高度忽略不计)13.已知反比例函数y=的图象上有两个点(x1,y1),(x2,y2),其中x1<0<x2,则y1,y2的大小关系是.14.已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为.三、解答题(本大题共11小题,共78分)15.|﹣1|+(π﹣3.14)0﹣(﹣)﹣1﹣.16.解方程﹣2.17.如图,在△ABC中,∠C=90°,∠A>∠B,请你用直尺和圆规作边AB的垂直平分线,交AB于点D,交BC于点E(要求:保留作图痕迹,不写作法)18.为了了解本班学生关注“两会”新闻的情况,“两会”期间,小明对本班全体同学一周内收看“两会”新闻的次数作调查,调查结果制成统计图如图所示(其中男生一周内收看4次的人数没有标出):请你根据以上信息,解答下列问题:(1)该班女生有人,该班女生一周内收看“两会”新闻次数的中位数是次;(2)对于某个群体,我们把一周内收看“两会”新闻次数高于4次的人数占该群体总人数的百分比叫做该群体对“两会”新闻的“关注指数”,如果该班男生对“两会”新闻的“关注指数”为60%,试求该班男生有多少人.19.如图,在四边形ABCD中,AD∥BC,点E在BC的延长线上,CE=BC,连接AE,交CD边于点F,且CF=DF.(1)求证:AD=BC;(2)连接BD、DE,若BD⊥DE,求证:四边形ABCD为菱形.20.如图,一位同学想利用树影测量树(AB)的高度,他在某一时刻测得高为1米的竹竿直立时影长为,此时,因树靠近一幢建筑物,影子不全落在地面上(有一部分影子落在了墙上CD处),他先测得落在墙上的影子(CD)高为,又测得地面部分的影长(BC)为,则他测得的树高应为多少米?21.某城市城区居民从2017年1月1日开始执行阶梯水价,收费标准如下表所示:平均月用水量不超过的部分超过不超过23立方米的部分超过23立方米的部分收费标准(元/立方米)设该城市城区居民月用水量为x(立方米)时,每月应缴纳水费为y(元).(1)求该城市城区居民每月应缴纳的水费y与月用水量x之间的函数关系式;(2)该城市城区居民小华家1月份缴纳水费为79.2元,则小华家1月份的用水量是多少?22.某某市某中学九年级同学夏明和X辉报名参加学校运动会,有以下四个项目可供他们选择:田赛:跳远,跳高(分别用A1、A2表示);径赛:200米,400米(分别用B1、B2表示).(1)X辉同学从四个项目中随机选取一个报名,恰好选择径赛的概率为是;(2)若X辉和夏明各随机从四个项目中选一个报名,请你利用树状图或列表法求出他们恰好都选择田赛的概率.23.如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,且BD=CD,过D 作DF⊥AC,垂足为F.(1)求证:DF是⊙O的切线;(2)若AD=5,∠CDF=30°,求⊙O的半径.24.如图,抛物线y=ax2+bx+1过A(1,0)、B,(5,0)两点.(1)求:抛物线的函数表达式;(2)求:抛物线与y轴的交点C的坐标及其对称轴(3)若抛物线对称轴上有一点P,使△COA∽△APB,求点P的坐标.25.自定义:在一个图形上画一条直线,若这条直线既平分该图形的面积,又平分该图形的周长,我们称这条直线为这个图形的“等分积周线”.(1)如图1,已知△ABC,AC≠BC,过点C能否画出△ABC的一条“等分积周线”?若能,说出确定的方法,若不能,请说明理由.(2)如图2,在四边形ABCD中,∠B=∠C=90°,EF垂直平分AD,垂足为F,交BC于点E,已知AB=3,BC=8,CD=5.求证:直线EF为四边形ABCD的“等分积周线”;(3)如图3,在△ABC中,AB=BC=6,AC=8,请你作出△ABC的一条“等分积周线”EF(要求:直线EF不过△ABC的顶点,交边AC于点F,交边BC于点E),并说明理由.2017年某某省中考数学模拟试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.﹣的相反数是()A.﹣2017 B.2017 C.D.【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣的相反数是,故选:D.2.下列立体图形中,主视图、左视图和俯视图都是矩形的是()A.B.C. D.【考点】U1:简单几何体的三视图.【分析】根据主视图、左视图、俯视图的定义,可得答案.【解答】解:矩形的主视图、左视图、俯视图都是矩形,故选:B.3.下列计算正确的是()A.a3•a2=a5B.(﹣2a2)3=8a6C.2a2+a2=3a4D.(a﹣b)2=a2﹣b2【考点】4I:整式的混合运算.【分析】各项中化简得到结果,即可作出判断.【解答】解:A、原式=a5,符合题意;B、原式=﹣8a6,不符合题意;C、原式=3a2,不符合题意;D、原式=a2﹣2ab+b2,不符合题意,故选A4.如图,已知直线AB∥CD,BC平分∠ABD,∠1=63°,则∠2的度数是()A.63° B.60° C.54° D.53°【考点】JA:平行线的性质.【分析】根据两直线平行,同位角相等可得∠ABC=∠1,再根据角平分线的定义求出∠ABD,然后根据平角等于180°求出∠3,再利用两直线平行,同位角相等求解.【解答】解:∵AB∥CD,∴∠ABC=∠1=63°,∵BC平分∠ABD,∴∠ABD=2∠ABC=2×63°=126°,∴∠3=180°﹣∠ABD=180°﹣126°=54°,∵AB∥CD,∴∠2=∠3=54°.故选:C.5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象经过的象限为()A.二、三、四B.一、二、四C.一、三、四D.一、二、三【考点】F7:一次函数图象与系数的关系.【分析】先根据正比例函数y=kx的函数值y随x的增大而减小判断出k的符号,再根据一次函数的性质即可得出结论.【解答】解:∵正比例函数y=kx的函数值y随x的增大而减小,∴k<0,∵b=k<0,∴一次函数y=kx+k的图象经过二、三、四象限,故选A.6.点G是△ABC的重心,如果AB=AC=5,BC=8,那么AG的长是()A.1 B.2 C.3 D.4【考点】K5:三角形的重心.【分析】根据题意画出图形,连接AG并延长交BC于点D,由等腰三角形的性质可得出AD ⊥BC,再根据勾股定理求出AD的长,由三角形重心的性质即可得出AG的长.【解答】解:如图所示:连接AG并延长交BC于点D,∵G是△ABC的重心,AB=AC=5,BC=8,∴AD⊥BC,BD=BC=×8=4,∴AD===3,∴AG=AD=×3=2.故选B.7.在平面直角坐标系中,将直线l1:y=﹣3x﹣2向左平移1个单位,再向上平移3个单位得到直线l2,则直线l2的解析式为()A.y=﹣3x﹣9 B.y=﹣3x﹣2 C.y=﹣3x+2 D.y=﹣3x+9【考点】F9:一次函数图象与几何变换.【分析】平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:将直线y=﹣3x﹣2的图象向左平移1个单位,再向上平移3个单位,得到的直线的解析式是:y=﹣3(x+1)﹣2+3=﹣3x﹣2,即y=﹣3x﹣2.故选B.8.如图,在矩形ABCD中,点O为对角线AC、BD的交点,点E为BC上一点,连接EO,并延长交AD于点F,则图中全等三角形共有()A.5对B.6对C.8对D.10对【考点】LB:矩形的性质;KB:全等三角形的判定.【分析】根据已知及全等三角形的判定方法进行分析,从而得到答案.【解答】解:∵四边形ABCD为矩形,其矩形的对角线相等且相互平分,∴AB=CD,AD=BC,AO=CO,BO=DO,EO=FO,∠DAO=∠BCO,又∠AOB=∠COD,∠AOD=∠COB,∠AOE=∠COF,易证△ABC≌△DCB,△ABC≌△CDA,△ABC≌△BAD,△BCD≌△ADC,△BCD≌△DAB,△ADC ≌△DAB,△AOF≌△COE,△DOF≌△BOE,△DOC≌△AOB,△AOD≌△BOC故图中的全等三角形共有10对.故选D.9.如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,连接CD,则∠ACD=()A.10° B.15° C.20° D.25°【考点】M1:圆的认识.【分析】先求得∠B,再由等腰三角形的性质求出∠BCD,则∠ACD与∠BCD互余.【解答】解:∵∠ACB=90°,∠A=40°,∴∠B=50°,∵CD=CB,∴∠BCD=180°﹣2×50°=80°,∴∠ACD=90°﹣80°=10°;故选:A.10.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+m,则m的值是()A.1或7 B.﹣1或7 C.1或﹣7 D.﹣1或﹣7【考点】H3:二次函数的性质.【分析】根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得.【解答】解:∵一条抛物线的函数表达式为y=﹣x2+4x+m,∴这条抛物线的顶点为(2,m+4),∴关于x轴对称的抛物线的顶点(2,﹣m﹣4),∵它们的顶点相距6个单位长度.∴|m+4﹣(﹣m﹣4)|=6,∴2m+8=±6,当2m+8=6时,m=﹣1,当2m+8=﹣6时,m=﹣7,∴m的值是﹣1或﹣7.故选D.二、填空题(本大题共4小题,每小题3分,共12分)11.不等式﹣x+1<﹣2的解集是x>9 .【考点】C6:解一元一次不等式.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:移项,得:﹣x<﹣2﹣1,合并同类项,得:﹣x<﹣3,系数化为1,得:x>9,故答案为:x>9.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.一个正六边形的内角和为720 度.B.如图,小华在一建筑物的标牌处看到该建筑高137米,他在地面上的B处用测角仪测得该建筑物顶部A处的仰角为49°,那么B处距离该建筑物119 米(结果保留整数,测角仪高度忽略不计)【考点】TA:解直角三角形的应用﹣仰角俯角问题;L3:多边形内角与外角.【分析】A.根据多边形的内角和公式可得答案;B.由正切函数的定义可得BC=,即可知答案.【解答】解:A.正六边形的内角和为(6﹣2)×180°=720°,故答案为:720;B、由题意知,Rt△ABC中,AC=137米,∠ABC=49°,∵tan∠ABC=,∴BC==≈119(米),故答案为:119.13.已知反比例函数y=的图象上有两个点(x1,y1),(x2,y2),其中x1<0<x2,则y1,y2的大小关系是y1<y2.【考点】G6:反比例函数图象上点的坐标特征.【分析】根据k=6>0,得出反比例函数过第一三象限,再由x1<0<x2,得出(x1,y1)在第三象限,(x2,y2)在第一象限,即可得出答案.【解答】解:∵k=6>0,∴图象过一三象限,∵x1<0<x2,∴y1<y2,故答案为y1<y2.14.已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为(,).【考点】PA:轴对称﹣最短路线问题;D5:坐标与图形性质;L8:菱形的性质.【分析】如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.首先说明点P就是所求的点,再求出点B坐标,求出直线OB、DA,列方程组即可解决问题.【解答】解:如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.∵四边形OABC是菱形,∴AC⊥OB,GC=AG,OG=BG=2,A、C关于直线OB对称,∴PC+PD=PA+PD=DA,∴此时PC+PD最短,在RT△AOG中,AG===,∴AC=2,∵OA•BK=•AC•OB,∴BK=4,AK==3,∴点B坐标(8,4),∴直线OB解析式为y=x,直线AD解析式为y=﹣x+1,由解得,∴点P坐标(,).故答案为:(,).三、解答题(本大题共11小题,共78分)15.|﹣1|+(π﹣3.14)0﹣(﹣)﹣1﹣.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及算术平方根定义计算即可得到结果.【解答】解:原式=1+1+2﹣4=0.16.解方程﹣2.【考点】B3:解分式方程.【分析】观察可得最简公分母是(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x﹣3),得:2﹣x=﹣1﹣2(x﹣3),解得:x=3,检验:把x=3代入(x﹣3)=0,即x=3不是原分式方程的解.则原方程无解.17.如图,在△ABC中,∠C=90°,∠A>∠B,请你用直尺和圆规作边AB的垂直平分线,交AB于点D,交BC于点E(要求:保留作图痕迹,不写作法)【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】利用线段垂直平分线的作法作图即可.【解答】解:如图,直线DE即所求.18.为了了解本班学生关注“两会”新闻的情况,“两会”期间,小明对本班全体同学一周内收看“两会”新闻的次数作调查,调查结果制成统计图如图所示(其中男生一周内收看4次的人数没有标出):请你根据以上信息,解答下列问题:(1)该班女生有 3 人,该班女生一周内收看“两会”新闻次数的中位数是 3 次;(2)对于某个群体,我们把一周内收看“两会”新闻次数高于4次的人数占该群体总人数的百分比叫做该群体对“两会”新闻的“关注指数”,如果该班男生对“两会”新闻的“关注指数”为60%,试求该班男生有多少人.【考点】VC:条形统计图;W4:中位数.【分析】(1)将各观看次数的人数相加得到女生总数,观看次数最多的为众数,从小到大排列后,最中间或中间两数的平均为中位数;(2)根据题意,求出女生的关注指数,进而得到男生的关注指数,设男生人数为x,列出方程,解之可得.【解答】解:(1)该班级女生人数为:2+5+6+5+2=20(人),该班级女生收看次数的中位数是从小到大排列的第10、11个数的平均数,均为3,故中位数是3;故答案为:3,3;(2)由题意:该班女生对“两会”新闻的“关注指数”为×100%=65%,所以,男生对“两会”新闻的“关注指数”为60%设该班的男生有x人则=60%,解得:x=25,答:该班级男生有25人.19.如图,在四边形ABCD中,AD∥BC,点E在BC的延长线上,CE=BC,连接AE,交CD边于点F,且CF=DF.(1)求证:AD=BC;(2)连接BD、DE,若BD⊥DE,求证:四边形ABCD为菱形.【考点】L9:菱形的判定;KD:全等三角形的判定与性质.【分析】(1)由平行线的性质得出∠D=∠ECF,由ASA证明△ADF≌△ECF,得出AD=CE,即可得出结论;(2)首先四边形ABCD是平行四边形,由直角三角形斜边上的中线性质得出CD=BE=BC,即可得出四边形ABCD是菱形.【解答】(1)证明:∵AD∥BC,∴∠D=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(ASA),∴AD=CE,∵CE=BC,∴AD=BC;(2)证明:∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∵BD⊥DE,∴∠BDE=90°,∵CE=BC,∴CD=BE=BC,∴四边形ABCD是菱形.20.如图,一位同学想利用树影测量树(AB)的高度,他在某一时刻测得高为1米的竹竿直立时影长为,此时,因树靠近一幢建筑物,影子不全落在地面上(有一部分影子落在了墙上CD处),他先测得落在墙上的影子(CD)高为,又测得地面部分的影长(BC)为,则他测得的树高应为多少米?【考点】SA:相似三角形的应用.【分析】过点C作CE⊥AB于E,根据同时同地物高与影长成正比列比例式求出AE的长度,再根据矩形的对边相等可得BE=CD,然后根据AB=AE+BE计算即可得解.【解答】解:如图,过点C作CE⊥AB于E,则四边形BDCE是矩形,所以,CE=BD=,BE=CD=,由题意得,=,所以,AE==3米,树高AB=AE+BE=3+1.2=.21.某城市城区居民从2017年1月1日开始执行阶梯水价,收费标准如下表所示:平均月用水量不超过的部分超过不超过23立方米的部分超过23立方米的部分收费标准(元/立方米)设该城市城区居民月用水量为x(立方米)时,每月应缴纳水费为y(元).(1)求该城市城区居民每月应缴纳的水费y与月用水量x之间的函数关系式;(2)该城市城区居民小华家1月份缴纳水费为79.2元,则小华家1月份的用水量是多少?【考点】FH:一次函数的应用.【分析】(1)根据表格中的数据可以分别求得在各个阶段的函数解析式;(2)根据(1)中的函数解析式,可以求得小华家1月份的用水量.【解答】解:(1)由题意可得,当0≤x≤13.5时,y=3.8x,<x≤×+4.65(x﹣13.5)=4.65x﹣11.475,当x>×+×(23﹣13.5)+×(x﹣23)=7.18x﹣69.665;(2)∵×<×+(23﹣13.5)×>79.2,∴79.2=4.65x﹣11.475,解得,x=19.5,即小华家1月份的用水量是19.5度.22.某某市某中学九年级同学夏明和X辉报名参加学校运动会,有以下四个项目可供他们选择:田赛:跳远,跳高(分别用A1、A2表示);径赛:200米,400米(分别用B1、B2表示).(1)X辉同学从四个项目中随机选取一个报名,恰好选择径赛的概率为是;(2)若X辉和夏明各随机从四个项目中选一个报名,请你利用树状图或列表法求出他们恰好都选择田赛的概率.【考点】X6:列表法与树状图法.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有16种等可能的结果数,再找出X辉和夏明恰好都选择田赛的结果数,然后根据概率公式求解.【解答】解:(1)X辉同学从四个项目中随机选取一个报名,恰好选择径赛的概率==;故答案为;(2)画树状图为:共有16种等可能的结果数,X辉和夏明恰好都选择田赛的结果数为4,所以他们恰好都选择田赛的概率==.23.如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,且BD=CD,过D 作DF⊥AC,垂足为F.(1)求证:DF是⊙O的切线;(2)若AD=5,∠CDF=30°,求⊙O的半径.【考点】MD:切线的判定.【分析】(1)连接OD,由BD=CD,OB=OA,得到OD为三角形ABC的中位线,得到OD与AC 平行,根据DF垂直于AC,得到DF垂直于OD,即可得证;(2)由直角三角形两锐角互余求出∠C的度数,利用两直线平行同位角相等求出∠ODB的度数,再由OB=OD,利用等边对等角求出∠B的度数,设BD=x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出圆的半径.【解答】解:(1)连接OD,∵BD=CD,OB=OA,∴OD为△ABC的中位线,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,则DF为圆O的切线;(2)∵DF⊥AC,∠CDF=30°,∴∠C=60°,∵OD∥AC,∴∠ODB=∠C=60°,∵OB=OD,∴∠B=∠ODB=60°,∵AB为圆的直径,∴∠ADB=90°,∴∠BAD=30°,设BD=x,则有AB=2x,根据勾股定理得:x2+75=4x2,解得:x=5,∴AB=2x=10,则圆的半径为5.24.如图,抛物线y=ax2+bx+1过A(1,0)、B,(5,0)两点.(1)求:抛物线的函数表达式;(2)求:抛物线与y轴的交点C的坐标及其对称轴(3)若抛物线对称轴上有一点P,使△COA∽△APB,求点P的坐标.【考点】HF:二次函数综合题.【分析】(1)把A、B两点坐标代入,可求得a、b的值,可求得抛物线的函数表达式;(2)根据(1)中所求抛物线的解析式可求得C点的坐标,及对称轴;(3)由A、C点的坐标可判定△COA为等腰直角三角形,若△COA∽△APB,可知△APB为等腰直角三角形,利用直角三角形的性质可求得P到x轴的距离,可求得P点坐标.【解答】解:(1)∵抛物线y=ax2+bx+1过A(1,0)、B,(5,0)两点,∴,解得,∴抛物线的函数表达式为y=x2﹣x+1;(2)在y=x2﹣x+1中,令x=0可得y=1,∴C点坐标为(0,1),又y=x2﹣x+1=(x﹣3)2﹣,∴抛物线对称轴为直线x=3;(3)∵A(1,0),C(0,1),∴OA=OC=1,∴△COA为等腰直角三角形,且∠COA=90°,∵△COA∽△APB,∴△APB为等腰直角三角形,∠APB=90°,∵P在抛物线对称轴上,∴P到AB的距离=AB=×(5﹣1)=2,∴P点坐标为(3,2)或(3,﹣2).25.自定义:在一个图形上画一条直线,若这条直线既平分该图形的面积,又平分该图形的周长,我们称这条直线为这个图形的“等分积周线”.(1)如图1,已知△ABC,AC≠BC,过点C能否画出△ABC的一条“等分积周线”?若能,说出确定的方法,若不能,请说明理由.(2)如图2,在四边形ABCD中,∠B=∠C=90°,EF垂直平分AD,垂足为F,交BC于点E,已知AB=3,BC=8,CD=5.求证:直线EF为四边形ABCD的“等分积周线”;(3)如图3,在△ABC中,AB=BC=6,AC=8,请你作出△ABC的一条“等分积周线”EF(要求:直线EF不过△ABC的顶点,交边AC于点F,交边BC于点E),并说明理由.【考点】KY:三角形综合题.【分析】(1)若直线CD平分△ABC的面积,那么S△ADC=S△DBC,得出AC≠BC,进而得出答案;(2)根据勾股定理可得出:AB2+BE2=CE2+DC2,进而得出BE=5,CE=3,进而得出周长与面积分别相等得出答案即可;(3)在AC上取一点F,使得FC=AB=6,在BC上取一点E,使得BE=2,作直线EF,则EF是△ABC的等分积周线,结合全等三角形的判定与性质得出答案.【解答】解:(1)不能,理由:如答图1,若直线CD平分△ABC的面积,那么S△ADC=S△DBC,∴AD=BD,∵AC≠BC,∴AD+AC≠BD+BC,∴过点C不能画出一条“等分积周线”(2)如答图2,连接AE、DE,设BE=x,∵EF垂直平分AD,∴AE=DE,AF=DF,S△AEF=S△DEF,∵∠B=∠C=90°,AB=3,BC=8,CD=5,∴Rt△ABE和Rt△DCE中,根据勾股定理可得出:AB2+BE2=CE2+DC2,即32+x2=(8﹣x)2+52,解得:x=5,所以BE=5,CE=3,∴AB+BE=CE+DC,S△ABE=S△DCE,∴S四边形ABEF=S△ABE+S△AEF,S四边形DCEF=S△DEF+S△DCE,∴S四边形ABEF=S四边形DCEF,AF+AB+BE=DF+EC+DC,∴直线EF为四边形ABCD的“等分积周线”;(3)如答图3,在AC上取一点F,使得FC=AB=6,在BC上取一点E,使得BE=2,作直线EF,则EF是△ABC的等分积周线,理由:由作图可得:AF=AC﹣FC=8﹣6=2,在CB上取一点G,使得CG=AF=2,则有AB+AF=CF+CG,∵AB=BC,∴∠A=∠C,在△ABF和△CFG中,,∴△ABF≌△CFG(SAS),∴S△ABF=S△CFG,又易得BE=EG=2,∴S△BFE=S△EFG,∴S△EFC=S四边形ABEF,AF+AB+BE=CE+CF=10,∴EF是△ABC的等分积周线,若如答图4,当BM=2cm,AN=6cm时,直线MN也是△ABC的等分积周线.(其实是同一条),另外本问的说理也可以通过作高,进行相关计算说明).。

