九年级数学黄金分割同步练习

合集下载

人教版九年级下册数黄金分割同步练习

人教版九年级下册数黄金分割同步练习

27.1.2 黄金分割基础训练知识点1 比例中项1.若x是2,18的比例中项,则x=___________.2.若线段a=6 cm,b=3 cm,且c是a,b的比例中项,则线段c的长度为( )A.3错误!未找到引用源。

cmB.±3错误!未找到引用源。

cmC.±18 cmD.18 cm3.如果a∶b=3∶2,且b是a,c的比例中项,那么b∶c等于( )A.4∶3B.3∶2C.2∶3D.3∶44.如图,有三个直角三角形,其中OA=AB=BC=CD=1,则线段OA,OD的比例中项线段的长度为( )A.错误!未找到引用源。

B.错误!未找到引用源。

C.±错误!未找到引用源。

D.错误!未找到引用源。

知识点2 黄金分割5.如果点C是线段AB的黄金分割点(AC>BC),则下列比例式正确的是( )A.AB∶AC=AC∶BCB.AB∶BC=BC∶ACC.AC∶BC=BC∶ABD.AC∶AB=AB∶BC6.若点C为线段AB的黄金分割点,且AC>BC,则①AB=错误!未找到引用源。

AC;②AC=错误!未找到引用源。

AB;③AB∶AC=AC∶CB;④AC≈0.618AB.其中正确的有( )A.1个B.2个C.3个D.4个7.从美学角度来说,人的上身长与下身长之比为黄金比例,可以给人一种协调的美感.某女老师上身长约61.80 cm,下身长约93.00 cm,她要穿约___________cm的高跟鞋才能达到黄金比的美感效果(精确到1 cm).提升训练考查角度1 利用比例性质求解比例中项问题8.已知线段a,b,c满足错误!未找到引用源。

=错误!未找到引用源。

=错误!未找到引用源。

,且a+2b+c=26.(1)求a,b,c的值;(2)若线段x是线段a,b的比例中项,求x.考查角度2 利用黄金分割的定义找黄金分割点(计算法、定义法)9.以长为2的线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.(1)求MA,DM的长;(2)求证:AM2=AD·DM.(3)根据(2)的结论你能找出图中的一个黄金分割点吗?考查角度3 利用黄金分割的定义证明黄金矩形(计算法、定义法)10.宽与长的比是错误!未找到引用源。

九年级数学上册18_2黄金分割同步练习新版北京课改版

九年级数学上册18_2黄金分割同步练习新版北京课改版

18.2黄金分割一、夯实基础1.假设点P 是AB 的黄金分割点,那么线段AP 、PB 、AB 知足关系式 .2.黄金矩形的宽与长的比大约为________(精准到0.001).3.电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体,假设舞台AB 长为20m ,试计算主持人应走到离A 点至少 m 处?,若是他向B 点再走 m ,也处在比较得体的位置.(结果精准到0.1m )4.已知P 为线段AB 的黄金分割点,且AP<PB ,那么 ( )A .AP 2=AB·PB B.AB 2=AP·PBC .PB 2=AP·AB D.AP 2+BP 2=AB 25.在中华经典美文阅读中,小明同窗发觉自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,那么它的宽约为 ( )A .12.36 cmB .13.6 cmC .32.36 cmD .7.64 cm二、能力提升6.有以下命题:①若是线段d 是线段a ,b ,c 的第四比例项,那么有d c b a =;②若是点C 是线段AB 的中点,那么AC 是AB 、B C 的比例中项;③若是点C 是线段AB 的黄金分割点,且AC>BC ,那么AC 是AB 与BC 的比例中项;④若是点C 是线段AB 的黄金分割点,AC>BC ,且AB=2,那么AC=5-1.其中正确的判定有( )A .1个B .2个C .3个D .4个7.已知点M 将线段AB 黄金分割(AM >BM),那么以下各式中不正确的选项是( )A .AM ∶BM=AB ∶AM B .AM=215-AB C .BM=215-AB D .AM ≈0.618AB8.已知C 是线段AB 的黄金分割点(AC >BC ), 那么AC ∶BC = ( )A . (5-1)∶2B . (5 +1)∶2C .(3-5)∶2D .(3+5)∶29.在长度为1的线段上找到两个黄金分割点P,Q.那么PQ=( )A .215-B .53-C .25-D .253- 三、课外拓展10.如图,以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连结PD ,在BA 的延长线上取点F ,使PF=PD ,以AF 为边作正方形AMEF ,点M 在AD 上.(1)求AM 、DM 的长.(2)求证:AM 2=AD ·DM .(3)依照(2)的结论你能找出图中的黄金分割点吗?四、中考链接11.(2021 昆明)如图,将边长为6cm 的正方形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH ,点C 落在Q 处,EQ 与BC 交于点G ,那么△EBG 的周长是 cm12.(2021怀化)如图,D 、E 别离是△ABC 的边AB 、AC 上的中点,那么S △ADE :S △ABC = .参考答案一、夯实基础1.AP2=BP·AB或PB2=AP·AB;2.0.618;3.7.6,4.8;4.C5.A二、提升能力6.C;7.C;8.B;9.C;三、课外扩展10. ⑴AM=5-1;DM=3-5;⑵略;⑶点M是线段AD的黄金分割点;四、中考链接11.1212.1:4。

黄金分割(基础篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(人教版)

黄金分割(基础篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(人教版)

专题27.13 黄金分割(基础篇)(专项练习)一、单选题1.大自然巧夺天工,一片树叶也蕴含着“黄金分割”.如图,P为AB的黄金分割点(AP>PB),如果AB的长度为8cm,那么BP的长度是()A.125-C.454D.54 -B.9452.已知点C是线段AB的黄金分割点,且2<,则AC长是()AB=,AC BCA51-B51C.35D3523.把2米的线段进行黄金分割,则分成的较短的线段长为()A.35B51C.15D.354.已知2AB=,点P是线段AB上的黄金分割点,且AP BP>,则AP的长为()A51B51-C35D.3525.下列说法正确的是()A.每条线段有且仅有一个黄金分割点B.黄金分割点分一条线段为两条线段,其中较长的线段约是这条线段的0.618倍C.若点C把线段AB黄金分割,则AC2=AB•BCD.以上说法都不对6.下列说法正确的是()A.每一条线段有且只有一个黄金分割点B.黄金分割点分一条线段为两段,其中较短的一段是这条线段的0.618倍C.若点C把线段AB黄金分割,则AC是AB和BC的比例中项D.黄金分割点分一条线段为两段,其中较短的一段与较长的一段的比值约为0.6187.下列命题正确的是()A.任意两个等腰三角形一定相似B.任意两个正方形一定相似C .如果C 点是线段AB 的黄金分割点,那么51AC AB -=D .相似图形就是位似图形8.如图,线段1AB =,点1P 是线段AB 的黄金分割点(且11AP BP <),点2P 是线段1AP 的黄金分割点(212AP PP <),点3P 是线段3AP 的黄金分割点()323,,AP P P <依此类推,则线段2020AP 的长度是( )A .202051-⎝⎭B .202151-⎝⎭C .202035-⎝⎭D .202135-⎝⎭9.已知点C 把线段AB 分成两条线段AC 、BC ,且AC BC >,下列说法错误的是( ) A .如果AC BCAB AC=,那么线段AB 被点C 黄金分割 B .如果2AC AB BC =⋅,那么线段AB 被点C 黄金分割C .如果线段AB 被点C 黄金分割,那么BC 与AB 的比叫做黄金比D .0.618是黄金比的近似值10.等腰△ABC 中,AB=AC ,△A=36°,D 是AC 上的一点,AD=BD ,则以下结论中正确的有( )△△BCD 是等腰三角形;△点D 是线段AC 的黄金分割点;△△BCD△△ABC ;△BD 平分△ABC . A .1个B .2个C .3个D .4个11.在△ABC 中,△A=36°,AB=AC ,BD 是△ABC 的角平分线,下列结论: △△ABD ,△BCD 都是等腰三角形; △AD=BD=BC ; △BC 2=CD•CA ; △D 是AC 的黄金分割点 其中正确的是( )A .1个B .2个C .3个D .4个二、填空题12.在线段AB 上,点C 把线AB 分成两条线段AC 和BC ,若AC BCAB AC=,则点C 叫做线段AB 的黄金分割点.若点P 是线段MN 的黄金分割点(PM PN >),当1MN =时,PM 的长是__________.13.勾股定理与黄金分割是几何中的双宝,前者好比黄金,后者堪称珠玉,生活中到处可见黄金分割的美.如图是一种贝壳的俯视图,点C 分线段AB 近似于黄金分割,已知AB =10 cm ,AC >BC ,那么AC 的长约为____________cm (结果精确到0.1 cm ). 14.把2米长的线段进行黄金分割,则分成的较长的线段长为__________.15.古希腊时期,51-(称为黄金分割比例),著名的“断臂维纳斯”5 2.236≈,则黄金分割比例约为______________.(精确到0.01)16.已知AB=2,点C 是线段AB 的黄金分割点(AC>BC ),则AC= . 17.把长度为4cm 的线段进行黄金分割,则较长线段的长是__________cm .18.已知线段4AB =,点P 是线段AB 的黄金分割点(AP BP >),那么线段AP =______.(结果保留根号)19.已知线段AB 长为2cm ,P 是AB 的黄金分割点,则较长线段PA = ___;PB =______. 20510.61803398-=…,将这个分割比保留4个有效数字的近似数是 .21.若点C 为线段AB 的黄金分割点,且AC <BC ,若AB =10,则BC =_____. 22.若点P 是线段AB 的黄金分割点,AB=10cm ,则较长线段AP 的长是_____cm .三、解答题23.已知C 、D 是线段AB 上的点,CD =(√5﹣2)AB ,AC =BD ,则C 、D 是黄金分割点吗?为什么?24.已知线段MN = 1,在MN 上有一点A ,如果AN =,求证:点A 是MN 的黄金分割点.25.(1)对于实数a 、b ,定义运算“⊕”如下:2a b a b ⊕=-.若(1)(2)8x x +⊕-=,求: 2(2)(23)x x x -⊕-的值;(2)已知点C 是线段AB 的黄金分割点(AC <BC ),若AB =4,求AC 的长.26.(1)我们知道,将一条线段AB 分割成大小两条线段AP 、PB ,使AP >PB ,点P 把线段AB 分成两条线段AP 和BP ,且=AP BP AB AP ,点P 就是线段AB 的黄金分割点,此时PAAB的值为 (填一个实数):(2)如图,Rt△ABC 中,△B=90°,AB=2BC ,现以C 为圆心、CB 长为半径画弧交边AC 于D ,再以A 为圆心、AD 长为半径画弧交边AB 于E . 求证:点E 是线段AB 的黄金分割点.27.某校要设计一座2m 高的雕像(如图),使雕像的点C (肚脐)为线段AB (全身)的黄金分割点,上部AC (肚脐以上)与下部BC (肚脐以下)的高度比为黄金比.则雕像下部设计的高度应该为______(结果精确到0.001)米. 5 2. 236=,结果精确到0.001).28.在等边三角形ABC中,点D,E分别在BC,AC上,且DC=AE,AD与BE交于点P,连接PC.(1)证明:ΔABE△ΔCAD.(2)若CE=CP,求证△CPD=△PBD.(3)在(2)的条件下,证明:点D是BC的黄金分割点.参考答案1.A【分析】根据黄金分割的定义得到AP 51-AB ,然后把AP 的长度代入可求出AB 的长. 【详解】解:△P 为AB 的黄金分割点(AP >PB ), △AP 51-AB , △AB 的长度为8cm , △AP 51-×8=454(cm ), △BP =AB -AP =8-(454)=125- 故选:A .【点拨】本题考查了黄金分割:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC =AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC 51-AB . 2.C 【分析】利用黄金分割比的定义即可求解. 【详解】由黄金分割比的定义可知 5151251BC AB --=== △2(51)35AC AB BC =-=-= 故选C【点拨】本题主要考查黄金分割比,掌握黄金分割比是解题的关键. 3.A 【分析】根据黄金分割的定义列式进行计算即可得解. 【详解】解: 较短的线段长=2⨯ (15-1=255 故选A.【点拨】本题考查了黄金分割的概念, 熟记黄金分割的比值5-1是解题的关键.4.A 【分析】根据黄金分割点的定义和AP BP>得出51AP AB-=,代入数据即可得出AP的长度.【详解】解:由于P为线段AB=2的黄金分割点,且AP BP>,则5151251ABAP--===.故选:A.352,51-.5.B【分析】根据黄金分割的定义分别进行解答即可.【详解】A.每条线段有两个黄金分割点,故本选项错误;B.黄金分割点分一条线段为两条线段,其中较长的线段约是这条线段的0.618倍,正确;C.若点C把线段AB黄金分割,则AC2=AB•BC,不正确,有可能BC2=AB•AC.故选B.【点拨】本题考查了黄金分割,熟练掌握黄金分割的定义是解题的关键.6.D【分析】根据比例中项和黄金分割的概念分析各个说法.【详解】解:A、每一条线段有两个黄金分割点,错误;B、黄金分割点分一条线段为两段,其中较长的一段是这条线段的0.618倍,错误;C、若点C把线段AB黄金分割,则AC是AB和BC的比例中项,错误;D、黄金分割点分一条线段为两段,其中较长的一段与这条线段的比值约为0.618,正确;故选D.【点拨】此题考查黄金分割问题,理解比例中项、黄金分割的概念,是解题的关键. 7.B 【分析】根据相似多边形的概念、黄金分割点及位似可直接进行排除选项. 【详解】解:A 、任意两个等腰三角形的底角或顶角相等,则这两个等腰三角形相似,故原命题错误; B 、任意两个正方形一定相似,故原命题正确;C 、如果C 点是线段AB 的黄金分割点(AC >BC ),那么51AC AB -=D 、相似图形不一定是位似图形,故原命题错误; 故选B .【点拨】本题主要考查相似多边形的概念、黄金分割点及位似,熟练掌握相似多边形的概念、黄金分割点及位似是解题的关键. 8.C 【分析】根据把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线51-叫做黄金比进行解答即可. 【详解】解:根据黄金比的比值,151BP -= 则151351AP --==23233535,,AP AP --==⎝⎭⎝⎭…依此类推,则线段2020202035AP -=⎝⎭,故选C .【点拨】本题考查的是黄金分割的知识,理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键. 9.C 【解析】【分析】根据黄金分割的定义判断即可.【详解】根据黄金分割的定义可知A、B、D正确;C.如果线段AB被点C黄金分割(AC>BC),那么AC与AB的比叫做黄金比,所以C错误.所以C选项是正确的.【点拨】本题考查了黄金分割的概念:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB 的黄金分割点.注意线段AB的黄金分割点有两个.10.D【详解】△AB=AC,△△ABC=△C=12(180°-△A)=12(180°-36°)=72°,△AD=BD,△△DBA=△A=36°,△△BDC=2△A=72°,△△BDC=△C,△△BCD为等腰三角形,所以△正确;△△DBC=△ABC-△ABD=36°,△△ABD=△DBC,△BD平分△ABC,所以△正确;△△DBC=△A,△BCD=△ACB,△△BCD△△ABC,所以△正确;△BD:AC=CD:BD,而AD=BD,△AD:AC=CD:AD,△点D是线段AC的黄金分割点,所以△正确.故选D.11.D【解析】试题分析:在△ABC,AB=AC,△A=36°,BD平分△ABC交AC于点D,可推出△BCD,△ABD 为等腰三角形,可得AD=BD=BC,利用三角形相似解题.解:如图,△AB=AC,△A=36°,△△ABC=△C=72°,△BD平分△ABC交AC于点D,△△ABD=△CBD=△ABC=36°=△A,△AD=BD,△BDC=△ABD+△A=72°=△C , △BC=BD ,△△ABD ,△BCD 都是等腰三角形,故△正确; △BC=BD=AD ,故△正确; △△A=△CBD ,△C=△C , △△BCD△△ACB , △,即BC 2=CD•AC ,故△正确; △AD=BD=BC ,△AD 2=AC•CD=(AD+CD )•CD , △AD=CD ,△D 是AC 的黄金分割点.故△正确, 故选D .考点:相似三角形的判定与性质;黄金分割. 1251- 【分析】根据若点P 是线段MN 的黄金分割点(PM PN >),则PM MN 51-计算即可. 【详解】当PM >PN 时,51-51-, 51-. 51-是解题的关键. 13.6.2 【分析】黄金分割又称黄金率,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1:0.618或1.618:1,即长段为全段的0.618,0.618被公认为最具有审美意义的比例数字.上述比例是最能引起人的美感的比例,因此被称为黄金分割.【详解】由题意知AC :AB =BC :AC ,△AC :AB ≈0.618,△AC =0.618×10cm ≈6.2(结果精确到0.1cm )故答案为6.2.【点拨】本题考查黄金分割,解题关键是掌握黄金分割定理.14.51-米 【解析】【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分51-叫做黄金比. 【详解】解:△将长度为2米的线段进行黄金分割,△较长的线段=2⨯51-51- 51-米.51-是解的关键. 15.0.62【分析】把黄金分割比例按要求进行计算即可.【详解】解:51-5 2.236≈, 51-≈2.23612-≈0.62, 故答案为:0.62. 【点拨】本题考查了求一个数的近似值,有理数的除法,正确计算是解题的关键. 1651 【解析】51251AC -==17.()252cm .【解析】根据黄金分割的定义得到较长线段的长=×4,然后进行二次根式的运算即可. 解:较长线段的长=×4=(2)cm .故答案为(2)cm . 18.52 【分析】51-计算即可. 【详解】 解:△点P 是线段AB 的黄金分割点(AP>BP ) △51AP 252AB -== 故答案为:252.【点拨】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.19.)51cm (35cm 【分析】根据黄金分割的概念得到较长线段51-AB ,则PB=AB -352AB ,然后把AB=2cm 代入计算即可.【详解】解:△P 是AB 的黄金分割点, △较长线段51-AB , △PB=AB -352AB , 而AB=2cm , △PA=)51cm ,PB=(35cm . 故答案为:)51cm ;(35cm .【点拨】本题考查了黄金分割的概念:一个点把一条线段分成两段,其中较长线段是较短线段与整个线段的比例中项,那么就说这条线段被这点黄金分割,这个点叫这条线段的黄金分51-倍. 20.0.6180【解析】根据有效数字的定义,运用四舍五入法保留4个有效数字,需观察第五位有效数字,由于第五位有效数字是,不需往前面进一位.所以0.61803398…≈0.618021.555【分析】根据黄金分割点的定义,知BC 为较长线段;则BC 51-AB ,代入数据即可得出AC 的值.【详解】解:由于C 为线段AB =10的黄金分割点,且AC <BC ,BC 为较长线段;则BC =51-=55. 故答案为:555.【点拨】本题考查黄金分割:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC=AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.其中51-AB≈0.618AB ,并且线段AB 的黄金分割点有两个. 22.555【解析】△P 是线段AB 的黄金分割点,AP >BP ,51-AB , △AB=10cm , △AP=5110555-=. 故答案为555.点睛:若点P 是线段AB 的黄金分割点,且AP>BP ,则AP 2=BP·AB ,即51-AB. 23.C 、D 是黄金分割点.【解析】【分析】 根据题意求出AC 与AB 的关系,计算出AD 与AB 的关系,根据黄金比值进行判断即可.【详解】解:C 、D 是黄金分割点,△AC+CD+BD =AB ,CD =(√5﹣2)AB ,AC =BD ,△AC =3−√52AB , AD =AC+CD =3−√52AB+(√5﹣2)AB =√5−12AB , △D 是AB 的黄金分割点,同理C 也是AB 的黄金分割点.【点拨】本题考查黄金分割,关键是掌握黄金分割的概念和黄金比.24.见解析 【解析】试题分析:先求得AM=√5−12,即可得到AM MN =AN AM =√5−12,结论得证。

