非线性时间序列

合集下载

基于注意力机制的非线性时间序列预测模型

基于注意力机制的非线性时间序列预测模型

基于注意力机制的非线性时间序列预测模型基于注意力机制的非线性时间序列预测模型时间序列预测是一项重要的任务,广泛应用于金融、气象、交通等领域。

随着深度学习的兴起,基于神经网络的时间序列预测方法取得了很大的进展。

然而,传统的线性模型在处理非线性时间序列数据时存在一定的局限性。

为了通过神经网络更好地捕捉非线性关系,引入了注意力机制的非线性时间序列预测模型。

注意力机制源于生物学的视觉研究,它通过对输入的不同部分赋予不同的重要性来提升神经网络的性能。

在时间序列预测中,注意力机制可以帮助模型更好地关注序列中的特定时间点或特征,从而提高预测的准确性。

在基于注意力机制的非线性时间序列预测模型中,通常采用循环神经网络(RNN)作为基本的模型结构。

RNN可以有效地处理时间序列数据,并具有记忆功能。

通过在RNN的基础上引入注意力机制,可以进一步提升模型的性能。

该模型的主要思想是,在每个时间步骤上,通过计算注意力权重,对序列中的不同特征进行加权求和。

注意力权重是根据当前时间步骤的输入和之前时间步骤的隐藏状态来计算得出的。

通过关注重要的特征,模型可以更好地学习到序列中的非线性关系。

具体来说,模型首先将输入序列通过一个嵌入层转换为固定维度的向量表示。

然后,这些向量通过一个RNN层进行处理,得到隐藏状态序列。

接下来,通过计算注意力权重,对隐藏状态序列和输入序列进行加权求和,得到经过注意力机制的表示。

最后,将这些表示通过一个全连接层进行预测。

为了实现非线性的时间序列预测,可以在模型中引入非线性激活函数,如ReLU、tanh等。

这样可以增强模型对非线性关系的建模能力。

在训练过程中,可以使用平均绝对误差(MAE)或均方误差(MSE)作为损失函数,通过反向传播算法不断优化模型参数。

同时,为了防止过拟合,可以使用正则化技术,如L1或L2正则化。

经过实验证明,基于注意力机制的非线性时间序列预测模型相比于传统的线性模型,在多个时间序列预测任务上表现出更好的性能。

非线性金融时间序列分析模型

非线性金融时间序列分析模型

非线性金融时间序列分析模型非线性金融时间序列分析模型是金融学领域中一种重要的工具,用于对金融市场中复杂且非线性的行为进行建模和预测。

该模型通过捕捉金融市场中的非线性关系、非常态分布和时间序列的长期依赖性,为投资者和决策者提供了更具深度和准确性的市场分析和预测手段。

在传统的线性金融时间序列模型中,常常假设金融市场的行为服从线性关系,即市场变量与时间线性相关。

然而,实际金融市场往往存在着非线性关系,这造成了传统模型的局限性。

非线性金融时间序列分析模型则可以更好地反映市场的真实运行情况,提高分析的精确度。

一种常用的非线性金融时间序列分析模型是ARCH(Autoregressive Conditional Heteroskedasticity)模型。

ARCH模型通过引入方差的自回归分析,捕捉了金融市场中波动率具有自相关性的特点。

该模型广泛应用于金融风险管理和衍生品定价等领域。

然而,ARCH模型本身仅考虑了波动率的异方差性,对非线性关系的捕捉相对欠缺。

为了更好地建模金融市场中的非线性关系,研究者们基于ARCH模型提出了更加复杂和精确的非线性金融时间序列分析模型。

例如,GARCH(Generalized Autoregressive Conditional Heteroskedasticity)模型和EGARCH(Exponential GARCH)模型。

GARCH模型通过添加波动率的滞后值和波动率与预测变量的交互项来扩展ARCH模型,从而更好地捕捉了市场中的非线性关系。

而EGARCH模型则在GARCH模型的基础上引入了杠杆效应,更好地描述了极端事件对市场波动率的冲击。

除了以上提到的模型,还存在一系列的非线性金融时间序列分析模型,如TGARCH(Threshold-GARCH)模型、APARCH(Asymmetric Power Autoregressive Conditional Heteroskedasticity)模型等。

非线性时间序列分析STAR模型及其在经济学中的应用

非线性时间序列分析STAR模型及其在经济学中的应用

非线性时间序列分析的基本概念 和理论
时间序列是指按照时间顺序排列的一组数据。在经济学中,时间序列数据通 常反映了某一经济现象的历史演变过程,如股票价格、消费支出、生产产量等。 非线性时间序列是指时间序列数据之间存在非线性关系,这种关系往往比线性关 系更为复杂和真实。
STAR模型是一种非线性时间序列分析方法,它可以捕捉时间序列中的非线性 结构和变化。STAR模型基于自回归模型,通过引入平滑转换函数,允许模型在不 同时间点之间平滑转换,以适应时间序列数据的非线性特征。
3、数据预处理
在应用STAR模型之前,需要对时间序列数据进行预处理,如去噪、季节调整 等。这些预处理步骤可以帮助STAR模型更好地识别时间序列的非线性结构。
4、模型应用
一旦STAR模型被估计和识别后,可以将其应用于预测时间序列的未来走势。 此外,STAR模型还可以用于时间序列的分解,将时间序列分解为线性部分和非线 性部分,以便更深入地理解时间序列数据的特征。
非线性动力系统基础
非线性动力系统是指由非线性微分方程或动态方程描述的系统。这些系统具 有丰富的动态行为和复杂的相互作用,无法简单地通过线性系统进行描述。李雅 可夫斯基定理是非线性动力系统理论中的重要成果之一,它揭示了系统中混沌现 象的存在和重要性。此外,同步也是非线性动力系统中的一个重要概念,它描述 了两个或多个系统在某种条件下以相同的方式运动的现象。
非线性时间序列分析STAR模型及其 在经济学中的应用
目录
01 引言
03
非线性时间序列分析 STAR模型
02 非线性时间序列分析 的基本概念和理论
04 参考内容
引言
在经济学中,时间序列数据的应用越来越广泛,例如金融市场价格波动、消 费者行为模式、生产活动变化等。为了更好地理解和预测这些时间序列数据,非 线性时间序列分析方法逐渐受到重视。其中,STAR(Smooth Transition Autoregressive)模型是一种被广泛应用于非线性时间序列分析的方法。本次演 示将详细介绍非线性时间序列分析STAR模型及其在经济学中的应用。