【中考模拟2017】福建福州市 2017年九年级数学 中考模拟测试卷 一(含答案)

【中考模拟2017】福建福州市 2017年九年级数学 中考模拟测试卷 一(含答案)

2017年九年级数学中考模拟试卷一、选择题:1.若a、b、c都是有理数,那么2a﹣3b+c的相反数是()A.3b﹣2a﹣cB.﹣3b﹣2a+cC.3b﹣2a+cD.3b+2a﹣c2.如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4=()A.63°30′B.53°30′C.73°30′D.93°30′3.下列各式计算正确的是()A.2a2+3a2=5a4B.(﹣2ab)3=﹣6ab3C.(3a+b)(3a﹣b)=9a2﹣b2D.a3•(﹣2a)=﹣2a34.王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是()A.16人B.14人C.4人D.6人5.如图是一个正方体纸盒的外表面展开图,则这个正方体是()A. B. C. D.6.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.0.21×10﹣5D.2.1×10﹣57.从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是()A. B. C. D.8.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对9.下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.4B.3C.2D.110.甲、乙两班参加植树造林,已知甲班每天比乙班每天多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植x棵,根据题意列出的方程是()A. B. C. D.二、填空题:11.已知a、b互为相反数,c、d互为倒数,m是绝对值等于2的负数,则2(a+b)-m+(-cd)2017= .12.因式分解:﹣3x2+3x﹣0.75= .13.月球的直径约为3476000米,将数据3476000用科学记数法表示应为.14.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜.这个游戏.(填“公平”或“不公平”)15.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为 cm.16.如图在□ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,若△DEF的面积为18,则□ABCD的面积为.三、计算题:17.计算:20160﹣|﹣|++2sin45°.18.解不等式组,并把其解集在数轴上表示出来:四、解答题:19.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.20.甲乙两人玩摸球游戏:一个不透明的袋子中装有相同大小的3个球,球上分别标有数字1,2,3.首先,甲从中随机摸出一个球,然后,乙从剩下的球中随机摸出一个球,比较球上的数字,较大的获胜.(1)求甲摸到标有数字3的球的概率;(2)这个游戏公平吗?请说明理由.21.如图在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,EF交BC于点F,交AB于点E.求证:BF= FC.22.如图,已知在菱形ABCD中,F为边BC的中点,DF与对角线AC交于M,过M作ME⊥CD于E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.23.如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接GB,EF,求证:GB∥EF;(3)若AE=1,EB=2,求DG的长.五、综合题:24.已知直线l:y=x,抛物线C:y=x2+bx+c.(1)当b=4,c=1时,求直线l与抛物线C的交点坐标;(2)当b=,c=﹣4时,将直线l绕原点逆时针旋转15°后与抛物线C交于A,B两点(A点在B点的左侧),求A,B两点的坐标;(3)若将(2)中的条件“c=﹣4”去掉,其他条件不变,且2≤AB≤4,求c的取值范围.25.如图①,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与点A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM,射线AE于点F、D.(1)问题发现:直接写出∠NDE= 度;(2)拓展探究:试判断,如图②当∠EAC为钝角时,其他条件不变,∠NDE的大小有无变化?请给出证明.(3)如图③,若∠EAC=15°,BD=,直线CM与AB交于点G,其他条件不变,请直接写出AC的长.参考答案1.A2.A3.C4.A5.C6.D7.D8.C9.B10.D11.答案为:1.12.答案为:﹣3(x﹣0.5)213.答案为:3.476×106.14.答案为:不公平15.答案为:416.答案为:38;17.解:20160﹣|﹣|++2sin45°=1﹣+(3﹣1)﹣1+2×=1﹣+3+=4.18.答案为:-2<x≤3.19.【解答】证明;(1)∵△ABC≌△ABD,∴∠ABC=∠ABD,∵CE∥BD,∴∠CEB=∠DBE,∴∠CEB=∠CBE.(2))∵△ABC≌△ABD,∴BC=BD,∵∠CEB=∠CBE,∴CE=CB,∴CE=BD∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.20.解:(1)∵袋子中装有相同大小的3个球,球上分别标有数字1,2,3,∴甲摸到标有数字3的球的概率为;21.【解答】证明:连接AF,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵EF为AB的垂直平分线,∴BF=AF,∴∠BAF=∠B=30°,∴∠FAC=120°﹣30°=90°,∵∠C=30°,∴AF=CF,∵BF=AF,∴BF=FC.22.(1)解:∵四边形ABCD是菱形,∴AB∥CD,∴∠1=∠ACD,∵∠1=∠2,∴∠ACD=∠2,∴MC=MD,∵ME⊥CD,∴CD=2CE,∵CE=1,∴CD=2,∴BC=CD=2;(2)证明:如图,∵F为边BC的中点,∴BF=CF=BC,∴CF=CE,在菱形ABCD中,AC平分∠BCD,∴∠ACB=∠ACD,在△CEM和△CFM中,∵,∴△CEM≌△CFM(SAS),∴ME=MF,延长AB交DF的延长线于点G,∵AB∥CD,∴∠G=∠2,∵∠1=∠2,∴∠1=∠G,∴AM=MG,在△CDF和△BGF中,∵,∴△CDF≌△BGF(AAS),∴GF=DF,由图形可知,GM=GF+MF,∴AM=DF+ME.23.【解答】(1)证明:连接BD,在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°,∵AB为圆O的直径,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=AC,∠CBD=∠C=45°,∴∠A=∠FBD,∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°,∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB,在△AED和△BFD中,,∴△AED≌△BFD(ASA),∴AE=BF;(2)证明:连接EF,BG,∵△AED≌△BFD,∴DE=DF,∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°,∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF;(3)∵AE=BF,AE=1,∴BF=1,在Rt△EBF中,∠EBF=90°,∴根据勾股定理得:EF2=EB2+BF2,∵EB=2,BF=1,∴EF==,∵△DEF为等腰直角三角形,∠EDF=90°,∴cos∠DEF=,∵EF=,∴DE=×=,∵∠G=∠A,∠GEB=∠AED,∴△GEB∽△AED,∴=,即GE•ED=AE•EB,∴•GE=2,即GE=,则GD=GE+ED=.24.【解答】解:(1)∵b=4,c=1,∴抛物线C:y=x2+4x+1.解得或,∴直线l与抛物线C的交点坐标是(,)或(,);(2)设直线绕原点逆时针旋转15°得到直线AB,而直线l与x轴的夹角为45°,∴旋转后直线AB与x轴的夹角为60°,∴旋转后的直线AB的解析式为y=x,解得或,∴A(﹣2,﹣2),B(2,2);(3)整理得,x2+c=0,解得x=±,∴A(﹣,﹣),B(,),∴AB==4,∵2≤AB≤4,∴2≤4≤4,∴﹣1≤c≤﹣.25.。

江苏省淮安市2017年九年级中考模拟数学试卷(含答案)

江苏省淮安市2017年九年级中考模拟数学试卷(含答案)

淮安市2017年中考数学模拟试卷考试时间:120分钟 总分:150分 命题人:郭子涵 袁杰 万宇翔 审核人:万宇翔 李枭一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.﹣6的相反数是( )A .﹣6B .-61C .61D .62.函数y=1x +中自变量x 的取值范围是( ) A.1x >- B.1x ≥- C.1x <- D.1x ≤- 3.下列运算正确的是( )A .2a +3b = 5abB .2a ·3a =5aC .3a 2)( = 3a 6 D .6a +3a =9a4.用5个完全相同的小正方体组合成如图所示的立体图形,它的主视图为( )A B C D5.一个盒子里有完全相同的三个小球,球上分别标上数字-2、1、4.随机摸出一个小球(不放回)其数字记为p ,再随机摸出另一个小球其数字记为q ,则满足关于x 的方程0q px x 2=++有实数根的概率是( ) A.41 B.31 C.21 D.32 6.体育课上,某班两名同学分别进行5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的 ( )A .平均数 B.频数分布 C.中位数 D.方差7.如图,把一块含有45°角的直角三角板两个顶点放在直尺的对边上,如果∠1=20°,则∠2的度数是( )A 、15°B 、20° C、25° D、30°8.如图,在平面直角坐标系中,点A 、B 均在函数y=xk(k >0,x >0)的图象上,⊙A 与x 轴相切,⊙B 与y 轴相切.若点B 的坐标为(1,6),⊙A 的半径是⊙B 的半径的2倍,则点A 的坐标为( )A. (2,2)B. (2,3)C. (3,2)D. (4,23)(第8题) (第14题)二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.据有关资料显示,长江三峡工程电站的总装机容量是18200000千瓦,请你用科学记数法表示电站的总装机容量,应记为. ▲ 千瓦. 10.因式分解:22944y x y ---= ▲ .11.关于x 的方程()22x 2m 1x m 10--+-=的两实数根为x 1,x 2,且x 12+x 22=3,则m= ▲ .12.已知实数m ,n 满足2m n 1-=,则代数式22m 2n 4m 1++-的最小值等于 ▲ . 13.一个圆锥的高为4cm ,底面圆的半径为3cm ,则这个圆锥的侧面积为 ▲ .14.如图,⊙C 过原点,且与两坐标轴分别交于点A 、点B ,点A 的坐标为(0,3),M 是第三象限内圆弧OB 上一点,∠BM0=120o ,则⊙C 的半径长为 ▲ °. 15.已知二次函数2y ax bx c =++中,函数y 与x 的部分对应值如下:正面…………………密……………封……………线……………内……………不……………准……………答……………题……………………姓名____________ 年级________x... -1 0 1 2 3 ... y...[105212[...则当y 5<时,x 的取值范围是 ▲ .16.如图,三个小正方形的边长都为1,则图中阴影部分面积的和是 ▲ .17.如图,△ABC 是等腰直角三角形,AC=BC=a ,以斜边AB 上的点O 为圆心的圆分别与AC ,BC 相切与点E ,F , 与AB 分别交于点G ,H ,且 EH 的延长线和 CB 的延长线交于点D ,则 CD 的长为 ▲ .18.如图,△ABC 中,AD 是中线,AE 是角平分线,CF ⊥AE 于F ,AB=5,AC=2,则DF 的长为 ▲ .(第16题) (第17题) (第18题)三、解答题(本大题共十小题,共96分) 19.(本小题满分10分)1)、02017-︒45sin -cos45°+23-)(-1-41-)(2)、⎪⎩⎪⎨⎧=+=++3y -x 2-y x 3121-4y x -3y x 2)()()(20.(8分)1x x2-x x 24x 4-x 222+++,在0、1、2三个数中选一个合适的,代入求值21.(8分)如图,在正方形ABCD 内有一点P ,满足AP=AB ,PB=PC ,连接AC 、PD 求证(1)△APB △DPC (2)∠BAP=2∠PAC22.(8分)甲、乙两校分别有一男一女共4名教师报名到农村中学支教。

【中考模拟2017】湖北武汉市 2017年九年级数学 中考模拟试卷 三(含答案)

【中考模拟2017】湖北武汉市 2017年九年级数学 中考模拟试卷 三(含答案)

2017年九年级数学中考模拟试卷一、选择题:1.实数a,b,c,d在数轴上的对应点的位置如图所示,则这四个数中,相反数是正数的为()A.aB.bC.cD.d2.在我们的生活中,常见到很多美丽的图案,下列图案中,既是中心对称,又是轴对称图形的是( )3.桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为()A.0.278 09×105B.27.809×103C.2.780 9×103D.2.780 9×1044.如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A.110°B.120°C.130°D.140°5.下列计算正确的是()A.a2+b3=2a5B.a4÷a=a4C.a2•a3=a6D.(-a2)3=﹣a66.下列事件中是必然事件的是()A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上7.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是( )A.的 B.中 C.国 D.梦8.如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为( )A.80° B.100° C.110° D.130°9.甲、乙两车在同一直线公路上,匀速行驶,开始时甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设乙车行驶的时间为x秒,两车间的距离为y千米,图中折线表示y关于x的函数图象,下列四种说法正确的有()个(1)开始时,两车的距离为500米.(2)转货用了100秒.(3)甲的速度为25米/秒,乙的速度为30米/秒.(4)当乙车返回到出发地时,甲车离乙车900米.A.1B.2C.3D.410.若二次函数y=ax2-2ax+c的图象经过点(-1,0),则方程ax2-2ax+c=0的解为( )A.x1=-3,x2=-1B.x1=1,x2=3C.x1=-1,x2=3D.x1=-3,x2=1二、填空题:11.分解因式:a3﹣25a= .12.设x,x2是方程x2-4x+m=0的两个根,且x1+x2-x1x2=1,则x1+x2= ,m= .113.如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心,BC长为半径作弧,交AB于点D,交AC于点E,连结BE,则∠ABE的大小为度.14.小明第一次抛一枚质地均匀的硬币时反面向上,第二次抛此枚硬币时也是反面向上,则他第三次抛这枚硬币时,正面向上的概率是.15.如图,△ABC和△A′B′C是两个完全重合的直角三角板,∠B=30°,斜边长为10cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A′落在AB边上时,CA′旋转所构成的扇形的弧长为 cm.16.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm,且tan∠EFC=0.75,则矩形ABCD 的周长为三、解答题:17.先化简,再求代数式的值.其中=tan600-300.18.先化简,再从的范围内选取一个你喜欢的x值代入求值。