北师大版九年级数学上册《黄金分割》综合练习-精品

北师大版九年级数学上册《黄金分割》综合练习-精品

《黄金分割》综合练习一、选择题1.等边三角形的一边与这边上的高的比是( ) A.3∶2 B.3∶1C.2∶3D.1∶32.下列各组中的四条线段成比例的是( ) A.a =2,b =3,c =2,d =3 B.a =4,b =6,c =5,d =10 C.a =2,b =5,c =23,d =15 D.a =2,b =3,c =4,d =13.已知线段a 、b 、c 、d 满足ab =cd ,把它改写成比例式,错误的是( ) A.a ∶d =c ∶b B.a ∶b =c ∶d C.d ∶a =b ∶cD.a ∶c =d ∶b4.若ac =bd ,则下列各式一定成立的是( ) A.dc b a = B.ccb d d a +=+ C.c dba =22D.dacd ab = 5.已知点M 将线段AB 黄金分割(AM >BM ),则下列各式中不正确的是( ) A.AM ∶BM =AB ∶AM B.AM =215-AB C.BM =215-AB D.AM ≈0.618AB 二、填空题6.在1∶500000的地图上,A 、B 两地的距离是64 cm ,则这两地间的实际距离是________.7.正方形ABCD 的一边与其对角线的比等于________.8.若2x -5y =0,则y ∶x =________,xyx +=________. 9.若53=-b b a ,则ba=________. 10.若AEACAD AB =,且AB =12,AC =3,AD =5,则AE =________. 三、解答题 11.已知342=+x y x ,求y x .12.在同一时刻物高与影长成比例,如果一古塔在地面上的影长为50 m ,同时高为1.5 m 的测杆的影长为2.5 m ,那么古塔的高是多少?13.在△ABC 中,D 是BC 上一点,若AB =15 cm ,AC =10 cm ,且BD ∶DC =AB ∶AC ,BD -DC =2 cm ,求B C.14.现有三个数1,2,2,请你再添上一个数写出一个比例式,这样的比例式唯一吗?*15.如果一个矩形ABCD (AB <BC )中,215-=BC AB ≈0.618,那么这个矩形称为黄金矩形,黄金矩形给人以美感.在黄金矩形ABCD 内作正方形CDEF ,得到一个小矩形ABFE (如图1),请问矩形ABFE 是否是黄金矩形?请说明你的结论的正确性.图1参考答案一、1.C 2.C 3.B 4.B 5.C 二、6.320 km 7.1∶2 8.2∶557 9.58 10.45 三、11.5312.30 m 13.10 cm14.22,1,2,2成比例;12 2,2也成比例,比例式不惟一15.矩形ABFE 是黄金矩形 由于215-=BC AB ,设AB =(5-1)k ,BC =2k , 所以FC =CD =AB ,BF =BC -FC =BC -AB =2k -(5-1)k =(3-5)k , 所以215)15()53(-=--=k k AB BF ,所以矩形ABFE 是黄金矩形.。

苏科版九年级数学下册黄金分割同步练习

苏科版九年级数学下册黄金分割同步练习

6.2黄金分割A组题1、点C是线段AB的黄金分割点,且AC>BC,若AB=2cm,则BC ≈cm。

(精确到0.1cm)≈2、顶角为的等腰三角形称为黄金三角形,等腰△ABC中,若∠A=360,则BCAB3、研究表明:标准人体的黄金分割点是人的肚脐,请你计算身高180cm的人,如果肚脐是黄金分割点,那头顶到肚脐的长度约为cm。

(精确到1c m)4、已知点C是线段AB的黄金分割点(AC>BC),那么AC是线段与的比例中项,若AC=10cm,则BC约为cm。

(精确到0.1cm)5、已知点C是线段的黄金分割点,且AC>BC,则下列等式中成立的是()A、2AB AC BCCB AC AB=•=•B、2C、2=•AC AB BCAC BC AB=•D、226、如图,点C是线段AB的黄金分割点,矩形ABFD的宽与长的比等于黄金比,则下列结论中错误的是DA()A、四边形ACED是正方形B、矩形CBFE是黄金矩形C、EC与EF之比是黄金比D、EC与DF之比是黄金比7、下列说法中正确的是()A、如果一条线段是另两条线段的比例中项,那么这三条线段构成黄金比;B、一条线段上的黄金分割点只有一个;;C、黄金分割比是512D、黄金分割比就是我们看上去舒服的比。

8、科学研究表明:当人的下肢长度与身高的比约为0.618时,看起来最美。

若某成年女士身高为153cm,下肢长为92cm,则该女士穿的高跟鞋鞋跟的最佳高度约为多少cm?(精确到0.1cm)9、如图,电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体,若舞台AB长为20米,试计算主持人应走到离A点至少多少米处是最自然得体的位置?(结果精确到0.1米)10、如图,梯形ABCD中,AD∥BC,AB=AD=DC,AC=BD=BC。

①求∠ABC的度数;②图中有多少个黄金三角形?把它们一一写出来。

11、如图,△ABC中,AB=AC,AC的垂直平分线交AC于D,交AB于E,且AE=BC。

北师大版数学九年级上册同步课时练习:4.4 第4课时 黄金分割 (word版含答案)

北师大版数学九年级上册同步课时练习:4.4 第4课时 黄金分割 (word版含答案)

第4课时 黄金分割知识点 对黄金分割的理解1.已知点C 把线段AB 分成两条线段AC ,BC ,下列说法错误的是( )A .如图果AC AB =BC AC ,那么线段AB 被点C 黄金分割 B .如图果AC 2=AB ·BC ,那么线段AB 被点C 黄金分割C .如图果线段AB 被点C 黄金分割,那么AC 与AB 的比叫做黄金比D .一条线段有两个黄金分割点2.已知点C 是线段AB 的黄金分割点,且AC>BC ,AB=2,则AC 的长为 ( )A .√5-1B .3-√5C .√5-12D .0.6183.人体的正常体温是37 ℃左右,根据有关测定,当气温处于人体正常体温的黄金比值时,人体感觉最舒适,这个气温的度数约为 (精确到1 ℃).4.世界上有名的建筑物中几乎都包含“黄金分割”,如图广播电视塔同样蕴含着“黄金分割”,如图,塔高AB 为339米,观光区P 为塔AB 的黄金分割点(AP>PB ),求观光区的高度.(结果精确到1米)5.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士的身高为160 cm,下半身长x 与身高l 的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为( )A .6 cmB .10 cmC .4 cmD .8 cm6.C 是线段AB 的黄金分割点,且AB=6 cm,则BC 的长为( )A.(3√5-3)cmB.(9-3√5)cmC.(3√5-3)cm或(9-3√5)cmD.(9-3√5)cm或(6√5-6)cm7.[教材习题4.8第1题变式题]如图,乐器上的一根弦AB=80 cm,两个端点A,B固定在乐器板面上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,求支撑点C,D 之间的距离.∶1的矩形叫做黄金矩形,黄金矩形令人赏心悦目,它给我们以协调匀称的8.宽与长之比为√5-12美感.如图,如图果在一个黄金矩形里面画一个正方形,那么留下的矩形CDFE还是黄金矩形吗?请证明你的结论.答案1.C2.A ∵C 是线段AB 的黄金分割点,且AC>BC ,∴AC=√5-12AB. 又∵AB=2,∴AC=√5-1.3.23 ℃ 37×√5-12≈23(℃).4.解:∵塔高AB 为339米,观光区P 为塔AB 的黄金分割点(AP>PB ), ∴AP=√5-12AB=√5-12×339≈210(米). 故观光区的高度约为210米.5.D6.C ∵C 是线段AB 的黄金分割点,且AB=6 cm,∴BC=√5-12AB=(3√5-3)cm 或BC=3-√52AB=(9-3√5)cm .7.解:∵支撑点C 是靠近点B 的黄金分割点,支撑点D 是靠近点A 的黄金分割点, ∴AC=BD=80×√5-12=(40√5-40)cm, ∴CD=BD-(AB-AC )=BD+AC-AB=(80√5-160)cm .8.解:留下的矩形CDFE 还是黄金矩形.证明:∵四边形ABEF 是正方形,四边形ABCD 是矩形,∴AB=DC=AF .又∵AB AD =√5-12, ∴AF AD =√5-12, 即F 是线段AD 的黄金分割点,∴FD AF =AF AD =√5-12, ∴FD DC =√5-12, ∴矩形CDFE 是黄金矩形.。

苏科版九年级数学下册 6.2 黄金分割 同步测试题(有答案)

苏科版九年级数学下册  6.2 黄金分割 同步测试题(有答案)

6.2 黄金分割同步测试题一、选择题(本题共计8 小题,每题3 分,共计24分,)1. 已知P为线段AB的黄金分割点,且AP<PB,则()A.AP2=AB⋅PBB.AB2=AP⋅PBC.PB2=AP⋅ABD.AP2+BP2=AB22. △ABC中,AC=BC,在边AB上截取AD=AC,连接CD,若点D恰好是线段AB的一个黄金分割点,则∠A的度数是()A.22.5∘B.30∘C.36∘D.45∘3. 已知,点P是线段AB的黄金分割点(AP>PB),若线段AB=2cm,则线段AP的长是()cm B.(√5−1)cm C.(3−√5)cm D.(2−√5)cmA.√5−124. 如图,在△ABC中,AB=AC,∠A=36∘,CD平分∠ACB交AB于点D,若CA=4,则CB的长是()A.2√5+2B.√5+1C.√5−1D.2√5−25. 爱美之心人皆有之,特别是很多女士,穿上高跟鞋后往往会有很好的效果,事实上,当人体的下半身长度与身高的比值接近0.618时,会给人以美感,某女士身高165cm,下半身长与身高的比值是0.60,为了尽可能达到好的效果,她应穿的高跟鞋的高度大约为()A.4cmB.6cmC.8cmD.10cm6. 如图,P是线段AB的黄金分割点(PB>PA),四边形ABCD、四边形PBEF都是正方形,且面积分别为S1、S2,四边形APMD、四边形APFN都是矩形,且面积分别为S3、S4,下列说法正确的是()A.s2=√5−12s1 B.s2=s3 C.s3=√5−12s4 D.s4=√5−127. 美术专家认为:如果人的下身长与自己的身高之比是黄金分割数(√5−12≈0.618),那么就非常美丽,已知一个女孩身高为155cm,下半身为94cm,请你们替她选一个高度最理想的高跟鞋,则高度应为()A.2∼3cmB.3∼4cmC.4∼5cmD.5∼6cm8. 如图,在△ABC中,AB=AC=1,∠A=36∘,BD平分∠ABC,则BC的长为()A.1 2B.−1+√52C.1−√52D.−1+√52二、填空题(本题共计10 小题,每题3 分,共计30分,)9. 已知点P是线段AB上的黄金分割点,AP>PB,AB=4厘米,则线段AP=________厘米.10. 我们知道,下身长与身高的比等于黄金数的人身材比较协调.某女士身高1.50米,其下身长90厘米,则她应该穿________厘米高的高跟鞋比较合适(精确到1厘米).11. 点C是线段AB上的一个黄金分割点,且AC>BC,若AB=5cm,则AC=________cm,BC=________cm.12. 已知线段AB的长度为2,点C为线段AB上的黄金分割点(AC>BC),则AC的长度为________.13. 为了美观起见,通常把一本书的宽与长之比设计成黄金比.已知这本书的宽为15cm,则它的长为________cm(精确到0.1cm).14. 已知线段AB=4厘米,点P是线段AB的黄金分割点(AP>BP),那么线段AP=________厘米.(结果保留根号)15. 如果点P是线段AB的黄金分割点,且AP>PB,已知AB=4,则AP=________(结果保留根号).16. 已知线段AB=4dm,点C是线段AB上一点,AC>BC,若C点是线段AB的黄金分割点,则AC=________dm.(保留根号)17. 科学研究表明,当人的下肢长与身高之比成0.618时,看起来最美,某成年女士身高为160cm,下肢长96cm,该女士穿的高跟鞋鞋跟的最佳高度应约为________cm(精确到0.1cm)18. 在人体躯干和身高的比例上,肚脐是理想的黄金分割点,即比例越接近0.618越给人以美感.张女士的身高为1.60米,身体躯干(脚底到肚脐的高度)与身高的比为0.60,那么她应选择约________厘米的高跟鞋看起来更美.(精确到十分位)三、解答题(本题共计6 小题,共计60分,)19. 已知M是线段AB的黄金分割点,且AM>BM.(1)写出AB、AM、BM之间的比例式;(2)若AB=12cm,求AM与BM的长.20. 已知线段AB=a,点C为AB的黄金分割点,求AC的长.21. 中国民间乐器二胡的“千斤钩”钩在弦长的黄金分割点处音质最好,一把二胡的弦长为68cm,求“千金钩”上、下两部分弦长.22. 一般认为,如果一个人的肚脐以上的高度与肚脐以下的高度符合黄金分割,则这个人好看.如图,是一个参加空姐选拔活动的选手情况,那么她应该穿多高的鞋子好看?,√5≈2.236)(精确到1cm)(参考数据:黄金分割数:√5−1223. 已知线段AB,按照如下的方法作图:以AB为边作正方形ABCD,取AD的中点E,连接EB,延长DA到F,使EF=EB,以线段AF为边,作正方形AFGH,那么点H是线段AB的黄金分割点吗?请说明理由.24. 电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体.如图,若舞台AB长为20米,主持人现站在A处,请问主持人应走到离A点至少多少米处才最自然得体?(结果精确到0.1米)参考答案一、选择题(本题共计8 小题,每题 3 分,共计24分)1.【答案】C【解答】∵ P为线段AB的黄金分割点,且AP<PB,∵ PB2=AP⋅AB.2.【答案】C【解答】解:∵ 点D是线段AB的一个黄金分割点,∵ AD2=BD⋅AB,∵ AD=AC=BC,∵ BC2=BD⋅AB,即BC:BD=AB:BC,而∠ABC=∠CBD,∵ △BCD∽△BAC,∵ ∠A=∠BCD,设∠A=x,则∠B=x,∠BCD=x,∵ ∠ADC=∠BCD+∠B=2x,而AC=AD,∵ ∠ACD=∠ADC=2x,∵ x+2x+x+x=180∘,解得x=36∘,即∠A=36∘.故选:C.3.【答案】B【解答】解:由于P为线段AB=8cm的黄金分割点,且AP是较长线段;=√5−1.则AP=2×√5−12故选B.4.【答案】D【解答】解:∵ △ABC中,AB=AC,∠A=36∘,∵ △ABC是黄金三角形,∵ BC=√5−12AC=2√5−2,故选:D.5.【答案】C【解答】解:根据已知条件得下半身长是160×0.6=96cm,设需要穿的高跟鞋是ycm,则根据黄金分割的定义得:96+y160+y=0.618,解得:y≈8cm.故选C.6.【答案】B【解答】解:根据黄金分割得出:PB=√5−12AB,设AB=x,PB=√5−12x,PA=(1−√5−12)x,∵ S1=x2,S2=√5−12x⋅√5−12x,S3=(1−√5−12)x⋅x,S4=(1−√5−12)x⋅√5−12x,∵ S1S2=3−√5,故A错误;S2S3=1,即S2=S3,故B正确;S3 S4=√52√5−4,故C错误;S4S1=√5−2,故D错误;故选B.7.【答案】C【解答】解:设高跟鞋的高度是xcm ,则 94+x 155+x =0.618,解得:x ≈4.69,即高跟鞋的高度应为4∼5cm .故选C .8.【答案】B【解答】解:∵ AB =AC ,∠A =36∘,∵ ∠ABC =∠ACB =12×(180∘−36∘)=72∘,∵ BD 平分∠ABC ,∵ ∠ABD =∠CBD =12×72∘=36∘, ∵ ∠A =∠ABD ,∵ AD =BD ,又∵ ∠ACB =∠BCD ,∵ △ABC ∽△BCD ,∵ BC CD =AC BC ,设BC =x ,则x 1−x =1x , 整理得,x 2+x −1=0,解得x 1=−1+√52,x 2=−1−√52(舍去), 即BC 的长为−1+√52. 故选B .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )9.【答案】 2√5−2【解答】解:由于P 为线段AB =4厘米的黄金分割点,且AP 是较长线段;则AP =4×√5−12=2√5−2(厘米).故答案为:2√5−2.10.【答案】7【解答】答:设高跟鞋鞋跟的高度为x ,根据题意列方程得:(90+x)÷(150+x)≈0.618,解得x ≈7.故答案为:7.11.【答案】5√5−52,15−5√52 【解答】解:∵ C 为线段AB 上的一个的黄金分割点,且AC >BC ,∵ AC =√5−12AB ,BC =AB −AC =3−√52AB ,∵ AB =5cm ,∵ AC =√5−12×5=5√5−52(cm),BC =3−√52×5=15−5√52(cm). 故答案为:5√5−52,15−5√52. 12.【答案】 √5−1【解答】∵ C 为线段AB 上的黄金分割点,AC >BC ,∵ AC =√5−12AB =√5−1, 13.【答案】24.3【解答】解:根据题意得这本书的长=√5−12≈150.618≈24.3(cm).故答案为24.3.14.【答案】2√5−2【解答】∵ 点P 是线段AB 的黄金分割点,AP >BP ,AB=2√5−2,∵ AP=√5−1215.【答案】6−2√5【解答】解:∵ 点P是线段AB的黄金分割点,且AP>PB,AB=4,=6−2√5,∵ AP=4×3−√52故答案为:6−2√5.16.【答案】(2√5−2)【解答】解:由于C为线段AB=4dm的黄金分割点,且AC>BC,AC为较长线段;=2√5−2(dm).则AC=4×√5−12故答案为:(2√5−2).17.【答案】7.5【解答】解:设该女士穿的鞋跟高度约为xcm,由题意得(96+x):(160+x)=0.618,解得x≈7.5.故答案为:7.5.18.【答案】7.5【解答】解:设应选择xcm的高跟鞋,∵ 张女士的身高为1.60米,身体躯干(脚底到肚脐的高度)与身高的比为0.60,∵ 其身高为1.60米=160厘米,身体躯干高为160×0.60=96厘米,≈0.618,则有96+x160+x解得:x≈7.5.故本题答案为:7.5.三、解答题(本题共计6 小题,每题10 分,共计60分)19.【答案】解:(1)∵ M是线段AB的黄金分割点,且AM>BM,∵ AM:AB=BM:AM,∵ AM2=BM⋅AB;(2)AM=√5−12AB=√5−12×12=6√5−6,BM=AB−AM=12−6√5+6=18−6√5.【解答】解:(1)∵ M是线段AB的黄金分割点,且AM>BM,∵ AM:AB=BM:AM,∵ AM2=BM⋅AB;(2)AM=√5−12AB=√5−12×12=6√5−6,BM=AB−AM=12−6√5+6=18−6√5.20.【答案】解:根据题意得当AC为较长线段时,AC=√5−12AB=√5−12a;当AC为较短线段时,AC=AB−√5−12AB=3−√52a.【解答】解:根据题意得当AC为较长线段时,AC=√5−12AB=√5−12a;当AC为较短线段时,AC=AB−√5−12AB=3−√52a.21.【答案】解:“千金钩”上部分弦长=68×√5−12=34√5−34cm,下两部分弦长=68−(34√5−34)=102−34√5cm.【解答】解:“千金钩”上部分弦长=68×√5−12=34√5−34cm,下两部分弦长=68−(34√5−34)=102−34√5cm.22.【答案】她应该穿约10cm高的鞋好看【解答】设她应该穿xcm的鞋子,依题意得:65 95+x =√5−12,解得x≈10,经检验,x≈10是原方程的解.23.【答案】解:设正方形ABCD的边长为2a,在Rt△AEB中,依题意,得AE=a,AB=2a,由勾股定理知EB=√AB2+AE2=√5a,∵ AH=AF=EF−AE=EB−AE=(√5−1)a,HB=AB−AH=(3−√5)a;∵ AH2=(6−2√5)a2,AB⋅HB=2a×(3−√5)a=(6−2√5)a2,∵ AH2=AB⋅HB,所以点H是线段AB的黄金分割点.【解答】解:设正方形ABCD的边长为2a,在Rt△AEB中,依题意,得AE=a,AB=2a,由勾股定理知EB=√AB2+AE2=√5a,∵ AH=AF=EF−AE=EB−AE=(√5−1)a,HB=AB−AH=(3−√5)a;∵ AH2=(6−2√5)a2,AB⋅HB=2a×(3−√5)a=(6−2√5)a2,∵ AH2=AB⋅HB,所以点H是线段AB的黄金分割点.24.【答案】主持人应走到离A点至少7.6米处才最自然得体.【解答】解:根据黄金比得:20×(1−0.618)≈7.6米,∵ 黄金分割点有2个,∵ 20−7.6=12.4,由于7.6<12.4米。

