2017年广东高考理科数学试题与答案

合集下载

(完整word版)2017年高考全国理科数学试题及答案(1卷WORD版),推荐文档

(完整word版)2017年高考全国理科数学试题及答案(1卷WORD版),推荐文档

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.右面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共4小题,每小题5分,共20分。

2017年广东省高考试题(理数_word解析版)

2017年广东省高考试题(理数_word解析版)

2017年普通高等学校招生全国统一考试(广东卷)数学(理科)本试题共4页,21小题,满分150分,考试用时120分钟。

注意事项:1、答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名、和考生号、试室号、座位号,填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”. 2、选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3、非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求做大的答案无效。

4、作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答。

漏涂、错涂、多涂的,答案无效。

5、考生必须保持答题卡得整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:柱体的体积公式V Sh ,其中S 为柱体的底面积,h 为柱体的高.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设i 为虚数单位,则复数56i i=( )()A 65i ()B 65i ()C i ()D i【解析】选D 依题意:256(56)65ii ii ii,故选D .2.设集合{1,2,3,4,5,6},{1,2,4}UM;则U C M( )()A U()B {1,3,5}()C {,,}()D {,,}【解析】选C U C M{,,}3. 若向量(2,3),(4,7)BACA ;则BC( )()A (2,4)()B (2,4)()C (,)()D (,)【解析】选A(2,4)B C B AC A 4.下列函数中,在区间(0,)上为增函数的是( )()A ln(2)yx ()B 1yx ()C ()xy ()D y xx【解析】选Aln(2)y x区间(0,)上为增函数,1yx 区间(0,)上为减函数()xy区间(0,)上为减函数,yxx区间(1,)上为增函数5.已知变量,x y 满足约束条件241yx y xy,则3z xy 的最大值为( )()A 12()B 11()C ()D 【解析】选B约束条件对应ABC 边际及内的区域:53(2,2),(3,2),(,)22A B C 则3[8,11]zx y6.某几何体的三视图如图1所示,它的体积为( )()A 12()B 45()C ()D 【解析】选C 几何体是圆柱与圆锥叠加而成它的体积为2222135353573V 7. 从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( )()A 49()B 13()C ()D 【解析】选D①个位数为1,3,5,7,9时,十位数为2,4,6,8,个位数为0,2,4,6,8时,十位数为1,3,5,7,9,共45个②个位数为0时,十位数为1,3,5,7,9,共5个别个位数为0的概率是514598. .对任意两个非零的平面向量和,定义;若平面向量,a b 满足0ab ,a 与b 的夹角(0,)4,且,a b b a 都在集合}2n nZ 中,则a b( )()A 12()B 1()C ()D 【解析】选C21cos 0,cos 0()()cos(,1)2a b a bb aa b b a ba,a b b a 都在集合}2n nZ 中得:*12123()()(,)42n n a b b a n n N a b二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

2017广东高考数学

2017广东高考数学

2017广东高考数学
2017年广东高考数学试题,难度适中,既考查了知识点的理解掌握,又注重考生运用知识点解决实际问题的能力。

一、选择题部分
选择题的答案在情况下明确,对于考生来说并不太难,但是有一些细
节性的问题需要注意,特别是近年来重点改革的数学知识点。

题目中的矩阵、向量等概念需要掌握;函数的性质及其表达式的简化
规则看似简单,但实际上需要细心地分析结果,并不是通过简单的计算就
可以得到。

二、填空题部分
在填空题部分,数学知识不仅是必要的,而且还需要考生完善掌握。

要解决填空题,考生必须掌握正确的思考方法,例如正确的转换思想、不放弃不确定条件、发掘题目中的隐藏信息等。

需要特别注意的是,填空题是数学知识考试的一个重要部分,建议考
生认真对待。

三、解答题部分
解答题部分是广东高考数学试卷中的重点,多为应用题,需要将解决
问题与数学理论知识相结合。

在解答题部分中,考生需要注意以下几个方面:
1、解题思路的清晰度和逻辑性;
2、公式的正确运用;
3、部分的化简规则掌握;
4、概率、统计学的掌握;
5、代数方程式计算的准确性。

总之,2017年广东高考数学试卷难度适中,重点考察考生对于知识点的理解掌握,注重考生的运用能力,特别是对于现实生活中的数学问题进行解决的能力。

建议考生平时多做练习,加强对于数学知识点的掌握,最终在考场中取得好成绩。

2017年广东省高考理科真题汇编广东省语文数学英语理综物理化学生物Word版试题含答案

2017年广东省高考理科真题汇编广东省语文数学英语理综物理化学生物Word版试题含答案

2017年广东省高考真题汇编(共6套)目录2017年普通高等学校招生全国统一考试广东卷语文试题··········2017年普通高等学校招生全国统一考试广东卷语文答案··········2017年普通高等学校招生全国统一考试广东卷理科数学试题········2017年普通高等学校招生全国统一考试广东卷理科数学答案········2017年普通高等学校招生全国统一考试广东卷英语试题含答案解析·····2017年普通高等学校招生全国统一考试广东卷理综试题··········2017年普通高等学校招生全国统一考试广东卷理综答案··········绝密★启用前2017年普通高等学校招生全国统一考试语文注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。

气候正义是环境主义在气候变化领域的具体发展和体现。

2017年广州市普通高中毕业班综合测试(一)理科数学试题含答案

2017年广州市普通高中毕业班综合测试(一)理科数学试题含答案

绝密 ★ 启用前2017年广州市普通高中毕业班综合测试(一)理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自 己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应 位置填涂考生号。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑, 如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的.(1)复数()221i 1i +++的共轭复数是(A)1i + (B )1i - (C )1i -+ (D )1i -- (2)若集合}{1M x x =≤,}{2,1N y y x x ==≤,则(A )M N = (B)M N ⊆ (C)N M ⊆ (D)MN =∅(3)已知等比数列{}n a 的各项都为正数, 且35412a ,a ,a 成等差数列,则3546a a a a ++的值是(A )51- (B )51+ (C ) 352- (D)352+(4)阅读如图的程序框图. 若输入5n =, 则输出k 的值为(A )2 (B )3 (C )4 (D )5(5)已知双曲线C 222:14x y a -=的一条渐近线方程为230+=x y ,1F ,2F 分别是双曲线C 的左,右焦点, 点P 在双曲线C 上, 且17PF =, 则2PF 等于(A )1 (B )13 (C)4或10 (D)1或13 (6)如图, 网格纸上小正方形的边长为1, 粗线画出的是 某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83, 则该几何体的俯视图可以是(7)五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币。

(完整word版)2017全国三卷理科数学高考真题及答案

(完整word版)2017全国三卷理科数学高考真题及答案

2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .2 C .2 D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP u u u r=λAB u u u r +μAD u u u r,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。