2017年九年级数学中考模拟试卷

2017年九年级数学中考模拟试卷

2017 年九年级数学中考模拟试卷一、选择题:1.已知有理数 a, b, c在数轴上对应点的地点如图, 化简 : ∣ b-c ∣ -2 ∣ c+a∣-3 ∣ a-b ∣ =()A.-5a+4b-3cB.5a-2b+c2. 以下计算正确的选项是()A.2+a=2a﹣3a=﹣1 C.(﹣a)2?a3=a5÷4ab=2ab3. 若 x、 y为有理数,以下各式建立的是()A. (﹣ x)3=x3B. (﹣ x)4=﹣ x4 4=﹣ x4 D. ﹣x3=(﹣ x)34. 如图,依据三视图确立该几何体的全面积是(图中尺寸单位:cm)()222 2A. 40π cm B. 65π cm C.80π cm D. 105πcm5. 化简的结果是()A. B. C.x+1﹣16.以下运算中,正确的选项是()A.3a+2b=5abB.2a 3 +3a 2=5a 5C.3a 2 b ﹣ 3ba 2 =0D.5a 2﹣ 4a 2=17.某学校将为初一学生开设 ABCDEF共 6门选修课,现选用若干学生进行了“我最喜爱的一门选修课”检查,将检查结果绘制成如图统计图表(不完好)选修课A B C D E F 人数4060100依据图表供给的信息,以下结论错误的选项是()A.此次被检查的学生人数为 400 人B.扇形统计图中 E部分扇形的圆心角为 72°C.被检查的学生中喜爱选修课 E、F的人数分别为 80,70D.喜爱选修课 C的人数最少8.在同样时辰的物高与影长成比率,假如高为1.5 米的测竿的影长为 2.5 米,那么影长为 30 米的旗杆的高是()米米米米9.如图 1,在直角梯形 ABCD中,动点 P 从点 B 出发,沿 BC,CD运动至点 D 停止.设点 P 运动的行程为 x,△ ABP 的面积为y,假如 y 对于 x 的函数图象如图 2 所示,则△ BCD的面积是()A. 3 B . 4 C . 5 D .610. 如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24 米,拱的半径为13 米,则拱高为 ( )A.5 米 B .8米 C .7米 D . 5 米二、填空题:11.已知对于 x,y 的方程组的解为正数,则.12.分解因式: 2x3﹣4x2+2x=.13.如图,△ ABC是边长为4个等边三角形,D 为AB边中点 , 以 CD为直径画圆 , 则图中暗影部分面积为.14.如图在□ABCD中,点 E 在边 DC上, DE: EC=3: 1,连结 AE交 BD于点 F,若△ DEF的面积为 18,则□ABCD的面积为.三、计算题:15.计算 :2016 0﹣ | ﹣|++2sin45 °.16.解方程 :3x 2- 7x +4=0.四、解答题:17.如图 , 在 Rt △ ABC中 , ∠ ACB=90° , 点 D,E 分别在 AB,AC上 ,CE=BC,连结 CD,将线段 CD绕点 C按顺时针方向旋转 90°后得 CF, 连结 EF.( 1)增补达成图形;( 2)若 EF∥ CD,求证 : ∠ BDC=90°.第3页共3页18.如图,二次函数 y=ax2+bx+c 的图象与 x 轴交于 A、B 两点,交 y 轴于 C点,此中 B 点坐标为( 3,0), C 点坐标为( 0,3),且图象对称轴为直线x=1.( 1)求此二次函数的关系式;( 2) P 为二次函数y=ax 2+bx+c 在 x 轴下方的图象上一点,且S△ABP=S△ABC,求 P 点的坐标.19.如图 1,某商场从底楼到二楼有一自动扶梯,图 2 是侧面表示图.已知自动扶梯AB的坡度为1: 2.4 ,AB的长度是 13 米, MN是二楼楼顶, MN∥ PQ,C 是 MN上处在自动扶梯顶端 B 点正上方的一点, BC⊥MN,在自动扶梯底端 A 处测得 C 点的仰角为 42°,求二楼的层高 BC(精准到 0.1 米).(参照数据: sin42 °≈ 0.67 , cos42°≈ 0.74 ,tan42 °≈ 0.90 )如图 1,某商场从底楼到二楼有一自动扶梯,图 2 是侧面表示图.已知自动扶梯AB 的坡度为 1:2.4 ,AB的长度是 13 米, MN是二楼楼顶, MN∥ PQ,C 是 MN上处在自动扶梯顶端B点正上方的一点,BC⊥ MN,在自动扶梯底端A 处测得 C点的仰角为42°,求二楼的层高BC(精准到0.1 米).(参照数据:sin42 °≈ 0.67 ,cos42 °≈ 0.74 ,tan42 °≈ 0.90 )20.一辆客车从甲地出发前去乙地,均匀速度v(千米 / 小时)与所用时间 t (小时)的函数关系以下图,此中60≤ v≤ 120.( 1)直接写出 v与t 的函数关系式;( 2)若一辆货车同时从乙地出发前去甲地,客车比货车均匀每小时多行驶20 千米, 3 小时后两车相遇.①求两车的均匀速度;②甲、乙两地间有两个加油站A、B,它们相距200 千米,当客车进入B加油站时,货车恰巧进入A加油站(两车加油的时间忽视不计),求甲地与B加油站的距离.21.某中学举行了“中国梦,中国好少年”演讲竞赛,菲菲同学将选手成绩区分为A、 B、 C、 D四个等级,绘制了两种不完好统计图.依据图中供给的信息,解答以下问题:( 1)参加演讲竞赛的学生共有人,扇形统计图中m=,n=,并把条形统计图增补完好.(2)学校欲从 A等级 2 名男生 2 名女生中随机选用两人,参加达州市举办的演讲竞赛,请利用列表法或树状图,求 A等级中一男一女参加竞赛的概率.(男生疏别用代码A 1、 A2表示,女生疏别用代码 B1、B2表示)五、综合题:22.如图,在平面直角坐标系中,已知抛物线y=ax 2+bx的对称轴为 x=0.775 ,且经过点 A( 2, 1),点 P是抛物线上的动点, P的横坐标为 m( 0< m< 2),过点 P作PB⊥ x轴,垂足为 B,PB交 OA于点 C,点 O对于直线 PB的对称点为 D,连结 CD,AD,过点 A作 AE⊥x轴,垂足为 E.(1)求抛物线的分析式;(2)填空:①用含 m的式子表示点 C, D的坐标: C(,),D(,);②当 m=时,△ ACD的周长最小;( 3)若△ ACD为等腰三角形,求出全部切合条件的点P的坐标.23.如图①,△ ABC与△ CDE是等腰直角三角形,直角边AC、 CD在同一条直线上,点M、 N 分别是斜边AB、 DE的中点,点P 为 AD的中点,连结AE、 BD.(1)猜想 PM与 PN的数目关系及地点关系,请直接写出结论;(2)现将图①中的△ CDE绕着点 C顺时针旋转α(0°<α<90°),获得图②, AE与 MP、BD分别交于点 G、H.请判断( 1)中的结论能否建立?若建立,请证明;若不建立,请说明原因;(3)若图②中的等腰直角三角形变为直角三角形,使 BC=kAC,CD=kCE,如图③,写出 PM与 PN的数目关系,并加以证明.参照答案11.答案为: 7;12.答案为: 2x(x ﹣1) 2.13.答案为: 2.5 ﹣π .14.答案为: 112;15. 解: 20160 ﹣|﹣ |+ +2sin45 ° =1﹣ +( 3﹣1)﹣1+2×=1﹣ +3+ =4.16. 解: (3)x 1 =, x2=117.解:( 1)补全图形,以下图;(2)由旋转的性质得:∠ DCF=90°,∴∠ DCE+∠ ECF=90°,∵∠ ACB=90°,∴∠ DCE+∠BCD=90°,∴∠ ECF=∠ BCD,∵EF∥ DC,∴∠ EFC+∠ DCF=180°,∴∠ EFC=90°,在△ BDC和△ EFC中,,∴△BDC≌△ EFC(SAS),∴∠ BDC=∠ EFC=90°.18. 解:( 1)依据题意,得,解得.故二次函数的表达式为y=﹣ x2+2x+3.△ ABP △ABC PC P( 2)由 S =S ,得 y +y =0,得 y =﹣ 3,当 y=﹣ 3 时,﹣ x2+2x+3=﹣ 3,解得 x1=1﹣, x2=1+.故 P 点的坐标为( 1﹣,﹣ 3)或( 1+ ,﹣ 3).19.20.解:( 1)设函数关系式为 v=kt -1,-1∵ t=5 , v=120,∴ k=120 ×5=600,∴ v与 t 的函数关系式为 v=600t(5≤ t≤ 10);当 v=110 时, v﹣ 20=90.答:客车和货车的均匀速度分别为110 千米 / 小时和 90 千米 / 小时;②当 A加油站在甲地和B加油站之间时,110t ﹣( 600﹣ 90t ) =200,解得 t=4 ,此时 110t=110 ×4=440;当 B加油站在甲地和 A加油站之间时, 110t+200+90t=600 ,解得 t=2 ,此时 110t=110 ×2=220.答:甲地与 B加油站的距离为220 或 440 千米.21.22.23.解:( 1) PM=PN, PM⊥PN,原因以下:∵△ ACB和△ ECD是等腰直角三角形,∴AC=BC, EC=CD,∠ ACB=∠ ECD=90°.在△ ACE和△ BCD中,∴△ ACE≌△ BCD(SAS),∴AE=BD,∠ EAC=∠CBD,∵点 M、N 分别是斜边AB、 DE的中点,点P 为 AD的中点,∴ PM= BD, PN= AE,∴PM=PM,∵∠ NPD=∠ EAC,∠ MPN=∠BDC,∠ EAC+∠BDC=90°,∴∠ MPA+∠ NPC=90°,∴∠ MPN=90°,即 PM⊥PN;( 2)∵△ ACB和△ ECD是等腰直角三角形,∴AC=BC, EC=CD,∠ ACB=∠ ECD=90°.∴∠ ACB+∠ BCE=∠ECD+∠ BCE.∴∠ ACE=∠ BCD.∴△ ACE≌△ BCD.∴AE=BD,∠ CAE=∠CBD.又∵∠ AOC=∠ BOE,∠ CAE=∠CBD,∴∠ BHO=∠ ACO=90°.∵点 P、M、 N 分别为 AD、AB、 DE的中点,∴ PM= BD, PM∥ BD;PN=AE, PN∥ AE.∴ PM=PN.∴∠ MGE+∠ BHA=180°.∴∠ MGE=90°.∴∠ MPN=90°.∴ PM⊥ PN.(3) PM=kPN∵△ ACB和△ ECD是直角三角形,∴∠ ACB=∠ECD=90°.∴∠ ACB+∠ BCE=∠ECD+∠ BCE.∴∠ ACE=∠ BCD.∵ BC=kAC, CD=kCE,∴=k.∴△ BCD∽△ ACE.∴ BD=kAE。

2017中考数学模拟试题含答案(精选5套).pdf

2017中考数学模拟试题含答案(精选5套).pdf

际工作效率比原计划提高了 20%,结果提前 8 天完成任务,求原计划每天修路的长度. 若设原计划每
天修路 x m,则根据题意可得方程
.
17. 在平面直角坐标系中,规定把一个三角形先沿着 x 轴翻折,再向右平移 2 个单
位称为 1 次变换. 如图,已知等边三角形 ABC 的顶点 B,C 的坐标分别是
(-1,-1),(-3,-1),把△ABC 经过连续 9 次这样的变换得到△A′B′C′,
5
10
x (1 + 20%)x
17. (16,1+ 3 ); 18. 15.5(或 31 ). 2
三、解答题
19. (1)解:原式 = 4× 2 -2 2 +1-1……2 分(每错 1 个扣 1 分,错 2 个以上不给分) 2
=0
…………………………………4 分
(2)解:原式 =( m + n - n )· m2 − n2
∠BCD = 30°, ∴DC = BC·cos30°
……………………1 分
= 6 3 × 3 = 9, ……………………2 分 2
∴DF = DC + CF = 9 + 1 = 10,…………………3 分
∴GE = DF = 10.
…………………4 分
在 Rt△BGE 中,∠BEG = 20°,
∴BG = CG·tan20°
点 Q 从点 C 出发,沿 CB 方向匀速运动到终点 B. 已知 P,Q 两点同时出发,并同时到达终点,连接 MP,
MQ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是( )
A. 一直增大
B. 一直减小
C. 先减小后增大
D. 先增大后减小

【中考模拟2017】湖南省长沙市_2017年九年级数学中考模拟试卷_一(含答案)

【中考模拟2017】湖南省长沙市_2017年九年级数学中考模拟试卷_一(含答案)

2017年九年级数学中考模拟试卷一、选择题(本大题共8小题,每小题3分,共24分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.将式子3-5-7写成和的形式,正确的是()A.3+5+7B.-3+(-5)+(-7)C.3-(+5)-(+7)D.3+(-5)+(-7)2.2015年我国大学生毕业人数将达到7 490 000人,这个数据用科学记数法表示为( )A.7.49×107B.7.49×106C.74.9×105D.0.749×1073.下列计算正确的是()A.a3+a2=a5 B.(3a﹣b)2=9a2﹣b2 C.(﹣ab3)2=a2b6 D.a6b÷a2=a3b4.下列图形中既是轴对称图形,又是中心对称图形的是()5.数据1,2,3,4,4,5的众数是()A.5B.3C.3.5D.46.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A. B. C D.7.如图,直线l经过二、三、四象限,l的解析式是y=(m﹣2)x﹣2,则m的取值范围在数轴上表示为()A. B.C. D.8.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是()A.7B.8C.7D.7二、填空题:9.一个数的立方根是4,那么这个数的平方根是.10.分解因式:3m2﹣27= .11.使有意义的x的取值范围是______.12.如图,AD∥BC,BD平分∠ABC,∠A:∠ABC=2:1,则∠ADB= 度.13.小明第一次抛一枚质地均匀的硬币时反面向上,第二次抛此枚硬币时也是反面向上,则他第三次抛这枚硬币时,正面向上的概率是.14.如图,DE与BC不平行,当= 时,ΔABC与ΔADE相似.15.为了解一路段车辆行驶速度的情况,交警统计了该路段上午7:00至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数是.16.观察下列单项式:﹣x,3x2,﹣5x3,7x4,…﹣37x19,39x20的特点,写出第n个单项式.为了解决这个问题,特提供下面的解题思路:请根据你的经验,猜想第n个单项式可表示为.(用含n的式子表示)三、计算题:17.计算:﹣14+(2016﹣π)0﹣(﹣)﹣1+|1-|﹣2sin60°.18.解下列不等式组,并在数轴上表示出该不等式组的解集。