北师大版九年级数学上册《黄金分割》 同步测试题(含答案)

北师大版九年级数学上册《黄金分割》 同步测试题(含答案)

北师大版九年级数学上册第四章4.4.4黄金分割 同步测试题一、选择题1.已知点C 把线段AB 分成两条线段AC ,BC ,下列说法错误的是( )A .如果AC AB =BCAC ,那么线段AB 被点C 黄金分割B .如果AC 2=AB ·BC ,那么线段AB 被点C 黄金分割C .如果线段AB 被点C 黄金分割,那么AC 与AB 的比叫做黄金比D .一条线段有两个黄金分割点2.已知点C 是线段AB 的黄金分割点,且AC >BC ,则下列各式中正确的是( )A .AB 2=AC ·BC B .BC 2=AC ·AB C .AC 2=BC ·ABD .AC 2=2AB ·BC3.已知AB =2 cm ,C 为AB 上的黄金分割点,且AC >BC ,则AC 的值为( )A .(5-1)cmB .0.618 cmC .(3-5)cmD.3-52cm4.若点C 是线段AB 的黄金分割点,且AC >BC ,则下列说法正确的有( )①AB =5+12AC ;②AC =3-52AB ;③AB ∶AC =AC ∶BC ;④AC ≈0.618AB. A .1个B .2个C .3个D .4个5.我们把宽与长的比值等于黄金比5-12的矩形称为黄金矩形.如图,在黄金矩形ABCD(AB >BC)的边AB 上取一点E ,使得BE =BC ,连接DE ,则AEAD等于( )A.22B.5-12C.3-52D.5+12二、填空题6.已知线段AB,点P是它的黄金分割点,AP>BP,设以AP为边的正方形的面积为S1,以PB,AB为边的矩形的面积为S1与S2的关系是S1=S2.7.相邻两边长的比值是黄金分割数的矩形,叫做黄金矩形,从外形看,它最具美感.现在想要制作一张“黄金矩形”的贺年卡,如果较长的一条边长等于20 cm,那么相邻一条边的边长等于(105-10)cm.8.已知线段AB=4 cm,C为AB的黄金分割点,则AC的长为(25-2)cm或(6-25)cm.9.宽与长的比是5-12(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:如图,作正方形ABCD,分别取AD,BC的中点E,F,连接EF;以点F为圆心,FD的长为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H,则图中是黄金矩形的是矩形DCGH.10.如图,△ABC是顶角为36°的等腰三角形,若△ABC,△BDC,△DEC都是黄金三角形(底与腰的比为5-12的三角形是黄金三角形).已知AB=4,则DE=6-25.11.乐器上一根弦AB长80 cm,两个端点A,B固定在乐器板上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,则CD的长为(805-160)cm.9.如图,连接正五边形ABCDE的各条对角线围成一个新的五边形MNPQR.图中有很多顶角为36°的等腰三角形,我们把这种三角形称为“黄金三角形”,黄金三角形的底与腰之比为5-1 2.若AB=5-12,则MN=5-2.三、解答题12.如图,正方形ABCD的边长为2,点E是BC的中点,点F在BC的延长线上,且EF=DE,以CF为边作正方形CFGH,点H在CD边上.试说明点H是线段CD的黄金分割点.13.如图,以长为2 cm的线段AB为边作正方形ABCD,取AB的中点P,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AFEM,点M落在AD上.(1)试求AM,DM的长;(2)点M是线段AD的黄金分割点吗?请说明理由.14.如图,在△ABC中,AC=BC,在边AB上截取AD=AC,连接CD,若点D恰好是线段AB 的一个黄金分割点,且有AD>BD,求∠A的度数.15.如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点D,交AB于点E.若AE=BC,则点E是线段AB的黄金分割点吗?说明你的理由.参考答案1-5、CCACB6、S1=S2.7、(105-10)cm.8、(25-2)cm或(6-25)cm.9、矩形DCGH.10、6-25.11、5-2.12、解:∵点E是BC的中点,∴EC=1.∴EF=DE=22+12= 5. ∴CF=5-1.∵四边形CFGH是正方形,∴CH=CF=5-1.∴CHCD=5-12.∴点H是线段CD的黄金分割点.13、解:(1)在Rt△APD中,AP=1 cm,AD=2 cm,由勾股定理,得PD=AD2+AP2= 5 cm.∴AM=AF=PF-AP=PD-AP=(5-1)cm.∴DM=AD-AM=(3-5)cm.(2)点M是线段AD的黄金分割点,理由如下:∵AM2=(5-1)2=6-25,AD·DM=2×(3-5)=6-25,∴AM2=AD·DM.∴点M是线段AD的黄金分割点.14、解:∵点D是线段AB的一个黄金分割点,且AD>BD,∴AD2=BD·AB.∵AD=AC=BC,∴BC2=BD·AB,即BC∶BD=AB∶BC.∵∠CBD=∠ABC,∴△BCD∽△BAC.∴∠A=∠BCD.设∠A=x,则∠B=x,∠BCD=x,∴∠ADC=∠BCD+∠B=2x.∵AC=AD,∴∠ACD=∠ADC=2x.在△ABC中,x+(2x+x)+x=180°,解得x=36°,∴∠A=36°.15、解:点E是线段AB的黄金分割点.理由如下:连接EC.∵DE是AC的垂直平分线,∴EA=EC.又∵AE=BC,∴EC=BC.∴∠BEC=∠B.∵AB=AC,∴∠ACB=∠B.∴∠BEC=∠ACB.又∵∠B=∠B,∴△CEB∽△ACB.∴BEBC=BCAB,即BC2=BE·AB,又∵AE=BC,∴AE2=BE·AB.∴点E是线段AB的黄金分割点1、在最软入的时候,你会想起谁。

4.2 黄金分割 同步练习及答案

4.2 黄金分割 同步练习及答案

4.2 黄金分割 同步练习◆基础训练一、选择题1.若3a=4b ,则(a-b ):(a+b )的值是( ).A .17B .C .-17D .-7 2.已知P 是线段AB 上一点,且AP :PB=2:5,则AB :PB 等于( ).A .7:5B .5:2C .2:7D .5:73.已知线段AB ,点P 是它的黄金分割点,AP>BP ,设以AP 为边的正方形的面积为S 1,•以PB 、AB 为边的矩形面积为S 2,则S 1与S 2的关系是( ).A .S 1>S 2B .S 1<S 2C .S 1=S 2D .S 1≥S 2二、填空题4.若点C 是线段AB 的黄金分割点且AC>BC ,则______,AB BC AC AB==_______. 5.等边△ABC 中,AD ⊥BC ,AB=4,则高AD 与边长AB 的比是______.三、解答题6.求下列各式中的x :(1)7:4=11:x ; (2)2:3=(5-x ):x .7.已知a b =112,a c c b a b c-+=-求证:.◆能力提高一、填空题8.在线段AB上取一点P,使AP:PB=1:3,则AP:AB=______,BC:PB=______.9.如图,已知3,(1)2AB AC BC CEAD AE DE AE===则:=______,(2)若BD=10cm,则AD=______;(3)若△ADE的周长为16cm,则△ABC的周长为_______.二、解答题10.已知两数4和8,试写出第三个数,使这三个数中,其中一个数是其余两个数的比例中项,那么第三个数是多少?11.在相同时刻的物高和影长成比例.已知上午9点时,高为1.5m的测杆的影长为2.5m,此时一古塔在地面的影长是50m,求古塔的高.如果上午10点时,1.5m•高的测杆的影长为2m,中午12点时,1.5m高的测杆的影长为1m,求古塔的影长是20m的时刻.◆拓展训练12.用厘米作为长度单位量一下几何作业本,求出长与宽的比.•如果你来设计作业本的大小,你能利用所学的知识设计一种既美观又实用的“黄金作业本”吗?答案:1.A 2.A 3.C 4.1344,2 6.(1)227(2)x=3 7.由已知得ac-ab=ab-bc ,∴ac+bc=2ab ,∴2112a b ab c a b c+=+=即. 8.1:4,4:3 9.(1)52 (2)4cm (3)24cm10.2或16或±.30m ,中午12点 12.略.。

探索三角形相似的条件4.4.4+黄金分割+同步练习+2024-2025学年北师大版九年级数学上册

探索三角形相似的条件4.4.4+黄金分割+同步练习+2024-2025学年北师大版九年级数学上册

4.4 探索三角形相似的条件课时4 黄金分割题型1 黄金分割的定义1、已知P为线段AB的黄金分割点,且AP<PB,则()A.AP2=AB∙PBB.AP2=AB∙PBC.PB2=AP∙ABD.AP2+ BP2=AB22、如果C是线段AB的黄金分割点,并且AC>CB,AB=1,那么AC的长度为()A.23 B.12C.√5−12D.3−√523、已知点C是线段AB的黄金分割点,且AB=6cm,则BC的长为( )A.(3√5−3)cmB.(9−3√5)cmC.(3√5−3)cm或(9−3√5)cmD. (9−3√5)cm或(6√5−6)cm4、宽与长的比是√5−12(约0.618)的矩形叫黄金矩形,矩形的长与宽分别为a和b,下列数据能构成黄金矩形的是( )A.a=4,b=√5+2B.a=4,b=√5−2C.a=2,b=√5+1D.a=2,b=√5−15、定义:如图1,点C在线段AB上,若满足AC2=BC⋅AB,则称点C为线段AB的黄金分割点。

如图2,在△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长。

题型2 黄金分割的应用6、主持人主持节目时,站在舞台的黄金分割点处最自然得体。

如图所示,如果舞台AB的长为12米,一名主持人现在站在A处,则她要到达最理想的位置至少走( )A.(18−6√5)米B.(6√5−6)米C. (6√5+6)米D. (18−6√5)米或(6√5−6)米7、某种乐器的弦AB长为120cm,点A、B固定在乐器面板上,弦AB之间有一个支撑点C,且点C是AB的黄金分割点(AC>BC),则AC的长为( )A.(120−30√5)cmB.(160−60√5)cmC.(60√5−120)cmD.(60√5−60)cm8、宽与长的比是√5−1(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调2和匀称的美感。

【北师大版】数学九(上).4黄金分割同步练习本(课件版)

【北师大版】数学九(上).4黄金分割同步练习本(课件版)
第二步:分别取 AD,BC 的中点 M,N,连接 MN;
第三步:以点 N 为圆心,ND 长为半径画弧,交 BC 的延长
线于点 E;
第四步:过点 E 作 EF ⊥ AD,交 AD 的延长线于点 F.
请你根据以上作法,证明矩形 DCEF 为黄金矩形.
证明:在正方形 ABCD 中,取 AB = 2a.
1
的结论. (不需要证明)
解:(1)如图所示:
解:(2)四边形 EBCF 是黄金矩形. 理由如下:
∵四边形 AEFD 是正方形,∴∠AEF = 90°.
∴∠BEF = 90°.
∵四边形 ABCD 是矩形,∴∠B = ∠C = 90°.
∴∠BEF = ∠B = ∠C = 90°.
∴四边形 EBCF 是矩形.