2017年广东高考(理科)数学试题及答案

 2017年广东高考(理科)数学试题及答案

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x <1},B ={x |31x<},则A .{|0}AB x x =< B .A B =RC .{|1}AB x x =>D .AB =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x ++展开式中2x 的系数为A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.右面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n+1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235x y z==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共4小题,每小题5分,共20分。

2017年普通高等学校招生全国统一考试(广东模拟卷一)理科数学试题及答案

2017年普通高等学校招生全国统一考试(广东模拟卷一)理科数学试题及答案

普通高等学校招生全国统一考试(广东模拟卷一)本试卷共4页,21小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时.请先用2B铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的.答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |1621x <<},B ={x |x 2-2x -3≤0},则A ∩(C R B )=A .(1,2)B .(1,3)C .(1,4)D .(3,4)2. 已知i 为虚数单位, 则复数z =i (1+i )在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3. 下列函数中,是奇函数且在区间(0,1)内单调递减的函数是A .12log y x = B .1y x= C .3y x = D .x y tan = 4. 设a ∈R ,则“a =-2”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的A .充分不必要条 BC .充要条件 D5. 一个空间几何体的三视图如图所示,为A .2B .4C .6.程序框图如图所示,将输出的a 的值依次记为a 正视图 左视图俯视图a n ,其中*n ∈N 且2010n ≤.那么数列{}n a 的通项公式为 A .31n a n =- B .31n n a =- C .123n n a -=⋅D .21(3)2n a n n =+7.向圆内随机投掷一点,此点落在该圆的内接正()3,n n n ≥∈N 边形内的概率为n p ,下列论断正确的是A .随着n 的增大,n p 先增大后减小B .随着n 的增大,n p 减小C .随着n 的增大,n p 增大D .随着n 的增大,n p 先减小后增大8. 设非空集合{}S x m x l =≤≤满足:当2x S x S ∈∈时,有,给出如下三个命题:①若{}1,1m S ==则; ②若11,1;24m l =-≤≤则③若1,022l m =-≤≤则; 其中正确的命题的个数为 A .0个 B .1个 C .2个D .3个二、填空题:本大题共7小题.考生作答6小题.每小题5分,满分30分 (一)必做题(9~13题) 9. 已知⎪⎭⎫⎝⎛∈=ππαα,2,53sin ,则cos sin 44ππαα⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭的值为________ .10. 已知向量(1,),(1,)t t ==-a b .若-2a b 与b 垂直, 则||___=a . 11. 10(2x dx =⎰ .12. 已知双曲线22221x y a b-=的离心率为2,它的一个焦点与抛物线28y x=的焦点相同,那么双曲线的渐近线方程为_______.13. 已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4), , 则第581个数对是 _.(二)选做题(14、1514.(几何证明选讲选做题) 如图所示,已知圆O 的直径AB,C 为圆O BC过点B 的切线交AC 延长线于点D ,则DB =_____. 15.(坐标系与参数方程选做题) 在直角坐标系xOy 中,直线l 的参数方程为2214x ty t =+⎧⎨=+⎩(t 为参数), (第14题)在以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.曲线C 的极坐标方程为3cos r q =,则曲线C 被直线l 截得的弦长为 . 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分l4分)在ABC∆中,设角,,A B C的对边分别为,,a b c,向量(cos ,sin ),m A A =sin ,cos )n A A =,若1m n = .(1)求角A 的大小; (2)若b =c =,求ABC ∆的面积.17.(本小题满分12分)A某高校从参加今年自主招生考试的学生中,随机抽取容量为50的学生成绩样本,得频率分布表如下:(l )写出表中①②位置的数据; (2)为了选拔出更优秀的学生,高校决定在第三组、第四组、第五组中用分层抽样法,抽取6名学生进行第二轮考核,第四、(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,其中有ξ名第三组的,求ξ的数学期望.18.(本小题满分14分)如图(1),等腰梯形ABCD 中,0,2,60//AB AD ABC AD BC ==∠=,E 是BC 的中点,将ABE ∆沿AE 折起,得到如图(2)所示的四棱锥'B AECD -,连结'',BC B D ,F 是CD 的中点,P 是'B C 的中点,且2PF =.(1)求证: AE ⊥平面PEF ;(2)求二面角'B EF A --的余弦值.B图(1)图(2)19.(本小题满分12分)已知椭圆2222:1(0)x y C a ba b +=>>,并且椭圆经过点(1,1),过原点O 的直线l 与椭圆C 交于A B 、两点,椭圆上一点M 满足MA MB =.(Ⅰ)求椭圆C 的方程;(Ⅱ)证明:222112OAOBOM++为定值;(Ⅲ)是否存在定圆,使得直线l 绕原点O 转动时,AM 恒与该定圆相切,若存在,求出该定圆的方程,若不存在,说明理由.20.(本小题满分14分)已知数列{}n a 和{}n b 满足11212,n n na a a a +-==,1n nb a =-,数列{}n b 的前n 和为n S .(1)求数列{}n b 的通项公式;(2)设2n n n T S S =-,求证:1n n T T +>; (3)求证:对任意的n N *∈有21122nn n na S na +≤≤-成立.21.(本小题满分14分)已知函数32()63),.x f x x x x t e t R =-++∈( (Ⅰ)若函数()y f x =依次在,,()x a x b x c a b c ===<<处取得极值,求t 的取值范围;(Ⅱ)若存在实数[0,2]t ∈,使对任意的[1,]x m ∈,不等式()f x x≤恒成立,求正整数m 的最大值.普通高等学校招生全国统一考试(广东模拟卷一)数学(理科)参考答案一、选择题:本大题共8小题,每小题5分,满分40分.1.D . 2.B . 3.B .4.A .5.A .6.C . 7.C .8.D . 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.9.4950. 10.2.11.14π-. 12.0y ±=. 13.(20,15). 14.15.3.三、解答题:本大题共6小题,满分80分。

2017年高考全国1卷理科数学和答案详解(word版本)(可编辑修改word版)

2017年高考全国1卷理科数学和答案详解(word版本)(可编辑修改word版)