2017年新九年级中考数学模拟试卷

2017年新九年级中考数学模拟试卷

2017年新九年级中考数学模拟试卷参考答案与试题解析一、选择题(共20小题,每小题3分,满分60分)1.下面计算正确的是()A.B.C.D.考点:二次根式的混合运算.专题:计算题.分析:根据二次根式的混合运算方法,分别进行运算即可.解答:解:A.3+不是同类项无法进行运算,故A选项错误;B.===3,故B选项正确;C.×==,故C选项错误;D.∵==2,故D选项错误;故选:B.点评:此题主要考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据正多边形的性质和轴对称图形与中心对称图形的定义解答.解答:解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确;故选D.点评:本题考查正多边形对称性.关键要记住偶数边的正多边形既是轴对称图形,又是中心对称图形,奇数边的正多边形只是轴对称图形.3.不等式4﹣3x≥2x﹣6的非负整数解有()A.1个B.2个C.3个D.4个考点:一元一次不等式的整数解.分析:首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.解答:解:移项,得﹣3x﹣2x≥﹣6﹣4,合并同类项,得:﹣5x≥﹣10,系数化成1得:x≤2.则非负整数解是:1和2共2个.故选B.点评:本题考查了不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.4.如图空心圆柱体的主视图的画法正确的是()A.B.C.D.考点:简单组合体的三视图.分析:找到从前面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从前面观察物体可以发现:它的主视图应为矩形,又因为该几何体为空心圆柱体,故中间的两条棱在主视图中应为虚线,故选C.点评:本题考查了三视图的知识,主视图是从物体的前面看得到的视图,考查了学生细心观察能力,属于基础题.5.据2015年1月24日《桂林日报》报道,临桂县2014年财政收入突破18亿元,在广西各县中排名第二,将18亿用科学记数法表示为()A.1.8×10 B.1.8×108 C.1.8×109 D.1.8×1010考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:18亿=18 0000 0000=1.8×109.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.在一次中学生田径运动会上,参加男子跳高的14名运动员成绩如下表所示:则这些运动员成绩的中位数是()成绩/m 1.50 1.61 1.66 1.70 1.75 1.78人数 2 3 2 1 5 1A.1.66 B.1.67 C.1.68 D. 1.75考点:中位数.专题:图表型.分析:先求出14名运动员成绩的总和,再除以14即可.解答:解:根据图表可知题目中数据共有14个,故中位数是按从小到大排列后第7,第8两个数的平均数作为中位数.故这组数据的中位数是(1.66+1.70)=1.68.故选C.点评:本题属于基础题,考查了确定一组数据的中位数的能力.要明确定义,一些学生往往对这个图表分析的不准确,没有考虑到共有14个数据而不是6个而错解.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.7.如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC的度数是()A.35° B.55° C.65° D.70°考点:圆周角定理.分析:在同圆和等圆中,同弧所对的圆心角是圆周角的2倍,所以∠AOC=2∠D=70°,而△AOC中,AO=CO,所以∠OAC=∠OCA,而180°﹣∠AOC=110°,所以∠OAC=55°.解答:解:∵∠D=35°,∴∠AOC=2∠D=70°,∴∠OAC=(180°﹣∠AOC)÷2=110°÷2=55°.故选:B.点评:本题考查同弧所对的圆周角和圆心角的关系.规律总结:解决与圆有关的角度的相关计算时,一般先判断角是圆周角还是圆心角,再转化成同弧所对的圆周角或圆心角,利用同弧所对的圆周角相等,同弧所对的圆周角是圆心角的一半等关系求解,特别地,当有一直径这一条件时,往往要用到直径所对的圆周角是直角这一条件.8.解分式方程,可知方程()A.解为x=2 B.解为x=4 C.解为x=3 D.无解考点:解分式方程.专题:计算题.分析:本题考查分式方程的解法.,可变形为,可确定公分母为(x﹣2).解答:解:原方程可变形为,两边都乘以(x﹣2),得(1﹣x)+2(x﹣2)=﹣1.解之得x=2.代入最简公分母x﹣2=0,因此原分式方程无解.故选D.点评:本题考查分式方程的解法,此题两个分母互为相反数,因此去分母化为整式方程时要注意符号变化.同时要注意去分母时会出现增根,要检验的环节,否则容易出错.9.如图,在菱形ABCD中,对角线AC、BD相交于点O,作OE∥AB,交BC于点E,则OE的长一定等于()A.BE B.AO C.AD D.OB考点:菱形的性质;直角三角形斜边上的中线.分析:根据菱形的对角线互相垂直平分可得AC⊥BD,AO=CO,再判断出点E是BC的中点,然后根据直角三角形斜边上的中线等于斜边的一半解答.解答:解:在菱形ABCD中,AC⊥BD,AO=CO,∵OE∥AB,∴点E是BC的中点,∴OE=BE=CE.故选:A.点评:本题考查了菱形的对角线互相垂直平分的性质,三角形中位线的判定,直角三角形斜边上的中线等于斜边的一半的性质,熟记各性质是解题的关键.10.已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=()A.B.C.D.2考点:相似多边形的性质;翻折变换(折叠问题).分析:可设AD=x,根据四边形EFDC与矩形ABCD相似,可得比例式,求解即可.解答:解:∵沿AE将△ABE向上折叠,使B点落在AD上的F点,∴四边形ABEF是正方形,∵AB=1,设AD=x,则FD=x﹣1,FE=1,∵四边形EFDC与矩形ABCD相似,∴=,=,解得x1=,x2=(负值舍去),经检验x1=是原方程的解.故选B.点评:考查了翻折变换(折叠问题),相似多边形的性质,本题的关键是根据四边形EFDC 与矩形ABCD相似得到比例式.11.如图,在平面直角坐标系中,点A1,A2在x轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是()A.B.C.D.考点:列表法与树状图法;等腰三角形的判定.分析:根据题意画出树状图,进而得出以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形是等腰三角形的情况,求出概率即可.解答:解:∵以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形,∴画树状图得:共可以组成4个三角形,所作三角形是等腰三角形只有:△OA1B1,△OA2B2,所作三角形是等腰三角形的概率是:=.故选:D.点评:此题主要考查了利用树状图求概率以及等腰三角形的判定等知识,利用树状图表示出所有可能是解题关键.12.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1个B.2个C.3个D.4个考点:函数的图象.专题:压轴题.分析:由图象可知起跑后1小时内,甲在乙的前面;在跑了1小时时,乙追上甲,此时都跑了10千米;乙比甲先到达终点;求得乙跑的直线的解析式,即可求得两人跑的距离,则可求得答案.解答:解:根据图象得:起跑后1小时内,甲在乙的前面;故①正确;在跑了1小时时,乙追上甲,此时都跑了10千米,故②正确;乙比甲先到达终点,故③错误;设乙跑的直线解析式为:y=kx,将点(1,10)代入得:k=10,∴解析式为:y=10x,∴当x=2时,y=20,∴两人都跑了20千米,故④正确.所以①②④三项正确.故选:C.点评:此题考查了函数图形的意义.解题的关键是根据题意理解各段函数图象的实际意义,正确理解函数图象横纵坐标表示的意义,理解问题的过程.13.如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D、E在圆上,四边形BCDE为矩形,这个矩形的面积是()A.2 B.C.D.考点:垂径定理;等边三角形的性质;矩形的性质;解直角三角形.分析:连接BD、OC,根据矩形的性质得∠BCD=90°,再根据圆周角定理得BD为⊙O的直径,则BD=2;由ABC为等边三角形得∠A=60°,于是利用圆周角定理得到∠BOC=2∠A=120°,易得∠CBD=30°,在Rt△BCD中,根据含30°的直角三角形三边的关系得到CD=BD=1,BC=CD=,然后根据矩形的面积公式求解.解答:解:连结BD、OC,如图,∵四边形BCDE为矩形,∴∠BCD=90°,∴BD为⊙O的直径,∴BD=2,∵△ABC为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,而OB=OC,∴∠CBD=30°,在Rt△BCD中,CD=BD=1,BC=CD=,∴矩形BCDE的面积=BC•CD=.故选:B.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理、等边三角形的性质和矩形的性质.14.某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路x m,则根据题意可列方程为()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=2考点:由实际问题抽象出分式方程.专题:工程问题.分析:设原计划每天修建道路x m,则实际每天修建道路为(1+20%)x m,根据采用新的施工方式,提前2天完成任务,列出方程即可.解答:解:设原计划每天修建道路x m,则实际每天修建道路为(1+20%)x m,由题意得,﹣=2.故选:D.点评:本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.15.如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C.则矩形的一边AB的长度为()A.1 B.C.D.2考点:勾股定理;线段垂直平分线的性质;矩形的性质.分析:本题要依靠辅助线的帮助,连接CE,首先利用线段垂直平分线的性质证明BC=EC.求出EC后根据勾股定理即可求解.解答:解:如图,连接EC.∵FC垂直平分BE,∴BC=EC(线段垂直平分线的性质)又∵点E是AD的中点,AE=1,AD=BC,故EC=2,利用勾股定理可得AB=CD==.故选:C.点评:本题考查的是勾股定理、线段垂直平分线的性质以及矩形的性质,本题的关键是要画出辅助线,证明BC=EC后易求解.本题难度中等.16.如图,甲、乙两人想在正五边形ABCDE内部找一点P,使得四边形ABPE为平行四边形,其作法如下:(甲)连接BD、CE,两线段相交于P点,则P即为所求(乙)先取CD的中点M,再以A为圆心,AB长为半径画弧,交AM于P点,则P即为所求.对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确考点:平行四边形的判定.分析:求出五边形的每个角的度数,求出∠ABP、∠AEP、∠BPE的度数,根据平行四边形的判定判断即可.解答:解:甲正确,乙错误,理由是:如图,∵正五边形的每个内角的度数是=108°,AB=BC=CD=DE=AE,∴∠DEC=∠DCE=×(180°﹣108°)=36°,同理∠CBD=∠CDB=36°,∴∠ABP=∠AEP=108°﹣36°=72°,∴∠BPE=360°﹣108°﹣72°﹣72°=108°=∠A,∴四边形ABPE是平行四边形,即甲正确;∵∠BAE=108°,∴∠BAM=∠EAM=54°,∵AB=AE=AP,∴∠ABP=∠APB=×(180°﹣54°)=63°,∠AEP=∠APE=63°,∴∠BPE=360°﹣108°﹣63°﹣63°≠108°,即∠ABP=∠AEP,∠BAE≠∠BPE,∴四边形ABPE不是平行四边形,即乙错误;故选C.点评:本题考查了正五边形的内角和定理,等腰三角形的性质,三角形的内角和定理,平行四边形的判定的应用,注意:有两组对角分别相等的四边形是平行四边形.17.如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE2+DC2=DE2,其中正确的有()个.A.1 B. 2 C. 3 D. 4考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理.专题:压轴题.分析:根据∠DAF=90°,∠DAE=45°,得出∠FAE=45°,利用SAS证明△AED≌△AEF,判定①正确;如果△ABE∽△ACD,那么∠BAE=∠CAD,由∠ABE=∠C=45°,则∠AED=∠ADE,AD=AE,而由已知不能得出此条件,判定②错误;先由∠BAC=∠DAF=90°,得出∠CAD=∠BAF,再利用SAS证明△ACD≌△ABF,得出CD=BF,又①知DE=EF,那么在△BEF中根据三角形两边之和大于第三边可得BE+BF>EF,等量代换后判定③正确;先由△ACD≌△ABF,得出∠C=∠ABF=45°,进而得出∠EBF=90°,然后在Rt△BEF中,运用勾股定理得出BE2+BF2=EF2,等量代换后判定④正确.解答:解:①∵∠DAF=90°,∠DAE=45°,∴∠FAE=∠DAF﹣∠DAE=45°.在△AED与△AEF中,,∴△AED≌△AEF(SAS),①正确;②∵∠BAC=90°,AB=AC,∴∠ABE=∠C=45°.∵点D、E为BC边上的两点,∠DAE=45°,∴AD与AE不一定相等,∠AED与∠ADE不一定相等,∵∠AED=45°+∠BAE,∠ADE=45°+∠CAD,∴∠BAE与∠CAD不一定相等,∴△ABE与△ACD不一定相似,②错误;③∵∠BAC=∠DAF=90°,∴∠BAC﹣∠BAD=∠DAF﹣∠BAD,即∠CAD=∠BAF.在△ACD与△ABF中,,∴△ACD≌△ABF(SAS),∴CD=BF,由①知△AED≌△AEF,∴DE=EF.在△BEF中,∵BE+BF>EF,∴BE+DC>DE,③正确;④由③知△ACD≌△ABF,∴∠C=∠ABF=45°,∵∠ABE=45°,∴∠EBF=∠ABE+∠ABF=90°.在Rt△BEF中,由勾股定理,得BE2+BF2=EF2,∵BF=DC,EF=DE,∴BE2+DC2=DE2,④正确.所以正确的结论有①③④.故选C.点评:本题考查了勾股定理,全等三角形的判定与性质,等腰直角直角三角形的性质,三角形三边关系定理,相似三角形的判定,此题涉及的知识面比较广,解题时要注意仔细分析,有一定难度.18.已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A.6 B. 5 C. 4 D. 3考点:二次函数的性质.专题:计算题.分析:根据抛物线的顶点式得到抛物线的对称轴为直线x=h,由于所给数据都是正数,所以当对称轴在y轴的右侧时,比较点A和点B到对称轴的距离可得到h<4.解答:解:∵抛物线的对称轴为直线x=h,∴当对称轴在y轴的右侧时,A(0,2)到对称轴的距离比B(8,3)到对称轴的距离小,∴x=h<4.故选:D.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x >﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.19.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.专题:代数几何综合题;压轴题;数形结合.分析:根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小.解答:解:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,(故①正确);∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,(故②错误);∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,(故③正确);∵对称轴为直线x=2,∴当﹣1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,(故④错误).故选:B.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac <0时,抛物线与x轴没有交点.20.如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是()A.B.C.D.考点:动点问题的函数图象.专题:数形结合.分析:分三段来考虑点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP 的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小,据此选择即可.解答:解:点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小.故选:A.点评:本题主要考查了动点问题的函数图象.注意分段考虑.二、填空题(共4小题,每小题3分,满分12分)21.计算:=.考点:分式的混合运算.专题:计算题.分析:将式子括号内部分通分,然后根据分式除法的运算法则,将其转化为乘法,再将分母中的式子因式分解,即可得到结果.解答:解:原式=×=×=.故答案为.点评:本题考查了分式的混合运算,熟悉分式的运算法则是解题的关键.22.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是.考点:几何概率.分析:两个同心圆被均分成八等份,飞镖落在每一个区域的机会是均等的,由此计算出黑色区域的面积,利用几何概率的计算方法解答即可.解答:解:因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份,所以P(飞镖落在黑色区域)==.故答案为:.点评:此题主要考查几何概率的意义:一般地,对于古典概率,如果试验的基本事件为n,随机事件A所包含的基本事件数为m,我们就用来描述事件A出现的可能性大小,称它为事件A的概率,记作P(A),即有P(A)=.23.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数y=(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为y=.考点:待定系数法求反比例函数解析式;反比例函数图象的对称性;正方形的性质.专题:压轴题;探究型.分析:由反比例函数的对称性可知阴影部分的面积和正好为正方形面积的,设正方形的边长为b,图中阴影部分的面积等于9可求出b的值,进而可得出直线AB的表达式,再根据点P(3a,a)在直线AB上可求出a的值,进而得出反比例函数的解析式.解答:解:∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为正方形面积的,设正方形的边长为b,则b2=9,解得b=6,∵正方形的中心在原点O,∴直线AB的解析式为:x=3,∵点P(3a,a)在直线AB上,∴3a=3,解得a=1,∴P(3,1),∵点P在反比例函数y=(k>0)的图象上,∴k=3,∴此反比例函数的解析式为:y=.故答案为:y=.点评:本题考查的是用待定系数法求反比例函数的解析式及正方形的性质,根据题意得出直线AB的解析式是解答此题的关键.24.如图,▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为.考点:平行四边形的性质;等腰直角三角形;翻折变换(折叠问题).专题:几何图形问题.分析:如图,连接BB′.根据折叠的性质知△BB′E是等腰直角三角形,则BB′=BE.又B′E是BD的中垂线,则DB′=BB′.解答:解:∵四边形ABCD是平行四边形,BD=2,∴BE=BD=1.如图2,连接BB′.根据折叠的性质知,∠AEB=∠AEB′=45°,BE=B′E.∴∠BEB′=90°,∴△BB′E是等腰直角三角形,则BB′=BE=.又∵BE=DE,B′E⊥BD,∴DB′=BB′=.故答案为:.点评:本题考查了平行四边形的性质,等腰三角形的判定与性质以及翻折变换(折叠的性质).推知DB′=BB′是解题的关键.三、解答题(共5小题,满分48分)25.2010年春季我国西南五省持续干旱,旱情牵动着全国人民的心.“一方有难、八方支援”,某厂计划生产1 800吨纯净水支援灾区人民,为尽快把纯净水发往灾区,工人把每天的工作效率提高到原计划的1.5倍,结果比原计划提前3天完成了生产任务.求原计划每天生产多少吨纯净水?考点:分式方程的应用.分析:设原计划每天生产x吨纯净水,根据工人把每天的工作效率提高到原计划的1.5倍,结果比原计划提前3天完成了生产任务,可以时间做为等量关系列方程求解.解答:解:设原计划每天生产x吨纯净水,=+3,x=200,经检验x=200是原分式方程的解,且符合题意,原计划每天生产200吨纯净水.点评:本题考查理解题意的能力,根据结果比原计划提前3天完成了生产任务,可以时间做为等量关系列方程求解.26.如图,反比例函数y=(x>0)的图象经过点A(2,1),射线AB与反比例函数的图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值;(3)求经过A,C两点的直线的解析式.考点:反比例函数综合题.分析:(1)根据反比例函数图象上点的坐标特征易得k=2;(2)作BH⊥AD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(1,2),则AH=2﹣1,BH=2﹣1,可判断△ABH为等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根据特殊角的三角函数值得tan∠DAC=;(3)由于AD⊥y轴,则OD=1,AD=2,然后在Rt△OAD中利用正切的定义可计算出CD=2,易得C点坐标为(0,﹣1),于是可根据待定系数法求出直线AC的解析式为y=x ﹣1.解答:解:(1)把A(2,1)代入y=得k=2×1=2;(2)作BH⊥AD于H,如图,把B(1,a)代入反比例函数解析式y=得a=2,∴B点坐标为(1,2),∴AH=2﹣1,BH=2﹣1,∴△ABH为等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,∴tan∠DAC=tan30°=;(3)∵AD⊥y轴,∴OD=1,AD=2,∵tan∠DAC==,∴CD=2,∴OC=1,∴C点坐标为(0,﹣1),设直线AC的解析式为y=kx+b,把A(2,1)、C(0,﹣1)代入y=kx+b得,解得,∴直线AC的解析式为y=x﹣1.点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征和待定系数法求一次函数解析式;理解坐标与图形的性质;同时要熟悉三角函数.27.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.考点:全等三角形的判定与性质;等腰三角形的性质.专题:证明题.分析:(1)根据等腰三角形三线合一的性质可得∠BAE=∠EAC,然后利用“边角边”证明△ABE和△ACE全等,再根据全等三角形对应边相等证明即可;(2)先判定△ABF为等腰直角三角形,再根据等腰直角三角形的两直角边相等可得AF=BF,再根据同角的余角相等求出∠EAF=∠CBF,然后利用“角边角”证明△AEF和△BCF全等即可.解答:证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直角三角形,∴AF=BF,∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠EAF+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF,在△AEF和△BCF中,,∴△AEF≌△BCF(ASA).点评:本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等腰直角三角形的判定与性质,同角的余角相等的性质,是基础题,熟记三角形全等的判定方法与各性质是解题的关键.28.(12分)(2009•中山)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)证明:Rt△ABM∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.考点:二次函数综合题.专题:压轴题.分析:(1)要证△ABM和△MCN相似,就需找出两组对应相等的角,已知了这两个三角形中一组对应角为直角,而∠BAM和∠NMC都是∠AMB的余角,因此这两个角也相等,据此可得出两三角形相似.(2)根据(1)的相似三角形,可得出AB,BM,MC,NC的比例关系式,已知了AB=4,BM=x,可用BC和BM的长表示出CM,然后根据比例关系式求出CN的表达式.这样直角梯形的上下底和高都已得出,可根据梯形的面积公式得出关于y,x的函数关系式.然后可根据函数的性质得出y的最大值即四边形ABCN的面积的最大值,以及此时对应的x的值,也就可得出BM的长.(3)已知了这两个三角形中相等的对应角是∠ABM和∠AMN,如果要想使Rt△ABM∽Rt△AMN,那么两组直角边就应该对应成比例,即,根据(1)的相似三角形可得出,因此BM=MC,M是BC的中点.即x=2.解答:(1)证明:在正方形ABCD中,AB=BC=CD=4,∠B=∠C=90°,∵AM⊥MN,∴∠AMN=90°,∴∠CMN+∠AMB=90°.在Rt△ABM中,∠MAB+∠AMB=90°,∴∠CMN=∠MAB,∴Rt△ABM∽Rt△MCN.(2)解:∵Rt△ABM∽Rt△MCN,∴,即,∴,∴y=S梯形ABCN=(+4)•4=﹣x2+2x+8=﹣(x﹣2)2+10,∴当点M运动到离B点的长度为2时,y取最大值,最大值为10.(3)解:∵∠B=∠AMN=90°,∴要使△ABM∽△AMN,必须有,由(1)知,∴=,∴BM=MC,∴当点M运动到BC的中点时,△ABM∽△AMN,此时x=2.点评:本题主要考查了相似三角形的判定和性质以及二次函数的综合应用,根据相似三角形得出与所求的条件相关的线段成比例是解题的关键.。