(3)设 = k,试求 k 的值.
解:(1)如图,BD 即为所求.
解:(2)△BCD 是黄金三角形. 证明如下:
∵点 D 在 AB 的垂直平分线上,∴AD = BD.
∴∠ABD = ∠A.
∵∠A = 36°,AB = AC,
∴∠ABC = ∠C = 72°.
∴∠ABD = ∠DBC = 36°.
∵∠BDC = ∠A + ∠ABD = 72°,
∴∠BDC = ∠C.
∴BD = BC. ∴△BCD 是黄金三角形.
解:(3)设 BC = x,AC = y,由(2)知,
AD = BD = BC = x.
∵∠DBC = ∠A,∠C = ∠C,
∴△BDC ∽ △ABC.
BC
∴AC =
DC
x
,即y =
结果精确到 0.001 m)
解:设维纳斯女神雕像下部的设计高度为 x m,

北师大版九年级上册数学《黄金分割》同步练习(含答案)

北师大版九年级上册数学《黄金分割》同步练习(含答案)

黄金分割一 、选择题1.生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a 与全身b 的高度比值接近0.618,可以增加视觉美感.若图中b 为2米,则a 约为( )A .1.24米B .1.38米C .1.42米D .1.62米二 、填空题2.如图所示,乐器上的一根弦80AB cm =,两个端点A B ,固定在乐器面板上,支撑点C 是靠近点B 的黄金分割点(即AC 是AB 与BC 的比例中项),支撑点D 是靠近点A 的黄金分割点,则AC = cm ,DC = cm .3.如图所示,在黄金分割矩形ABCD AB BC ⎛=⎝⎭中,分出一个正方形ABFE ,则FC CD= .三 、解答题4.如图所示,以长为2的定线段AB 为边作正方形ABCD ,取AB 的中点P ,连接PD ,在BA 的延长线上取点F F ,使PF PD =,以AF 为边作正方形AMEF ,点M 在AD 上.(1)求,AM DM 的长;(2)点M 是AD 的黄金分割点吗?为什么?C D F E DB A C6.E 为平行四边形ABCD 的边AD 延长线上的一点,且D 为AE 的黄金分割点,即AD AE =,BE 交DC 于F .已知1AB =,求CF 的长. 黄金分割答案解析一 、选择题1.A;解:∵雕像的腰部以下a 与全身b 的高度比值接近0.618,∴≈0.618,∵b 为2米,∴a 约为1.24米.二 、填空题2.40;点C 是靠近点B 的黄金分割点,∴:AC AB =,即8040AC AB ==,又∵点D 是靠近点A 的黄金分割点,∴40BD =,∴8080160DC AC BD AB =+-=-=AB AC =BC AB =.∴BC AB AB -=. ∵BC AB BC BF FC -=-=,AB CD =∴12FC CD =. FE D C BA 160三 、解答题4.1,3AM DM ==M 是AD 的黄金分割点.(1)在Rt APD △中,1,2AP AD ==,由勾股定理知:PD∴1AM AF PF AP PD AP ==-=-=,3DM AD AM =-=故1,3AM DM =(2)点M 是AD 的黄金分割点.由于AM DM AD AM ∴点M 是AD 的黄金分割点.【解析】(1)要求AM 的长,只需求得AF 的长,又AF PF AP =-,PF PD =1,3AM AF DM AD ===(2)根据(1)中的数据得:,AM DM AD AM =,根据黄金分割点的概念,则点M 是AD 的黄金分割点.5.∵四边形ABCD 为平行四边形,∴,CBF AEB BCF BAE ∠-∠∠-∠∴BCF EAB △∽△ ∴BC AE CF BA =,即AD CF AE AB =2CF =. 【解析】根据平行四边形的性质得出,CBF AEB BCF BAE ∠-∠∠-∠,从而得出BCF EAB △∽△,根据相似三角形比例关系即可得出答案.6.∵AD AE =,∴DE AE又∵DC AB ∥,∴DE DF AE AB =,1AB =∴4DF =∴3CF =。

苏科版九年级数学下册 6.2 黄金分割 同步测试题(有答案)

苏科版九年级数学下册 6.2  黄金分割  同步测试题(有答案)

6.2 黄金分割同步测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 已知P是线段AB的黄金分割点,且AP>PB,AB=10,则AP长约为()A.0.618B.6.18C.3.82D.0.3822. △ABC中,AC=BC,在边AB上截取AD=AC,连接CD,若点D恰好是线段AB的一个黄金分割点,则∠A的度数是()A.22.5∘B.30∘C.36∘D.45∘3. 如果点C为线段AB的黄金分割点,且AC>BC,则下列各式不正确的是()A.AB:AC=AC:BCB.AC=√5−12ABC.AB=√5+12AC D.BC≈0.618AB4. 如图,△ABC中,AB=AC,∠A=36∘,CD是∠ACB的平分线,则△DBC的面积与△ADC的面积的比值是()A.√5−12B.√5+12C.3−√52D.3+√525. 把2米长的线段进行黄金分割,则分成的较长线段的长为()A.−1+√5B.3−√5C.3+√5D.1+√56. 现已知线段AB=10,点P是线段AB的黄金分割点,PA>PB,那么线段PA的长约为()A.6.18B.0.382C.0.618D.3.287. 已知点P是线段AB的黄金分割点,AP>PB,若AB=2,则PB=()A.√5−12B.√5+12C.3−√5D.√5−18. 已知点P是线段AB的黄金分割点,且AP>PB,则下列各式的值不等于√5−12的是()A.AP ABB.PBAPC.PBABD.√PBAB9. 顶角为36∘的等腰三角形称为黄金三角形,如图,五边形ABCDE的5条边相等,5个内角相等,则图中共有黄金三角形的个数是()A.25B.10C.15D.2010. 如图所示,顶角为36∘的等腰三角形,其底边与腰之比等于k,这样的三角形叫做黄金三角形.已知AB=1,△ABC为第一个黄金三角形,△BCD为第二个黄金三角形,△CDE为第三个黄金三角形,以此类推,第2014个黄金三角形的周长为()A.k2012B.k2013C.k2013(2+k)D.k20132+k二、填空题(本题共计10 小题,每题3 分,共计30分,)11. C是长为10cm的线段AB的黄金分割点(AC>BC),则AC=________.12. 如图,△ABC中,D是AB的黄金分割点(AD<BD),过点D作DE // BC交AC于E,若BC=3+√5,则DE=________.13. 美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.李老师身高165厘米,下半身长与身高的比值是0.6,为了尽可能达到好的效果,她应穿的高跟鞋的高度大约为________(结果精确到0.1).14. 美是一种感觉,一矩形的长为6cm,宽为3cm,当矩形的宽与长的比值是黄金比值时,这样的矩形给人一种美感.试问长不变,宽增加________cm时,给人的美感效果最佳.15. 有些植物茎上,相邻两张叶子成137∘28′的角,这种角度使植物通风和采光的效果最佳,这一度数与________∘角成黄金比例.16. 要使点B是线段AC的黄金分割点(AB>BC),那么线段AB、BC、AC应满足的数量关系是________.17. 若点P是AB的黄金分割点(AP<BP),则线段AP、BP、AB满足关系式________.18. 如果点P是线段AB的黄金分割点,且AP<PB,那么PB的值为________.PA19. 已知线段AB,点C是靠近B点的AB的黄金分割点.点G是靠近点A的黄金分割点,则AG=________.BC20. 报幕员在台上时,若站在黄金分割点处,会显得活泼而生动,已知舞台长10米,那么报幕员要至少走________米报幕.三、解答题(本题共计6 小题,共计60分,)21. 如图,在五角星图形中,AD=BC,C,D两点都是AB的黄金分割点,AB=1,求CD的长.22.(1)已知线段AB的长为2,P是AB的黄金分割点,求AP的长;(2)求作线段AB的黄金分割点P,要求尺规作图,且使AP>PB.23. 在△ABC中,D为BC边上一点,过点D作DE//AB交AC与点E,连接BE.若BE= CD,∠C=∠ABE.(1)点D是线段BC的黄金分割点吗?请说明你的理由;(2)已知BC=1,计算黄金比.24. 如图,在线段AB上有一点C,若AC:CB=CB:AB,则称点C为AB的黄金分割点,现已知AB=1,点C是线段AB的黄金分割点(AC<BC),求BC的长.25. 在△ABC中,AB=AC,∠A=36∘,把像这样的三角形叫做黄金三角形.(1)请你设计三种不同的分法,将黄金三角形ABC分割成三个等腰三角形,使得分割成的三角形中含有两个黄金三角形(画图工具不限,要求画出分割线段;标出能够说明不同分法所得三角形的内角度数,不要求写画法,不要求证明.分别画在图1,图2,图3中)注:两种分法只要有一条分割线段位置不同,就认为是两种不同的分法.(2)如图4中,BF平分∠ABC交AC于F,取AB的中点E,连接EF并延长交BC的延长线于M.试判断CM与AB之间的数量关系?只需说明结果,不用证明.答:CM与AB之间的数量关系是________.26. 如图,AB是⊙O的直径,点C在⊙O上,∠BOC=108∘,过点C作直线CD分别交直线AB,OD=2.AB和⊙O于点D、E,连接OE,DE=12(1)求∠CDB的度数;(2)我们把有一个内角等于36∘的等腰三角形称为黄金三角形.它的腰长与底边长的比.(或者底边长与腰长的比)等于黄金分割比√5−12①写出图中所有的黄金三角形,选一个说明理由;②求弦CE的长;③在直线AB或CD上是否存在点P(点C、D除外),使△POE是黄金三角形?若存在,画出点P,简要说明画出点P的方法(不要求证明);若不存在,说明理由.参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】B【解答】解:由于P为线段AB=10的黄金分割点,且AP是较长线段;则AP=√5−12AB≈0.618AB=0.618×10=6.18.故选B.2.【答案】C【解答】解:∵ 点D是线段AB的一个黄金分割点,∵ AD2=BD⋅AB,∵ AD=AC=BC,∵ BC2=BD⋅AB,即BC:BD=AB:BC,而∠ABC=∠CBD,∵ △BCD∽△BAC,∵ ∠A=∠BCD,设∠A=x,则∠B=x,∠BCD=x,∵ ∠ADC=∠BCD+∠B=2x,而AC=AD,∵ ∠ACD=∠ADC=2x,∵ x+2x+x+x=180∘,解得x=36∘,即∠A=36∘.故选:C.3.【答案】D【解答】解:∵ AC>BC,∵ AC是较长的线段,根据黄金分割的定义可知:AB:AC=AC:BC,AC=√5−12AB,AB=√5+12AC,AC≈0.618AB.故选D.【答案】A【解答】解:设AB=x,BC=y.∵ △ABC中,AB=AC,∠A=36∘,∵ ∠ABC=∠ACB=72∘.∵ CD是角平分线,∵ ∠BCD=∠ACD=36∘.∵ AD=CD=BC=y,∵ BD=x−y.∵ ∠BCD=∠A=36∘,∠B=∠ACB=72∘,∵ △DBC∽△ABC.∵ ABBC =BCBD,即xy =yx−y,x2−xy−y2=0,x=1±√52y(负值舍去).则yx =√5−12.∵ △DBC与△ADC底边分别为BD,AD时,高度相等,∵ △DBC的面积与△ADC的面积的比值是:ADBD =yx=√5−12.故选:A.5.【答案】A【解答】把2米长的线段进行黄金分割,分成的较长线段的长=√5−12×2=√5−1,【答案】A【解答】解:∵ 点P是线段AB的黄金分割点,∵ PA=0.618AB=6.18.故选:A.7.【答案】C【解答】解:当AP>BP时,AP=√5−12×2=√5−1,PB=2−(√5−1)=3−√5,故选C.8.【答案】C【解答】解:∵ 点P是线段AB的黄金分割点,且AP>PB,∵ AP=√5−12AB,设AB=2,则AP=√5−1,BP=2−(√5−1)=3−√5,∵ APAB =√5−12;PB AP =√5√5−1=√5−12;PB AB =3−√52≠√5−12;√PB AB =√3−√52=√5−12.故选C.9.【答案】D【解答】解:根据题意,得图中的黄金三角形有△BMN、△CNF、△DFG、△EHG、△AMH、△ABN、△CBM、△CDG、△EDF、△AGE、△ACD、△BDE、△CEA、△DBA、△EBC,△NCD,△HDE,△AME,△ABH,△BCF,共20个.故选D10.【答案】C【解答】解:∵ AB=AC=1,∵ △ABC的周长为2+k;△BCD的周长为k+k+k2=k(2+k);△CDE的周长为k2+k2+k3=k2(2+k);依此类推,第2014个黄金三角形的周长为k2013(2+k);故选:C.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】(5√5−5)cm【解答】解:∵ 点C是线段AB的黄金分割点(AC>BC),∵ AC=√5−12AB,∵ AB=10cm,∵ AC=(5√5−5)cm.故答案为:(5√5−5)cm.12.【答案】2【解答】解:∵ DE // BC,∵ △ADE∽△ABC,∵ DEBC =ADAB,∵ D是AB的黄金分割点(AD<BD),∵ BD=√5−12AB,∵ AD=AB−√5−12AB=3−√52AB,∵3+√5=3−√52,∵ DE=2.故答案为2.13.【答案】7.8cm 【解答】解:根据已知条件得下半身长是165×0.6=99cm,设需要穿的高跟鞋是ycm,则根据黄金分割的定义得:99+y165+y=0.618,解得:y≈7.8.故答案为7.8cm.14.【答案】(3√5−6)【解答】解:设宽增加xcm,根据题意得x+36=√5−12,解得x=3√5−6,即长不变,宽增加(3√5−6)cm时,给人的美感效果最佳.故答案为(3√5−6).15.【答案】84.95∘或222.44【解答】解:137∘28′≈137.467∘,137.467∘×0.618=84.95∘,137.467∘÷0.618=222.44∘,所以137∘28′与84.95∘或222.44∘的角成黄金比例.故答案为84.95∘或222.44.16.【答案】AB2=BC⋅AC【解答】解:∵ 点B是线段AC的黄金分割点(AB>BC),∵ AB2=BC⋅AC.故答案为AB2=BC⋅AC.17.【答案】BP2=AB⋅AP 【解答】解:∵ 点P是AB的黄金分割点(AP<BP),∵ BP2=AB⋅AP.故答案为BP2=AB⋅AP.18.【答案】√5+12【解答】∵ 点P是线段AB的黄金分割点,且AP<PB,∵ PBPA =√5−13−√5=√5+12,19.【答案】1【解答】解:由题意得,AG=3−√52AB,BC=3−√52AB,∵ AGBC=1.故答案为:1.20.【答案】(15−5√5)【解答】解:报幕员要走的路程为:10×(1−√5−12)=15−5√5(米).故答案为:(15−5√5).三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:∵ C、D两点都是AB的黄金分割点,∵ AC=BD=√5−12AB=√5−12,∵ AD=AC−CD=√5−12−CD,∵ AD=BC,∵ BC=√5−12−CD,而AC+BC=AB,∵ √5−12+√5−12−CD=1,∵ CD=√5−2.【解答】解:∵ C、D两点都是AB的黄金分割点,∵ AC=BD=√5−12AB=√5−12,∵ AD=AC−CD=√5−12−CD,∵ AD=BC,∵ BC=√5−12−CD,而AC+BC=AB,∵ √5−12+√5−12−CD=1,∵ CD=√5−2.22.【答案】解:(1)由于P为线段AB=2的黄金分割点,则AP=2×√5−12=√5−1,或AP=2−(√5−1)=3−√5;(2)如图,点P是线段AB的一个黄金分割点.【解答】解:(1)由于P为线段AB=2的黄金分割点,则AP=2×√5−12=√5−1,或AP=2−(√5−1)=3−√5;(2)如图,点P是线段AB的一个黄金分割点.23.【答案】解:(1)点D是线段BC的黄金分割点.证明:∵ ∠C=∠ABE,DE//AB,∵ ∠ABE=∠DEB,∵ ∠C=∠DEB.又∠EBD=∠CBE,∵ △EBD∼△CBE.∵ BEBC =BDBE,即BE2=BC⋅BD,又BE=CD,∵ CD2=BC⋅BD∵ D为线段BC的黄金分割点;(2)由(1)知,BDBC =CDBD,即BD2=BC⋅CD,∵ BD2=BC(BC−BD),即BD2=BC2−BC⋅BD,BC2−BC⋅BD+14BD2=54BD2,BC BD =√5+12,BD=√5−12.所以黄金比为√5−12.【解答】解:(1)点D是线段BC的黄金分割点.证明:∵ ∠C=∠ABE,DE//AB,∵ ∠ABE=∠DEB,∵ ∠C=∠DEB.又∠EBD=∠CBE,∵ △EBD∼△CBE.∵ BEBC =BDBE,即BE2=BC⋅BD,又BE=CD,∵ CD2=BC⋅BD∵ D为线段BC的黄金分割点;(2)由(1)知,BDBC =CDBD,即BD2=BC⋅CD,∵ BD2=BC(BC−BD),即BD2=BC2−BC⋅BD,BC2−BC⋅BD+14BD2=54BD2,BC BD =√5+12,BD=√5−12.所以黄金比为√5−12.24.【答案】解:∵ C为线段AB=1的黄金分割点,且AC<BC,BC为较长线段,∵ BC=√5−12AB=1×√5−12=√5−12.【解答】解:∵ C为线段AB=1的黄金分割点,且AC<BC,BC为较长线段,∵ BC=√5−12AB=1×√5−12=√5−12.25.【答案】解:(1)(2)CM=AB【解答】解:(1)(2)CM=AB26.【答案】AB,解:(1)∵ AB是⊙O的直径,DE=12∵ OA=OC=OE=DE,则∠EOD=∠CDB,∠OCE=∠OEC,设∠CDB=x,则∠EOD=x,∠OCE=∠OEC=2x,又∠BOC=108∘,∵ ∠CDB+∠OCD=108∘,∵ x+2x=108,x=36∘.∵ ∠CDB=36∘.(2)①有三个:△DOE,△COE,△COD.∵ OE=DE,∠CDB=36∘,∵ △DOE是黄金三角形;∵ OC=OE,∠COE=180∘−∠OCE−∠OEC=36∘.∵ △COE是黄金三角形;∵ ∠COB=108∘,∵ ∠COD=72∘;∵ ∠OCD=∠COD.∵ OD=CD,∵ △COD是黄金三角形;②∵ △COD是黄金三角形,∵ OCOD =√5−12,∵ OD=2,∵ OC=√5−1,∵ CD=OD=2,DE=OC=√5−1,∵ CE=CD−DE=2−(√5−1)=3−√5;③存在,有三个符合条件的点P1、P2、P3,如图所示,∵以OE为底边的黄金三角形:作OE的垂直平分线分别交直线AB、CD得到点P1、P2;∵以OE为腰的黄金三角形:点P3与点A重合.【解答】解:(1)∵ AB是⊙O的直径,DE=12AB,∵ OA=OC=OE=DE,则∠EOD=∠CDB,∠OCE=∠OEC,设∠CDB=x,则∠EOD=x,∠OCE=∠OEC=2x,又∠BOC=108∘,∵ ∠CDB+∠OCD=108∘,∵ x+2x=108,x=36∘.∵ ∠CDB=36∘.(2)①有三个:△DOE,△COE,△COD.∵ OE=DE,∠CDB=36∘,∵ △DOE是黄金三角形;∵ OC=OE,∠COE=180∘−∠OCE−∠OEC=36∘.∵ △COE是黄金三角形;∵ ∠COB=108∘,∵ ∠COD=72∘;∵ ∠OCD=∠COD.∵ OD=CD,∵ △COD是黄金三角形;②∵ △COD是黄金三角形,∵ OCOD =√5−12,∵ OD=2,∵ OC=√5−1,∵ CD=OD=2,DE=OC=√5−1,∵ CE=CD−DE=2−(√5−1)=3−√5;③存在,有三个符合条件的点P1、P2、P3,如图所示,∵以OE为底边的黄金三角形:作OE的垂直平分线分别交直线AB、CD得到点P1、P2;∵以OE为腰的黄金三角形:点P3与点A重合。