绝密★启用前2017 年普通高等学校招生全国统一考试理科数学本试卷 5 页,23 小题,满分 150 分。

考试用时 120 分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用 2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2. 作答选择题时,选出每小题答案后,用 2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4. 考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共 12 小题,每小题 5 分,共 60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合 A ={x |x <1},B ={x | 3x < 1 },则 A . A B = {x | x < 0} C . A B = {x | x > 1}B . A B = R D . A B = ∅2. 如图,正方形 ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A . 14C. 123.设有下面四个命题B . π8D . π4p :若复数 z 满足 1∈ R ,则 z ∈ R ; 1zp 2 :若复数 z 满足 z 2 ∈ R ,则 z ∈ R ;p 3 :若复数 z 1 , z 2 满足 z 1 z 2 ∈ R ,则 z 1 = z 2 ;p4:若复数 z ∈R,则 z∈R .其中的真命题为A.p1 , p3B.p1 , p4C.p2 , p3D.p2 , p44.记S n 为等差数列{a n } 的前n 项和.若a4 +a5 = 24 ,S6 = 48 ,则{a n } 的公差为A.1 B.2 C.4 D.85.函数f (x) 在(-∞, +∞) 单调递减,且为奇函数.若f (1) =-1,则满足-1 ≤f (x - 2) ≤ 1的x 的取值范围是A.[-2, 2]B.[-1,1]C.[0, 4]D.[1, 3]6.(1+ 1)(1+x)6展开式中x2的系数为x2A.15 B.20 C.30 D.357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.168.右面程序框图是为了求出满足3n−2n>1000 的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000 和n=n+1B.A>1 000 和n=n+2C.A ≤1 000 和n=n+1D.A ≤1 000 和n=n+29.已知曲线C :y=cos x,C :y=sin (2x+ 2π),则下面结论正确的是1 23⎨ ⎩A. 把 C 1 π 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得6到曲线 C 2B. 把 C 1 π上各点的横坐标伸长到原来的2 倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得 12 到曲线 C 2C. 把 C 1 1 π 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得26到曲线 C 2D. 把 C 1 1 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向左平移2 π个单位长度,12得到曲线 C 210.已知 F 为抛物线 C :y 2=4x 的焦点,过 F 作两条互相垂直的直线 l 1,l 2,直线 l 1 与 C 交于 A 、B 两点, 直线 l 2 与 C 交于 D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设 xyz 为正数,且2x = 3y = 5z ,则 A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12. 几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列 1,1,2,1,2,4,1,2,4, 8,1,2,4,8,16,…,其中第一项是 20,接下来的两项是 20,21,再接下来的三项是 20,21,22, 依此类推.求满足如下条件的学科网&最小整数 N :N >100 且该数列的前 N 项和为 2 的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共 4 小题,每小题 5 分,共 20 分。

2017年广东高考理科数学试题含答案(Word版)

2017年广东高考理科数学试题含答案(Word版)