2017中考数学模拟试卷及答案

2017中考数学模拟试卷及答案

第6题图九年级数学模拟试卷(含答案)(2017年5月5日)一、选择题:(本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题意的选项字母填入题后的括号内)1.-2的相反数是( D )A.21- B.21C. -2D. 22.下列图形中,既是轴对称图形,又是中心对称图形的是(A)A. B. C. D.3. 2015年我国的GDP总量为629180亿元,用科学计数法表示为( C )A、6.2918×105元B、6.2918×1014元C、6.2918×1013元D、6.2918×1012元4. 下列运算正确的是(D)A.abba5=3+2 B.1=2-322yxyx C.()6326=2aa D.xxx5=÷5235. 一个不透明的袋子里装有编号分别为1、2、3的球(除编号以为,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为,则袋子里2号球有(B)A.1个 B.2个 C.3个 D.4个6. 如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为(D)A、50°B、80°C、100°D、130°7.如右图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数有可能..是( D )A.5或6 B.5或7C.4或5或6 D.5或6或78. 如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿DE折叠,使A点落在BC上的F处,若∠B=65°,则∠BDF等于( A )A、50°B、57.5°C、60°D、65°9. 若关于x的方程+=2的解为正数,则m的取值范围是(C)A.m<6B.m>6C.m<6且m≠0D.m>6且m≠810. 如图,已知A、B是反比例函数(0,0)ky k xx=>>上的两点,BC x轴,交y轴于C,动点P从坐标原点O 出发,沿O A B C→→→匀速运动,终点为C,过运动路线上任意一点P作PM x⊥轴于M,PN y⊥轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是( A )二、填空题(本题有6个小题,每小题3分,共18分)11. 分解因式:2x2-8x+8=第7题图俯视图左视图12.关于x 的方程m x 2-3x+1=0有两个实数根,则实数m 的取值范围是。

2017初三中考数学模拟试卷及答案

2017初三中考数学模拟试卷及答案

2017初三中考数学模拟试卷及答案学生想在中考取得更好的成绩备考的时候就要多做中考数学试题,并加以复习,这样能更快提升自己的成绩。

以下是小编精心整理的2017初三中考数学模拟试题及答案,希望能帮到大家!2017初三中考数学模拟试题一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 的平方根是( )A.81B.±3C.﹣3D.32.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.3.如图,四边形ABCD中,∠A=90°,AB= ,AD=3,点M,N 分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )A.3B.4C.4.5D.54.已知关于x的分式方程+ =1的解是非负数,则m的取值范围是( )A.m>2B.m≥2C.m≥2且m≠3D.m>2且m≠35.商店某天销售了14件衬衫,其领口尺寸统计如表:领口尺寸(单位:cm) 38 39 40 41 42件数 1 5 3 3 2则这14件衬衫领口尺寸的众数与中位数分别是( )A.39cm、39cmB.39cm、39.5cmC.39cm、40cmD.40cm、40cm6.如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是( )A.55°B.60°C.65°D.70°7.已知m、n是方程x2+3x﹣2=0的两个实数根,则m2+4m+n+2mn的值为( )A.1B.3C.﹣5D.﹣98.若关于x的不等式的整数解共有4个,则m的取值范围是( )A.69.如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是( )A. B. C.2 D.10.如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD= ,E为CD中点,连接AE,且AE=2 ,∠DAE=30°,作AE⊥AF 交BC于F,则BF=( )A.1B.3﹣C. ﹣1D.4﹣211.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是( )A.25°B.30°C.35°D.40°12.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为( )A.36B.12C.6D.313.如图,已知AB=12,点C,D在AB上,且AC=DB=2,点P 从点C沿线段CD向点D运动(运动到点D停止),以AP、BP为斜边在AB的同侧画等腰Rt△APE和等腰Rt△PBF,连接EF,取EF的中点G,下列说法中正确的有( )①△EFP的外接圆的圆心为点G;②四边形AEFB的面积不变;③EF的中点G移动的路径长为4;④△EFP的面积的最小值为8.A.1个B.2个C.3个D.4个14.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)2a+b=0;(2)9a+c>3b;(3)5a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C( ,y3)在该函数图象上,则y1A.1个B.2个C.3个D.4个15.如图,Rt△ABC中∠C=90°,∠BAC=30°,AB=8,以2 为边长的正方形DEFG的一边GD在直线AB上,且点D与点A重合,现将正方形DEFG沿A﹣B的方向以每秒1个单位的速度匀速运动,当点D 与点B重合时停止,则在这个运动过程中,正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是( )A. B.C. D.二、填空题(本大题共6个小题,每小题3分,共18分.)16.分解因式:2x2﹣12x﹣32= .17.如果方程kx2+2x+1=0有实数根,则实数k的取值范围是.18.一个包装盒的设计方法如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.若广告商要求包装盒侧面积S(cm2)最大,试问x应取的值为cm.19.如图在平面直角坐标系xOy中,直线l经过点A(﹣1,0),点A1,A2,A3,A4,A5,…按所示的规律排列在直线l上.若直线l上任意相邻两个点的横坐标都相差1、纵坐标也都相差1,若点An(n为正整数)的横坐标为2015,则n= .20.如图,已知△ABC,外心为O,BC=6,∠BAC=60°,分别以AB、AC为腰向形外作等腰直角三角形△ABD与△ACE,连接BE、CD 交于点P,则OP的最小值是.21.如图,点A在双曲线y= 的第一象限的那一支上,AB⊥y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为,则k的值为.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)22.(6分)先化简再计算:,其中x是一元二次方程x2﹣2x﹣2=0的正数根.23.(8分)如图,四边形ABCD为菱形,点E为对角线AC上的一个动点,连结DE并延长交AB于点F,连结BE.(1)如图①:求证∠AFD=∠EBC;(2)如图②,若DE=EC且BE⊥AF,求∠DAB的度数;(3)若∠DAB=90°且当△BE F为等腰三角形时,求∠EFB的度数(只写出条件与对应的结果)24.(8分)某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查为了给学生提供更好的学习生活环境,重庆一中寄宿学校2015年对校园进行扩建.某天一台塔吊正对新建教学楼进行封顶施工,工人在楼顶A处测得吊钩D处的俯角α=22°,测得塔吊B,C两点的仰角分别为β=27°,γ=50°,此时B与C距3米,塔吊需向A处吊运材料.(tan27°≈0.5,tan50°≈1.2,tan22°≈0.4)(1)吊钩需向右、向上分别移动多少米才能将材料送达A处?(2)封顶工程完毕后需尽快完成新建教学楼的装修工程.如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成.求甲、乙两工程队单独完成此项工程所需的天数.26.(8分)母亲节前夕,某淘宝店主从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为2:3,单价和为200元.(1)求A、B两种礼盒的单价分别是多少元?(2)该店主购进这两种礼盒恰好用去9600元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?(3)根据市场行情,销售一个A种礼盒可获利10元,销售一个B 种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?27.(9分)⊙O是△ABC的外接圆,AB是直径,过的中点P作⊙O的直径PG,与弦BC相交于点D,连接AG、CP、PB.(1)如图1,求证:AG=CP;(2)如图2,过点P作AB的垂线,垂足为点H,连接DH,求证:DH∥AG;(3)如图3,连接PA,延长HD分别与PA、PC相交于点K、F,已知FK=2,△ODH的面积为2 ,求AC的长.28.(10分)如图,在平面直角坐标系中,直线与抛物线交于A、B 两点,点A在x轴上,点B的横坐标为﹣8.(1)求该抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.。

江苏省淮安市2017年九年级中考模拟数学试卷(含答案)

江苏省淮安市2017年九年级中考模拟数学试卷(含答案)

_ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _淮安市 2017 年中考数学模拟试卷120150一、选择题(本大题共有 8 小题,每题 3 分,共 24 分.在每题所给出的四个选项中,恰有一项为哪一项切合题目要求的,请将正确选项前的字母代号填涂在答题卡相应地点上).......1.﹣ 6 的相反数是()A.﹣ 6B.-1C.1D. 6662.函数 y=x 1中自变量 x 的取值范围是 ()A.x1 B.x1 C.x1D.x13.以下运算正确的选项是()A . 2a +3b = 5ab B.2·3=533639a a a C.()=6a D. a + a = a2a4.用 5 个完整同样的小正方体组合成以下图的立体图形,它的主视图为()A B C D5. 一个盒子里有完整同样的三个小球,球上分别标上数字-2 、1、 4. 随机摸出一个小球(不放回)其数字记为 p,再随机摸出另一个小球其数字记为q,则知足对于 x 的方程x2px q 0有实数根的概率是 ( )A.1B.1C.1D.243236. 体育课上,某班两名同学分别进行 5 次短跑训练,要判断哪一名同学的成绩比较稳固,通常需要比较这两名学生成绩的 ()A .均匀数 B.频数散布 C.中位数 D. 方差7.如图,把一块含有45°角的直角三角板两个极点放在直尺的对边上,假如∠1=20°,则∠2的度数是 ( )A、15°B、20°C、25°D、30°8.如图,在平面直角坐标系中,点A、B 均在函数 y=k(k>0,x>0)的x切,⊙B与 y 轴相切.若点 B 的坐标为( 1,6),⊙A 的半径是⊙B 的半径的为( )A. (2,2)B.(2,3)C. (3,2)D.(4,3)2814二、填空题(本大题共有10 小题,每题 3 分,共 30 分.不需写出解答过程写在答题卡相应地点上).......9.据相关资料显示,长江三峡工程电站的总装机容量是18200000千瓦示电站的总装机容量,应记为 .▲千瓦224 y 4▲.10.因式分解:9 x y11.对于 x 的方程x 22m 1 x m2 1 0的两实数根为1212+xx,x ,且 x▲.12.已知实数 m,n 知足m n2 1 ,则代数式 m22n24m1的最小值等于13.一个圆锥的高为 4cm,底面圆的半径为 3cm,则这个圆锥的侧面积为14.如图,⊙ C 过原点,且与两坐标轴分别交于点 A 、点 B,点 A 的坐标为限内圆弧 OB 上一点,∠ BM0=120o,则⊙ C 的半径长为▲°.15.已知二次函数y ax2bx c 中,函数y与x的部分对应值以下:则当 y 5 时,x的取值范围是16.如图,三个小正方形的边长都为1,则图中暗影部分面积17.如图,△ ABC 是等腰直角三角形,AC=BC=a ,以斜边 AB 上的点 O 为圆心的圆分别与 AC ,BC 相切与点E,F,与 AB延伸线交于点 D ,则 CD 的长为18.如图,△ ABC 中,AD 是中线, AE 是角均分线, CF⊥AE 于 F,AB=5 , AC=2,则 DF 的21.( 8 分)如图,在正方形 ABCD内有一点 P,知足 AP=AB,PB=PC,连结 AC PD长为▲(2)BAP=2PACAD (第 16 题)(第17题)(第18题)三、解答题(本大题共十小题,共96 分)19.(本小题满分10 分)021-11)、2017 - - sin45cos45°+ (- 3) --)(4(y )-12 x- x y2)、3412()()33 x y- 2 x - yPBC22.( 8 分)甲、乙两校分别有一男一女共 4 名教师报名到乡村中学支教。

【中考模拟2017】湖北省武汉市 2017年九年级数学中考模拟试卷 一(含答案)

【中考模拟2017】湖北省武汉市 2017年九年级数学中考模拟试卷 一(含答案)

2017年九年级数学中考模拟试卷一、选择题:1.若数轴上的点A、B分别于有理数a、b对应,则下列关系正确的是( )A.a<b B.﹣a<b C.|a|<|b| D.﹣a>﹣b2.下列图形中,是中心对称图形的是()A. B. C. D.3.G20峰会来了,在全民的公益热潮中,杭州的志愿者们摩拳擦掌,想为世界展示一个美丽幸福文明的杭州.据统计,目前杭州市注册志愿者已达9.17×105人.而这个数字,还在不断地增加.请问近似数9.17×105的精确度是()A.百分位 B.个位 C.千位 D.十万位4.如图,在△ABC中,AB=AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB、AC于M、N,则△AMN的周长为()A.12B.4C.8D.不确定5.下列计算中,正确的是()A.a+a11=a12B.5a﹣4a=aC.a6÷a5=1D.(a2)3=a56.下列事件中是必然事件的是()A.打开电视机,正在播广告B.从一个只装有白球的缸里摸出一个球,摸出的球是白球C.明天,涿州的天气一定是晴天D.从一定高度落下的图钉,落地后针尖朝上7.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()8.如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为( )A.15°B.18°C.20°D.28°9.有一个安装有进出水管的30升容器,水管每单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据图象信息给出下列说法:①每分钟进水5升;②当4≤x≤12时,容器中水量在减少;③若12分钟后只放水,不进水,还要8分钟可以把水放完;④若从一开始进出水管同时打开需要24分钟可以将容器灌满.以下说法中正确的有( )A.1个B.2个C.3个D.4个10.已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:点A(x1,y1)、B(x2,y2)1212()A.y1<y2B.y1>y2C.y1≥y2D.y1≤y2二、填空题:11.因式分解:x3﹣9xy2= .12.关于x的方程mx2+mx+1=0有两个相等的实数根,那么m= .13.若(a﹣1)2+|b﹣2|=0,则以a、b为边长的等腰三角形的周长为.14.甲、乙两人进行乒乓球比赛,比赛规则为3局2胜制.如果两人在每局比赛中获胜的机会均等,且比赛开始后,甲先胜了第1局,那么最后甲获胜的概率是.15.如图所示的两段弧中,位于上方的弧半径为r,下方的弧半径为r下,则r上 r下.(填“<”“=”“<”)上16.如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为 m.三、计算题:17.计算:18.先化简,再求值:,其中m是方程x2+2x-3=0的根.四、解答题:19.如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点E.(1) 求证:DE⊥AC;(2) 连结OC交DE于点F,若sin∠ABC=0.75,求OF:CF的值.20.学校奖励给王伟和李丽上海世博园门票共两张,其中一张为指定日门票,另一张为普通日门票。