苏科版初中数学九年级下册《6.2 黄金分割》同步练习卷

苏科版初中数学九年级下册《6.2 黄金分割》同步练习卷

苏科新版九年级下学期《6.2 黄金分割》同步练习卷一.选择题(共17小题)1.黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算﹣1的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间2.在欧几里得的《几何原本》中给出一个找线段的黄金分割点的方法.如图所示,以线段AB为边作正方形ABCD,取AD的中点E,连结BE,延长DA至F,使得EF=BE,以AF为边作正方形AFGH,则点H即是线段AB的黄金分割点.若记正方形AFGH的面积为S1,矩形BCIH的面积为S2,则S1与S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.不能确定3.下列说法正确的是()A.每条线段有且仅有一个黄金分割点B.黄金分割点分一条线段为两条线段,其中较长的线段约是这条线段的0.618倍C.若点C把线段AB黄金分割,则AC2=AB•BCD.以上说法都不对4.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a,最高销售限价b(b>a)以及实数x(0<x<1)确定实际销售价格c=a+x(b﹣a),这里x被称为乐观系数.经验表明,最佳乐观系数x恰好使得,据此可得,最佳乐观系数x的值等于()A.B.C.D.5.如果△ABC中,AB=AC,BC=AB,那么∠A的度数是()A.30°B.36°C.45°D.60°6.若点C是线段AB的黄金分割点,且AB=2(AC>BC),则AC等于()A.﹣1B.3﹣C.D.﹣1或3﹣7.下列说法:①关于x的一元二次方程ax2+bx+c=0,当a、c异号时,方程一定有实数根;②关于x的方程(a﹣2)x2+x+a2﹣4=0有一个根是x=0,则a=±2;③若最简二次根式与是同类二次根式,则x=﹣4或1;④数4和9的比例中项是6;⑤若点C是线段AB的黄金分割点,且AB=10,则AC=5﹣5.其中正确的说法的个数是()A.0个B.1个C.2个D.3个8.如图,点B在线段AC上,且,设AC=2,则AB的长为()A.B.C.D.9.如果一个矩形的宽(即短边)与长(即长边)之比是,那么这个矩形称为黄金矩形.如图,矩形ABCD是黄金矩形,点E、F、G、H分别为线段AD、BC、AB、EF的中点,则图中黄金矩形的个数是()A.5个B.4个C.3个D.2个10.点C为线段AB的黄金分割点,且AC>BC,下列说法正确的有()①AC=AB,②AC=AB,③AB:AC=AC:BC,④AC≈0.618ABA.1个B.2个C.3个D.4个11.如图,在△ABC中,∠A=36°,AC=AB=2,将△ABC绕点B逆时针方向旋转得到△DBE,使点E在边AC上,DE交AB于点F,则△AFE与△DBF 的面积之比等于()A.B.C.D.12.一本书的宽与长之比为黄金比,书的宽为14cm,则它的长为()A.(7+7)cm B.(21﹣7)cm C.(7﹣7)cm D.(7﹣21)cm 13.已知点P是线段AB的黄金分割点,且AP>PB,则有()A.AB2=AP•PB B.AP2=BP•ABC.BP2=AP•AB D.AP•AB=PB•AP14.若线段AB=cm,C是线段AB的一个黄金分割点,则线段AC的长()A.B.C.或D.或15.如图,已知点P是线段AB的黄金分割点,且P A>PB,若S1表示以P A为边的正方形的面积,S2表示以PD,PB为边的矩形的面积,且PD=AB,则S1与S2的关系是()A.S1>S2B.S1=S2C.S1<S2D.无法确定16.已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC•BC B.BC2=AC•BC C.AC=BC D.BC=AC 17.如图,已知点C是线段AB的黄金分割点,且BC>AC.若S1表示以BC为边的正方形面积,S2表示长为AB、宽为AC的矩形面积,则S1与S2的大小关系为()A.S1>S2B.S1=S2C.S1<S2D.不能确定二.填空题(共15小题)18.若一本书的宽与长之比等于黄金比,且长为30cm,则宽为cm.(结果保留根号)19.已知点P是线段AB上的一个黄金分割点,且AB=1,AP>BP,那么AP=20.把2米长的线段进行黄金分割,则分成的较长的线段长为.21.已知线段AB=1,点C是线段AB的黄金分割点(AC>BC),则AC=(精确到0.01)22.已知点P是线段AB的黄金分割点,AB=4厘米,则较短线段AP的长是厘米.23.已知点P是线段AB的黄金分割点(AP>PB),AB=6,那么AP的长是.24.从美学角度来说,人的上身长与下身长之比为黄金比时,可以给人一种协调的美感.某女老师上身长约61.8cm,下身长约94cm,她要穿约cm的高跟鞋才能达到黄金比的美感效果(精确到1cm).25.如图,若点C是AB的黄金分割点(AC>BC),AB=8,则BC的长为.26.一个诺大的舞台,当主持人站在黄金分割点处时,不仅看起开美观,而且音响效果也非常好,若舞台的长度为10米,那么,主持人到较近的一侧应为米.27.如图,在五角星中,AD=BC,且C、D两点都是AB的黄金分割点,CD=1,则AB的长是.28.如图,已知点C、D是线段AB的两个黄金分割点,若线段AB的长10厘米,则线段CD长厘米.29.设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2m,那么上部应设计为多高?设雕像的上部高x m,列方程,并化成一般形式是.30.已知线段AB=4,点P是线段AB的黄金分割点,且AP<BP,那么AP的长为.31.已知线段AB长是2厘米,P是线段AB上的一点,且满足AP2=AB•BP,那么AP长为厘米.32.已知线段MN的长是4cm,点P是线段MN的黄金分割点,则较长线段MP 的长是cm.三.解答题(共8小题)33.黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值.如图1,我们已经学过,点C将线段AB分成两部分,如果AC:AB=BC:AC,那么称点C为线段AB的黄金分割点.如图2,△ABC中,AB=AC=1,∠A =36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.34.小明同学遇到两个数学问题:问题一,一个数x加上这个数的倒数,和为1,试求这个数.问题二,一个数y减去这个数的倒数,差为1,试求这个数.(1)在探索问题一时,进行了以下操作:依题意,列出方程x+=1,化简得x2﹣x+1=0,于是小明认为这个数不存在,请帮小明证明这个数不存在.(2)在探索问题二时,进行了以下操作:依题意,列出方程y﹣=1,变形得y=1+=1+=1+=1+于是得到形如1+这样的数,我们称之为连分数.如果设一条线段AB的长度设为1,点M是这条线段的黄金分割点,设其中较短的线段的长度为z,试将z表示为连分数的形式.35.如果一个矩形的宽与长的比值为,则称这个矩形为黄金矩形,如图,将矩形ABCD剪掉一个正方形ADFE后,剩余的矩形BCFE(BC>BE)是黄金矩形,则原矩形ABCD是否为黄金矩形?请说明理由.36.已知:如图,线段AB=2,BD⊥AB于点B,且BD=AB,在DA上截取DE=DB.在AB上截取AC=AE.求证:点C是线段AB的黄金分割点.37.如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点D,交AB于点E,若AE=BC,则点E是线段AB的黄金分割点吗?说明你的理由.38.如果一个矩形的宽长之比(﹣1):2时,则称这个矩形是黄金矩形,如图所示,四边形ABCD是黄金矩形且=,将矩形ABCD剪裁掉一个正方形ADEF后,剩余的四边形BCEF是否是黄金矩形?请说明理由.39.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)求证:BC2=AC•CD;(2)求∠ABD的度数.40.在△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D (1)求证:AD2=AC•CD;(2)求线段AD的长.苏科新版九年级下学期《6.2 黄金分割》同步练习卷参考答案与试题解析一.选择题(共17小题)1.黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算﹣1的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间【分析】根据≈2.236,可得答案.【解答】解:∵≈2.236,∴﹣1≈1.236,故选:B.【点评】本题考查了估算无理数的大小,利用≈2.236是解题关键.2.在欧几里得的《几何原本》中给出一个找线段的黄金分割点的方法.如图所示,以线段AB为边作正方形ABCD,取AD的中点E,连结BE,延长DA至F,使得EF=BE,以AF为边作正方形AFGH,则点H即是线段AB的黄金分割点.若记正方形AFGH的面积为S1,矩形BCIH的面积为S2,则S1与S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.不能确定【分析】设正方形ABCD的边长为2a,根据勾股定理求出BE,求出EF,求出AF,再根据面积公式求出S1、S2即可.【解答】解:∵四边形ABCD是正方形,∴∠EAB=90°,设正方形ABCD的边长为2a,∵E为AD的中点,∴AE=a,在Rt△EAB中,由勾股定理得:BE===a,∵EF=BE,∴EF=a,∴AF=EF﹣AE=a﹣a=(﹣1)a,即AF=AH=(﹣1)a∴S1=AF×AH=(﹣1)a×(﹣1)a=6a2﹣2a2,S2=S正方形ABCD﹣S长方形ADIH=2a×2a﹣2a×(﹣1)a=6a2﹣2a2,即S1=S2,故选:C.【点评】本题考查了勾股定理和正方形的性质,能熟记正方形的性质是解此题的关键,注意:正方形的每个角都是90°,正方形的四边都相等.3.下列说法正确的是()A.每条线段有且仅有一个黄金分割点B.黄金分割点分一条线段为两条线段,其中较长的线段约是这条线段的0.618倍C.若点C把线段AB黄金分割,则AC2=AB•BCD.以上说法都不对【分析】根据黄金分割的定义分别进行解答即可.【解答】解:A、每条线段有两个黄金分割点,故本选项错误;B、黄金分割点分一条线段为两条线段,其中较长的线段约是这条线段的0.618倍,正确;C、若点C把线段AB黄金分割,则AC2=AB•BC,不正确,有可能BC2=AB•AC;故选:B.【点评】此题考查黄金分割,熟练掌握黄金分割的定义是解题的关键.4.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a,最高销售限价b(b>a)以及实数x(0<x<1)确定实际销售价格c=a+x(b﹣a),这里x被称为乐观系数.经验表明,最佳乐观系数x恰好使得,据此可得,最佳乐观系数x的值等于()A.B.C.D.【分析】根据题设条件,由,知[x(b﹣a)]2=(b﹣a)2﹣x(b﹣a)2,由此能求出最佳乐观系数x的值.【解答】解:∵c﹣a=x(b﹣a),b﹣c=(b﹣a)﹣x(b﹣a),,∴[x(b﹣a)]2=(b﹣a)2﹣x(b﹣a)2,∴x2+x﹣1=0,解得x=,∵0<x<1,∴x=.故选:D.【点评】本题考查黄金分割的应用,解题时要注意一元二次方程的求解方法.5.如果△ABC中,AB=AC,BC=AB,那么∠A的度数是()A.30°B.36°C.45°D.60°【分析】如图,在AC上截取AD=BC,连接BD.想办法证明△BCD∽△ACB,推出∠ABC=∠C=2∠A即可解决问题;【解答】解:如图,在AC上截取AD=BC,连接BD.∵BC=AB,AD=BC,∴AD=AB,∴点D是线段AC的黄金分割点,∴AD2=CD•CA,∴BC2=CD•CA,∴=,∵∠C=∠C,∴△BCD∽△ACB,∴∠BDC=∠ABC,∠DBC=∠A,∵AB=AC,∴∠ABC=∠C=∠BDC,∴AD=BD,∴∠A=∠ABD,设∠A=x,则∠ABC=∠A=2x,∴x+2x+2x=180°,∴x=36°,故选:B.【点评】本题考查黄金分割.等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.6.若点C是线段AB的黄金分割点,且AB=2(AC>BC),则AC等于()A.﹣1B.3﹣C.D.﹣1或3﹣【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.【解答】解:根据黄金分割点的概念得:AC=AB=(﹣1)cm.故选:A.【点评】考查了黄金分割点的概念,熟悉黄金比的值.7.下列说法:①关于x的一元二次方程ax2+bx+c=0,当a、c异号时,方程一定有实数根;②关于x的方程(a﹣2)x2+x+a2﹣4=0有一个根是x=0,则a=±2;③若最简二次根式与是同类二次根式,则x=﹣4或1;④数4和9的比例中项是6;⑤若点C是线段AB的黄金分割点,且AB=10,则AC=5﹣5.其中正确的说法的个数是()A.0个B.1个C.2个D.3个【分析】①利用判别式的值即可判断;②根据方程的解的定义即可解决问题;③根据最简二次根式是定义即可判断;④根据比例中项的定义即可解决问题;⑤根据黄金分割的定义即可解决问题;【解答】解:①关于x的一元二次方程ax2+bx+c=0,当a、c异号时,方程一定有实数根;正确,此时△>0;②关于x的方程(a﹣2)x2+x+a2﹣4=0有一个根是x=0,则a=±2;正确;③若最简二次根式与是同类二次根式,则x=﹣4或1;错误,x=﹣4不符合题意,不是最简二次根式;④数4和9的比例中项是6;错误,数4和9的比例中项是±6,⑤若点C是线段AB的黄金分割点,且AB=10,则AC=5﹣5.错误,若点C是线段AB的黄金分割点,且AB=10,则AC=5﹣5或BC=5﹣5.故选:C.【点评】本题考查黄金分割、最简二次根式、同类二次根式、一元二次方程的根的判别式、方程的解等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.如图,点B在线段AC上,且,设AC=2,则AB的长为()A.B.C.D.【分析】根据题意列出一元二次方程,解方程即可.【解答】解:∵,∴AB2=2×(2﹣AB),∴AB2+2AB﹣4=0,解得,AB1=,AB2=(舍去),故选:C.【点评】本题考查的是黄金分割的概念以及黄金比值,掌握一元二次方程得到解法、理解黄金分割的概念是解题的关键.9.如果一个矩形的宽(即短边)与长(即长边)之比是,那么这个矩形称为黄金矩形.如图,矩形ABCD是黄金矩形,点E、F、G、H分别为线段AD、BC、AB、EF的中点,则图中黄金矩形的个数是()A.5个B.4个C.3个D.2个【分析】根据黄金矩形的判定解答.【解答】解:∵矩形ABCD是黄金矩形.点E、F、G、H分别为线段AD、BC、AB、EF的中点,∴图中黄金矩形有矩形AEGH,矩形GHFB,故选:C.【点评】本题考查的是黄金矩形的判定,掌握黄金矩形的判定是解题的关键.10.点C为线段AB的黄金分割点,且AC>BC,下列说法正确的有()①AC=AB,②AC=AB,③AB:AC=AC:BC,④AC≈0.618ABA.1个B.2个C.3个D.4个【分析】根据黄金分割的概念和黄金比值进行解答即可.【解答】解:∵点C数线段AB的黄金分割点,∴AC=AB,①正确;AC=AB,②错误;BC:AC=AC:AB,③正确;AC≈0.618AB,④正确.故选:C.【点评】本题考查的是黄金分割的概念,掌握把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值叫做黄金比是解题的关键.11.如图,在△ABC中,∠A=36°,AC=AB=2,将△ABC绕点B逆时针方向旋转得到△DBE,使点E在边AC上,DE交AB于点F,则△AFE与△DBF 的面积之比等于()A.B.C.D.【分析】首先证明BD∥AE,可得△AEF∽△BDF,推出=()2,想办法求出即可解决问题;【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BC=BE,∴∠C=∠BEC=72°,∴∠EBC=36°,∴∠ABE=∠A=36°,∵∠DBE=72°,∴∠ABD=∠A=36°,∴BD∥AE,∴△AEF∽△BDF,∴=()2,设BC=BE=AE=x,∵∠C=∠C,∠CBE=∠A,∴△CBE∽△CAB,∴BC2=CE•CA,∴x2=(2﹣x)2,∴x2+2x﹣4=0,∴x=﹣1+,或x=﹣1﹣,∴=()2=故选:C.【点评】本题主要考查了等腰三角形的性质,以及旋转的性质,相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考常考题型.12.一本书的宽与长之比为黄金比,书的宽为14cm,则它的长为()A.(7+7)cm B.(21﹣7)cm C.(7﹣7)cm D.(7﹣21)cm 【分析】根据黄金比值是计算即可.【解答】解:由黄金比值可知,这本书的长==(7+7)cm,故选:A.【点评】本题考查的是黄金分割,掌握黄金比值是是解题的关键.13.已知点P是线段AB的黄金分割点,且AP>PB,则有()A.AB2=AP•PB B.AP2=BP•ABC.BP2=AP•AB D.AP•AB=PB•AP【分析】由AP>BP知P A是较长线段,根据黄金分割点的定义,则AP2=BP•AB.【解答】解:∵P为线段AB的黄金分割点,且AP>BP,∴AP2=BP•AB.故选:B.【点评】本题考查了黄金分割,理解黄金分割点的概念,找出黄金分割中成比例的对应线段即可.14.若线段AB=cm,C是线段AB的一个黄金分割点,则线段AC的长()A.B.C.或D.或【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.【解答】解:由于AC可能是较长的线段,也可能是较短的线段,∴AC=×=cm或AC=﹣()=()cm.故选:C.【点评】考查了黄金分割点的概念,能够根据黄金比计算.这里主要注意AC可能是较长线段,也可能是较短线段.15.如图,已知点P是线段AB的黄金分割点,且P A>PB,若S1表示以P A为边的正方形的面积,S2表示以PD,PB为边的矩形的面积,且PD=AB,则S1与S2的关系是()A.S1>S2B.S1=S2C.S1<S2D.无法确定【分析】根据黄金分割的定义得到P A2=PB•AB,再利用正方形和矩形的面积公式有S1=P A2,S2=PB•AB,即可得到S1=S2.【解答】解:∵P是线段AB的黄金分割点,且P A>PB,∴P A2=PB•AB,又∵S1表示P A为一边的正方形的面积,S2表示长是AB,宽是PB的矩形的面积,∴S1=P A2,S2=PB•AB,∴S1=S2.故选:B.【点评】本题考查了黄金分割的定义:一个点把一条线段分成较长线段和较短线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点.16.已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC•BC B.BC2=AC•BC C.AC=BC D.BC=AC 【分析】根据黄金分割的定义得出=,从而判断各选项.【解答】解:∵点C是线段AB的黄金分割点且AC>BC,∴=,即AC2=BC•AB,故A、B错误;∴AC=AB,故C错误;BC=AC,故D正确;故选:D.【点评】本题主要考查黄金分割,掌握黄金分割的定义和性质是解题的关键.17.如图,已知点C是线段AB的黄金分割点,且BC>AC.若S1表示以BC为边的正方形面积,S2表示长为AB、宽为AC的矩形面积,则S1与S2的大小关系为()A.S1>S2B.S1=S2C.S1<S2D.不能确定【分析】根据黄金分割的定义得到BC2=AC•AB,再利用正方形和矩形的面积公式有S1=BC2,S2=AC•AB,即可得到S1=S2.【解答】解:∵C是线段AB的黄金分割点,且BC>AC,∴BC2=AC•AB,∵S1表示以BC为边的正方形面积,S2表示长为AB、宽为AC的矩形面积,∴S1=BC2,S2=AC•AB,∴S1=S2.故选:B.【点评】本题考查了黄金分割的定义:一个点把一条线段分成较长线段和较短线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点.二.填空题(共15小题)18.若一本书的宽与长之比等于黄金比,且长为30cm,则宽为15﹣15 cm.(结果保留根号)【分析】根据黄金分割的定义得到这本书的宽=长×,然后进行计算即可.【解答】解:根据题意得:这本书的宽=30×=(15﹣15)cm.故答案为:15﹣15.【点评】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB 黄金分割,点C叫做线段AB的黄金分割点,其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.19.已知点P是线段AB上的一个黄金分割点,且AB=1,AP>BP,那么AP=【分析】根据黄金分割的定义,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.【解答】解:∵点P是线段AB上的一个黄金分割点,且AB=1cm,AP>BP,∴AP=×1=.故答案为:.【点评】本题考查了黄金分割的概念,熟记黄金分割的定义是解题的关键.20.把2米长的线段进行黄金分割,则分成的较长的线段长为﹣1.【分析】设分成的较长的线段长为x,根据黄金分割的定义得出方程2(2﹣x)=x2,求出方程的解即可.【解答】解:设分成的较长的线段长为x,则2(2﹣x)=x2,x2+2x﹣4=0,x=,x1=﹣1,x2=﹣﹣1(负数不符合题意,舍去),故答案为:﹣1.【点评】本题考查了黄金分割,能熟记黄金分割的定义是解此题的关键.21.已知线段AB=1,点C是线段AB的黄金分割点(AC>BC),则AC=0.62(精确到0.01)【分析】由于点C是线段AB的黄金分割点(AC>BC),根据黄金分割的定义得到AC=AB,然后把AB=1代入计算即可.【解答】解:∵点C是线段AB的黄金分割点(AC>BC),∴AC=AB,而AB=1,∴AC=×1≈0.62.故答案为:0.62.【点评】本题主要考查了黄金分割的定义:线段上一点把线段分成两段,其中较长线段是较短线段和整个线段的比例中项,即较长线段是整个线段的倍,那么这个点就是这条线段的黄金分割点,难度适中.22.已知点P是线段AB的黄金分割点,AB=4厘米,则较短线段AP的长是6﹣2厘米.【分析】根据黄金比是计算.【解答】解:∵点P是线段AB的黄金分割点,∴较长线段BP=×4=2﹣2(厘米),∴较短线段AP=4﹣(2﹣2)=6﹣2(厘米),故答案为:6﹣2.【点评】本题考查的是黄金分割,掌握黄金分割的概念,黄金比是是解题的关键.23.已知点P是线段AB的黄金分割点(AP>PB),AB=6,那么AP的长是3﹣3.【分析】根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入数据即可得出AP的长.【解答】解:由于P为线段AB=6的黄金分割点,且AP是较长线段;则AP=6×=3﹣3.故答案为:3﹣3.【点评】本题考查了黄金分割的概念:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割.24.从美学角度来说,人的上身长与下身长之比为黄金比时,可以给人一种协调的美感.某女老师上身长约61.8cm,下身长约94cm,她要穿约6cm的高跟鞋才能达到黄金比的美感效果(精确到1cm).【分析】设她要穿xcm的高跟鞋,根据题意列出方程,解方程得到答案.【解答】解:设她要穿xcm的高跟鞋,由题意得,=0.618,解得x=6,故答案为:6.【点评】本题考查的是黄金分割的知识,根据题意列出方程是解题的关键,注意要准确找出等量关系.25.如图,若点C是AB的黄金分割点(AC>BC),AB=8,则BC的长为12﹣4.【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割.【解答】解:由题意知:BC=,故答案为:12﹣4【点评】此题考查了黄金分割点的概念,能够根据黄金比进行计算.26.一个诺大的舞台,当主持人站在黄金分割点处时,不仅看起开美观,而且音响效果也非常好,若舞台的长度为10米,那么,主持人到较近的一侧应为(15﹣5)米.【分析】根据黄金比为进行计算,即可得到答案.【解答】解:如图,设舞台AB的长度为10米,C是黄金分割点,AC>BC,则AC=AB=5(﹣1)米,∴BC=AB﹣AC=10﹣5(﹣1)=15﹣5米,故答案为:15﹣5.【点评】本题考查的是黄金分割的概念,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值0.618叫做黄金比.27.如图,在五角星中,AD=BC,且C、D两点都是AB的黄金分割点,CD=1,则AB的长是+2.【分析】利用黄金分割的定义得到AC=AB,BD=AB,然后利用AC+BD=AB+CD进行计算.【解答】解:∵C、D两点都是AB的黄金分割点,∴AC=AB,BD=AB,∴AC+BD=(﹣1)AB,即AB+CD=(﹣1)AB,∴AB=+2.故答案为+2.【点评】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB 黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.28.如图,已知点C、D是线段AB的两个黄金分割点,若线段AB的长10厘米,则线段CD长(10﹣20)厘米.【分析】根据黄金分割的定义得到AD=BC=AB=5﹣5,然后利用CD =AD+C﹣AB进行计算.【解答】解:∵点C、D是线段AB的两个黄金分割点,∴AD=BC=AB=×10=5﹣5,∴CD=AD+C﹣AB=10﹣10﹣10=(10﹣20)cm.故答案为(10﹣20).【点评】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB 黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.29.设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2m,那么上部应设计为多高?设雕像的上部高x m,列方程,并化成一般形式是x2﹣6x+4=0.【分析】设雕像的上部高x m,则下部长为(2﹣x)m,然后根据题意列出方程即可.【解答】解:设雕像的上部高x m,则题意得:,整理得:x2﹣6x+4=0,故答案为:x2﹣6x+4=0【点评】本题考查了黄金分割,解题的关键在于读懂题目信息并列出比例式,难度不大.30.已知线段AB=4,点P是线段AB的黄金分割点,且AP<BP,那么AP的长为6﹣2.【分析】根据黄金分割点的定义和AP<BP得出PB=AB,代入数据即可得出BP的长度.【解答】解:由于P为线段AB=4的黄金分割点,且AP<BP,则BP=×4=(2 ﹣2)cm.∴AP=4﹣BP=6﹣2故答案为:(6﹣2)cm.【点评】本题考查了黄金分割.应该识记黄金分割的公式:较短的线段=原线段的,较长的线段=原线段的.31.已知线段AB长是2厘米,P是线段AB上的一点,且满足AP2=AB•BP,那么AP长为(﹣1)厘米.【分析】根据黄金分割点的定义,知AP是较长线段,得出AP=AB,代入数据即可得出AP的长.【解答】解:∵P是线段AB上的一点,且满足AP2=AB•BP,∴P为线段AB的黄金分割点,且AP是较长线段,∴AP=AB=2×=(﹣1)厘米.故答案为(﹣1).【点评】本题考查了黄金分割的概念:如果一个点把一条线段分成两条线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点;较长线段是整个线段的倍.32.已知线段MN的长是4cm,点P是线段MN的黄金分割点,则较长线段MP 的长是(2﹣2)cm.【分析】根据黄金分割的概念得到MP=MN,把MN=4cm代入计算即可.【解答】解:∵P是线段MN的黄金分割点,∴MP=MN,而MN=4cm,∴MP=4×=(2﹣2)cm.故答案为(2﹣2).【点评】本题考查了黄金分割的概念:如果一个点把一条线段分成两条线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点;较长线段是整个线段的倍.三.解答题(共8小题)33.黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值.如图1,我们已经学过,点C将线段AB分成两部分,如果AC:AB=BC:AC,那么称点C为线段AB的黄金分割点.如图2,△ABC中,AB=AC=1,∠A =36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.【分析】(1)利用等腰三角形的性质和三角形内角和定理可计算出∠ABC=∠C=72°,∠ABD=∠CBD=36°,∠BDC=72°,则可得到AD=BD=BC,然后根据相似三角形的判定方法易得△BDC∽△ABC,利用相似比得到BC2=CD•AC,于是有AD2=CD•AC,则可根据线段黄金分割点的定义得到结论;(2)设AD=x,则CD=AC﹣AD=1﹣x,由(1)的结论得到x2=1﹣x,然后解方程即可得到AD的长.【解答】(1)证明:∵AB=AC=1,∴∠ABC=∠C=(180°﹣∠A)=(180°﹣36°)=72°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=∠ABC=36°,∴∠BDC=180°﹣36°﹣72°=72°,∴DA=DB,BD=BC,∴AD=BD=BC,易得△BDC∽△ABC,∴BC:AC=CD:BC,即BC2=CD•AC,∴AD2=CD•AC,∴点D是线段AC的黄金分割点;(2)解:设AD=x,则CD=AC﹣AD=1﹣x,∵AD2=CD•AC,∴x2=1﹣x,解得x1=,x2=,即AD的长为.【点评】本题考查了黄金分割,相似三角形的判定和性质,解一元二次方程,熟练掌握相似三角形的判定和性质是解题的关键.34.小明同学遇到两个数学问题:问题一,一个数x加上这个数的倒数,和为1,试求这个数.问题二,一个数y减去这个数的倒数,差为1,试求这个数.(1)在探索问题一时,进行了以下操作:依题意,列出方程x+=1,化简得x2﹣x+1=0,。