2017年普通高等学校招生全国统一考试(广东卷)数学(理)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃=A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1} 答案:B2.已知复数Z 满足(34)25,i z +=则Z=A .34i - B. 34i + C. 34i -- D. 34i -+ 答案:A 2525(34)25(34):=34,.34(34)(34)25i i z i i i i --===-++-提示故选A3.若变量,x y 满足约束条件121y xx y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.5:(),(2,1)(1,1)3,3,6,.CM m M m C --==-∴-=答案:提示画出可行域略易知在点与处目标函数分别取得最大值与最小值选4.若实数k 满足09,k <<则曲线221259x y k-=-与曲线221259x y k -=-的 A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等09,90,250,(9)34(25)9,k k k k k k <<∴->->+-=-=-+答案:D提示:从而两曲线均为双曲线,又25故两双曲线的焦距相等,选D.5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B.(1,-1,0) C.(0,-1,1) D.(-1,0,1)0:11,,60,.22B B =∴答案提示即这两向量的夹角余弦值为从而夹角为选6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为 A. 200,20 B. 100,20 C. 200,10 D. 100,10::(350045002000)2%200,20002%50%20,.AA ++⋅=⋅⋅=∴答案提示样本容量为抽取的高中生近视人数为:选7.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是A.14l l ⊥B.14//l lC.14,l l 既不垂直也不平行D.14,l l 的位置关系不确定 答案:D 8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A.60B.90C.120D.130 答案: D1234511122252551311225254:1,2,31:C 10;:C 40;:C C C 80.104080130, D.x x x x x C C A C C ++++=+=+=++=提示可取和为的元素个数为和为2的元素个数为和为3的元素个数为故满足条件的元素总的个数为选二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式521≥++-x x 的解集为 .(][)(][),32,:12532,,32,.-∞-+∞---∞-+∞答案:提示数轴上到与距离之和为的数为和故该不等式的解集为:10.曲线25+=-xey 在点)3,0(处的切线方程为 . '5'0:530:5,5,35,530.x x x y y e y y x x y -=+-==-∴=-∴-=-+-=答案提示所求切线方程为即11.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 .367101:6:67,36,136,.6C C =答案提示要使为取出的个数中的中位数则取出的数中必有个不大于另外个不小于故所求概率为12.在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,已知b B c C b 2cos cos =+,则=ba. 2222222:2::cos cos ,2, 2.sin cos sin cos 2sin ,sin()2sin ,sin 2sin ,2, 2.::2,24,222, 2.ab Cc B a a b bB C C B B B C B aA B a b ba b c a c b b b a ab ab ac aa b b+==∴=+=+=∴==∴=+-+-⋅+==∴==答案提示解法一由射影定理知从而解法二:由上弦定理得:即即解法三由余弦定理得即即13.若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++= . 51011912101112202019151201011:50,,ln ln ln ,ln ln ln ,220ln 20ln 20ln 100,50.a a a a a a e S a a a S a a a S a a a a e S =∴==+++=+++∴====∴=答案提示:设则(二)选做题(14~15题,考生从中选做一题)14.(坐标与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为2sin cos ρθθ=和sin ρθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2的交点的直角坐标为__221212:(1,1):(sin )cos ,,:1,(1,1).C y x C y C C ρθρθ===∴答案提示即故其直角坐标方程为:的直角坐标方程为与的交点的直角坐标为15.(几何证明选讲选做题)如图3,在平行四边形ABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则CDF AEF ∆∆的面积的面积=___22:9:,()()9.CDF AEF CDF CD EB AE AEF AE AE∆∆∴∆+===∆答案提示显然的面积的面积三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和 演算步骤.16、(12分)已知函数R x x A x f ∈+=),4sin()(π,且23)125(=πf ,(1)求A 的值; (2)若23)()(=-+θθf f ,)2,0(πθ∈,求)43(θπ-f . 55233:(1)()sin()sin , 3.121243223(2)(1):()3sin(),4()()3sin()3sin()443(sin coscos sin )3(sin()cos cos()sin )4444323cos sin 6cos 426cos ,(0,),42f A A A f x x f f πππππππθθθθππππθθθθπθθπθθ=+==∴=⋅==+∴+-=++-+=++-+-===∴=∈解由得10sin 4331030()3sin()3sin()3sin 3.44444f θπππθθπθθ∴=∴-=-+=-==⨯=17、(13分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:根据上述数据得到样本的频率分布表如下:(1)确定样本频率分布表中121,,n n f 和2f 的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.121272:(1)7,2,0.28,0.08;2525(2):n n f f ======解频率分布直方图如下所示(](](]044(3),30,350.2,30,35(4,0.2),130,35:1(0.2)(0.8)10.40960.5904.B C ξξ-=-=根据频率分布直方图可得工人们日加工零件数落在区间的概率为设日加工零件数落在区间的人数为随机变量,则故4人中,至少有人的日加工零件数落在区间的概率为18.(13分)如图4,四边形ABCD 为正方形,PD ⊥平面ABCD ,∠DPC =030,AF ⊥PC 于点F ,FE ∥CD ,交PD 于点E.(1)证明:CF ⊥平面ADF ; (2)求二面角D -AF -E 的余弦值.:(1):,,,,A ,,,,,,,,,,.(2):E EG//CF DF G,,,G GH AF H,EH,PD ABCD PD PCD PCD ABCD PCD ABCD CD D ABCD AD CD AD PCD CF PCD CF AD AF PC CF AF AD AF ADF ADAF A CF ADF CF DF EG DF ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥∴⊥⊂=∴⊥⊥∴⊥⊥∠解证明平面平面平面平面平面平面平面平面又平面平面解法一过作交于平面A 平面A 过作于连则00,CD 2,30,130,==1,21324,,,,,22333EG .,423EHG D AF E DPC CDF CF CDDE CF CP EF DCDE DF DP CP DE EF AE AF EF DF AE EF EH HG AF --=∠=∴∠==∴=∴=⋅======⋅∴====为二面角的平面角设从而∥还易求得EF=从而易得故cos GH EHG EH ∴∠==12:,,,,,2,1(0,0,2),C(0,2,0),,(23,22,0),,,431,0),ADF CP (3,1,0),22AEF (x DP DC DA x y z DC A CF CP F DF CF F E n n λλλλ==-⊥===-=解法二分别以为轴建立空间直角坐标系设则设则可得从而易得取面的一个法向量为设面的一个法向量为2212212,y,z),0,0,19||||2n AE n AF n n n n n ⋅=⋅=⋅==⋅⨯利用且得可以是从而所求二面角的余弦值为19.(14分)设数列{}n a 的前n 和为n S ,满足2*1234,n n S na n n n N +=--∈,且315S =. (1)求123,,a a a 的值; (2)求数列{}n a 的通项公式;211222122331212121331221232121:(1)2314127+=432424()204(15)20,+83,,1587,53,5,7,(2)2342,2(1)3(1)4(n n n n a S a a a a S a S a a a a a a a a S a a a a a a S na n nn S n a n n +-==-⨯-⨯=-=-⨯-⨯=---=---∴==⎧∴=--=-=⎨=⎩====--∴≥=-----解①②联立①②解得综上③当时11121)2161,22(1)21,:()(1),1,3211,;(),,21,21611,22211(21)322411322232(1)11n n n k k k n n a a n na n i n a ii n k a k k k n k a a k k k k k k k k k k k n k ++-+-=+=+===⨯+==+-+=+=+-=⋅+++-=++=+=++=+④③④并整理得:由猜想以下用数学归纳法证明由知当时猜想成立假设当时猜想成立即则当时这就是说,,,2 1.n n N a n *∈=+时猜想也成立从而对一切20.(14分)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为,离心率为3,(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.2222200220022:(1)3,954,1.94(2),,4(3,2),(3,2).(),(),194(94)18(c c e a b a c a x y C x y y y k x x x y y k x x y k x k y ====∴==-=-=∴+=-±±-=-=-++=++解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:2000022222200000022220000012202200)9()40,,0,(18)()36()4(94)0,4()4(94)0,4(9)240,,1,:1,913,(3,2),(3,2)kx x y kx k y kx y kx k y kx k y x k x y k y k k x x y ⎡⎤-+--=∆=⎣⎦⎡⎤----+=--+=⎣⎦-∴--+-=∴=-=--∴+=-±±依题意即:即两切线相互垂直即显然这四点也满足以上方22,13.P x y ∴+=程点的轨迹方程为21.(本题14分)设函数()f x =2k <-,(1)求函数()f x 的定义域D (用区间表示); (2)讨论()f x 在区间D 上的单调性;(3)若6k <-,求D 上满足条件()(1)f x f >的x 的集合(用区间表示).222222122222:(1)(2)2(2)30,2123:210,44(1)4(2)0(2),21=01210:11230,23044(3)x x k x x k x x k x x k x x k k k k x x k x x k x x x x k x x k k +++++->++>++<-++->∆=--=-><-∴++--∴++-><->-++++<+++=∆=-+=解则①或②由①得方程的解为由得由②得:方程的判别式23'24(2)0(2),1230:112,11111(,1(12,12)(12,).(2)0,1()2(2k k x x k x k D k k k u f x u x ---><-∴-+++<--<<-<-∴-<-<-<--+∴=-∞------+---+-+∞==-⋅⋅该方程的解为由得设则23222'2'22)(22)2(22)2(1)(21)()(,1,10,21110,()0;()(11),10,21310,()0;()(1,1,10,21310,x k x x u x x x k i x x x x k f x ii x x x x k f x iii x x x x k f -⎡⎤++⋅+++⎣⎦=-+⋅+++∈-∞-+<+++>+>∴>∈--+<+++<-+<∴<∈--++>+++<-+<∴当时当时当时'2'()0;()(1),10,21110,()0.,():(,11,1,():(11),(1).x iv x x x x k f x f x D f x D >∈-+∞+>+++>+>∴<-∞------++∞当时综上在上的单调增区间为在上的单调减区间为22222222222(3)g(x)(2)2(2)3,(1),x D ,g(x)0;g(1)(3k)2(3)3(6)(2),,6,(1)0,()(1)()(1),()(1)[(2)2(2)3][(3k)2(3)3][(2)(3k)]x x k x x k k k k k g f x f g x g g x g x x k x x k k x x k =+++++-∈>=+++-=++<->>⇔<-=+++++--+++-=++-+设由知当时又显然当时从而不等式2222[(2)(3)](3)(1)(225),()(3)(1)0,()(1),()(6,111311111,1111),2250,k x x k k x x x x k i x x x f x f g x x g x k x x +++-+=+-++<-∴-<----<<--+-+--+<+->∴><+<<-+++<当欲使即亦即即2222(3)(1)0,225(2)(5)3(5)0,()(1),()(1);(1iii)31,(3)(1)0,2253(5)0,()(1),;(iv)1(()13,13)(1)0,,2ii xx x x x kx x k k kg x g f x f x x x x x k k g x g x x x x x <+->+++=++++<-++<<>-<<+---<<--+<+++<-++<∴><<+->++时此时即时不合题意21,11253(5)0,()(1),;(v)(3)(1)0,()(1),2250,()(1)11,11(13)(1(1(,11k k g x x g x x x g x g x x x k f x f --<<-+<-++<∴<>+->∴<++-+<---⋃--⋃-+⋃-+-+++<>从而综合题意欲使则即的解集为:上所述。