湖北省黄冈市2017届九年级中考模拟数学试题(d)有答案

湖北省黄冈市2017届九年级中考模拟数学试题(d)有答案

黄冈市2017年中考模拟试题数学D 卷第Ⅰ卷(选择题共18 分)一、选择题(下列各题的备选答案中,有且仅有一个答案是正确的,共6小题,每小题3 分,共18 分)1.实数a b ,在数轴上的位置如图所示,则下列各式正确的是( ) A .a b > B .a b >- C .a b < D .a b -<-2.下列运算正确的是( ) A .(2a)2=2a 2 B .a 6÷a 2=a 3 C .(a+b)2=a 2+b 2 D .a 3·a 2=a 53.下列式子中结果为负数的是( )A .│-2│B .-(-2)C .-2—1D .(-2)24.一条公路两次转弯后又回到原来的方向(即AB ∥CD ,如图),如果第一次转弯时的∠B =140°,那么,∠C 应是( ) A.140° B.40° C.100°D.180°(第1题图) (第4题图)5.一只盒子中有红球m 个,白球8个,黑球n 个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m 与n 的关系是( ) A .m=3,n=5 B .m=n=4 C .m+n=4 D .m+n=8第Ⅱ卷(非选择题共102 分)二、填空题(共8 小题,每小题3 分,共24 分)7.函数12y x =-+中自变量x 的取值范围是 .8.分解因式2x 2 − 4x + 2= .9.化简22a b a b a b---的结果是 . 10.计算8)2的结果是 .11.我市今年5月份某一周的日最高气温(单位:℃)分别为:25,28,30,29,31,32,28,这周的日最高气温的平均数是_____℃. 12.分式方程2x x --224x -=1的解是 . 13.用一个直径为10cm 的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁的轴截面如图所示,圆锥的母线AB 与⊙O 相切于点B ,不倒翁的顶点A 到桌面L 的最大距离是18cm.若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为 cm 2.(第13题图) (第14题图)14.如图,矩形ABCD 中,AB=4,BC=2,E 是AB 的中点,直线l 平行于直线EC ,且直线l 与直线EC 之间的距离为2,点F 在矩形ABCD 边上,将矩形ABCD 沿直线EF 折叠,使点A 恰好落在直线l 上,则DF 的长为 .三、解答题(本大题共10小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤)A BC D140°15.(满分6分)解不等式组3(x 2)4x,14,3x x --≥-⎧⎪+⎨>⎪⎩并在数轴上表示出它的解集.16.(满分6分)如图,已知AB DC AC DB ==,.求证:12∠=∠.(第16题图) 17.(满分6分) 已知方程x 2+2kx+k 2-2k+1=0有两个实数根x 1,x 2.(1)求实数k 的取值范围;(2)若2212x x +=4,求k 的值. 18.(满分6分)某商场投入13800元资金购进甲乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:问:全部售完500箱矿泉水,该商场共获得利润多少元?19.(满分8分) “赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表: 请结合图表完成下列各题:(1)①表中a 的值为 ,中位数在第 组;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.(第19题图)20.(满分8分) 如图,已知F 是以AC 为直径的半圆O 上任意 一点,过AC 上任意一点H 作AC 的垂线分别交CF,AF 的延长线于点E ,B ,点D 是线段BE 的中点.(1)求证:DF 是⊙O 的切线;(2)若BF=AF ,求证AF 2=EF·CF.(第20题图)21.(满分7分) 如图,正方形OABC 的面积为9,点O 为坐标原点,点B 在函数y=k x(k>0,x>0)的图像上点P (m,n )是函数图像上任意一点,过点P 分别作x 轴y 轴的垂线,垂足分别为E,F.并设矩形OEPF 和正方形OABC 不重合的部分的面积为S. (1)求k 的值; (2)当S=92时 求p 点的坐标; (3)写出S 关于m 的关系式.(第21题图)22.(满分7分)小明在数学课中学习了《解直角三角形》 后,双休日组织数学兴趣小组的小伙伴进行实地测量.如图,他们在坡度是i=1:2.5的斜坡DE 的D 处,测得楼顶的移动通讯基站铁塔的顶部A 和楼顶B 的仰角分别是60°、45°,斜坡高EF=2米,CE=13米,CH=2米.大家根据所学知识很快计算出了铁塔高AM .亲爱的同学们,相信你也能计算出铁塔AM 的高度!请你写出解答过程.(数据≈1.413≈1.73供选用,结果保留整数)(第22题图)23.(满分10分)校园安全与每个师生、家长和社会有着切身的关系.某校教学楼共五层,设有左、右两个楼梯口,通常在放学时,若持续不正常,会导致等待通过的人较多,发生拥堵,从而出现不安全因素.通过观察发现位于教学楼二、三楼的七年级学生从放学时刻起,经过单个楼梯口等待人数按每分钟12人递增,6分钟后经过单个楼梯口等待人数按每分钟12人递减;位于四、五楼的八年级学生从放学时刻起,经过单个楼梯口等待人数y 2与时间为t (分)满足关系式y 2=-4t 2+48t-96(0≤t ≤12).若在单个楼梯口等待人数超过80人,就会出现安全隐患.(1)试写出七年级学生在单个楼梯口等待的人数y 1(人)和从放学时刻起的时间t (分)之间的函数关系式,并指出t 的取值范围.(2)若七、八年级学生同时放学,试计算等待人数超过80人所持续的时间.(3)为了避免出现安全隐患,该校采取让七年级学生提前放学措施,要使单个楼梯口等待人数不超过80人,则七年级学生至少比八年级提前几分钟放学? 24.(满分14分)如图,在平面直角坐标系中,矩形OABC 的边OA=2,OC=6,在OC 上取点D 将△AOD 沿AD翻折,使O 点落在AB 边上的E 点处,将一个足够大的直角三角板的顶点P 从D 点出发沿线段DA→AB 移动,且一直角边始终经过点D ,另一直角边所在直线与直线DE ,BC 分别交于点M ,N . (1)填空:经过A ,B ,D 三点的抛物线的解析式是 ;(2)已知点F 在(1)中的抛物线的对称轴上,求点F 到点B,D 的距离之差的最大值;(3)如图1,当点P 在线段DA 上移动时,是否存在这样的点M ,使△CMN 为等腰三角形?若存在,请求出M 点坐标;若不存在,请说明理由;(4)如图2,当点P 在线段AB 上移动时,设P 点坐标为(x ,-2),记△DBN 的面积为S ,请直接写出S 与x之间的函数关系式,并求出S 随x 增大而增大时所对应的自变量x 的取值范围.x(第24题图)参考答案(若考生有不同解法,只要正确,参照给分.)一、选择题(本大题共6小题,每小题3分,共18分.1.C ;2.D ;3.C ;4.A ; 5.D ; 6.B. 二、填空题(本大题共8小题,每小题3分,共24分.)7.2x ≠-; 8.2(x − 1)2; 9.a+b ; 10.3; 11.29; 12.X=-1; 13.72013π; 14.2或2. 三、解答题(本大题共10小题,共102分.解答应写出必要的文字说明、证明过程或演算步骤) 15.-1<x ≤1,图略.16.证明:在△ABC 和△DCB 中,AB DC AC DB BC BC =⎧⎪=⎨⎪=⎩,,, ABC DCB ∴△≌△.A D ∴∠=∠. 又AOB DOC ∠=∠,12∴∠=∠.17.(1)由已知,得△=(2k)2-4(k 2-2k+1)=8k-4≥0,∴k ≥12;(2) k=1. 18. 6600元.19.(1)①a=12,3;②图略:(2)44%;(3)13. 20.(1)连接OF.则∵AC 为半圆O 的直径,∴∠AFC=90°,∴∠BFC=90°. ∵D 是线段BE 的中点,∴DE=DF=12BE, ∴∠DFE=∠DEF. ∵∠DEF=∠CEH, ∴∠DFE=∠CEH.∵B H ⊥AC, ∴∠CEH+∠C=90°, ∴∠DFE+∠C=90°.∵OC=OF, ∴∠C=∠OFC, ∴∠DFE+∠OFC=90°. 即∠OFD=90°. ∴DF 是⊙O 的切线;(2)∵∠C=∠BEF ,∠EFB=∠AFC, ∴△EF B ∽△AFC ,∴EF BFAF CF=,即A F ·BF= EF·CF,又BF=AF ,∴AF 2=EF·CF. 21.(1)∵正方形OABC 的面积为9,∴OA=OC=3,∴B (3,3), 又∵点B (3,3)在函数y =kx的图象上,∴k=9; (2)分两种情况:①当点P 在点B 的左侧时,∵P (m ,n )在函数y=kx上, ∴mn=9,∴S=m (n-3)=mn-3m=92,解得m=32,∴n=6,∴点P 的坐标是P (32,6); ②当点P 在点B 的右侧时,∵P (m ,n )在函数y=k x 上,∴mn=9,∴S=n (m-3)=mn-3n=92,解得n=32,∴m=6,∴点P 的坐标是P (6,32),综上所述:P (6,32),(32,6).(3)当0<m <3时,点P 在点B 的左边,此时S=9-3m ,当m ≥3时,点P 在点B 的右边,此时S=9-3n=9-27m.22.斜坡的坡度是i=EFFD=12.5,EF=2,∴FD=2.5EF=2.5×2=5,∵CE=13,CE=GF,∴GD=GF+FD=CE+FD=13+5=18,在Rt△DBG中,∠GDB=45°,∴BG=GD=18,在Rt△DAN中,∠NAD=60°,∴ND=NG+GD=CH+GD=2+18=20,AN=ND×tan60°-18≈17(米).答:铁塔高AC约17米.23.(1)y1=12(0t6), 14412t(6t12).t≤≤⎧⎨-<≤⎩(2)同时放学:七年级单个楼梯口等待人数为y=2246096(0t6), 436t48(6t12).t tt⎧-+-≤≤⎪⎨-++<≤⎪⎩当0≤t≤6时,-4t2+60t-96=80,得t1=4,t2=11, ∴4≤t≤6;当6<t≤12时,-4t2+36t+48=80,得t1=1,t2=8, ∴6<t≤8.∵8-4=4, ∴等待人数超过80人所持续的时间为:8-4=4(分).∴等待人数超过80人所持续的时间为:8-4=4分钟;(3)设七年级学生比八年级提前m(m>0)分钟放学,当0≤t≤6-m时,y=-4t2+48t-96+12(t+m)= -4t2+60t+12m-96,∵602(4)--=7.5>6-m, ∴当t=6-m时, y有最大值=-4m2+120,由-4m2+120≤80,∵m>0, ∴m2≥10, 得m10当6-m<t≤12-m时,y=-4t2+48t-96+144-12(t+m)= -4t2+36t-12m+48,∵362(4)--=4.5, ∴当t=4.5时, y有最大值=129-12m≤80,得m≥4112;当12-m<t≤12时,y=-4t2+48t-96=-4(t-6)2+48≤48.∴要使单个楼梯口等待人数不超过80人,则七年级学生比八年级至少提前4112分钟放学,24.(1)y=14-x232-x-2;(2)∵点A,B关于抛物线的对称轴对称,∴FA=FB, ∴|FB-FD|=|FA-FD|,∵|FA-2,∴点F到点B,D的距离之差的最大值是2;(3)存在点M使△CMN为等腰三角形,理由如下:由翻折可知四边形AODE为正方形,过M作MH⊥BC于H,∵∠PDM=∠PMD=45°,则∠NMH=∠MNH=45°,NH=MH=4,2,∵直线OE的解析式为:y=x,依题意得MN∥OE,∴设MN的解析式为y=x+b,而DE的解析式为x=-2,BC的解析式为x=-6,∴M(-2,-2+b),N(-6,-6+b),CM2=42+(-2+b)2,CN2=(-6+b)2,MN22)2=32,①当CM=CN时,42+(-2+b)2=(-6+b)2,解得:b=2,此时M(-2,0);②当CM=MN时,42+(-2+b)2=32,解得:b=-2,b2=6(不合题意舍去),此时M(-2,-4);③当CN=MN时,2,解得:2+6,此时M(-2,2);综上所述,使△CMN为等腰三角形的M点的坐标为:(-2,0),(-2,-4),(-2,2);(4)当-2≤x≤0时,∵∠BPN+∠DPE=90°,∠BPN+∠BNP=90°,∴∠DPE=∠BNP,又∠PED=∠NBP=90°,∴△DEP∽△PBN,∴PB BNDE EP=,∴62x+=2BNx+,∴BN=(2)(6)2x x++,∴S△DBN=12BN×BE=12×(2)(6)2x x++×4,整理得:S=x2+8x+12;当-6≤x<-2时,∵△PBN∽△DEP,∴PE DEBN PB=,∴226xBN x-=-,∴BN=(2)(6)2x x-+,∴S△DBN=12BN×BE=12×(2)(6)2x x--+×4,整理得:S=-x2-8x-12;则S与x之间的函数关系式:S=22812(2x0)812(6x2) x xx x⎧++-≤≤⎪⎨----≤<-⎪⎩,①当-2≤x≤0时,S=x2+8x+12=(x+4)2-4,当x≥-4时,S随x的增大而增大,即-2≤x≤0,②当-6≤x<-2时,S=-x2-8x-12=-(x+4)2+4,当x≤-4时,S随x的增大而增大,即-6≤x≤-4,综上所述:S随x增大而增大时,-2≤x≤0或-6≤x≤-4.。

浙江省绍兴市2017届九年级中考模拟数学试卷(解析版)

浙江省绍兴市2017届九年级中考模拟数学试卷(解析版)