非线性时间序列.doc

非线性时间序列.doc

-------------精选文档 -----------------近代时间序列分析选讲:一. 非线性时间序列二. GARCH 模型三. 多元时间序列四. 协整模型-------------精选文档 -----------------非线性时间序列第一章 .非线性时间序列浅释1.从线性到非线性自回归模型2.线性时间序列定义的多样性第二章 . 非线性时间序列模型1.概述2.非线性自回归模型3.带条件异方差的自回归模型4.两种可逆性5.时间序列与伪随机数第三章 . 马尔可夫链与 AR 模型1.马尔可夫链2.AR 模型所确定的马尔可夫链-------------精选文档 -----------------3.若干例子第四章 . 统计建模方法1.概论2.线性性检验3.AR 模型参数估计4.AR 模型阶数估计第五章 . 实例和展望1.实例2.展望第一章 .非线性时间序列浅释1.从线性到非线性自回归模型时间序列 {x t } 是一串随机变量序列 , 它有广泛的实际背景 , 特别是在经济与金融-------------精选文档 -----------------领域中尤其显著. 关于它们的从线性与非线性概念 , 可从以下的例子入手作一浅释的说明.考查一阶线性自回归模型---LAR(1):x t = x t-1 +e t ,t=1,2,(1.1)其中 {e t } 为i.i.d.序列,且Ee t =0, Ee t = 2 <, 而且e t与 {x t-1 ,x t-1 ,} 独立 .反复使用 (1.1) 式的递推关系 , 就可得到x t =x t-1 +e t=e =e =e ttt+x t-1+{ e t-1 +x t-2 } +e t-1 + 2 x t-2== e t +e t-1 + 2 e t-2+ +n-1 e t-n+1+n x t-n.(1.2)如果当 n时,n xt-n 0, (1.3) {e t + e t-1 + 2 e t-2++n-1 e t-n+1}j=0j et-j .(1.4)虽然保证以上的收敛是有条件的, 而且要涉及到具体收敛的含义, 但是 , 对以上的简单模型 , 不难相信 , 当| |<1 时 , (1.3)(1.4) 式成立 . 于是 , 当 | |<1时,模型LAR(1)有平稳解 , 且可表达为x t =j=0j e t-j.(1.5) 通过上面叙述可见求LAR(1) 模型的解有简便之优点 , 此其一 . 还有第二点 , 容易推广到 LAR(p) 模型 . 为此考查如下的 p 阶线性自回归模型 LAR(p):x t = 1 x t-1 + 2 x t-2 +...+p x t-p +e t ,t=1,2, (1.6) 其中 {e t } 为i.i.d.序列,且Ee t =0, Ee t = 2 <, 而且 e t与{x t-1 , x t-1 ,} 独立 .虽然反复使用(1.6) 式的递推式, 仍然可得到 (1.2) 式的类似结果, 但是 ,用扩张后的一阶多元 AR 模型求解时 , 可显示出与 LAR(1) 模型求解的神奇的相似. 为此记x t 1x t 1, U= 0X t = ,x t p 1 01 2 p1 0 0(1.7)A= ,0 00于是 (1.6) 式可写成如下的等价形式:X t =A X t-1 + e t U.(1.8) 反复使用此式的递推关系, 形式上仿照 (1.2) 式可得X t =AX t-1 +e t U= e t U+ e t-1 AU+A 2 x t-2==e t U+e t-1 AU+e t-2 A 2 U++e t-n+1 A n-1 U+A n x t-n .如果矩阵 A 的谱半径 (A的特征值的最大模) (A),满足如下条件(A)<1,(1.10)由上式可猜想到 (1.8) 式有如下的解 :X t =k=0 A k Ue t-k .(1.11)其中向量X t的第一分量x t形成的序列 {x t },就是模型 (1.6) 式的解 . 由此不难看出 , 它有以下表达方式x t =k=0k e t-k .(1.11)其中系数k 由(1.6)式中的 1 ,2 , ...,p确定 , 细节从略 . 不过 , (1.11) 式给了我们重要启发 ,即考虑形如x t =k=0k e t-k ,k=0k 2,(1.12)的时间序列类( 其中系数k 能保证(1.12)式中的x t有定义 ). 在文献中 , 这样的序列-------------精选文档 -----------------{x t } 就被称为线性时间序列.虽然以上给出了线性时间序列的定义, 以下暂时不讨论什么是非线性时间序列, 代之先讨论一阶非线性自回归模型---NLAR(1),以便与LAR(1) 模型进行比较分析 . 首先写出 NLAR(1)模型如下x t = (x t-1 )+e t ,t=1,2,(1.13)其中 {e t } 为i.i.d.序列,且Ee t =0, Ee t = 2 <, 而且e t与 {x t-1 ,x t-2 ,} 独立 , 这些假定与LAR(1) 模型相同 , 但是 ,(x t-1 )不再是 x t-1的线性函数 , 代之为非线性函数,比如-------------精选文档 -----------------(x t-1 )=x t-1 /{a+bx t-1 2}.此时虽然仍可反复使用(1.13) 式进行迭代, 但是所得结果是x t =(x t-1 ) +e t= e t +(x t-1 )= e t +( e t-1 +(x t-2 ))= e t +( e t-1 +( e t-2 + (x t-3 )))==e t +( e t-1 +( e t-2 ++(x t-n )) ).(1.14)根据此式 , 我们既不能轻易判断(x t-1 ) 函-------------精选文档 -----------------数满足怎样的条件时, 上式会有极限 , 也不能猜测其极限有怎样的形式.对于 p 阶非线性自回归模型x t = (x t-1 ,x t-2 ,,x t-p )+e t ,t=1,2, (1.15) 仿照 (1.6) 至 (1.9) 式的扩张的方法, 我们引入如下记号(x t 1 , x t 2 ,...,x t px t 1( x t-1 ,x t-2 , ,x t-p ),x t p 1(1.16)我们得到与 (1.15) 式等价的模型X t = (X t-1 ) +e t U, t=1,2,(1.17)但是 , 我们再也得不出(1.9) 至 (1.14) 式的结果 ,至此我们已将看出 , 从线性到非线性自回归模型有实质性差异 , 要说清楚它们 , 并不是很简单的事情 . 从数学角度而言 , 讨论线性自回归模型可借用泛函分析方法 , 然而, 讨论非线性自回归模型, 则要借用马尔可夫链的理论和方法 . 这也正是本讲座要介绍的主要内容 .2.线性时间序列定义的多样性现在简单叙述一下非线性时间序列定义的复杂性 , 它与线性时间序列的定义有关.前一小节中(1.12) 式所显示的线性时间序列 , 只是一种定义方式. 如果改变对系数k 的限制条件, 就会给出不同的定义. 更为重要的是 , 在近代研究中 , 将 (1.12) 式中的 i.i.d. 序列 {e t } 放宽为平稳鞅差序列, 这在预报理论中很有意义.无论引用哪一种线性时间序列定义, 都对相应的序列的性质有所研究, 因为其研究成果可用于有关的线性时间序列模型解的特性研究 . 事实上 , 已经有丰富的成果被载入文献史册 .依上所述可知 , 由于线性时间序列定义的多样性 , 必然带来非线性时间序列定义的复杂性 . 这里需要强调指的是 , 对于非线性时间序列 , 几乎没有文章研究它们的一般性质, 这与线性时间序列情况不同 . 于是人们要问 , 我们用哪些工具来研究非线性时间序列模型解的特性呢 ? 这正是本次演讲要回答的问题 . 确切地说 , 我们将介绍马尔可夫链 , 并借助于此来讨论非线性自回归模型解的问题 .第二章 . 非线性时间序列模型1.概论从(1.12) 式可见,一个线性时间序列 {x t }, 被 {e t } 的分布和全部系数i 所决定. 在此有无穷多个自由参数,这对统计不方便,因此人们更关心只依赖有限个自由参数的线性时间序列,这就是线性时间序列的参数模型. 其中最常用的如 ARMA 模型 . 对于非线性时间序列而言 , 使用参数模型方法几乎是唯一的选择 . 由于非线性函数的多样性 ,带来了非线性时间序列模型的多样性 . 但是 , 迄今为止被研究得较多 , 又有应用价值的非线性时序模型 , 为数极少 , 而且主要是针对非线性自回归模型 . 在介绍此类模型之前 , 我们先对非线性时序模型的分类作一概述 .通用假定 : {t }为i.i.d.序列,且E t =0, 而且t 与{x t-1 , x t-2 ,}独立 .可加噪声模型 :x t = (x t-1 ,x t-2 , )+t ,t=1,2, (2.1)其中( ) 是自回归函数. 当它仅依赖于有限个未知参数时 , 记此参数向量为 , 其相应的(2.1) 模型常写成x t = (x t-1 ,x t-2 , ; )+t ,t=1,2, (2.2)否则 , 称(2.1) 式称为非参数模型.