(word完整版)2017年高考全国1卷理科数学和答案详解(word版本)

(word完整版)2017年高考全国1卷理科数学和答案详解(word版本)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.右面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的学科网&最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共4小题,每小题5分,共20分。

(完整word)2017年全国三卷理科数学高考真题及答案解析(可编辑修改)

(完整word)2017年全国三卷理科数学高考真题及答案解析(可编辑修改)

2016年普通高等学校招生全国统一考试理科数学一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S = ,则S T ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P I (A) [2,3] (B)(- ,2] [3,+)∞U ∞(C) [3,+) (D)(0,2] [3,+)∞U ∞(2)若z=1+2i ,则 41i zz =-(A)1 (B) -1 (C) i (D)-i(3)已知向量 , 则ABC=1(2BA =u u v 1),2BC =u u u v ∠(A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于200C 的月份有5个(5)若 ,则 3tan 4α=2cos 2sin 2αα+=(A) (B) (C) 1 (D) 642548251625(6)已知,,,则432a =344b =1325c =(A ) (B )(C )(D )b a c <<a b c <<b c a <<c a b<<(7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3(B )4(C )5(D )6(8)在中,,BC 边上的高等于,则 ABC △π4B =13BC cos A =(A (B(C )(D )-- (9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18+(B )54+(C )90(D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若ABBC ,AB =6,BC =8,AA 1=3,则V 的最大值是⊥(A )4π (B )(C )6π 92π(D ) 323π(11)已知O 为坐标原点,F 是椭圆C :的左焦点,A ,B 分别为C 的左,右顶点.P 为C 22221(0)x y a b a b+=>>上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为(A )(B )(C )(D )13122334(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意,2k m ≤12,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个 (B )16个 (C )14个 (D )12个二、填空题:本大题共3小题,每小题5分(13)若x ,y 满足约束条件 则z=x+y 的最大值为_____________.{x ‒y +1≥0x ‒2y ≪0x +2y ‒2≪0(14)函数的图像可由函数的图像至少向右平移_____________个单位长y =sin x ‒3cos x y =sin x +3cos x 度得到。

2017年高考新课标Ⅲ卷理数试题解析(精编版)(解析版)

2017年高考新课标Ⅲ卷理数试题解析(精编版)(解析版)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .0【答案】B【考点】交集运算;集合中的表示方法【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性. 2.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .22C 2D .2【答案】C 【解析】试题分析:由题意可得2i1iz=+,由复数求模的法则可得1121zzz z=,则2i21i2z===+.故选C.【考点】复数的模【名师点睛】共轭与模是复数的重要性质,运算性质有:(1)1212z z z z±=±;(2)1212z z z z⨯=⨯;(3)22z z z z⋅==;(4)121212z z z z z z-≤±≤+;(5)1212z z z z=⨯;(6)1121zzz z=.3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,学/科网绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【解析】故选A.【考点】折线图【名师点睛】将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率分布折线图,频率分布折线图的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,它们比频率分布表更直观、形象地反映了样本的分布规律.4.()()52x y x y +-的展开式中33x y 的系数为A .80-B .40-C .40D .80【答案】C 【解析】试题分析:()()()()555222x y x y x x y y x y +-=-+-,由()52x y -展开式的通项公式()()515C 2rrrr T x y -+=-可得:当3r =时,()52x x y -展开式中33x y 的系数为()3325C 2140⨯⨯-=-; 当2r =时,()52y x y -展开式中33x y 的系数为()2235C 2180⨯⨯-=,则33x y 的系数为804040-=. 故选C.【考点】二项展开式的通项公式【名师点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.5.已知双曲线C :22221x y a b -=(a >0,b >0)的一条渐近线方程为5y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=【答案】B 【解析】【考点】双曲线与椭圆共焦点问题;待定系数法求双曲线的方程【名师点睛】求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为()2220x y a bλλ2-=≠,再由条件求出λ的值即可.6.设函数()π(3cos )f x x =+,则下列结论错误的是A .()f x 的一个周期为2π-B .()y f x =的图像关于直线8π3x =对称 C .(π)f x +的一个零点为π6x = D .()f x 在(π2,π)单调递减【答案】D 【解析】试题分析:函数()f x 的最小正周期为2π2π1T ==,则函数()f x 的周期为()2πT k k =∈Z ,取1k =-,可得函数()f x 的一个周期为2π-,选项A 正确; 函数()f x 图像的对称轴为()ππ3x k k +=∈Z ,即()ππ3x k k =-∈Z ,取3k =,可得y =f (x )的图像关于直线8π3x =对称,选项B 正确; ()πππcos πcos 33f x x x ⎡⎤⎛⎫⎛⎫+=++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数()f x 的零点满足()πππ32x k k +=+∈Z ,即()ππ6x k k =+∈Z ,取0k =,可得(π)f x +的一个零点为π6x =,选项C 正确;当π,π2x ⎛⎫∈⎪⎝⎭时,π5π4π,363x ⎛⎫+∈ ⎪⎝⎭,函数()f x 在该区间内不单调,选项D 错误.故选D.【考点】函数()cos y A x ωϕ=+的性质【名师点睛】(1)求最小正周期时可先把所给三角函数式化为(n )si y A x ωϕ=+或(s )co y A x ωϕ=+的形式,则最小正周期为2πT ω=;奇偶性的判断关键是解析式是否为sin y A x ω=或cos y A x bω=+的形式.(2)求()()sin 0()f x A x ωϕω+≠=的对称轴,只需令()ππ2x k k ωϕ+=+∈Z ,求x ;求f (x )的对称中心的横坐标,只需令π()x k k ωϕ+=∈Z 即可.7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .2【答案】D 【解析】试题分析:阅读程序框图,程序运行如下:首先初始化数值:1,100,0t M S ===,然后进入循环体:此时应满足t N ≤,执行循环语句:100,10,1210MS S M M t t =+==-=-=+=; 此时应满足t N ≤,执行循环语句:90,1,1310MS S M M t t =+==-==+=;此时满足91S <,可以跳出循环,则输入的正整数N 的最小值为2. 故选D.【考点】程序框图【名师点睛】利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构.当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断.注意输入框、处理框、判断框的功能,不可混用.赋值语句赋值号左边只能是变量,不能是表达式,右边的表达式可以是一个常量、变量或含变量的运算式.8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.3π4C.π2D.π4【答案】B【考点】圆柱的体积公式【名师点睛】(1)求解空间几何体体积的关键是确定几何体的元素以及线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.9.等差数列{}n a的首项为1,公差不为0.若a2,a3,a6成等比数列,则{}n a前6项的和为A.24-B.3-C.3 D.8 【答案】A【解析】试题分析:设等差数列{}n a 的公差为d ,由a 2,a 3,a 6成等比数列可得2326a a a =,即()()()212115d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,故{}n a 前6项的和为()()()6166166166122422S a d ⨯-⨯-=+=⨯+⨯-=-.故选A. 【考点】等差数列求和公式;等差数列基本量的计算【名师点睛】(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.10.已知椭圆C :22220)1(x y a ba b +=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .6 B .3 C .2 D .13【答案】A 【解析】【考点】椭圆的离心率的求解;直线与圆的位置关系【名师点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见的有两种方法:①求出a ,c ,代入公式e =c a; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).11.已知函数211()2(ee )x xf x x x a --+=-++有唯一零点,则a =A .12-B .13C .12D .1【答案】C 【解析】试题分析:函数()f x 的零点满足()2112e e x x x x a --+-=-+, 设()11eex x g x --+=+,则()()21111111e 1eeee ex x x x x x g x ---+----'=-=-=, 当()0g x '=时,1x =;当1x <时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数()g x 取得最小值,为()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->,函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和()ag x -有一个交点, 即21a -⨯=-,解得12a =.故选C. 【考点】函数的零点;导函数研究函数的单调性,分类讨论的数学思想【名师点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.12.在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+u u u r u u u r u u u r,则λμ+的最大值为 A .3B .2C 5D .2【答案】A 【解析】试题分析:如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y , 易得圆的半径5r =,即圆C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=u u u r u u u r u u u r ,若满足AP AB AD λμ=+u u u r u u u r u u u r,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+,设12x z y =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上, 所以圆心(20),到直线102xy z -+-=的距离d r ≤21514z -≤+,解得13z ≤≤, 所以z 的最大值是3,即λμ+的最大值是3,故选A. 【考点】平面向量的坐标运算;平面向量基本定理【名师点睛】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.二、填空题:本题共4小题,每小题5分,共20分。