浙江省绍兴市2017届九年级中考模拟数学试卷(解析版)一.选择题1.在:0,﹣2,1,这四个数中,最小的数是( )A. B. 1 C. ﹣2 D. 02.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为( )A. 44×108B. 4.4×109C. 4.4×108D. 4.4×10103.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是( )A. B. C. D.4.下列运算结果正确的是( )A. a2•a3=a6B. (a2)3=a5C. a2+3a2=4a4D. a4÷a2=a25.化简:的结果是( )A. B. C. D.6.从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为( )A. B. C. D.7.如图,已知⊙O与直线相切于点A 点,点P,Q同时从A出发,P沿着直线向右,Q沿着圆周按逆时针以相同的速度运动,当Q运动到点A时,点P也停止运动.连接OQ、OP(如图),则阴影部分面积S1、S2的大小关系是( )A. S1=S2B. S1≤S2C. S1≥S2D. 先S1<S2,再S1=S2,最后S1>S28.如图,四边形EFGH是矩形ABCD的内接矩形,且EF:FG=3:1,AB:BC=2:1,则tan∠AHE的值为( )A. B. C. D.9.如图,反比例函数y= 的图象经过二次函数y=ax2+bx图象的顶点(,m)(m>0),则有( )A. a=b+2kB. a=b﹣2kC. k<b<0D. a<k<010.我们把钟表的时针、分针及两针尖所连线段所围成的图形面积叫做这个钟表的该时刻面积.如图,△AOB 的面积即为该钟表8点30分的时刻面积,那么从9时到10时,钟表的时刻面积等于该钟表8点30分的时刻面积的时刻数有( )A. 4个B. 3个C. 2个D. 1个二.填空题11.因式分解:________.12.不等式组的解是________.13.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为________.14.如图,点A、B为直线y=x 上的两点,过A、B两点分别作x 轴平行线交反比例函数y=2x(x>0) 的图象于点C、D两点,若BD=3AC,则9OC2−OD2 的值为________.15.如图,将一条长为60cm的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1:2:3,则折痕对应的刻度为________.16.一个大的等腰三角形能被分割为两个小等腰三角形,则该大等腰三角形顶角的度数是________.三.解答题17.计算.(1)计算:8 + (2016−5)0 -2−1 -4cos45∘.(2)先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣1,b= 2 .18.“校园安全”受到全社会的广泛关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有________人,扇形统计图中“基本了解”部分所对应扇形的圆心角为________;并)请补全条形统计图;(2)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为________;(3)若从对校园安全知识达到“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.19.某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示:根据图象解答下列问题:(1)洗衣机的进水时间是________分钟;清洗时洗衣机中的水量是________升;(2)已知洗衣机的排水速度为每分钟19升,①求排水时y与x之间的关系式.②如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量.20.“低碳环保,你我同行”.两年来,绍兴市区的公共自行车给市民出行带来切实方便.如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2,图3是公共自行车车桩的截面示意图,PQ⊥PM,PM⊥MN,点Q,N在GO上,GO∥HF,PQ=80cm,PM=24cm,QN=25cm,GH=4cm.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离及车桩的截面示意图中的点P到地面的距离.(结果精确到1cm.参考数据:sin75°≈0.97,cos75°≈0.26,tan75≈3.73)21.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,交OA于点F,连接EF并延长EF交AB于G,且EG⊥AB.(1)求证:直线AB是⊙O的切线;(2)若EF=2FG,AB= ,求图中阴影部分的面积;(3)若EG=9,BG=12,求BD的长.22.我们给出如下定义:在平面直角坐标系xOy中,如果一条抛物线平移后得到的抛物线经过原抛物线的顶点,那么这条抛物线叫做原抛物线的过顶抛物线.如下图,抛物线F2都是抛物线F1的过顶抛物线,设F1的顶点为A,F2的对称轴分别交F1、F2于点D、B,点C是点A关于直线BD的对称点.(1)如图1,如果抛物线y=x2的过顶抛物线为y=ax2+bx,C(2,0),那么①a=________,b=________.②如果顺次连接A、B、C、D四点,那么四边形ABCD为________A.平行四边形B.矩形C.菱形D.正方形(2)如图2,抛物线y=ax2+c的过顶抛物线为F2,B(2,c-1).求四边形ABCD的面积.(3)如果抛物线的过顶抛物线是F2,四边形ABCD的面积为,请直接写出点B 的坐标.答:________.23.在矩形ABCD中,AB=4,AD=6,P是AD边的中点,点E在AB边上,EP的延长线交射线CD于F点,过点P作PQ⊥EF与射线BC相交于点Q.(1)如图1,当点Q在点C时,试求AE的长.(2)如图2,点G为FQ的中点,连结PG.当AE=1时,求PG的长.(3)当点E从点A运动到点B时,试直接写出线段PG扫过的面积.24.如图,在矩形ABCO中,点O为坐标原点,点A、C在坐标轴上,点B的坐标为(7,3),点D在y轴上,且D与A关于原点对称,直线与x轴交于点E,点F(m,-4)在直线上, 连结DE、DF.(1)请直接写出F的坐标和△DEF的形状;答:________、________.(2)若点P在矩形ABCO的边BC上,过F作FG⊥x轴于G.若线段EF上有一点M,使∠MDF=∠GFE,请求出M的坐标;(3)若直线EF上有一点Q,使△APQ是等腰直角三角形,请直接写出满足条件的Q的坐标.答:________.答案解析部分一.<b >选择题</b>1.【答案】C【考点】实数大小比较【解析】【解答】解:因为,所以,则最小的数是-2.故选C.【分析】根据实数大小比较的原则:负数<0<正数,两个负数比较时,绝对值大的反而小.2.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:4400000000写成4.4时,小数点要从左向右移动9位,则可写成4.4×109故选B.【分析】用科学记数法表示数:把一个数字记为a×10n的形式(1≤|a|<10,n为整数).表示绝对值较大的数时,小数点向左移动几位,n就是几.3.【答案】C【考点】简单几何体的三视图【解析】【解答】解:从上面看几何物体得到.故选C.【分析】俯视图是从上面往下看几何物体得到的平面图.4.【答案】D【考点】同类项、合并同类项【解析】【解答】解:A.a2•a3=a5,故A错误;B.(a2)3=a6,故B错误;C. a2+3a2=4a2,故C错误;D. a4÷a2=a4-2=a2,故D正确.故选D.【分析】根据合并同类项法则,同底数幂的乘、除法,幂的乘方法则运算5.【答案】B【考点】分式的值【解析】【解答】解:.故选B.【分析】计算分式的加减法时,先通分再加减.6.【答案】C【考点】概率的意义【解析】【解答】解:有(1,3,5),(1,3,7),(1,5,7),(3,5,7),共4等可能的情况;而能构成三角形的只有(3,5,7)一种情况,则P(构成三角形)= .故选C.【分析】先写出所有等可能的情况,再根据三角形的判定条件,找出符合的情况数,并求出概率.7.【答案】A【考点】扇形面积的计算【解析】【解答】解:∵直线l与圆O相切,∴OA⊥AP,∴S扇形AOQ= l弧AQ·r= l弧AQ•OA,S△AOP= OA•AP,∵l弧AQ=AP,∴S扇形AOQ=S△AOP,即S扇形AOQ-S扇形AOB=S△AOP-S扇形AOB,则S1=S2.故选A.【分析】由弧长公式,扇形面积,可得,由弧长AQ=AP,可得面积相等.8.【答案】A【考点】矩形的性质【解析】【解答】解:∵四边形EFGH是矩形ABCD的内接矩形,EF:FG=3:1,AB:BC=2:1,∴∠HEA+∠FEB=90°,∵∠FEB+∠EFB=90°,∴∠HEA=∠EFB,∵∠HAE=∠B,∴Rt△HAE∽Rt△EBF,∴,同理可得,∠GHD=∠EFB,HG=EF,∴△GDH≌△EBF,DH=BF,DG=EB,设AB=2x,BC=x,AE=a,BF=3a,则AH=x-3a,AE=a,∴tan∠AHE=tan∠BEF,即,解得:x=8a,∴tan∠AHE= = .故选A.【分析】由矩形的性质及角的等量代换易得Rt△HAE∽Rt△EBF,则;易证得△GDH≌△EBF,则DH=BF,可设AB=2x,BC=x,AE=a,BF=3a,则HA=x-3a,AE=a,EB=2x-a,由tan∠AHE=tan∠BEF,可得tan∠AHE= ,即可解出x与a的之间的关系,并代入可解出tan∠AHE.9.【答案】D【考点】反比例函数的图象,二次函数的图象,二次函数的性质【解析】【解答】解:由二次函数y=ax2+bx图象的顶点(,m)(m>0),可得,则b=a,所以二次函数y=ax2+ax,将(,m)代入y=ax2+ax,可得m= ,把(,)代入y= 得×()=k,即k= .因为a<0,所以a<k<0.故选D.【分析】顶点的橫坐标即为,可求得a与b的关系;将(,m)代入二次函数可解出m与a之间的关系,再将该点代入y= 求出k与a之间的关系,根据a<0,可得答案.10.【答案】B【考点】钟面角、方位角【解析】【解答】解:时间为8点30分时,时针在数字8与9的中间,分针在数字6的位置.其时刻面积跨度超过为2个半数字,即8点30分时,时针与分针的夹角为2.5× =75°,从9时整到10时整,分针与时针的跨度先不断扩大,直至成一直线,此过程中,有一时刻面积会刚好与8点30分时的时刻面积相等,此时夹角为105°.其次,越过直线后,分针到达6以前,时针与分针的跨度开始减小,在减小的过程中又会有一时刻面积与8点30分的时刻面积相等,此时夹角为105°,最后当时针超过6,在相遇前,还有一次夹角等于75°.综上所述:该钟表8点30分的时刻面积的时刻数有3个.故选B.【分析】利用钟面角的关系,结合时针与分针运动速度,进而分别得出符合题意的答案.二.<b >填空题</b>11.【答案】2(a−1)2【考点】因式分解-提公因式法,因式分解-运用公式法【解析】【解答】解:2a2−4a+2= 2(a2-2a+1)=2(a-1)2,故答案为2(a−1)2 .【分析】因式分解的一般方法,先提取公因式,再运用公式法.12.【答案】x<−2【考点】解一元一次不等式组【解析】【解答】解:由2x+2>3x-2,得-x>-4,即x<4;由3x<-6,得x<-2,根据“小小取小”的原则,则不等式组的解集为x<−2 .故答案为x<−2 .【分析】分别解出不等式的解,再根据取解集的原则“大大取大,小小取小,大小、小大取中间”写出解集.13.【答案】【考点】圆心角、弧、弦的关系【解析】【解答】解:由圆心角∠BOC与圆周角∠BAC所对的弧相同,则∠BOC=∠BAC.因为∠BAC与∠BOC互补,所以∠BOC +∠BOC=180°,解得∠BOC=120°,过点O作OD⊥BC于D,则BC=2BD,∴∠OBC=∠OCB= (180°-∠BOC)=30°,∵⊙O的半径为4,∴BD=OBcos∠OBC=4× =2 ,∴BC=4故答案为.【分析】由同弧所对的圆周角是圆心角所对的一半,可得∠BOC=∠BAC.再根据已知条件可解出∠BOC,由等边对等角,可解得∠OBC=30°,从而构造直角三角形,解出BC即可.14.【答案】32【考点】一次函数的图象,反比例函数的图象【解析】【解答】解:设A(a,a),B(b,b),则C(2a ,a),D(2b ,b)AC=a- 2a ,BD=b- 2b ,∵BD=3AC,∴b- 2b =3(a- 2a )9OC2-OD2=9(4a2 +a2)-(4b2 +b2)=9[( 2a −a)2+4]-[( 2b −b)2+4]=9( 2a −a)2+36-9( 2a −a)2-4=32.故答案为32.【分析】可设A,B的坐标,即可表示出C,D的坐标,从而得到AC,BD;根据BD=3AC,可求出9OC2-OD2的值.15.【答案】20厘米;或25厘米;或35厘米;或40厘米【考点】翻折变换(折叠问题)【解析】【解答】解:可设折痕处的刻度为x厘米,由依题意有①x+x+x=60,解得x=20;②x+x+0.4x=60,解得x=25;③x+x- 17 x=60,解得x=35;④x+x- 12 x=60,解得x=40.故答案为20厘米;或25厘米;或35厘米;或40厘米.【分析】可设折痕处的刻度为x厘米,根据三段长度之比为1:2:3,分类讨论哪一条边为“1”,哪一条边为“2”,再用x分别表示出来,由三段长度之和为60,解出x的值即可.16.【答案】36°或90°或108°或180°7【考点】等腰三角形的性质,等腰三角形的判定与性质【解析】【解答】解:(1)如图,在△ABC中,AB=AC,BD=AD,AC=CD,求∠BAC的度数.∵AB=AC,BD=AD,AC=CD,∴∠B=∠C=∠BAD,∠CDA=∠CAD,∵∠CDA=2∠B,∴∠CAB=3∠B,∵∠BAC+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°,∴∠BAC=108°.2)如图,在△ABC中,AB=AC,AD=BD=CD,求∠BAC的度数.∵AB=AC,AD=BD=CD,∴∠B=∠C=∠DAC=∠DAB∴∠BAC=2∠B∵∠BAC+∠B+∠C=180°,∴4∠B=180°,∴∠B=45°,∴∠BAC=90°.3)如图,在△ABC中,AB=AC,BD=AD=BC,求∠A的度数.∵AB=AC,BD=AD=BC,∴∠ABC=∠C,∠A=∠ABD,∠BDC=∠C∵∠BDC=2∠A,∴∠C=2∠A=∠B,∵∠A+∠ABC+∠C=180°,∴5∠A=180°,∴∠A=36°.4)如图,在△ABC中,AB=AC,BD=AD,CD=BC,求∠A的度数.假设∠A=x°,∵AD=BD,∴∠DBA=x°,∵AB=AC,∴∠C= 180°−x°2 ,∵CD=BC,∴∠BDC=2x°=∠DBC= 180°−x°2 -x°,即2x°= 180°−x°2 -x°,解得:x°= 180°7 .∴∠A= 180°7 .故答案为36°或90°或108°或180°7 .【分析】对分成的两个等腰三角形的“哪两对边分别相等”,再由“等边对等对角”和“三角形的外角性”“三角形内角和”求得大等腰三角形的顶角度数.三.<b >解答题</b>17.【答案】(1)解:原式=22+1−12−4×22=12 .(2)解:原式=a2−2ab+a2+2ab+b2=2a2+b2 ,当a=−1,b=2 时,原式=2×(−1)2+(2)2=4 .【考点】立方根,负整数指数幂【解析】【分析】(1)根据负整数次方的法则,正数的立方根,特殊角的余弦值,所有非零数的0次方都等于1.(2)运用整式的乘法运算即可.18.【答案】(1)60;90(2)300(3)解:列表如下:一共有20种等可能的情况,其中恰好抽到1个男生和1个女生的等可能情况有12种, 则恰好抽到1个男生和1个女生的概率:P ==. 【考点】扇形统计图,条形统计图【解析】【解答】(1)解:了解很少的占50%,人数有30人,则调查总人数为30÷50%=60(人); 扇形统计图中“基本了解”部分所对应扇形的圆心角为 1560×360°=90° ; 了解:60-15-30-10=5(人),补全条形统计图如图.2)解:900× 15+560 =300(人).【分析】(1)根据扇形图和条形图得到了解很少的占50%,人数有30人,则可求出调查总人数,从而可解答;(2)总人数×达到“了解”和“基本了解”程度所占百分比,即可得到;(3)列出所有等可能的情况,找出恰好抽到1个男生和1个女生的情况数,即可求得. 19.【答案】(1)4;40(2)解:①排水时,由题可设y=-19x+b , 将(15,40)代入得-19×15+b=40,解得b=325,则y 与x 之间的关系式y=-19x+325(15≤x≤ ).②从第15分钟开始排水,排了2分钟,刚好是x=17,则y=-19×17+325=2,如果排水时间为2分钟,排水结束时洗衣机中剩下的水量为2升.【考点】函数的图象【解析】【解答】(1)图中的横轴表示时间,纵轴表示洗衣机的水量,从0~4分钟,洗衣机开始进水,到4分钟时,洗衣机水量是40升,故答案为4;40.【分析】(1)由图中的点(4,40)可得;(2)①排水时,由题可设y=-19x+b,将(15,40)代入即可求得b;②从第15分钟开始排水,排了2分钟,刚好是x=17,则将它代入b=-19x+325即可求得.20.【答案】(1)解:在Rt△ACD中,AD =75,∴车架当AD的长为75cm.(2)解:过点E作EK⊥AB,垂足为点K,距离EK=AEsin75°=(45+20)sin75°≈63.05≈63cm,∴车座点E到车架档AB的距离是63cm,过点P作PT⊥GO,垂足为点T,过点P作PL∥GO交NM的延长线于点L,由已知可得,四边形PLNQ是平行四边形,∴PL=NQ=25,PQ=LN=80,∵∴∴P到地面的距离为【考点】勾股定理,勾股定理的应用,解直角三角形的应用【解析】【分析】(1)运用勾股定理可解得;(2)作过点E作EK⊥AB,垂足为点K,构造直角三角形解答;过点P作PT⊥GO,垂足为点T,过点P作PL∥GO交NM的延长线于点L,运用面积法可求得PT,则P到地面的距离为PT+ GH.21.【答案】(1)解:证明:连接OC,如图,∵OA=OB,CA=CB,∴OC⊥AB,∴直线AB是⊙O的切线;(2)解:过O点作OH⊥EG于H,如图,∵OE=OF,∴EH=FH,∵EF=2FG,∴EH= EG,而EG⊥AB,∴OH∥BG,∴EH:EG=EO:EB,∴BO=2OE,∴OB=2OC,∴∠B=30°,∠COB=60°而BC= AB= ,∴OC=6,∴S阴影部分=S△OAB-S扇形OFD= .(3)解:在Rt△BEG中,EG=9,BG=12,∴BE= ,设⊙O的半径为r,则OB=15-r,∵OC∥EG,∴Rt△BOC∽Rt△BEG,∴OC:EG=BC:BG=BO:BE,即r:9=BC:12=BO:15,∴BC=.【考点】等腰三角形的性质,圆心角、弧、弦的关系【解析】【分析】(1)由等腰三角形的“三线合一”可证得;(2)由图易得S阴影部分=S△OAB-S扇形OFD,则需要求出圆心角∠AOB;由EF=2FG条件出发,过O点作OH⊥EG于H,则易得EH:EG=EO:EB,即OB=2OE=2OC,可得∠B=30°,∠COB=60°,则可解答;(3)易证得Rt△BOC∽Rt△BEG,根据相似的性质易得BO与OC的关系,根据BE-OE=BO,构造方程可解出OC的值.22.【答案】(1)1;-2;D(2)解:∵B(2,c-1), ∴AC= ,∵当x=0,y=c, ∴A(0,c)∵∵点A(0,c)在则当x=2时,y=1+c,即D(2,1+c),∴(3)【考点】二次函数的图象,二次函数的性质,二次函数的应用【解析】【解答】(1)①由题可得y=x2+bx,即a=1;将C(2,0)代入可得4+2b=0,解得b=-2.故答案为1;-2;②由①可得y=x2-2x,则B(1,-1),C(2,0),D(1,1),由抛物线y=x2得A(0,0),设AC与BD的交点为M,则AM=CM=MD=BM=1,且BD⊥AC,则四边形ABCD是正方形.3)由题意可设抛物线F2是,由可得A(1,2),将它代入F2中,则n=2- .当x=m时,则,则D(m, ),则BD=| -n|= ,AC=2|m-1|,由(2)可得S四边形ABCD= AC×BD= ×2|m-1|× = ,则(m-1)2×|m-1|= ,即(m-1)3=± ,m-1=± ,m=1± ,故B .【分析】(1)①由平移的性质可得二次函数中的二次项系数跟抛物线的形状开口有关,形状开口相同,则二次项系数相等,即a=1;将C(2,0)代入y=x2+bx,即可求得b;②根据正方形的判定定理:对角线互相平分且垂直的四边形是菱形,而对角线相等的菱形是正方形;(2)由BD⊥AC可得S四边形ABCD= AC×BD,即只要求出AC和BD即可;(3)可设抛物线F2是,用m或n表示出BD和AC即可求出.23.【答案】(1)解:因为PQ⊥EF,所以∠APE+∠CPD=90°,在矩形ABCD中,∠A=∠ADC=90°,所以∠AEP+∠APE=90°,所以∠CPD=∠AEP,所以△APE∽△DCP,则AEPD=APDC ,即AE3=34 ,∴AE= 94 .(2)解:图2中,过Q作QH⊥AD于H,因为P是AD的中点,所以AP=PD,又因为∠A=∠ADF,∠APE=∠DPF,所以△APE≅△DPF,所以DF=AE,PE=PF,∵AE=1,∴BE=3,FD=1,QH=4,FC=5,AP=PD=3,与(1)同理可证得△APE∽△HQP,∴AEHP=APHQ ,∴HP= 43∴AH=BQ=3+43=133,在Rt△BEQ中,EQ=BE2+BQ2=32+(133)2=5310 ,∵G是QF的中点,且PE=PF,∴PG= 12EQ=12×5310=5610 .(3)解:又因为EF⊥PQ,所以EQ=QF.如图,连接CG,CP,取CP的中点I,因为G是QF的中点,EF⊥PQ,∠QCF=90°,所以PG= 12 QF=CG,即点G在PC的垂直平分线上,当E与A重合时,点G与I重合;如图2,当E与B重合时,易证得△APB~△PBQ,则APPB=PBBQ ,即PB2=3BQ=32+42=25,解得BQ= 253 ,则PG= 12 BQ= 256 .则S△PGI= 12 S△PGC= 12 × 12 ×PG×CD= 12 × 12 × 256 ×4= 256 .故答案为256 .【考点】线段垂直平分线的性质,相似三角形的性质【解析】【分析】(1)易证得△APE∽△DCP,根据相似三角形的性质可得边之间的关系;(2)易证得△APE≅△DPF,则PE=PF,可得PG= 1 2 BQ,即求出BQ即可;(3)连接CG,易得CG=PG,所以点G在PC的垂直平分线上,PC是定直线,则PC的垂直平分线是一条定直线,则在该直线上找出点G的起始点和终点即可解答.24.【答案】(1)F(1,-4);△DEF是直角三角形(2)解:如图.由题意易得,点F的坐标是(1,-4),点D坐标为(0,﹣3),,点G的坐标为(1,0),由(1)可知:DF= ,DE=3 ,EF= ,△DEF为直角三角形.过点F作FH⊥y轴于H,则H点坐标为(0,﹣4),∴FH=DH=1,∴∠DFH=∠FDH =45°,∴∠DFG=∠FDH =45°,分别延长MD、FD,与x轴相交于点K,R.则∠RDO=∠FDH =45°,∵∠MDF=∠GFE =∠KDR,∠DFE=∠DFG+∠GFE =45°+∠GFE=45°+∠KDR,∠KDO=∠RDO+∠KDR=45°+∠MDF=45°+∠KDR,∴∠DFE=∠KDO,∴△EDF∽△KOD,∴,即K(﹣9,0).∴直线KD的解析式为y= x﹣3,∵直线EF的解析式为y=2x﹣6.∴由方程组,解得.∴点M的坐标为(,).(3)【考点】一次函数的图象,矩形的判定,一次函数的性质【解析】【解答】(1)解:因为点F(m,-4)代入直线得2m-6=-4,解得m=1,即F(-1,4);由B(7,3)及矩形ABCO,得A(0,3),C(7,0),D(0,-3).由直线得E(3,0),则EF= ,DF= ,DE= ,而DE2+DF2=EF2=20,则△DEF是直角三角形.故答案为F(1,-4);△DEF是直角三角形.3)设Q(m,2m-6),如图,当点P为直角顶点时,PQ=PA,且∠APQ=90°,过点Q作QS⊥CB交CB延长线于S,易证得△APB≅△PQS,则PB=QS=m-7,PS=AB=7,则SB=7-(m-7)=14-m,而SB+BC=SC,即14-m+3=2m-6,解得m= ,则Q(,);如图,当Q为直角顶点时,AQ=PQ,且∠AQP=90°,过点Q作QS⊥y轴于S,过点P作PT⊥SQ于T,可得△ASQ≅△QTR,则AS=QT,即3-(2m-6)=7-m,解得m=2,则Q(2,-2).故答案为.【分析】(1)将点F(m,-4)代入直线即可求得m的值;分别求出E,F,D的坐标,运用勾股定理分别求出EF,DF,DE的长,再由勾股的逆定理求证△DEF是直角三角形;(2)分别延长MD、FD,与x轴相交于点K,R,证明△EDF∽△KOD,则即可求出KO,和点K的坐标,求出直线DK,再求直线DK与直线EF的交点坐标即为M;(3)需要分类讨论,只存在P为直角顶点时和Q为直角顶点时两种情况,构造两个直角三角形全等,根据坐标的与边的关系求出未知数.。

最新2017年湖北武汉市九年级下学期数学中考模拟试卷修正版

最新2017年湖北武汉市九年级下学期数学中考模拟试卷修正版

2017年中考数学模拟试卷、选择题:1.若-1<m<0,且,则m、n的大小关系是()A.m>nB.m<nC.m=nD.不能确定2.下列关于分式的判断,正确的是()A.当x=2时,的值为零B.无论x为何值,的值总为正数C.无论x为何值,不可能得整数值D.当x3时,有意义3.计算(a3)2的结果是()A.a5B.a6C.a8D.a94.10名学生的身高如下(单位:cm)159、169、163、170、166、165、156、172、165、162,从中任选一名学生,其身高超过165cm的概率是()A.0.5B.0.4C.0.2D.0.15.若关于的x方程x2+3x+a=0有一个根为-1,则a的值为( )A.-4 B.-2 C.2 D.-46.在平面直角坐标系中,若点P(a,b)在第二象限,则点Q(2-a,-1-b)在()A.第一象限B.第二象限C.第三象限D.第四象限7.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()8.甲、乙两人进行射击练习,两人在相同条件下各射靶5次,射击成绩统计如下:则甲、乙两人射击成绩的平均数分别是(单位:环)()A.5、5B.40、40C.8、8D.5、249.过⊙O内一点M的最长弦为10 cm,最短弦长为8cm,则OM的长为()A.9cmB.6cmC.3cmD.10.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()、填空题:11.一只蚂蚁从数轴上一点A 出发,爬了7个单位长度到了+1,则点A所表示的数是12.科学记数法—表示较大的数.据统计,全球每分钟约有8500000吨污水排入江河湖海,将8500000用科学记数法表示为吨.13.在3□2□(﹣2)的两个空格□中,任意填上“+”或“﹣”,则运算结果为3的概率是.14.如图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B的度数是.15.如图,已知A(2,0),B(4,0),点P是直线y=x上一点,当PA+PB最小时,点P的坐标为.16.如图,矩形ABCD中,对角线AC的中点为O,过O作EF⊥AC,分别交AB、DC于E、F,若AB=4,BC=2,那么线段EF 的长为.、解答题:17.y(y﹣4)=﹣1﹣2y.18.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA19.某中学九年级1班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.请你根据图表中的信息回答下列问题:(1)求选择长跑训练的人数占全班人数的百分比及该班学生的总人数;(2)求训练后篮球定时定点投篮人均进球数(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25%。