关于 (2.1)(2.2)的模型的平稳性,要在下一章讨论 , 但是 , 它有类似于线性A R 模型的几个简单性质, 是重要的而且容易获得的, 它们是 :E(x t |x t-1 ,x t-2 , )=E{ (x t-1 ,x t-2 , )+t |x t-1 ,x t-2 ,}= (x=(xt-1t-1 ,x,xt-2t-2 ,⋯)+E(t |x t-1 ,x t-2 ,⋯),⋯)(2.3)var{x t |x t-1 , x t-2 , ⋯}E{[x t - (x t-1 ,⋯)] 2|x t-1 , x t-2 , ⋯}= E{t 2|x t-1 , x t-2, ⋯}= E t 2=2.(2.4)P{x t <x|x t-1 ,x t-2 , ⋯}= P{(x t-1 ,⋯)+t <x|x t -1 ,x t-2 , ⋯}= P{t <x-(x t-1 ,⋯)|x t-1 ,x t-2 , ⋯}=F (x-(x t-1 ,⋯)).(2.5)其中 F 是t 的分布函数.带条件异方差的模型:x t = (x t-1 ,x t-2 , )+S(x t-1 ,x t-2 , )t ,t=1,2, (2.6)其中( ) 和 S() 也有限参数与非参数型之分 , 这都是不言自明的 . 另外 , (2.6) 式显然不属于可加噪声模型. 但是 , 它比下面的更一般的非可加噪声模型要简单得多. 这可通过推广 (2.3)(2.4)(2.5)式看出,即有,E(x t |x t-1 ,x t-2 , )-------------精选文档 -----------------=E{ (x t-1 ,x t-2 ,⋯)+S(x t-1 ,x t-2 ,⋯)t |x t-1 ,x t-2 ,⋯}=(x t-1 ,x t-2 ,⋯)+S(x t-1 ,x t-2 ,⋯)E{t |x t-1 ,x t-2 ,⋯}= (x t-1 ,x t-2 ,⋯).(2.3) ’var{x t |x t-1 , x t-2 , ⋯}E{[x t - (x t-1 ,⋯)] 2 |x t-1 , x t-2 , ⋯}=E{S 2 (x t-1 ,x t-2 ,⋯)t 2|x t-1 , x t-2, ⋯}=S 2 (x t-1 ,x t-2 ,⋯)E{t 2|x t-1 , x t-2, ⋯}=S 2 (x t-1 ,x t-2 ,⋯) 2 .(2.4) ’P{x t <x|x t-1 ,x t-2 , ⋯}=P{(x t-1 ,⋯)+S(x t-1 ,⋯)t <x|x t-1 , x t-2, ⋯} = P{t <[x-(x t-1 ,⋯)]/S(x t-1 ,⋯)}=F ([x-(x t-1 ,⋯)]/S(x t-1 ,⋯)).(2.5) ’一般非性序模型:x t = (x t-1 ,x t-2 ,⋯;t ,t-1 ,⋯)t=1,2, ⋯(2.7) 其中( ⋯) 也有参数与非参数型之区, 也是不言自明的 . 然 , (2.7) 式既不是可加噪声模型 , 也不属于 (2.6) 式的条件异方差的模型 . 然 , 它可能具有条件异方差性. 相反 , 后两者都是(2.7) 式的特殊型 .虽说 (2.7) 式是更广的模型形式, 在文献中却很少被研究 . 只有双线性模型作为它的一种特殊情况 , 在文献中有些应用和研究结果出现 . 现写出其模型于后, 可供理解其双线性模型的含义x t =j=1 p j x t-j +j=1 q j t-j+i=1 P j=1 Q ij t-i x t-j .2.非线性自回归模型在前一小节中的 (2.1) 和 (2.2) 式就是非线性自回归模型 , 而且属于可加噪声模型类 . 在这一小节里 , 我们将介绍几种 (2.2) 式的常见的模型 .函数后的线性自回归模型:-------------精选文档 -----------------f(x t )= 1 f(x t-1 )+2f(x t-2 )+...+p f(x t- p )+t ,t=1,2, (2.8) 其中 f(.) 是一元函数 , 它有已知和未知的不同情况 , 不过总考虑单调增函数的情况, =( 1 , 2 ,,p )是未知参数. 在实际应用中 , {x t } 是可获得量测的序列.当 f(.) 是已知函数时 , {f(x t )} 也是可获得量测的序列 , 于是只需考虑 y t =f(x t ) 所满足的线性 AR 模型y t = 1 y t-1 + 2 y t-2 +...+p y t-p +t ,t=1,2, (2.9)-------------精选文档 -----------------此时可不涉及非线性自回归模型概念 . 在宏观计量经济分析中 , 常常对原始数据先取对数后 , 再作线性自回归模型统计分析 , 就属于此种情况 . 这种先取对数的方法 , 不仅简单 , 而且有经济背景的合理解释 ,它反应了经济增长幅度的量化规律 . 虽然在统计学中还有更多的变换可使用 , 比如 Box-Cox 变换 , 但是 , 由于缺少经济背景的合理解释,很少被使用 . 由此看来 , 当 f(.) 有实际背景依据时 , 可以考虑使用 (2.7) 式的模型 .当 f(.) 是未知函数时 , {f(x t )} 不是可量测的序列 , 于是只能考虑 (2.8) 模型 . 注意 f(.)是单调函数 , 可记它的逆变换函数为 f -1 (.), 于是由 (2.8) 模型可得-------------精选文档 -----------------x t = f -1 ( 1 f(x t-1 )+ 2 f(x t-2 )+...+p f(x t-p )+t ),t=1,2, (2.9) ’此式属于 (2.7) 式的特殊情况, 此类模型很少被使用 . 取而代之是考虑如下的模型x t = 1 f(x t-1 )+ 2 f(x t-2 )+...+p f(x t-p )+t ,t=1,2, (2.10) 其中 f(.) 是一元函数 , 也有已知和未知之分, 可不限于单调增函数. 此式属于 (2.1) 式的特殊情况 , 有一定的使用价值.当 (2.10) 式中的 f(.) 函数是已知时 , 此式还有更进一步的推广模型 ,-------------精选文档 -----------------x t = 1 f 1 (x t-1 ,⋯,x t-s )+ 2 f 2 (x t-1 ,⋯,x t-s )+...+p f p (x t-1 ,⋯,x t-s )+t ,t=1,2, ⋯(2.11) 其中 f k (⋯)(k=1,2,⋯,p)是已知的s元函数.例如 , 以后将要多次提到的如下的模型:x t = 1 I(x t-1 <0)x t-1 + 2 I(x t-10)x t-1 +t,t=1,2, ⋯(2.12) 其中 I(.) 是示性函数 . 此模型是分段性的, 是著名的TAR模型的特殊情况. 了有助于理解它 , 我写出它的分段形式:-------------精选文档 -----------------1 x1 t , x1 0,x t =, x t 1 t=1,2,2 x t 1 t0.请注意 , (2.8)(2.10) 和(2.11) 式具有一个共同的特征 , 就是未知参数都以线性形式出现在模型中 . 这一特点在统计建模时带来极大的方便 . 此类模型便于实际应用 . 但是 , 对于 {x t } 而言不具有线性特性 , 所以 , 讨论它们的平稳解的问题 , 讨论它们的建模理论依据问题 ,都需要借助于马尔可夫链的工具 .已知非线性自回归函数的模型:x t = (x t-1 ,x t-2 , ,x t-p ; )+t ,t=1,2,(2.13)-------------精选文档 -----------------其中( ) 是 p 元已知函数 , 但是其中含有未知参数=( 1 , 2 ,,p ). 一般说来, 在一定范围内取值.例如 ,x t = 1 x t 1t , t=1,2,1 2 x t2 1其中=( 1 , 2 )是未知参数, 它们的取值范围是:- < < ,0< .这里需要指出 , 使用上式的模型, 不仅要借助于马尔可夫链的工具, 而且在统计建模时遇到两种麻烦, 其一是参数估计的计算麻烦 , 二是确定( ) 函数的麻烦 . 一般来说 , 只有根据应用背景能确定() 函数时, 才会考虑使用此类模型.-------------精选文档 -----------------广义线性模型 (神经网络模型 ):x t = ( 1 x t-1 + 2 x t-2 ++p x t-p )+ t,t=1,2, (2.14)其中 (.) 是一元已知或未知函数, 参数=( 1 , 2 ,,p )总是未知的. 为保证模型的唯一确定性, 或者说是可识别性, 要对作些约定,其一,|| ||=1,其二,=( 1 , 2 ,,p )中第一个非零分量为正的 . 不难理解 , 若不加这两条约定,模型(2.14) 不能被唯一确定 .当 (.) 是一元已知函数时 , 与神经网络模型相通 .-------------精选文档 -----------------当 (.) 是一元未知函数时 , 与回归模型中的 PP 方法相通 .除了以上两类模型外, 还有 (2.1) 式的非参数自回归模型, 以及从统计学中引入的半参数自回归模型. 对它们的统计建模更困难 . 本讲座主旨在于介绍如何用马尔可夫链的工具, 描述非线性自回归模型的基本特性问题 , 对这类模型不再仔细讨论 .。