九年级数学上册第四章图形的相似4.4探索三角形相似的条件第4课时黄金分割同步练习

九年级数学上册第四章图形的相似4.4探索三角形相似的条件第4课时黄金分割同步练习

第4课时 黄金分割知识点 1 对黄金分割的理解1.已知点C 把线段AB 分成两条线段AC ,BC ,下列说法错误的是( )A .如果AC AB =BC AC,那么线段AB 被点C 黄金分割 B .如果AC 2=AB·BC,那么线段AB 被点C 黄金分割C .如果线段AB 被点C 黄金分割,那么AC 与AB 的比叫做黄金比D .一条线段有两个黄金分割点2.如图4-4-28,点C 是线段AB 的黄金分割点(AC >BC),下列结论错误的是( )图4-4-28A .AC AB =BCACB .BC 2=AB·ACC .AC AB=5-12 D .BCAC≈0.618 3.已知点C 是线段AB 的黄金分割点,且AC >BC ,AB =2,则AC 的长为( )A .5-1B .3- 5C .5-12D .0.618 4.已知点P 是线段AB 的黄金分割点(AP >BP),若AB =2,则AP -BP =________. 5.教材习题4.8第1题变式题如图4-4-29,乐器上的一根弦AB =80 cm ,两个端点A ,B 固定在乐器板面上,支撑点C 是靠近点B 的黄金分割点,支撑点D 是靠近点A 的黄金分割点,求C ,D 之间的距离.图4-4-29知识点 2 黄金分割的应用6.如图4-4-30所示,扇子的圆心角为α,余下扇形的圆心角为β,α与β的比通常按黄金比来设计,这样的扇子较美观.若取黄金比为0.6,则α为( )A.216° B.135° C.120° D.108°4-4-304-4-317.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图4-4-31,某女士的身高为160 cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为( )A.6 cm B.10 cm C.4 cm D.8 cm8.人体的正常体温是37 ℃左右,根据有关测定,当气温处于人体正常体温的黄金比值时,人体感觉最舒适,这个气温的度数约为________(精确到1 ℃).9.电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体.如图4-4-32,若舞台AB的长为20 m,主持人应走到离A点至少多远处才最自然得体?(结果精确到0.1 m,黄金比≈0.618)图4-4-3210.点C是线段AB的黄金分割点,且AB=6 cm,则BC的长为( ) A.(3 5-3)cmB.(9-3 5)cmC.(3 5-3)cm或(9-3 5)cmD.(9-3 5)cm或(6 5-6)cm11.宽与长之比为5-12∶1的矩形叫做黄金矩形,黄金矩形令人赏心悦目,它给我们以协调匀称的美感.如图4-4-33,如果在一个黄金矩形里面画一个正方形,那么留下的矩形CDFE还是黄金矩形吗?请证明你的结论.图4-4-3312.如图4-4-34,已知点C和点D均为线段AB的黄金分割点,CD=6 cm,求AB的长.图4-4-3413.定义:如图4-4-35①,点C在线段AB上,若满足AC2=BC·AB,则称点C为线段AB的黄金分割点.如图②,在△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求线段AD 的长.图4-4-3514.如图4-4-36①,点C 将线段AB 分成两部分,如果AC AB =BCAC ,那么称点C 为线段AB的黄金分割点.某数学兴趣小组在进行课题研究时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为S 1,S 2,如果S 1S =S 2S 1(S 1>S 2),那么称直线l 为该图形的黄金分割线.(1)如图②,在△ABC 中,∠A =36°,AB =AC ,∠ACB 的平分线交AB 于点D ,请问点D 是不是AB 边上的黄金分割点(直接写出结论,不必证明)?(2)若△ABC 在(1)的条件下,如图③,请问直线CD 是不是△ABC 的黄金分割线?并证明你的结论;(3)如图④,在直角梯形ABCD 中,∠ADC =∠BCD=90°,对角线AC ,BD 相交于点F ,延长AB ,DC 交于点E ,连接EF 并延长分别交梯形上、下底于G ,H 两点,请问直线GH 是不是直角梯形ABCD 的黄金分割线?并证明你的结论.图4-4-361.C 2.B3.A [解析] ∵点C 是线段AB 的黄金分割点,且AC >BC ,∴AC =5-12AB ,而AB =2, ∴AC =5-1.4.2 5-4 [解析] ∵点P 是线段AB 的黄金分割点,AP >BP ,∴AP =5-12AB =5-1,则BP =2-AP =3-5,∴AP -BP =(5-1)-(3-5)=2 5-4.5.解:∵点C 是靠近点B 的黄金分割点,点D 是靠近点A 的黄金分割点, ∴AC =BD =80×5-12=(40 5-40)cm , ∴CD =BD -(AB -BD )=2BD -AB =(80 5-160)cm. 6.B 7.D8.23 ℃ [解析] 37×5-12≈23(℃). 9.解:根据黄金比,得20×(1-0.618)≈7.6(m), 故主持人应走到离A 点至少7.6 m 处才最自然得体.10.C [解析] ∵点C 是线段AB 的黄金分割点,且AB =6 cm ,∴BC =5-12AB =(3 5-3)cm ,或BC =3-52AB =(9-3 5)cm.11.解:留下的矩形CDFE 还是黄金矩形. 证明:∵四边形ABEF 是正方形, ∴AB =DC =AF . 又∵AB AD =5-12, ∴AF AD =5-12, 即点F 是线段AD 的黄金分割点,∴FD AF =AF AD =5-12, ∴FD DC=5-12, ∴矩形CDFE 是黄金矩形.12.[解析] 因为C ,D 均为线段AB 的黄金分割点, 所以AD AB 与BC AB相等,都等于黄金比. 因此AD =BC ,所以AC =BD .解:∵C ,D 均为线段AB 的黄金分割点, ∴AD AB =BC AB,∴AD =BC , ∴AB -AD =AB -BC ,即BD =AC .设AC =BD =x cm ,则AD =(x +6)cm ,AB =(2x +6)cm. ∵AD AB =5-12, ∴x +62x +6=5-12, ∴x +62(x +3)=5-12,解得x =3 5+3, ∴AB =(6 5+12)cm.13.解:(1)证明:∵AB =AC ,∠A =36°, ∴∠ABC =∠C =72°. ∵BD 平分∠ABC ,∴∠ABD =∠DBC =∠A =36°, ∴∠BDC =72°, ∴BC =BD =AD .∵∠DBC =∠A ,∠C =∠C ,∴△BCD ∽△ACB ,∴BC AC =CD CB,即BC 2=AC ·CD , ∴AD 2=AC ·CD ,∴点D 是线段AC 的黄金分割点. (2)设AD =x ,则CD =1-x . 由(1)得x 2=1-x .解得x 1=-1-52(舍去),x 2=-1+52,∴AD =-1+52.14.解:(1)点D 是AB 边上的黄金分割点. (2)直线CD 是△ABC 的黄金分割线. 证明:设△ABC 的边AB 上的高为h ,则S △ADC =12AD ·h ,S △DBC =12BD ·h ,S △ABC =12AB ·h ,∴S △ADC ∶S △ABC =AD ∶AB ,S △DBC ∶S △ADC =BD ∶AD .由(1)知点D 是AB 的黄金分割点, ∴AD AB =BD AD,∴S △ADC ∶S △ABC =S △DBC ∶S △ADC , ∴直线CD 是△ABC 的黄金分割线.(3)直线GH 不是直角梯形ABCD 的黄金分割线. 证明:∵BC ∥AD ,∴△EBG ∽△EAH ,△EGC ∽△EHD , ∴BG AH =EG EH,①GC HD =EG EH.② 由①②得BG AH =GCHD,即BG GC =AH HD.③同理,由△BGF ∽△DHF ,△CGF ∽△AHF , 得BG HD =GC AH ,即BG GC =HDAH.④由③④得AH HD =HDAH,∴AH =HD , ∴BG =GC ,∴梯形ABGH 与梯形GCDH 的上、下底分别相等,高也相等, ∴S 梯形ABGH =S 梯形GCDH =12S 梯形ABCD ,∴直线GH 不是直角梯形ABCD 的黄金分割线.。