2017年数学中考模拟试卷

2017年数学中考模拟试卷

中考数学模拟试卷.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1 .数轴上有A,B,C,D四个点,其中绝对值相等的两个数表示的点是()A it <: n_■• -------- •II ----- *--------- 1 ---- ■_ ----------2 -1 (> I 2 3 4 5A .点A与点DB .点A与点C C .点B与点CD .点B与点D2. 下列的运算中,其结果正确的是()A. 3 ;2+ 2\ 3 = 5 :5B. 16x —7x = 9x8 2" 4 2 2 2C. x + x = xD. x(—xy)= x y3. 将如图所示的Rt△ ABC绕直角边AB旋转一周,所得几何体的主视图为()4.化简2x —4 2 —x-2 - - + ~x —4x + 4 x + 2其结果是(A. D. 8x+ 25. 下列命题中,真命题是()A. 两条对角线相等的四边形是矩形B. 两条对角线互相垂直且平分的四边形是正方形C. 等边三角形既是轴对称图形又是中心对称图形6. 在平面直角坐标系xOy中,已知点A(2 , 1)和点B(3, 0),则sin / AOB的值等于(A亚A. 5B. D.2 (第7 题)7•如图,平行四边形ABCD中, E为AD的中点,已知△ DEF的面积为S,则四边形ABCE的面积为(A. 8S B 9S C . 10S D. 11SC R8.地球的水资源越来越枯竭, 全世界都提倡节约用水, 小明把自己 家1月至6月份的用水量绘制成折线图, 那么小明家这6个月的 月平均用水量是()1 / 11门份川水爪应124 flA. 10 吨 B . 9 吨 C. 8吨D. 7吨(9•在“直通春晚”总决赛中,选手小王、小张、小李、小刘组合要经过抽签进行终极PK 工作人员 准备了 4个签,签上分别写有 A ,B , A, B 的字样•规定:抽到 A 和B , A 和B 2的选手分两组进 行终极PK.小张第一个抽签,抽到了 A ,小王第二个抽签,则小王和小张进行 PK 的概率是()10.如图,在△ ABC 中,/ C = 90°, M 是AB 的中点.动点P 从点A 出发,沿AC 方向匀速运动到终点C,动点Q 从点C 出发,沿CB 方向匀速运动到终点 B.已知P, Q 两点同时出发,并同时到达终点, 连结MP MQ PQ 在整个运动过程中,△ MPQ 勺面积大小变化情况是( A. —直增大 C.先减小后增大二.认真填一填(本题有6个小题,每小题4分,共24分) 要注意认真看清题目的条件和要填写的内容 ,尽量完整地填写答案11.分解因式3a 2— 27= ________ . M , N , P , Q 是数轴上的四个点,这四个点中最适合表示,'7的点是(第 12 题)的公共解是 ________ .(第14题)14.直线y = (3 — a )x + b — 4在直角坐标系中的图象如图所示, 化简|b — a|—p b 2— 8b + 16 — |3 — a| = ______ .15 .如图,在△ ABC 中,AB= 10 , AC = 8, BC = 6,经过点 C 且与边 AB 相切1 A.41 B.3B . —直减小 D.先增大后减小12 .如图,a c13.形如& d 的式子,a 定义它的运算规则为by- 3 y =0与 —5 =11 x x12)c2 d = ad— bC;则方程4的动圆与CA CB分别相交于点P, Q,则线段PQ长度的最小值是.16 .如图,等腰梯形ABCD勺底边AD在x轴上,顶点C在y轴正半轴上,B(4 , 2),一次函数y = kx —21的图象平分它的面积.若关于x的函数y= mx —(3m+ k)x + 2m+ k的图象与坐标轴只有两个交点,贝U m 的值为____________ .三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤•如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以•17. (本小题满分6分)2016年体育中考在即,学校体育组对九(1)班50名学生进行了长跑项目的测试,根据测试成绩制作了如图两个统计图.九(1)班长跑测试等分九(1)班长跑测试等分人数统计图人数扇形统计图根据统计图解答下列问题:(1) 本次测试的学生中,得4分的学生有多少人?(2) 本次测试的平均分是多少?(3) 通过一段时间的训练,体育组对该班学生的长跑项目进行第二次测试,测得成绩的最低分为3分,且得4分和5分的人数共有45人,平均分比第一次提高了0.8分,问第二次测试中,得4分、5分的学生分别有多少人?18. (本小题满分8分)已知:如图,D是厶ABC的BC边上的中点,DEI AC DF丄AB, 垂足分别是E、F,且BF=CE(1) 求证:△ ABC是等腰三角形;⑵当/A=90时,判断四边形AFDE是怎样的四边形, 并证明你的结论.(第18 题)_ 219. (本小题满分8分)已知关于x的一元二次方程(a + c)x + 2bx+ (a —c) = 0,其中a, b, c分别为△ ABC三边的长.⑴如果x =—1是方程的根,试判断厶ABC的形状,并说明理由;(2) 如果方程有两个相等的实数根,试判断厶ABC的形状,并说明理由;(3) 如果△ ABC是等边三角形,试求这个一元二次方程的根.20. (本小题满分10分)在“探究与实践”学习活动中,数学老师给出了以下定义:“我们把三边长都是偶数的三角形叫做偶数三角形• ”并且三角形三边的长度为大于等于1且小于等于10的整数•(1) 请写出所有满足条件的偶数三角形•女口:用数对(12, 14, 16)的形式表示,与三个数的顺序无关,比如(12, 14, 16)与(12, 16, 14)表示同一种答案•(2) 用直尺和圆规作出(1)中的直角三角形(用给定的单位长度,不写作法,保留作图痕迹)•并直接写出所作直角三角形的外接圆半径R和内切圆半径r的长•2单位长度21. (本小题满分10分)点D是O O的直径CA延长线上一点,点B在O O上,BD是O O的切线,且AB=AD.(1) 求证:点A是DO的中点.(2) 若点E是劣弧BC上一点,AE与BC相交于点F,2且厶BEF的面积为8, cos/ BFA= ,求△ ACF的面积322.(本题满分12分)已知二次函数h x2 (2 m 1)x m2 m ( m是常数,且m(第c f)题)(1) 证明:不论m取何值时,该二次函数图象总与x轴有两个交点;(2) 若A(n 3, n2 2)、B( n 1, n2 2)是该二次函数图象上的两个不同点,求二次函数解析式和n的值;2 2(3) 设二次函数h x (2 m 1)x m m与x轴两个交点的横坐标分别为X1, X2 (其中X1> X2),若y是关于m的函数,2x2且y 2 2,请结合函数的图象回答:当y<m时,求m的取值范围•(第22题)23.(本题满分12分)在厶ABC 中,/ A = 90°, AB= 8 cm AC = 6 cm,点M,点N 同时从点 A 出发,点 M 沿边AB 以4 cm/s 的速度向点B 运动,点N 从点A 出发,沿边 AC 以3 cm/s 的速度向点C 运动, (点M 不与A ,B 重合,点N 不与A, C 重合),设运动时间为 x s. ⑴求证:△ AMN^ ABC⑵ 当x 为何值时,以 MN 为直径的OO 与直线BC 相切?⑶ 把厶AMN 沿直线 MN 折叠得到厶MNP 若厶MNP 与梯形BCNM 重叠部分的面积为 y ,试求y 关于x 的函数表达式,并求 x 为何值时,y 的值最大,最大值是多少?2016年中考模拟试卷数学参考答案与评分标准、全面答一答(本题有 7个小题,共66分) 17. (本小题满分6分)解:(1)得4分的学生有 50X 50%= 25(人), ..................................... 2分 (2)本次测试的平均分是:2X 10+ 3X 50X 10 呀4X 25+ 5X 1050(3)设第二次测试中得 4分的学生有x 人,得5分的学生有y 人,x + y = 45,3X 5 + 4x + 5y =( 3.7 + 0.8 ) X 50.题号 1 2 3 4 5 6 7 8 9 10 答案CBCDDA BABC、仔细选一选(本题有 10个小题,每小题 3分,共30分)24分)、认真填一填(本题有6个小题,每小题4分,共11、3(a + 3)(a — 3)14、 _______ 12、P ________15、 4.8 _____x = 213、y = 1116、 m= 0 或—1 或—2 =3.7(分),由题意,得x = 15,解得: (2)y = 30.答:第二次测试中得4分的学生有15人,得5分的学生有30人.18. (本小题满分8分)解:⑴•/ BD=CD BF=CE DEI AC,DF丄AB ........................................................ 1 分••• Rt △ BDF^ Rt △ CDE .............................................................. 1 分•••/ B=Z C. ....................................................................................... 1 分• △ ABC是等腰三角形 ................................... 1分(2) 四边形AFDE是正方形.......................................... 1分•••/A=90° ,DE丄AC;DF丄AB,•四边形AFDE是矩形 ....................................... 1分又••• Rt △ BDF^ Rt △ CDE,「. DF=DE ........................................... 1 分•四边形AFDE是正方形 ..................................... 1分19. (本小题满分8分)解:(1) △ ABC是等腰三角形;••• x=—1是方程的根,2•- (a + c) x ( —1) —2b+ (a —c) = 0,…a + c—2b + a—c= 0,•- a —b= 0,「・a= b, ................................................................ 2 分• △ ABC是等腰三角形; .................................. 1分⑵•/方程有两个相等的实数根,2•(2b) —4(a + c)(a —c) = 0,•4b —4a + 4c = 0, • a = b + c , ....................................................... 2 分•△ ABC是直角三角形;................................... 1分(3) 当厶ABC是等边三角形时,•(a + c)x 2+ 2bx + (a —c) = 0,可整理为:22ax + 2ax = 0,2•x + x = 0,解得:X1= 0, X2=—1 ............................................................... 2 分20. (本小题满分10分)解:(1) (4, 6, 8), (4, 8, 10), (6, 8, 10) ........................... 3 分(2) 直角三角形作对 ............................................ 4分R=5 .................................................................................................. 1 分r=221 .(本小题满分10分)解:⑴连接0B •/ BD是OO的切线,•/ OBD=90 ,•/ AB=AD•/ D=Z ABD•/ A0B2 ABO•AB=AO第21题2出此函数的图象如图,当y=m 时有m ,解得mm 2,从图上可以看出在垂线AC 的右侧和垂线BD 与x 轴之间时有y <m ,所以当 2和 2 m 0时,有y <m.••• AB=AD.(2) •/ AC 是直径,•/ FB• cos / BFA=- FA ABF=9C °,2 .........3 •••/ E=Z C,/ FAC 玄 FBE• △ FA3A FBE…S BEF : S ACF•- S BEF 8• △ FAC 的面积为4:918. 22.(本小题满分12分) ⑴证明:在二次函数2 2h x (2 m 1)x m m 中,△ =1>C ,所以不论m 取何值时,该二次函数图象总与x 轴有两个交点. (2)由点2 2A (n 3, n 2)与点B ( n 1, n 2)的坐标可知二次函数的对称轴为直线直线2(2m 1),所以1,由二 次函数的解析式可知对称轴为(2m 1)1,得m所以函数解析式为h 2x 2x4将(n 3, n 22)代入函数解析式得⑶由二次函数h x 2(2m 1)x mX 2 m 1 (其中为 > X 2), .............(可以用求根公式求得方程的两根) 2x 2切,2 —- m m •/ y 是关于m 的函数,且y2 2m 2m716m 图像与x 轴两个交点的横坐标分别为X 1 m , ............................................ 1分m 0 )作(其中m 是常数,且7 / 11jI23.(本小题满分12分)•••△ AMNs △ ABC .......................................................................................... 2 分⑵ 解:在 Rt △ ABC 中,BC k 它AB + AC = 10. 由(1)知厶 AM S^ ABC.⑶ 解:当P 点落在直线BC 上时,则点M 为AB 的中点.故以下分两种情况讨论:①当 O v x Wl 时,y = S A PMN = 6x 2 ......................................................................................... 1 分2•••当 x = 1 时,y 最大=6X1 = 6 ...................................................................................... 1 分 ②当1v x v 2时,设 MP 交BC 于E, NP 交BC 于 F , MB= 8 — 4x , MP= MA= 4x , • PE = 4x — (8 — 4x) = 8x — 8,(1)证明 •/ AM k 4x , AN k 3x , AB = 8, AC = 6,AMANA B =AC又•••/ A=Z A.MN AM 4x BC T AB _"8• MN= 5x ,•••O O 的半径 r =5x (2)可求得圆心 48 12x0到直线BC 的距离d = 48-乎.10 5VO O 与直线BC 相切. 48 10 12x 5 —48丁=5x .解得 x=494849时,O O 与直线BC 相切.4综上所述,当X = 3时,y 值最大,最大值是 8 ..................................................................2016年中考模拟试卷数学卷命题双向明细表y = S ^MN - 2 2S A PEF = 6X — 6x8X -8 4X2 = — 18(X - 4) 4•••当 X = 3 时, y 最大=8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年九年级数学中考模拟试卷一、选择题:1.已知有理数a,b,c在数轴上对应点的位置如图,化简:∣b-c∣-2∣c+a∣-3∣a-b∣=()A.-5a+4b-3cB.5a-2b+cC.5a-2b-3cD.a-2b-3c2.下列计算正确的是()A.2+a=2aB.2a﹣3a=﹣1C.(﹣a)2•a3=a5D.8ab÷4ab=2ab3.若x、y为有理数,下列各式成立的是()A.(﹣x)3=x3B.(﹣x)4=﹣x4C.x4=﹣x4D.﹣x3=(﹣x)34.如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm)()A.40πcm2B.65πcm2C.80πcm2D.105πcm25.化简的结果是()A. B. C.x+1 D.x﹣16.下列运算中,正确的是()A.3a+2b=5abB.2a3+3a2=5a5C.3a2b﹣3ba2=0D.5a2﹣4a2=17.某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整)选修课A B C D E F人数4060100根据图表提供的信息,下列结论错误的是()A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E、F的人数分别为80,70D.喜欢选修课C的人数最少8.在相同时刻的物高与影长成比例,如果高为1.5米的测竿的影长为2.5米,那么影长为30米的旗杆的高是()A.20米B.18米C.16米D.15米9.如图1,在直角梯形ABCD中,动点P从点B出发,沿BC,CD运动至点D停止.设点P运动的路程为x,△ABP 的面积为y,如果y关于x的函数图象如图2所示,则△BCD的面积是()A.3B.4C.5D.610.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为()A.5米B.8米C.7米D.5米二、填空题:11.已知关于x,y的方程组的解为正数,则.12.分解因式:2x3﹣4x2+2x=.13.如图,△ABC是边长为4个等边三角形,D为AB边中点,以CD为直径画圆,则图中阴影部分面积为.14.如图在□ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,若△DEF的面积为18,则□ABCD的面积为.三、计算题:15.计算:20160﹣|﹣|++2sin45°.16.解方程:3x 2-7x+4=0.四、解答题:17.如图,在Rt△ABC 中,∠ACB=90°,点D,E 分别在AB,AC 上,CE=BC,连接CD,将线段CD 绕点C 按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.18.如图,二次函数y=ax 2+bx+c 的图象与x 轴交于A、B 两点,交y 轴于C 点,其中B 点坐标为(3,0),C 点坐标为(0,3),且图象对称轴为直线x=1.(1)求此二次函数的关系式;(2)P 为二次函数y=ax 2+bx+c 在x 轴下方的图象上一点,且S △ABP =S △ABC ,求P 点的坐标.19.如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A 处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)20.一辆客车从甲地出发前往乙地,平均速度v(千米/小时)与所用时间t(小时)的函数关系如图所示,其中60≤v≤120.(1)直接写出v与t的函数关系式;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.①求两车的平均速度;②甲、乙两地间有两个加油站A、B,它们相距200千米,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与B加油站的距离.21.某中学举行了“中国梦,中国好少年”演讲比赛,菲菲同学将选手成绩划分为A、B、C、D四个等级,绘制了两种不完整统计图.根据图中提供的信息,解答下列问题:(1)参加演讲比赛的学生共有人,扇形统计图中m=,n=,并把条形统计图补充完整.(2)学校欲从A等级2名男生2名女生中随机选取两人,参加达州市举办的演讲比赛,请利用列表法或树状图,求A等级中一男一女参加比赛的概率.(男生分别用代码A 1、A 2表示,女生分别用代码B 1、B 2表示)五、综合题:22.如图,在平面直角坐标系中,已知抛物线y=ax 2+bx的对称轴为x=0.775,且经过点A(2,1),点P是抛物线上的动点,P的横坐标为m(0<m<2),过点P作PB⊥x轴,垂足为B,PB交OA于点C,点O关于直线PB的对称点为D,连接CD,AD,过点A作AE⊥x轴,垂足为E.(1)求抛物线的解析式;(2)填空:①用含m的式子表示点C,D的坐标:C(,),D(,);②当m=时,△ACD的周长最小;(3)若△ACD为等腰三角形,求出所有符合条件的点P的坐标.23.如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.参考答案1.B2.C3.D4.B5.A6.C7.D8.B9.A 10.B11.答案为:7;12.答案为:2x(x﹣1)2.13.答案为:2.5﹣π.14.答案为:112;15.解:20160﹣|﹣|++2sin45°=1﹣+(3﹣1)﹣1+2×=1﹣+3+=4.16.解:(3)x 1=,x 2=117.解:(1)补全图形,如图所示;(2)由旋转的性质得:∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠DCE+∠BCD=90°,∴∠ECF=∠BCD,∵EF∥DC,∴∠EFC+∠DCF=180°,∴∠EFC=90°,在△BDC 和△EFC 中,,∴△BDC≌△EFC(SAS),∴∠BDC=∠EFC=90°.18.解:(1)根据题意,得,解得.故二次函数的表达式为y=﹣x 2+2x+3.(2)由S △ABP =S △ABC ,得y P +y C =0,得y P =﹣3,当y=﹣3时,﹣x 2+2x+3=﹣3,解得x 1=1﹣,x 2=1+.故P 点的坐标为(1﹣,﹣3)或(1+,﹣3).20.解:(1)设函数关系式为v=kt-1,∵t=5,v=120,∴k=120×5=600,∴v与t的函数关系式为v=600t-1(5≤t≤10);(2)①依题意,得3(v+v﹣20)=600,解得v=110,经检验,v=110符合题意.当v=110时,v﹣20=90.答:客车和货车的平均速度分别为110千米/小时和90千米/小时;②当A加油站在甲地和B加油站之间时,110t﹣(600﹣90t)=200,解得t=4,此时110t=110×4=440;当B加油站在甲地和A加油站之间时,110t+200+90t=600,解得t=2,此时110t=110×2=220.答:甲地与B加油站的距离为220或440千米.21.23.解:(1)PM=PN,PM⊥PN,理由如下:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PM,∵∠NPD=∠EAC,∠MPN=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN;(2)∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD;PN=AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.(3)PM=kPN∵△ACB和△ECD是直角三角形,∴∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∵BC=kAC,CD=kCE,∴=k.∴△BCD∽△ACE.∴BD=kAE。

∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PN=AE.∴PM=kPN.。

相关文档
最新文档