非线性信号处理-1.绪论

非线性信号处理-1.绪论

推荐书目
卢山著, 《非线性时间序列分析及其应用》,王海燕 卢山著,科学出版社 非线性时间序列分析及其应用》 《动力系统导论》,(美) R. Clark Robinson著 韩茂安 邢业朋 动力系统导论》 美 著 毕平 译,机械工业出版社 2007年1月. 年 月 《非线性时间序列:非参数与参数方法》, (美) Jiangqing Fan, 非线性时间序列:非参数与参数方法》 美 Qiwei Yao 著, 科学出版社 2006年 年 《时间序列分析:预测与控制》 (美) George E. P. Box (英) 时间序列分析:预测与控制》 美 英 Gwilym M. Jenkins (美) Gregory C. Reinsel 著,中国统计 美 出版社 2009年 年 编著, 《混沌时间序列分析及其应用》吕金虎 陆君安 陈士华 编著,武汉大 混沌时间序列分析及其应用》 学出版社 2002年1月 年 月
0.7
0.65
R = 2.5; xn -> 0.6
0.6
0.55
0.5
0.45
0
2
4
6
8
10
12
14
16
18
20
Logistic Map (R = 3.3; X1 = 0.7/0.72)
0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45
R = 3.3; xn=0.48/0.82
Edward N. Lorenz (1917.5.23 – 2008. 4. 16)
系统的控制(过程控制)
对系统的演化过程连续施加激励手段,以实 现过程的稳地和改善 例1:电路系统中的负反馈 例2:混沌控制
1.3 研究非线性时间信号的意义