专题07-黄金分割-同步学与练-(含解析)数学苏科版九年级下册

专题07-黄金分割-同步学与练-(含解析)数学苏科版九年级下册

专题07黄金分割(2个知识点2种题型1个中考考点)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.黄金分割(重点)知识点2.黄金矩形(拓展)【方法二】实例探索法题型1.与黄金分割有关的计算题型2.黄金分割的实际应用【方法三】仿真实战法考法:利用黄金分割的概念计算【方法四】成果评定法【学习目标】1.通过建筑、艺术上的实例了解黄金分割、黄金比、黄金分割点、黄金矩形的定义.2.会一条线段的黄金分割点.3.了解黄金分割在生活中的应用,会运用黄金比解决实际问题.【知识导图】【倍速学习五种方法】【方法一】脉络梳理法知识点1.黄金分割(重点)黄金分割:一般地,点C 把线段AB 分成两条线段AC 和BC (如图AC BC >),如果AC BC AB AC=,则称线段AB 被点C 黄金分割,点C 叫线段AB 的黄金分割点,其中0.618AC AB =≈,BC AB =.AB ≈0382,AC 与AB 的比叫做黄金比.(注意:对于线段AB 而言,黄金分割点有两个.)注意!!!一条线段有两个黄金分割点,因此,一般说点P 是线段AB 的黄金分割点时,需加注 AP PB >或AP < BP ,否则在已知AB 的长度求AP (或BP )的长度时,会有两种情况,此时应分情况讨论.【例1】1.已知线段AB 的长度为l ,点P 在线段上,PB AP AP AB=,求线段AP 的长.【变式1】2.(1)点P 是线段AB 的黄金分割点,AP BP >,6AB =厘米,求BP 的长;(2)已知点P 是线段AB 的黄金分割点,1AB =,求AP 的值.【变式2】3.如图,以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连接PD .在BA 的延长线上取点F ,使PF PD =.以AF 为边作正方形AMEF ,点M 在AD 上.(1)求线段AM 、DM 的长;(2)求证:2AM AD DM =⋅;(3)请指出图中的黄金分割点.知识点2.黄金矩形(拓展)【例2】4的矩形叫黄金矩形.如图:如果在一个黄金矩形里面画一个正方形,那么留下的矩形还是黄金矩形吗?请证明你的结论.【变式】.(绵阳)5.黄金分割由于其美学性质,受到摄影爱好者和艺术家的喜爱,摄影中有一种拍摄手法叫黄金构图法.其原理是:如图,将正方形ABCD 的底边BC 取中点E ,以E 为圆心,线段DE 为半径作圆,其与底边BC 的延长线交于点F ,这样就把正方形ABCD 延伸为矩形ABFG ,称其为黄金矩形.若4CF a =,则AB =( ).A .)1a -B .()2aC .)1aD .()2a 【方法二】实例探索法题型1.与黄金分割有关的计算(芦溪县期中)6.已知线段AB 的长度为2,点C 是线段AB 的黄金分割点,则AC 的长度为( )A B C 1或3D 2(瑞安市期末)7.已知P 为线段AB 的黄金分割点,4AB =,AP BP >,则AP 的长为( )A .2B .4C .1D .6-题型2.黄金分割的实际应用(安庆期中)8.大自然巧夺天工,一片小树叶也蕴含着“黄金分割”,如图,P 为AB 的黄金分割点(AP PB >),如果AP 的长度为10cm ,那么AB 的长度是( )A .5B .15-C .5D .15+(沈河区期末)9.如图,冬奥会吉祥物“冰墩墩”意喻敦厚,健康,可爱,活泼,它泛着可爱笑容的嘴巴位于黄金分割点处,若玩偶身高6cm ,则玩偶嘴巴到脚的距离是( )A .3)cmB C D .(9-(天长市期中)10.大自然是美的设计师,即使是一个小小的盆景,经常也会产生最具美感的黄金分割比(黄金分割比约为0.618).如图,点B 为AC 的黄金分割点(AB BC >),若100AC =cm ,则BC 约为( )A .42cmB .38cmC .62cmD .70cm(酒泉期中)11.某品牌汽车为了打造更加精美的外观,特将汽车倒车镜设计为整个车身黄金分割点的位置(如图),若车头与倒车镜的水平距离为1.58米,则该车车身总长约为( )米.A .4.14B .2.56C .6.70D .3.82【方法三】 仿真实战法考法:利用黄金分割的概念计算(黄石)12.关于x 的一元二次方程210x mx +-=,当1m =时,该方程的正根称为黄金分割数.宽与长的比是黄金分割数的矩形叫做黄金矩形,希腊的巴特农神庙采用的就是黄金矩形的设计;我国著名数学家华罗庚的优选法中也应用到了黄金分割数.(1)求黄金分割数;(2)已知实数a ,b 满足:221,24a ma b mb +=-=,且2b a ≠-,求ab 的值;(3)已知两个不相等的实数p ,q 满足:2211p np q q nq p +-=+-=,,求pq n -的值.【方法四】 成果评定法一.选择题(共8小题)(杨浦区期末)13.已知P 是线段AB 的黄金分割点,且AP>BP ,那么下列比例式能成立的是( )A .AB AP AP BP =B .AB BP AP AB =C .BP AB AP BP =D .AB AP =(开化县模拟)14.美是一种感觉,当人体下半身长与身高的比值接近0.618时,越给人一种美感.某女士身高 165cm ,下半身长x 与身高l 的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为( )A .4cmB .6cmC .8cmD .10cm(会同县期末)15.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”.如图,P 为AB 的黄金分割点()AP PB >,如果AB 的长度为8cm ,那么AP 的长度是( )cm .A .4-B .4C .4+D .4-(八步区期中)16.若线段MN 的长为1cm ,点P 是线段MN 的黄金分割点,MP NP >,则较长的线段MP 的长为( )A .1)cmB .(3CD (鄞州区期中)17.点P ,点Q 是线段AB 的黄金分割点,若2AB =,则PQ 长度是( )A .1B .C .4-D (福鼎市期中)18.在欧几里得的《几何原本》中给出一个找线段的黄金分割点的方法.如图所示以线段AB 为边作正方形ABCD ,取AD 的中点E ,连接BE ,延长DA 至F ,使得EF BE =,以AF 为边作正方形AFGH ,则点H 即是线段AB 的黄金分割点.若记正方形AFGH 的面积为1S ,矩形BCIH 的面积为2S ,则1S 与2S 的比值是( )A B C D .1(盐湖区校级期中)19.如图,正五边形ABCDE 的几条对角线的交点分别为,,,,M N P Q R ,它们分别是所在对角线的黄金分割点.若2AB =,则MN 的长为( )A .3B .3C 1D 1(和平区期末)20.如果一个等腰三角形的顶角为36︒,我们把这样的等腰三角形称为黄金三角形.如图,在ABC 中,1AB AC ==,36A ∠=︒,ABC 看作第一个黄金三角形;作ABC ∠的平分线BD ,交AC 于点D ,BCD △看作第二个黄金三角形;作BCD ∠的平分线CE ,交BD 于点E ,CDE 看作第三个黄金三角形……以此类推,第2024个黄金三角形的腰长是( )A .2023B .2024C .2023D .2024二.填空题(共8小题)(沈北新区校级月考)21.如果点C 是线段AB 的黄金分割点,2cm =AC ,AC BC >,那么AB 的长为 .(平川区校级期末)22.若点P 为线段AB 的黄金分割点,且AP BP <,10BP =,则AP = .(吉安期中)23.如图,线段10cm AB =,点C 是线段AB 的黄金分割点,且AC BC >,设以AC 为边的正方形的面积为1S ,以BC 为一边,AB 长为另一边的矩形BCFG 的面积为21S S , 2S (填:“>”、“=”或“<”).(高港区期中)24.我们把宽与长的比是1):2的矩形叫做黄金矩形,从外形看它最具美感.小明想制作一张“黄金矩形”的贺卡,已知贺卡长为20cm ,那么贺卡的宽为 cm .(结果保留根号).(朝阳一模)25.如图,在某校的2022年新年晚会中,舞台AB 的长为20米,主持人站在点C 处自然得体,已知点C 是线段AB 上靠近点B 的黄金分割点,则此时主持人与点A 的距离为 米.(徐汇区期末)26.已知点P 是线段AB 的黄金分割点()AP BP >,如果2AB =,那么BP 的长是 .(达州)27.如图,乐器上的一根弦80cm AB =,两个端点,A B 固定在乐器板面上,支撑点C 是靠近点B 的黄金分割点,支撑点D 是靠近点A 的黄金分割点,,C D 之间的距离为 .(天府新区期中)28.黄金分割由于其美学性质,受到摄影爱好者和艺术家的喜爱,摄影中有一种拍摄手法叫黄金构图法.其原理是:如图,将正方形ABCD 的底边BC 取中点E ,以E 为圆心,线段DE 为半径作圆,其与底边BC 的延长线交于点F ,这样就把正方形ABCD 延伸为矩形ABFG ,称其为黄金矩形.若4CF a =,则AB = .三.解答题(共5小题)(市南区校级期中)29.如图,点C 是线段AB 的黄金分割点,AC BC >,计算线段AB 的黄金比AC AB 的值.(瑞安市期中)30.(1)已知 4.5a =,2b =,c 是a ,b 的比例中项,求c ;(2)如图,C 是AB 的黄金分割点,且AC BC >,4AB =,求AC 的长.(金安区校级期中)31.已知顶角为36︒的等腰三角形称为黄金三角形(底边与腰的比值为黄金分割比),如图,ABC ,BDC ,DEC 都是黄金三角形,已知36A ∠=︒,1AB =,求DE 的长度.(上城区校级期中)32.如图所示,以长为2的定线段AB 为边作正方形ABCD ,取AB 的中点P ,连接PD ,在BA 的延长线上取点F ,使PF PD =,以AF 为边作正方形AMEF ,点M 在AD 上.(1)求,AM DM 的长;(2)点M 是AD 的黄金分割点吗?为什么?(兰山区期中)33.在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2m,那么它的下部应设计多高?参考答案:1.AP=【分析】由题意得点P是线段AB的黄金分割点,再列式计算即可.=,【详解】解: 点P在线段AB上,PB APAP AB∴点P是线段AB的黄金分割点,且AP BP>,PB AP∴==AP AB线段AB的长度为l,AP∴.【点睛】本题考查了黄金分割点的定义,解题的关键是掌握黄金分割的几何含义并熟记其比值.2.(1)(9BP=-厘米;(2)2AP=或1AP=-.【分析】(1)根据条件建立等式AP AB=,求解即可;(2然后建立等式求解.【详解】解:(1)根据黄金分割点定义,且AP BP>,可知AP AB=,此时(BP AB69===-厘米;(2故2AP ABAP=.==或1【点睛】本题考查了黄金分割点,解题的关键是注意黄金分割点和黄金分割的区别,一条线段的黄金分割点有两个,满足黄金分割黄金比的只有一个.3.(1)1DM=AM=-,3(2)见解析(3)见解析【分析】此题综合考查了正方形的性质、勾股定理和黄金分割的概念.(1)要求AM 的长,只需求得AF 的长,又AF PF AP =-,PF PD =,则1,3AM AF DM AD AM ===-=(2)根据(1)所求分别求出2AM AD DM ⋅,的值即可证明结论;(3)根据(1)中的数据得:AM AD M 是AD 的黄金分割点.【详解】(1)解:在Rt APD 中,1,2AP AD ==,由勾股定理知:PD∴1AM AF PF AP PD AP ==-=-=,∴3DM AD AM =-=(2)证明:由(1)得)(2216236AM AD DM ==-⋅=⨯=-∴2AM AD DM =⋅;(3)解:∵AM AD =∴点M 是AD 的黄金分割点.4.是;见解析【分析】本题主要考查了黄金分解的定义,根据黄金矩形的定义去计算宽与长之比即可得出答案.【详解】解:是,证明如下:∵四边形ABEF 是正方形,∴AB AF =,∵四边形ABCD 是矩形 ,∴AB CD =,∴AF CD =,又∵AB AD =∴AF AD =, 即点F 是AD 的黄金分割点,∴AF AD =,∴DF AD AF AD =-=,∴DF AF =,即DFDC=∴矩形CDEF 是黄金矩形.5.D【分析】本题考查了黄金分割,正方形的性质,矩形的性质,解题的关键是掌握A BB F =计算即可.【详解】解:设AB x =,四边形ABCD 是正方形,AB BC x ∴==,矩形ABFG 是黄金矩形,A B B F \=4x x a \=+解得:(2x a =+,经检验:(2x a =+是原方程的根,(2A B a \=+,故选:D .6.C【分析】分AC <BC 、AC >BC 两种情况,根据黄金比值计算即可.【详解】解:当AC <BC 时,∵点C 是线段AB 的黄金分割点,∴1BC AB ==,同理当AC >BC 时,1AC AB ==,∴)213BC AB AC =-=-=故选C .【点睛】本题考查的是黄金分割的概念,把一条线段分成两部分,使其中较长的线段为全线)叫做黄金比.7.A【分析】本题考查了黄金分割的概念.黄金分割的定义,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值【详解】解: 点P 是线段AB 上的一个黄金分割点,且4AB =,AP BP >,42AP ∴==.故选:A .8.A【分析】本题考查黄金分割的应用;由黄金分割知:AP AB =,由此可求得AB 的长.【详解】解:∵P 为AB 的黄金分割点,∴AP AB =,即105)cm AB ==+,故选:A .9.A【分析】本题考查了黄金分割,熟练掌握黄金分割的定义是解题的关键.根据黄金分割的定义进行列式计算即可解答.【详解】解:由题意得玩偶嘴巴到脚的距离为:()63cm =故选:A .10.B【分析】本题考查黄金分割.根据黄金分割点的定义,列出比例式进行求解即可.熟练掌握黄金分割中的比例关系,是解题的关键.【详解】解:由题意,得:0.618ABAC≈,100AC =cm ,∴61.8cm AB ≈,∴38cm BC AC AB =-≈;故选B .11.A【分析】设整个车身长为AB ,点C 表示倒车镜位置,根据题意,确定BC 的长,继而确定车身长,对照选项判断即可.【详解】如图,设整个车身长为AB ,点C 表示倒车镜位置,根据题意,AC =1.58米,∴BC =1.58÷0.618=2.56米,故车长为1.58+2.56=4.14米,故选:A .【点睛】本题考查了线段的黄金分割点,准确理解黄金分割点的意义并灵活计算是解题的关键.12.(2)2(3)0【分析】(1)依据题意,将1m =代入然后解一元二次方程210x x +-=即可得解;(2)依据题意,将224b m b -=变形为21022b b m ⎛⎫⎛⎫-+⋅--= ⎪ ⎪⎝⎭⎝⎭,从而可以看作a ,2b -是一元二次方程210x mx +-=的两个根,进而可以得解;(3)依据题意,将已知两式相加减后得到,两个关系式,从而求得pq ,进而可以得解.【详解】(1)依据题意,将1m =代入210x mx +-=得210x x +-=,解得x =,∵黄金分割数大于0,∴(2)∵224b m b -=,∴2240b m b --=,则21022b b m ⎛⎫⎛⎫-+⋅--= ⎪ ⎪⎝⎭⎝⎭.又∵2b a ≠-,∴a ,2b-是一元二次方程210x mx +-=的两个根,则12b a ⎛⎫⋅-=- ⎪⎝⎭,∴2ab =.(3)∵21p np q +-=,21q nq p +-=;∴()()2211p np q nq q p +-++-=+;即()()222p q n p q p q +++-=+;∴()()222p q pq n p q p q +-++-=+.又∵()()2211p np q nq q p +--+-=-;∴()()()22p q n p q p q -+-=--;即()()10p q p q n -+++=.∵p ,q 为两个不相等的实数,∴0p q -≠,则10p q n +++=,∴1p q n +=--.又∵()()222p q pq n p q p q +-++-=+,∴()()212121n pq n n n ---+---=--,即0pq n -=.【点睛】本题考查的是一元二次方程根与系数的关系,解题的关键是掌握根与系数的关系,灵活运用所学知识解决问题.13.A【分析】由于点P 是线段AB 的黄金分割点,且AP>BP ,故有AP 2=BP×AB ,那么AB APAP BP=.【详解】∵点P是线段AB的黄金分割点,且AP>BP,∴AP2=BP×AB,即AB APAP BP=,故A正确,B、C错误;BP APAP AB==D错误;故答案为A.【点睛】本题考查了黄金分割的知识,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.14.C【分析】本题考查了黄金分割的应用.先求得下半身的实际高度,再根据黄金分割的定义求解即可.【详解】根据已知条件得下半身长是1650.6099⨯=,设需要穿的高跟鞋是y,根据黄金分割的定义得:990.618 165yy+=+,解得:8y≈.故选:C.15.B【分析】根据黄金分割的定义得到AP AB,然后把AP的长度代入可求出AB的长.【详解】解:∵P为AB的黄金分割点(AP>PB),∴AP AB,∵AB的长度为8cm,∴AP×8=4(cm).故选:A.【点睛】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC 是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点,其中AC AB.16.C【分析】本题考查了黄金分割.利用黄金分割的定义进行计算,即可解答.【详解】解: 点P 是线段MN 的黄金分割点,MP NP >,1cm MN =,)cm MP ∴==,故选:C .17.C【分析】本题考查了黄金分割,熟练掌握黄金分割的定义是解答本题的关键.根据黄金分割的定义,得到AQ BP AB AB ==【详解】如图,点P ,点Q 是线段AB 的黄金分割点,若2AB =,∴AQ BP AB AB ==∴1AQ BP ==,∴1124PQ AQ BP AB =+-=---=,故选:C .18.D【分析】根据H 是AB 的黄金分割点求出2AH BH AB =⋅,求出21S AH =,2S BH BC BH AB =⋅=⋅,再得出答案即可.【详解】解:H 是AB 的黄金分割点,2AH BH AB ∴=⋅,21S AH = ,2S BH BC BH AB =⋅=⋅,12S S ∴=,即121S S =,故选:D .【点睛】本题考查了黄金分割,能熟记黄金分割的性质是解此题的关键.19.A【分析】本题主要考查了正多边形的相关性质,平行四边形的性质及判定,首先根据正五边形的相关性质判定四边形ABME 为平行四边形,进而求出BM 的长度,再根据黄金分割点进行计算即可得到MN 的长.黄金分割点等相关内容,熟练掌握黄金分割点的计算方法是解决本题的关键.【详解】解:∵五边形ABCDE 为正五边形∴2AE AB ==,()180521085EAB ABC ︒⨯-∠=∠==︒,∴36AEB ABE ∠=∠=︒同理可得36CBD ∠=︒∴1083672ABD ∠=︒-︒=︒∵10872180EAB ABD ∠+∠=︒+︒=︒∴AE BD同理可证明EC AB ∥∴四边形ABME 为平行四边形∴2EM AB ==,2BM AE ==,同理:2DN =,∵M 、N 为BD 的黄金分割点∴BD =21=+,∴DM BD BM =-=1,∴21)3MN DN DM =-=-=故选:A .20.A【分析】本题考查了黄金三角形,规律型等知识;由黄金三角形的定义得BC AB =,同理求出2CD =,3DE =,可得第1个黄金三角形的腰长为1AB AC ==,第2,第3个黄金三角形的腰长是2,第4个黄金三角形的腰长是3,得出规律第n 个黄金三角形的腰长是1n -,即可得出答案.【详解】解:∵ABC 是第1个黄金三角形,第1个黄金三角形的腰长为1AB AC ==,∴BC AB =,BC AB ∴==,∵BCD △是第2个黄金三角形,∴CD BC =第2,2CD ∴==,∵CDE 是第3个黄金三角形,∴DE CD 第3个黄金三角形的腰长是2,3DE ∴==,∴第4个黄金三角形的腰长是3,…∴第n 个黄金三角形的腰长是1n -,∴第2024个黄金三角形的腰长是202412023-=,故选:A .21.(1cm【分析】本题考查黄金分割.根据黄金分割比“将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,”结合题意AC BC >,且2cm =AC ,即可列出关于线段AC 长的等式,解出AC 即可.【详解】解:∵点C 是线段AB 的一个黄金分割点,且AC BC >,∴AC AB =,∴2AB∴)1cm AC =+.故答案为:(1cm .22.5-+5【分析】本题考查了黄金分割的定义,解题的关键是熟练掌握黄金分割的定义及黄金比值.设AP x =,则10AB x =+,根据黄金分割的定义得到AP BP BP AB =即101010x x =+,解方程即可得到答案.【详解】解:设AP x =,则10AB AP BP x =+=+,∵点P 为线段AB 的黄金分割点,∴AP BP BP AB =,即101010x x =+,∴2101000x x +-=,解得5x =-+或5x =--(舍去),经检验,5x =-+∴5AP =-+故答案为:5-+23.=【分析】根据黄金分割的定义,即可得到答案.【详解】解:∵点C 是线段AB 的黄金分割点,且AC BC >,∴AC BC AB AC=,∴2AC AB BC =⋅,∵212,S AC S AB BC ==×,∴12S S =,故答案为:=.【点睛】本题主要考查黄金分割的定义,记住公式即可.24.)101【分析】本题主要考查的是黄金分割的概念和性质,根据黄金比值求解即可.【详解】解∶ 宽与长的比是1):2-,∵贺卡长为20cm∴贺卡宽为)20101=,故答案为:)101.25.()10##(10-+【分析】本题考查了黄金分割,熟练掌握黄金分割点的定义是解题的关键.由黄金分割点的定义得AC AB =,再代入AB 的长计算即可.【详解】解: 点C 是线段AB 上靠近点B 的黄金分割点,20AB =米,2010)AC ∴===(米),故答案为:10).26.3##3+【分析】本题考出来黄金分割,解一元二次方程组.由题意知,2BP AB AP AP =-=-,由点P 是线段AB 的黄金分割点,可得=AP BP AB AP ,即22AP AP AP -=,整理得2240AP AP -+=,计算求出满足要求的解即可.【详解】解:由题意知,2BP AB AP AP =-=-,∵点P 是线段 AB 的黄金分割点,∴=AP BP AB AP ,即22AP AP AP-=,整理得2240AP AP -+=,解得:1AP =-1AP =-,∴(2213BP AP =-=--=故答案为:327.160)cm-【分析】黄金分割点是指把一条线段分割为两部分,使其中一部分与全长之比等于另一部分,由此即可求解.【详解】解:弦80cm AB =,点C 是靠近点B 的黄金分割点,设BC x =,则80AC x =-,∴8080x -=120x =-点D 是靠近点A 的黄金分割点,设AD y =,则80BD y =-,∴8080y -=120y =-,∴,C D 之间的距离为8080120120160x y --=-++=,故答案为:160)cm .【点睛】本题主要考查线段成比例,掌握线段成比例,黄金分割点的定义是解题的关键.28.()2a【分析】结合题意可得,DE 和EF 是扇形DEF 的边,则DE EF CE CF ==+,根据正方形性质可得BC CD AB ==,90ECD ∠=︒,因为E 是BC 的中点,则12CE BE BC ==;根据勾股定理可得,直角CDE 中,222CD CE DE +=,即DE =CE CF +=AB 的值.【详解】解:依题得:DE EF =,设2AB x =,则正方形ABCD 中,2BC CD AB x ===,90ECD ∠=︒,E 是BC 的中点,12CE BE BC x ∴===,又4CF a = ,4EF CE CF x a DE ∴=+=+=,在直角CDE 中,222CD CE DE +=,即()()22224x x x a +=+2225816x x ax a =++2224x ax a -=()225x a a -=)11x a ∴=,()21x a =,40CF a => ,即0a >,()210x a ∴=<,2x ∴舍去,)()2212AB x a a ∴===+.故答案为:()2a .【点睛】本题考查的知识点是正方形的性质、圆的性质、勾股定理、一元二次方程的解,解题关键是找到DE EF CE CF ==+和222DE CE CD =+两个等量关系式列一元二次方程.29即可解答,熟练掌握黄金分割的定义是解题的关键.【详解】解: 点C 是线段AB 的黄金分割点,AC BC >,∴AC AB =,∴线段AB 的黄金比AC AB .30.(1)c 为3或3-;(2)2AC =【分析】本题主要考查了黄金分割点以及比例中项,正确理解比例中项和黄金分割点的定义是解题的关键.(1)由c 是a ,b 的比例中项,可得29c ab ==,由此求解即可;(2)根据黄金分割点的定义进行求解即可.【详解】解:(1)∵c 是,a b 的比例中项,∴2 4.529c ab ==⨯=∴13c =,23c =-∴c 为3或3-;(2)∵C 是AB 的黄金分割点,且AC BC >,4AB =,∴4 2.AC AB ===31【分析】证明ABC BDC ∽△△,可得2BC AB CD =⨯,从而得到221CD BC AD CD AD AC ==+==①,②,进而得到CD =【详解】解:∵ABC ,BDC ,DEC 都是黄金三角形,∴,,AB AC BD BC AD DE CD ====,36A CBD CDE ∠=∠=∠=︒,∵C C ∠=∠,∴ABC BDC ∽△△,∴AC BC BC CD=,∴2BC AB CD =⨯,∵1AB =,∴221CD BC AD CD AD AC ==+==①,②,∴1AD CD =-③,代入①整理得,()21CD CD =-,解得:CD =∵1CD <,∴CD =,∵DE CD =,∴DE =【点睛】本题考查了相似三角形的判定和性质,黄金三角形的定义,解题的关键是理解黄金三角形的定义.32.(1)AM 1,DM 的长为3(2)点M 是AD 的黄金分割点,理由见解析【分析】(1)要求AM 的长,只需求得AF 的长,又AF PF AP =-,PF PD ===,则1,3AM AF DM AD AM ==-=-=(2)根据(1)中的数据得:AM AD M 是AD 的黄金分割点.【详解】(1)在Rt APD 中,1,2AP AD ==,由勾股定理知∶PD∴1AM AF PF AP PD AP ==-=-=,3DM AD AM =-=故AM 1,DM 的长为3(2)点M 是AD 的黄金分割点.∵AM AD =∴点M 是AD 的黄金分割点.【点睛】此题综合考查了正方形的性质、勾股定理和黄金分割的概念.先求得线段,AM DM 的长,然后求得线段AM 和AD 之间的比,根据黄金分割的概念进行判断.33.1)m【分析】本题考查了黄金分割,解题的关键是设雕像的下部高为x m ,则上部长为(2)m x -,然后根据题意列出方程求解即可.【详解】解:设雕像的下部高为x m ,则题意得:22x x x -=,整理得:2240x x +-=,解得11x =,21x =-(舍去),答:雕像的下部高为1)m -.。