2017广东高考理科数学真题及解析

2017广东高考理科数学真题及解析

2017年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.若集合,,则().A.B.C.D.2.若复数(是虚数单位),则().A.B.C.D.3.下列函数中,既不是奇函数,也不是偶函数的是().A.B.C.D.4.袋中共有个除了颜色外完全相同的球,其中有个白球,个红球.从袋中任取个球,所取的个球中恰有个白球,个红球的概率为().A.B.C.D.5.平行于直线且与圆相切的直线的方程是().A.或B.或C.或D.或6.若变量,满足约束条件,则的最小值为().A.B.C.D.7.已知双曲线的离心率,且其右焦点为,则双曲线的方程为().A.B.C.D.8.若空间中个不同的点两两距离都相等,则正整数的取值().A.至多等于B.至多等于C.等于D.大于二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)9.在的展开式中,的系数为__________.10.在等差数列中,若,则__________.11.设的内角,,的对边分别为,,.若,,,则__________.12.某高三毕业班有人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了__________条毕业留言.(用数字作答)13.已知随机变量服从二项分布,若,,则__________.(二)选做题(14、15题,考生只能从中选作一题)14.(坐标系与参数方程选做题)已知直线的极坐标方程为,点的极坐标为,则点到直线的距离为__________.15.(几何证明选讲选做题)如图,已知是圆的直径,,是圆的切线,切点为,.过圆心作的平行线,分别交和于点和点,则__________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.16.(本小题满分12分)在平面直角坐标系中,已知向量,,.(Ⅰ)若,求的值;(Ⅱ)若与的夹角为,求的值.17.(本小题满分分)某工厂名工人年龄数据如下表工人编号年龄工人编号年龄工人编号年龄工人编号年龄1 40 10 36 19 27 28 342 44 11 31 20 43 29 393 40 12 38 21 41 30 434 41 13 39 22 37 31 385 33 14 43 23 34 32 426 40 15 45 24 42 33 537 45 16 39 25 37 34 378 42 17 38 26 44 35 499 43 18 36 27 42 36 39(Ⅰ)用系统抽样法从名工人中抽取容量为的样本,且在第一分段里用随机抽样法抽到的年龄数据为,列出样本的年龄数据;(Ⅱ)计算(Ⅰ)中样本的均值和方差;(Ⅲ)名工人中年龄在和之间有多少人?所占百分比是多少(精确到0.01%)?18.(本小题满分分)如图2,三角形所在的平面与长方形所在的平面垂直,,,,点是的中点,点、分别在线段、上,且,.(Ⅰ)证明:;(Ⅱ)求二面角的正切值;(Ⅲ)求直线与直线所成角的余弦值.19.(本小题满分分)设,函数.(Ⅰ)求的单调区间;(Ⅱ)证明在上仅有一个零点;(Ⅲ)若曲线在点处的切线与轴平行,且在点处的切线与直线平行,(是坐标原点),证明:.20.(本小题满分分)已知过原点的动直线与圆:相交于不同的两个点、.(Ⅰ)求圆的圆心坐标;(Ⅱ)求线段的中点的轨迹的方程;(Ⅲ)是否存在实数,使得直线:与曲线只有一个交点?若存在,求出的取值范围;若不存在,说明理由.21.(本小题满分分)数列满足:,.(Ⅰ)求的值;(Ⅱ)求数列的前项和;(Ⅲ)令,(),证明:数列的前项和满足.2017年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题(满分40分)题号 1 2 3 4 5 6 7 8答案 D A D B A B C B二、填空题(满分30分)9.10.11.12.13.14.15.三、解答题(满分80分)16.(本小题满分13分)解:(Ⅰ)由题意得,则,,则,,.(Ⅱ), ,, ,.17.(本小题满分13分)解:(Ⅰ)(Ⅱ),.(Ⅲ), ,在上有23个,占.18.(本小题满分14分)证明:(Ⅰ)在中且为中点,所以,又因为平面平面,平面平面,平面所以平面,又因为平面,所以.(Ⅱ)由(Ⅰ)知平面所以又因为且所以平面所以,所以为二面角的平面角.在中,所以(Ⅲ)连结,则在中,因为,所以所以直线与直线所成角即为直线与直线所成角在中,由余弦定理得19.(本小题满分分)解:(1),所以对,恒成立,所以的单调递增区间为.(2)由题知,所以,由(1)知,在上单调递增,所以在有且只有一个零点.(3),设点,则,解的.所以,所以,令,则由得当时,当时,所以的最小值为所以所以,所以即所以,得证.20.(本小题满分分)解:(1)圆的标准方程为所以圆的圆心坐标为.(2)设动直线的方程为,联立得,则,所以,的取值范围为,设,两点坐标分别为,,则由韦达定理得,所以则线段中点轨迹的参数方程为:,所以,的方程为,.(Ⅲ)当直线与曲线相切时,只有一个交点,此时圆心到直线的距离为.得.直线过定点则,所以.21.(本题满分14分)解:(),,,()时,与原式想减得,也符合上式,所以()所以()时,故下面只需证明()只需证明,不等式左边不等式右边,所以原式成立.2017年普通高等学校招生全国统一考试(广东卷)数学(理科)选填解析一、选择题1.【答案】D【解析】,所以.故选D.2.【答案】A【解析】,所以.故选A.3.【答案】D【解析】为偶函数,为奇函数为偶函数,所以答案选D.故选D.4.【答案】B【解析】.故选B5.【答案】A【解析】与直线平行的直线可以设为,圆圆心坐标为半径为直线与圆相切所以圆心到直线的距离等于半径即:所以求的.故选A.6.【答案】B【解析】由图知过点时取得最小值.故答案为B.7.【答案】C【解析】因为离心率又所以,即得,所以即.故答案选C.8.【答案】B二、填空题9.【答案】【解析】,所以,系数为.故答案为.10.【答案】【解析】,则,所以.故答案为.11.【答案】【解析】因为,则或,因为,所以,则.由正弦定理得,.故答案为.12.【答案】【解析】因为人两两之间要互写留言,所以每人要写条,一共有条留言.故答案为13.【答案】【解析】,,解得.故答案为14.【答案】【解析】,,由点到直线距离公式得.故答案为15.【答案】【解析】连结,由题得,,,则.故答案为。