非线性时间序列

非线性时间序列

近代时间序列分析选讲:一. 非线性时间序列二. GARCH模型三. 多元时间序列四. 协整模型非线性时间序列第一章.非线性时间序列浅释1.从线性到非线性自回归模型2.线性时间序列定义的多样性第二章. 非线性时间序列模型1. 概述2. 非线性自回归模型3.带条件异方差的自回归模型4.两种可逆性5.时间序列与伪随机数第三章.马尔可夫链与AR模型1. 马尔可夫链2. AR模型所确定的马尔可夫链3. 若干例子第四章. 统计建模方法1. 概论2. 线性性检验3.AR模型参数估计4.AR模型阶数估计第五章. 实例和展望1. 实例2.展望第一章.非线性时间序列浅释1. 从线性到非线性自回归模型时间序列{x t}是一串随机变量序列, 它有广泛的实际背景, 特别是在经济与金融领域中尤其显著. 关于它们的从线性与非线性概念, 可从以下的例子入手作一浅释的说明.考查一阶线性自回归模型---LAR(1):x t=αx t-1+e t, t=1,2,…(1.1)其中{e t}为i.i.d.序列,且Ee t=0, Ee t=2<, 而且e t与{x t-1,x t-1,…}独立. 反复使用(1.1)式的递推关系, 就可得到x t=αx t-1+e t= e t + αx t-1= e t + α{ e t-1 + αx t-2}= e t + αe t-1 + α2 x t-2=…= e t + αe t-1 + α2e t-2+…+ αn-1e t-n+1 +αn x t-n. (1.2)如果当n时,αn x t-n0, (1.3){e t+αe t-1+α2e t-2+…+αn-1e t-n+1}αj e t-j . (1.4)虽然保证以上的收敛是有条件的, 而且要涉及到具体收敛的含义, 但是, 对以上的简单模型, 不难相信, 当|α|<1时, (1.3)(1.4)式成立. 于是, 当|α|<1时, 模型LAR(1)有平稳解, 且可表达为x t=j=0αj e t-j . (1.5)通过上面叙述可见求LAR(1)模型的解有简便之优点, 此其一. 还有第二点, 容易推广到LAR(p)模型. 为此考查如下的p阶线性自回归模型LAR(p):x t =α1x t-1+α2x t-2+...+αp x t-p +e t ,t=1,2,… (1.6)其中{e t }为i.i.d.序列,且Ee t =0, Ee t =2<, 而且e t 与{x t-1, x t-1,…}独立.虽然反复使用(1.6)式的递推式, 仍然可得到(1.2)式的类似结果, 但是,用扩张后的一阶多元AR 模型求解时, 可显示出与LAR(1)模型求解的神奇的相似. 为此记X t =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+--11p t t t x x x , U=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛001 , A=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00000121 pααα, (1.7)于是(1.6)式可写成如下的等价形式:X t=A X t-1+ e t U. (1.8)反复使用此式的递推关系, 形式上仿照(1.2)式可得X t=AX t-1+e t U= e t U+e t-1AU+A2x t-2==e t U+e t-1AU+e t-2A2U+…+e t-n+1A n-1U+A n x t-n.如果矩阵A的谱半径(A的特征值的最大模) (A), 满足如下条件(A)<1, (1.10)由上式可猜想到(1.8)式有如下的解:X t=k=0A k Ue t-k. (1.11)其中向量X t的第一分量x t形成的序列{x t}, 就是模型(1.6)式的解. 由此不难看出, 它有以下表达方式x t=k=0k e t-k. (1.11)其中系数k由(1.6)式中的α1,α2, ... ,αp确定, 细节从略. 不过, (1.11)式给了我们重要启发, 即考虑形如=k=0k e t-k, k=0k2,x(1.12)的时间序列类(其中系数k能保证(1.12)式中的x t有定义). 在文献中, 这样的序列{x t}就被称为线性时间序列.虽然以上给出了线性时间序列的定义, 以下暂时不讨论什么是非线性时间序列, 代之先讨论一阶非线性自回归模型---NLAR(1), 以便与LAR(1)模型进行比较分析. 首先写出NLAR(1)模型如下x t=(x t-1)+e t,t=1,2,…(1.13)其中{e t}为i.i.d.序列,且Ee t=0, Ee t=2<, 而且e t与{x t-1,x t-2,…}独立, 这些假定与LAR(1)模型相同, 但是, (x t-1)不再是x t-1的线性函数, 代之为非线性函数, 比如(x t-1)=x t-1/{a+bx t-12}.此时虽然仍可反复使用(1.13)式进行迭代, 但是所得结果是x t=(x t-1) +e t= e t+ (x t-1)= e t+ ( e t-1+ (x t-2))= e t+ ( e t-1+ ( e t-2+ (x t-3)))=…=e t+( e t-1+ ( e t-2+ …+(x t-n))…).(1.14)根据此式, 我们既不能轻易判断(x t-1)函数满足怎样的条件时, 上式会有极限, 也不能猜测其极限有怎样的形式.对于p 阶非线性自回归模型x t =(x t-1,x t-2,…,x t-p )+e t ,t=1,2,… (1.15)仿照(1.6)至(1.9)式的扩张的方法, 我们引入如下记号( x t-1,x t-2,…,x t-p )⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+-----1121,...,,(p t t p t t t x x x x x ϕ, (1.16)我们得到与(1.15)式等价的模型X t =(X t-1) +e t U, t=1,2,… (1.17)但是, 我们再也得不出(1.9)至(1.14)式的结果,至此我们已将看出, 从线性到非线性自回归模型有实质性差异, 要说清楚它们,并不是很简单的事情. 从数学角度而言, 讨论线性自回归模型可借用泛函分析方法, 然而, 讨论非线性自回归模型, 则要借用马尔可夫链的理论和方法. 这也正是本讲座要介绍的主要内容.2. 线性时间序列定义的多样性现在简单叙述一下非线性时间序列定义的复杂性, 它与线性时间序列的定义有关. 前一小节中(1.12)式所显示的线性时间序列, 只是一种定义方式. 如果改变对系数k的限制条件, 就会给出不同的定义. 更为重要的是, 在近代研究中, 将(1.12)式中的i.i.d.序列{e t}放宽为平稳鞅差序列, 这在预报理论中很有意义.无论引用哪一种线性时间序列定义, 都对相应的序列的性质有所研究, 因为其研究成果可用于有关的线性时间序列模型解的特性研究. 事实上, 已经有丰富的成果被载入文献史册.依上所述可知, 由于线性时间序列定义的多样性, 必然带来非线性时间序列定义的复杂性. 这里需要强调指的是, 对于非线性时间序列, 几乎没有文章研究它们的一般性质, 这与线性时间序列情况不同. 于是人们要问, 我们用哪些工具来研究非线性时间序列模型解的特性呢? 这正是本次演讲要回答的问题. 确切地说, 我们将介绍马尔可夫链, 并借助于此来讨论非线性自回归模型解的问题.第二章. 非线性时间序列模型1. 概论从(1.12)式可见,一个线性时间序列{x t}, 被{e t}的分布和全部系数i 所决定. 在此有无穷多个自由参数,这对统计不方便,因此人们更关心只依赖有限个自由参数的线性时间序列,这就是线性时间序列的参数模型. 其中最常用的如ARMA模型. 对于非线性时间序列而言, 使用参数模型方法几乎是唯一的选择. 由于非线性函数的多样性, 带来了非线性时间序列模型的多样性. 但是,迄今为止被研究得较多, 又有应用价值的非线性时序模型, 为数极少, 而且主要是针对非线性自回归模型. 在介绍此类模型之前, 我们先对非线性时序模型的分类作一概述.通用假定: {t}为i.i.d.序列,且E t=0, 而且t与{x t-1, x t-2,…}独立.