2021年苏科版九年级数学下6.2黄金分割同步练习含答案与试题解析

2021年苏科版九年级数学下6.2黄金分割同步练习含答案与试题解析

2021年苏科版九年级数学下6.2黄金分割同步练习一.选择题(共2小题)1.(2019秋•瑶海区期中)点C 是线段AB 的黄金分割点(AC <CB ),若AC =2,则CB =( )A .√5+1B .√5+3C .√5−12D .3−√522.(2020秋•长丰县期末)如图,乐器上的一根弦AB =80cm ,两个端点A ,B 固定在乐器板面上,支撑点C 是靠近点B 的黄金分割点,支撑点D 是靠近点A 的黄金分割点,则C ,D 之间的距离为( )A .(40√5−40)cmB .(80√5−40)cmC .(120﹣40√5)cmD .(80√5−160)cm二.填空题(共5小题)3.(2014秋•泾县校级期中)报幕员在台上时,若站在黄金分割点处,会显得活泼而生动,已知舞台长10米,那么报幕员要至少走 米报幕.4.(2020秋•射阳县期末)如图,东方明珠电视塔高468m ,如果把塔身看作一条线段AC ,中间的球体看作点B ,那么点B 是线段AC 的黄金分割点,则AB 的长为 m .(精确到0.1m )5.(2017秋•秦淮区期末)据有关测定,当气温处于人体正常体温的黄金比值时人体感到最舒适.因此夏天使用空调时,如果人的体温按36.5度算,那么室内温度约调到 ℃最适合.(结果保留到个位数字)6.(2018秋•崇明区期末)已知线段AB 的长为10cm ,点C 是线段AB 的黄金分割点,且AC>BC,则AC=cm.(结果保留根号)7.(2015秋•泰州校级月考)科学研究表明,当人的下肢与身高比为0.618时,看起来最美,某成年女士身高为160cm,下肢长为98cm,该女士穿的高跟鞋鞋跟的最佳高度约为cm(精确到0.1cm).2021年苏科版九年级数学下6.2黄金分割同步练习参考答案与试题解析一.选择题(共2小题)1.(2019秋•瑶海区期中)点C 是线段AB 的黄金分割点(AC <CB ),若AC =2,则CB =( )A .√5+1B .√5+3C .√5−12D .3−√52【解答】解:点C 是线段AB 的黄金分割点,AC <CB ,∴CB =√5−12×AB =√5−12×(AC +BC ), ∴CB =√5−12×(2+BC ),解得,CB =√5+1,故选:A .2.(2020秋•长丰县期末)如图,乐器上的一根弦AB =80cm ,两个端点A ,B 固定在乐器板面上,支撑点C 是靠近点B 的黄金分割点,支撑点D 是靠近点A 的黄金分割点,则C ,D 之间的距离为( )A .(40√5−40)cmB .(80√5−40)cmC .(120﹣40√5)cmD .(80√5−160)cm【解答】解:∵点C 是靠近点B 的黄金分割点,点D 是靠近点A 的黄金分割点, ∴AC =BD =80×√5−12=40√5−40,∴CD =BD ﹣(AB ﹣BD )=2BD ﹣AB =80√5−160,故选:D .二.填空题(共5小题)3.(2014秋•泾县校级期中)报幕员在台上时,若站在黄金分割点处,会显得活泼而生动,已知舞台长10米,那么报幕员要至少走 (15﹣5√5) 米报幕.【解答】解:报幕员要走的路程为:10×(1−√5−12)=15﹣5√5(米).故答案为:(15﹣5√5).4.(2020秋•射阳县期末)如图,东方明珠电视塔高468m ,如果把塔身看作一条线段AC ,中间的球体看作点B,那么点B是线段AC的黄金分割点,则AB的长为289.2m.(精确到0.1m)【解答】解:AB=√5−12AC≈468×0.618≈289.2(m).故答案为289.2.5.(2017秋•秦淮区期末)据有关测定,当气温处于人体正常体温的黄金比值时人体感到最舒适.因此夏天使用空调时,如果人的体温按36.5度算,那么室内温度约调到23℃最适合.(结果保留到个位数字)【解答】解:36.5℃×0.618=23℃.所以如果人的体温按36.5度算,那么室内温度约调到23℃最适合.故答案为23.6.(2018秋•崇明区期末)已知线段AB的长为10cm,点C是线段AB的黄金分割点,且AC>BC,则AC=5√5−5cm.(结果保留根号)【解答】解:∵点C是线段AB的黄金分割点,AC>BC,∴AC=√5−12AB=(5√5−5)cm,故答案为:5√5−5.7.(2015秋•泰州校级月考)科学研究表明,当人的下肢与身高比为0.618时,看起来最美,某成年女士身高为160cm,下肢长为98cm,该女士穿的高跟鞋鞋跟的最佳高度约为 2.3 cm(精确到0.1cm).【解答】解:设该女士穿的高跟鞋鞋跟的最佳高度为xcm,由题意得,98+x160+x=0.618,解得x≈2.3.该女士穿的高跟鞋鞋跟的最佳高度为2.3cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19.2黄金分割
一、请你填一填
(1)如图4—2—1,若点P 是AB 的黄金分割点,则线段A P 、PB 、AB 满足关系式________,即AP 是________与________的比例中项.
图4—2—1
(2)黄金矩形的宽与长的比大约为________(精确到0.001).
(3)如果线段d 是线段a 、b 、c 的第四比例项,其中a =2 cm,b =4 cm,c =5 cm,则d =_____________cm .
(4)已知O 点是正方形ABCD 的两条对角线的交点,则AO ∶AB ∶AC =________.
(5)若d c b a ==3(b +d ≠0),则d
b c a ++=________. 二、认真选一选
(1)已知y
x 23=,那么下列式子成立的是_________. [ ] A .3x =2y B .xy =6
C .3
2=y x D .32=x y (2)把ab =21
cd 写成比例式,不正确的写法是_________. [ ]
A .
b d
c a 2= B .b
d c a =2 C .b d c a =2 D .d
a b c 2= (3)已知线段x ,y 满足(x +y )∶(x -y )=3∶1,那么x ∶y 等于_________.[ ]
A .3∶1
B .2∶3
C .2∶1
D .3∶2
(4)有以下命题:
①如果线段d 是线段a ,b ,c 的第四比例项,则有d
c b a = ②如果点C 是线段AB 的中点,那么AC 是AB 、BC 的比例中项
③如果点C 是线段AB 的黄金分割点,且AC >BC ,那么AC 是AB 与BC 的比例中项
④如果点C 是线段AB 的黄金分割点,AC >BC ,且AB =2,则AC =5-1
其中正确的判断有_________. [ ]
A .1个
B .2个
C .3个
D .4个
三、细心算一算
已知实数a ,b ,c 满足
c b a b a c a c b +=+=+,求a
c b +的值. 四、好好想一想
以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连结PD ,在BA 的延长线上取点F ,使PF=PD ,以AF 为边作正方形AMEF ,点M 在AD 上,如图4—2—2.
图4—2—2
(1)求AM 、DM 的长.
(2)求证:AM 2
=AD ·DM .
(3)根据(2)的结论你能找出图中的黄金分割点吗?
参考答案
一、(1)AP
PB AB AP = PB AB (2)0.618
(3)10
(4)22∶1∶2即1∶2∶2
(5)3
二、(1)D (2)B (3)C (4)C 三、解:设c
b a b a
c a c b +=+=+=k 则b +c =ak ,c +a =bk ,a +b =ck
∴2(a +b +c )=k (a +b +c )
当a +b +c ≠0时,∴k =2,∴a
c b +=2 当a +b +c =0时,b =-(b +c ),
a c
b +=-1 四、解:如图(见原题图)
(1)∵正方形ABCD 的边长为2,P 是AB 中点 ∴AB =AD =2,AP =1
在Rt △A PD 中,PD =
522=+AD AP
∵PF =PD ,
∴AF =PF -AP =5-1
∵AMEF 是正方形,
∴AM =AF =5-1 DM =AD -AM =2-(5-1)=3-
5 (2)由(1)得AM 2=(5-1)2=6-25
AD ·DM =2(3-5)=6-25
∴AM 2=AD ·DM
(3)图中点M 是线段AD 的黄金分割点.。

相关文档
最新文档