2017年全国二卷理科数学高考真题及详解(全word版)(精编文档).doc

2017年全国二卷理科数学高考真题及详解(全word版)(精编文档).doc

【最新整理,下载后即可编辑】2017年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘 贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.=++i1i 3A .i 21+B .i 21-C .i 2+D .i 2-2. 设集合{}4 2 1,,=A ,{}042=+-=m x x B ,若{}1=B A ,则=B A .{}3 1-,B. .{}0 1, C .{}3 1, D .{}5 1,3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A .1盏B .3盏C .5盏D .9盏4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .π90 B .π63 C .π42 D .π365.设y x 、满足约束条件⎪⎩⎪⎨⎧≥+≥+-≤-+,,,0303320332y y x y x 则y x z +=2的最小值是 A .15- B .9- C .1 D .9 6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A .12种B .18种C . 24种D .36种理科数学试题 第1页(共4页)7.甲、乙、丙、丁四位同学一起去向老师询问成语竞猜的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则A .乙可以知道四人的成绩B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩8.执行右面的程序框图,如果输入的1-=a ,则输出的=SA .2B .3C .4D .59.若双曲线)00(1:2222>>=-b a by a x C ,的一条渐近线被圆4)2(22=+-y x 所截得的弦长为2,则C 的离心率为A .2B .3C .2D .33210.已知直三棱柱111C B A ABC -中, 120=∠ABC , 2=AB , 11==CC BC , 则异面直线1AB 与1BC 所成角的余弦值为A .23B .515 C .510D .33 11.若2-=x 是函数12)1()(--+=x e ax x x f 的极值点,则)(x f 的极小值为A .1-B .32--eC .35-eD .112.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则)(+⋅的最小值是A .2-.34-D .1-二、填空题:本题共5分,共20分。

2017年广东高考试题及答案word版

2017年广东高考试题及答案word版

2017年广东高考试题及答案word版以下是2017年广东高考试题及答案的word版排版格式:一、语文1. 阅读下列文言文,回答问题。

(1)请解释文中划线词语的含义。

(2)请翻译文中划线句子。

(3)请分析文中人物的性格特点。

2. 现代文阅读。

(1)文章的中心论点是什么?(2)作者通过哪些论据来支持其观点?(3)请结合文章内容,谈谈你对文章主题的理解。

3. 作文。

请以“我眼中的家乡”为题,写一篇不少于800字的文章。

二、数学1. 选择题。

(1)A、B、C、D四个选项中,哪一个是正确答案?(2)A、B、C、D四个选项中,哪一个是正确答案?(3)A、B、C、D四个选项中,哪一个是正确答案?2. 填空题。

(1)请计算下列表达式的值。

(2)请计算下列表达式的值。

(3)请计算下列表达式的值。

3. 解答题。

(1)请证明下列数学命题。

(2)请解决下列实际问题。

(3)请解决下列几何问题。

三、英语1. 听力理解。

(1)请根据所听内容,选择正确答案。

(2)请根据所听内容,选择正确答案。

(3)请根据所听内容,选择正确答案。

2. 阅读理解。

(1)请根据文章内容,选择正确答案。

(2)请根据文章内容,选择正确答案。

(3)请根据文章内容,选择正确答案。

3. 写作。

请根据所给提示,写一篇不少于120词的短文。

四、综合1. 物理选择题。

(1)A、B、C、D四个选项中,哪一个是正确答案?(2)A、B、C、D四个选项中,哪一个是正确答案?(3)A、B、C、D四个选项中,哪一个是正确答案?2. 化学选择题。

(1)A、B、C、D四个选项中,哪一个是正确答案?(2)A、B、C、D四个选项中,哪一个是正确答案?(3)A、B、C、D四个选项中,哪一个是正确答案?3. 生物选择题。

(1)A、B、C、D四个选项中,哪一个是正确答案?(2)A、B、C、D四个选项中,哪一个是正确答案?(3)A、B、C、D四个选项中,哪一个是正确答案?以上为2017年广东高考试题及答案word版的排版格式,各科目试题和答案均按照题目序号依次排列,方便考生查阅和核对。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试卷类型:A2018年普通高等学校招生全国统一考试<广东卷)数学<理科)题目及答案本试卷共4页,21题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B铅笔将试卷类型<A)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

ki85iSFoCk2.选择题每小题选出答案后,用2B铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

ki85iSFoCk3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔盒涂改液。

不按以上要求作答的答案无效。

ki85iSFoCk4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:主体的体积公式V=Sh,其中S为柱体的底面积,h为柱体的高。

锥体的体积公式为,其中S为锥体的底面积,h为锥体的高。

一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

ki85iSFoCk 1 . 设i为虚数单位,则复数56ii-=A 6+5iB 6-5iC -6+5iD -6-5iki85iSFoCk2 . 设集合U={1,2,3,4,5,6}, M={1,2,4 } 则CuM=A .UB {1,3,5}C {3,5,6} D{2,4,6}ki85iSFoCk3 若向量BA=<2,3),CA=<4,7),则BC=A <-2,-4)B (3,4>C (6,10D (-6,-10>4.下列函数中,在区间<0,+∞)上为增函数的是A.y=ln<x+2)12)x D.y=x+1x5.已知变量x,y满足约束条件,则z=3x+y的最大值为A.12B.11C.3D.-16,某几何体的三视图如图1所示,它的体积为A.12π B.45π C.57π D.81π7.从个位数与十位数之和为奇数的两位数种任取一个,其个位数万恶哦0的概率是A. 49 B. 13C. 29D. 198.对任意两个非零的平面向量α和β,定义。