可加噪声模型:x t=(x t-1,x t-2,…)+t,t=1,2,…(2.1)其中(…)是自回归函数. 当它仅依赖于有限个未知参数时, 记此参数向量为, 其相应的(2.1)模型常写成x t=(x t-1,x t-2,…;)+t,t=1,2,…(2.2)否则, 称(2.1)式称为非参数模型.关于(2.1)(2.2)的模型的平稳性, 要在下一章讨论, 但是, 它有类似于线性AR模型的几个简单性质, 是重要的而且容易获得的, 它们是:E(x t|x t-1,x t-2,…)=E{(x t-1,x t-2,…)+t|x t-1,x t-2,…}=(x t-1,x t-2,…)+E(t|x t-1,x t-2,…)=(x t-1,x t-2,…) (2.3)var{x t|x t-1, x t-2 , …}E{[x t-(x t-1,…)]2|x t-1, x t-2 , …} = E{t2|x t-1, x t-2 , …}= E t2=2. (2.4)P{x t<x|x t-1,x t-2, …}= P{(x t-1,…)+t<x|x t-1,x t-2, …}= P{t<x-(x t-1,…)|x t-1,x t-2, …}=F(x-(x t-1,…)). (2.5)其中F是t的分布函数.带条件异方差的模型:x t=(x t-1,x t-2,…)+S(x t-1,x t-2,…)t,t=1,2,…(2.6)其中(…)和S(…)也有限参数与非参数型之分, 这都是不言自明的. 另外, (2.6)式显然不属于可加噪声模型. 但是, 它比下面的更一般的非可加噪声模型要简单得多. 这可通过推广(2.3)(2.4)(2.5)式看出, 即有,E(x t|x t-1,x t-2,…)=E{(x t-1,x t-2,…)+S(x t-1,x t-2,…)t|x t-1,x t-2,…}=(x t-1,x t-2,…)+S(x t-1,x t-2,…)E{t|x t-1,x t-2,…}=(x t-1,x t-2,…) . (2.3)’var{x t|x t-1, x t-2 , …}E{[x t-(x t-1,…)]2|x t-1, x t-2 , …} =E{S2(x t-1,x t-2,…)t2|x t-1, x t-2 , …}=S2(x t-1,x t-2,…)E{t2|x t-1, x t-2 , …}=S2(x t-1,x t-2,…)2. (2.4)’P{x t<x|x t-1,x t-2, …}=P{(x t-1,…)+S(x t-1,…)t<x|x t-1, x t-2 , …}= P{t<[x-(x t-1,…)]/S(x t-1,…)}=F([x-(x t-1,…)]/S(x t-1,…)).(2.5)’一般非线性时序模型:x t=(x t-1,x t-2,…; t, t-1,…)t=1,2,…(2.7)其中(…)也有参数与非参数型之区别, 这也是不言自明的. 显然, (2.7)式既不是可加噪声模型, 也不属于(2.6)式的带条件异方差的模型. 虽然, 它可能具有条件异方差性质. 相反, 后两者都是(2.7)式的特殊类型. 虽说(2.7)式是更广的模型形式, 在文献中却很少被研究. 只有双线性模型作为它的一种特殊情况, 在文献中有些应用和研究结果出现. 现写出其模型于后, 可供理解其双线性模型的含义x t=j=1p j x t-j+j=1q j t-j+i=1P j=1Q ij t-i x t-j.2. 非线性自回归模型在前一小节中的(2.1)和(2.2)式就是非线性自回归模型, 而且属于可加噪声模型类. 在这一小节里, 我们将介绍几种(2.2)式的常见的模型.函数后的线性自回归模型:f(x t)=α1f(x t-1)+α2f(x t-2)+...+αp f(x t-p)+εt,t=1,2,…(2.8)其中f(.)是一元函数, 它有已知和未知的不同情况, 不过总考虑单调增函数的情况, α=(α1,α2,…,αp)是未知参数. 在实际应用中, {x t}是可获得量测的序列.当f(.)是已知函数时, {f(x t)}也是可获得量测的序列, 于是只需考虑y t=f(x t)所满足的线性AR模型y t=α1y t-1+α2y t-2+...+αp y t-p+εt,t=1,2,…(2.9)此时可不涉及非线性自回归模型概念. 在宏观计量经济分析中, 常常对原始数据先取对数后, 再作线性自回归模型统计分析, 就属于此种情况. 这种先取对数的方法, 不仅简单, 而且有经济背景的合理解释,它反应了经济增长幅度的量化规律. 虽然在统计学中还有更多的变换可使用, 比如Box-Cox变换, 但是, 由于缺少经济背景的合理解释, 很少被使用. 由此看来, 当f(.)有实际背景依据时, 可以考虑使用(2.7)式的模型.当f(.)是未知函数时, {f(x t)}不是可量测的序列, 于是只能考虑(2.8)模型. 注意f(.)是单调函数, 可记它的逆变换函数为f-1(.), 于是由(2.8)模型可得x t= f-1(α1f(x t-1)+α2f(x t-2)+...+αp f(x t-p)+εt),t=1,2,…(2.9)’此式属于(2.7)式的特殊情况, 此类模型很少被使用. 取而代之是考虑如下的模型x t=α1f(x t-1)+α2f(x t-2)+...+αp f(x t-p)+εt,t=1,2,…(2.10)其中f(.)是一元函数, 也有已知和未知之分, 可不限于单调增函数. 此式属于(2.1)式的特殊情况, 有一定的使用价值.当(2.10)式中的f(.)函数是已知时, 此式还有更进一步的推广模型,x t=α1f1(x t-1,…,x t-s)+α2f2(x t-1,…,x t-s)+...+αp f p(x t-1,…,x t-s)+εt,t=1,2,…(2.11)其中f k(…)(k=1,2,…,p)是已知的s元函数. 例如, 以后将要多次提到的如下的模型:x t =α1I(x t-1<0)x t-1+α2I(x t-1≥0)x t-1+εt ,t=1,2,… (2.12)其中I(.)是示性函数. 此模型是分段线性的, 是著名的TAR 模型的特殊情况. 为了有助于理解它, 我们写出它的分段形式:x t =.0,0,,111211≥<⎩⎨⎧++--t t t t x x x x εαεα t=1,2,…请注意, (2.8)(2.10)和(2.11)式具有一个共同的特征, 就是未知参数都以线性形式出现在模型中. 这一特点在统计建模时带来极大的方便. 此类模型便于实际应用. 但是, 对于{x t }而言不具有线性特性, 所以, 讨论它们的平稳解的问题, 讨论它们的建模理论依据问题,都需要借助于马尔可夫链的工具.已知非线性自回归函数的模型:x t =(x t-1,x t-2,…,x t-p ;)+t ,t=1,2,… (2.13)其中(…)是p 元已知函数, 但是其中含有未知参数=(1,2,…,p ).一般说来, 在一定范围内取值.例如,x t =tt t x x εαα++--212111, t=1,2,… 其中=(1,2)是未知参数, 它们的取值范围是: -<<, 0<.这里需要指出, 使用上式的模型, 不仅要借助于马尔可夫链的工具, 而且在统计建模时遇到两种麻烦, 其一是参数估计的计算麻烦, 二是确定(…)函数的麻烦. 一般来说, 只有根据应用背景能确定(…)函数时, 才会考虑使用此类模型.广义线性模型(神经网络模型):x t=(1x t-1+2x t-2+…+p x t-p)+t,t=1,2,…(2.14)其中(.)是一元已知或未知函数, 参数=(1,2,…,p)总是未知的. 为保证模型的唯一确定性, 或者说是可识别性, 要对作些约定, 其一, ||||=1, 其二, =(,,…,p)中第一个非零分量为正的. 不难2理解, 若不加这两条约定, 模型(2.14)不能被唯一确定.当(.)是一元已知函数时, 与神经网络模型相通.当(.)是一元未知函数时, 与回归模型中的PP方法相通.除了以上两类模型外, 还有(2.1)式的非参数自回归模型, 以及从统计学中引入的半参数自回归模型. 对它们的统计建模更困难. 本讲座主旨在于介绍如何用马尔可夫链的工具, 描述非线性自回归模型的基本特性问题, 对这类模型不再仔细讨论.。

非线性时间序列分析方法与模型

非线性时间序列分析方法与模型

非线性时间序列分析方法与模型时间序列分析是一种研究随时间变化的数据模式和趋势的统计方法。

在传统的时间序列分析中,线性模型被广泛应用,但是线性模型无法捕捉到一些复杂的非线性关系。

因此,非线性时间序列分析方法和模型的发展成为了研究的热点。

一、非线性时间序列分析方法的发展1.1 非线性时间序列分析的起源非线性时间序列分析方法的起源可以追溯到20世纪60年代。

当时,经济学家和统计学家开始发现一些经济和金融数据中存在着非线性关系,传统的线性模型无法很好地解释这些数据。

这引发了对非线性时间序列分析方法的研究兴趣。

1.2 常用的非线性时间序列分析方法随着研究的深入,许多非线性时间序列分析方法被提出和应用。

其中,最常用的方法包括:傅里叶变换、小波分析、自回归条件异方差模型(ARCH)、广义自回归条件异方差模型(GARCH)、支持向量机(SVM)等。

二、非线性时间序列模型的应用2.1 ARCH和GARCH模型ARCH和GARCH模型是用于建模金融时间序列数据的非线性模型。

ARCH模型通过引入条件异方差来捕捉金融数据中的波动性特征,而GARCH模型在ARCH 模型的基础上进一步考虑了波动性的长期记忆效应。

2.2 小波分析小波分析是一种将时间序列分解成不同频率的成分的方法。

通过小波分析,可以将时间序列的低频和高频成分分离出来,从而更好地理解时间序列的特征和趋势。

2.3 支持向量机支持向量机是一种机器学习方法,在非线性时间序列分析中得到了广泛应用。

支持向量机通过将时间序列映射到高维空间,并在该空间中构建超平面来进行分类和回归分析。

三、非线性时间序列分析方法的优势和局限性3.1 优势非线性时间序列分析方法能够更好地捕捉到数据中的非线性关系,提高模型的预测精度。

这对于金融市场的预测和风险管理具有重要意义。

3.2 局限性非线性时间序列分析方法的建模过程较为复杂,需要较大的计算量和数据量。

此外,非线性时间序列分析方法对初始条件较为敏感,对于数据的噪声和异常值较为敏感。

非线性金融时间序列模型的应用与研究

非线性金融时间序列模型的应用与研究

非线性金融时间序列模型的应用与研究引言金融市场的波动性一直是投资者关注的焦点之一。

在传统的金融时间序列模型中,假设市场的波动是线性的,但实际上,金融市场波动的特征往往是非线性的。

因此,研究非线性金融时间序列模型对于了解金融市场的波动性具有重要意义。

一、非线性金融时间序列模型的基础A. 线性时间序列模型简介传统的线性时间序列模型包括AR、MA和ARMA模型,它们假设变量之间的关系是线性的,可以用来描述市场的长期趋势。