若平面向量a,b满足|a|≥|b|>0,a与b的夹角,且a·b和b·a都在集合中,则ki85iSFoCkA.12 B.1 C. 32D. 5216.填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

(一)必做题<9-13题)9.不等式|x+2|-|x|≤1的解集为_____。

10. 的展开式中x³的系数为______。

<用数字作答)11.已知递增的等差数列{an}满足a1=1,a3=22a-4,则an=____。

12.曲线y=x3-x+3在点<1,3)处的切线方程为。

13.执行如图2所示的程序框图,若输入n的值为8,则输出s的值为。

(二)选做题<14 - 15题,考生只能从中选做一题)14,<坐标系与参数方程选做题)在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为和,则曲线C1与C2的交点坐标为_______。

ki85iSFoCk15.<几何证明选讲选做题)如图3,圆O的半径为1,A、B、C是圆周上的三点,满足∠ABC=30°,过点A做圆O的切线与OC的延长线交于点P,则PA=_____________。

ki85iSFoCk三.解答题。

本大题共6小题,满分80分。

解答需写出文字说明、证明过程和演算步骤。

16.<本小题满分12分)已知函数,<其中ω>0,x∈R)的最小正周期为10π。

<1)求ω的值;<2)设,,,求cos<α+β)的值。

17. <本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[40,50][50,60][60,70][70,80][80,90][90,100]。

ki85iSFoCk<1)求图中x的值;<2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上<含90分)的人数记为,求得数学期望。

ki85iSFoCk18.<本小题满分13分)如图5所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点 E在线段PC上,PC⊥平面BDE。

ki85iSFoCk<1)、证明:BD⊥平面PAC;<2)、若PA=1,AD=2,求二面角B-PC-A的正切值;19. <本小题满分14分)设数列{an}的前n项和为Sn,满足2Sn=an+1-2n+1,n∈N﹡,且a1,a2+5,a3成等差数列。

ki85iSFoCk<1)、求a1的值;<2)、求数列{an}的通项公式。

<3)、证明:对一切正整数n,有. 20.<本小题满分14分)在平面直角坐标系xOy中,已知椭圆C1:22221(0)x ya ba b+=>>的离心率e=32,且椭圆C上的点到Q<0,2)的距离的最大值为3.ki85iSFoCk<1)求椭圆C的方程;<2)在椭圆C上,是否存在点M<m,n)使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及相对应的△OAB的面积;若不存在,请说明理由。

ki85iSFoCk21.<本小题满分14分)设a<1,集合<1)求集合D<用区间表示)<2)求函数在D内的极值点。

2018年广东高考理科数学参考答案一、选择题二、填空题9. 1,2⎛⎤-∞- ⎥⎝⎦; 10. 20; 11. 2n-1; 12. y=2x+1; 13.16; 14. )1,1(;15. 3;三、解答题 16.解:(1>=51,2==ωωπT (2>851317155317854)cos(-=⨯-⨯=+βα 17.<1)由300.006100.01100.054101x ⨯+⨯+⨯+=得0.018x =<2)由题意知道:不低于80分的学生有12人,90分以上的学生有3人随机变量ξ的可能取值有0,1,2()292126011C P C ξ===()11932129122C C P C ξ===()232121222C P C ξ===∴ 69110121122222E ξ=⨯+⨯+⨯= 18.<1)∵ PA ABCD ⊥平面∴ PA BD ⊥ ∵ PC BDE ⊥平面 ∴ PC BD ⊥ ∴ BD PAC ⊥平面<2)设AC 与BD 交点为O ,连OE∵ PC BDE ⊥平面 ∴ PC OE ⊥ 又∵ BO PAC ⊥平面 ∴ PC BO ⊥ ∴ PC BOE ⊥平面 ∴ PC BE ⊥∴ BEO ∠为二面角B PC A --的平面角 ∵ BD PAC ⊥平面 ∴ BD AC ⊥∴ ABCD 四边形为正方形∴ BO =在PAC ∆中,133OE PA OE OC AC =⇒=⇒=∴ tan 3BOBEO OE∠== ∴ 二面角B PC A --的平面角的正切值为3 19.<1)在11221n n n S a ++=-+中 令1n =得:212221S a =-+令2n =得:323221S a =-+解得:2123a a =+,31613a a =+ 又()21325a a a +=+ 解得11a = <2)由11221n n n S a ++=-+212221n n n S a +++=-+得 12132n n n a a +++=+又121,5a a ==也满足12132a a =+ 所以132n n n a a n N *+=+∈对成立 ∴ ()11+232n n n n a a ++=+ ∴ 23n n n a += ∴ 32n n n a =- <3)<法一)∵()()123211323233232...23n n n n n n n n a -----=-=-+⨯+⨯++≥∴1113n n a -≤ ∴21123111311111113...1 (1333213)n n n a a a a -⎛⎫⎛⎫⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭+++≤++++=<- <法二)∵1111322322n n n n n n a a ++++=->⨯-=∴11112n na a +<⋅ 当2n ≥时,321112a a <⋅431112a a <⋅ 541112a a <⋅ ………11112n n a a -<⋅ 累乘得: 221112n n a a -⎛⎫<⋅⎪⎝⎭∴212311111111173...1 (5252552)n n a a a a -⎛⎫+++≤++⨯++⨯<< ⎪⎝⎭20. <1)由e =223a b =,椭圆方程为22233x y b += 椭圆上的点到点Q 的距离d ==)b y b =-≤≤当①1b -≤-即1b ≥,max 3d =得1b =当②1b ->-即1b <,max 3d ==得1b =<舍) ∴ 1b =∴ 椭圆方程为2213x y +=<2)11sin sin 22AOB S OA OB AOB AOB ∆=⋅∠=∠ 当90AOB ∠=,AOB S ∆取最大值12, 点O 到直线l距离2d == ∴222m n +=又∵2213m n += 解得:2231,22m n ==所以点M 的坐标为,,22222222⎛⎫⎛⎫⎛⎛⎫---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭或或或AOB ∆的面积为1221.<1)记()()()223161h x x a x a a =-++<()()()291483139a a a a ∆=+-=--① 当0∆<,即113a <<,()0,D =+∞ ② 当103a <≤,D ⎛⎫=⋃+∞ ⎪ ⎪⎝⎭⎝⎭③ 当0a ≤,334a D ⎛⎫++=+∞ ⎪ ⎪⎝⎭<2)由()()266160=1f x x a x a x a '=-++=得,得① 当113a <<,()D f x a 在内有一个极大值点,有一个极小值点1 ② 当103a <≤,∵()()12316=310h a a a =-++-≤ ()()222316=30h a a a a a a a =-++->∴ 1,D a D ∉∈∴ ()D f x a 在内有一个极大值点③ 当0a ≤,则a D ∉又∵()()12316=310h a a a =-++-<∴ ()D f x 在内有无极值点申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

相关文档
最新文档