B. 非线性金融时间序列模型简介非线性时间序列模型则引入了非线性因素,更适用于描述金融市场中的波动性。

常见的非线性模型包括ARCH、GARCH和EGARCH模型。

二、ARCH模型的应用与研究A. ARCH模型的基本原理ARCH模型是自回归条件异方差模型,它允许波动率的变化是由过去的残差所决定的。

它的基本原理是变量的波动率与过去的波动率存在正反馈的关系。

B. ARCH模型的实证研究ARCH模型在金融市场的实证研究中有较为广泛的应用。

例如,研究者通过应用ARCH模型对股票市场的波动性进行建模,可以更好地预测股票市场的风险。

三、GARCH模型的应用与研究A. GARCH模型的基本原理GARCH模型是广义自回归条件异方差模型,相比ARCH模型,它引入了过去的波动率因素,更能够准确描述金融市场的波动性。

B. GARCH模型的实证研究GARCH模型在金融市场的实证研究中也有重要应用。

例如,研究者利用GARCH模型对汇率市场的波动性进行建模,可以有效地预测汇率的波动。

四、EGARCH模型的应用与研究A. EGARCH模型的基本原理EGARCH模型是扩展的GARCH模型,它引入了对称和非对称效应的观念,能够更好地描述金融市场的波动性。

B. EGARCH模型的实证研究EGARCH模型在金融市场的实证研究中也有广泛应用。

例如,研究者通过应用EGARCH模型对商品期货市场的波动性进行建模,可以更好地预测商品期货市场的价格波动。

时间序列分析模型

时间序列分析模型

时间序列分析模型时间序列分析模型是一种通过对时间序列数据进行建模和分析的方法,旨在揭示数据中的趋势、季节性、周期和不规则波动等特征,并进行预测和决策。

时间序列分析模型在经济、金融、市场、气象、医学等领域都有广泛的应用。

本文将介绍几种常见的时间序列分析模型。

1. 移动平均模型(MA)移动平均模型是时间序列分析中最简单的模型之一。

它基于一个基本假设,即观察到的时间序列数据是对随机误差的线性组合。

该模型表示为:y_t = c + e_t + θ₁e_(t-1) + θ₂e_(t-2) + … + θ_qe_(t-q)其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,θ₁,θ₂,…,θ_q 是移动平均项的参数,q 是移动平均项的阶数。

2. 自回归模型(AR)自回归模型是基于一个基本假设,即观察到的时间序列数据是过去若干时间点的线性组合。

自回归模型表示为:y_t = c + ϕ₁y_(t-1) + ϕ₂y_(t-2) + … + ϕ_p y_(t-p) + e_t其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,ϕ₁,ϕ₂,…,ϕ_p 是自回归项的参数,p 是自回归项的阶数。

3. 自回归移动平均模型(ARMA)自回归移动平均模型将自回归模型和移动平均模型结合在一起,用于处理同时具有自相关和移动平均性质的时间序列数据。

自回归移动平均模型表示为:y_t = c + ϕ₁y_(t-1) + ϕ₂y_(t-2) + … + ϕ_p y_(t-p) + e_t +θ₁e_(t-1) + θ₂e_(t-2) + … + θ_qe_(t-q)其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,ϕ₁,ϕ₂,…,ϕ_p 是自回归项的参数,θ₁,θ₂,…,θ_q 是移动平均项的参数,p 是自回归项的阶数,q 是移动平均项的阶数。

4. 季节性自回归移动平均模型(SARIMA)季节性自回归移动平均模型是自回归移动平均模型的扩展,用于处理具有季节性和趋势变化的时间序列数据。

非线性时间序列模型在金融风险预测中的应用研究

非线性时间序列模型在金融风险预测中的应用研究

非线性时间序列模型在金融风险预测中的应用研究在现代金融市场中,风险控制是非常重要的一个问题,特别是随着金融交易的复杂化和全球化,风险控制成为金融机构必须重视的问题。

非线性时间序列模型作为一种常见的计量经济学方法,被广泛应用于金融风险预测中。

本文将深入探讨非线性时间序列模型在金融风险预测中的应用,并分析其优缺点。

一、非线性时间序列模型的基本概念非线性时间序列模型的基本概念是指在时间序列数据中,不同时间点的采样值是非线性相关的。

该模型通常是建立在一些经济学理论的基础上,比如市场效率假说、理性预期假说等。

通常来说,非线性时间序列模型分为两大类:单变量模型和多变量模型。

其中,单变量模型只考虑一个时间序列变量,主要包括ARCH/GARCH模型、非线性AR模型等;而多变量模型则考虑多个时间序列变量的相互作用,主要包括VAR模型、VECM模型等。

二、非线性时间序列模型在金融风险预测中的应用1. ARCH/GARCH模型ARCH/GARCH模型是用来对金融市场波动进行模拟和预测的经典模型之一,是建立在时间序列波动预测的基础上的。

该模型假设金融市场中的波动是随机的,波动的大小受到过去一定时间范围内的波动大小的影响,并且波动的大小也可以受到其他因素的影响,如市场情绪等。

2. 非线性AR模型非线性AR模型可以很好地解决数据呈现非线性相关的情况。

该模型假设预测值不仅与历史数据有关,还与当前数据有关。

对于这种模型,需要使用递归最小二乘法或粒子滤波法对模型进行估计。

3. VAR模型VAR模型是通常用于建立多个时间序列变量之间的相互关系的模型。

该模型可以很好地描述变量之间的联动关系,因此被应用于金融市场分析和预测中。

其优点是可以同时估计和预测多个变量的未来走势,缺点是如果变量之间存在高度相关性,则模型可能无法达到很好的预测效果。

4. VECM模型VECM模型是一种多元非线性时间序列模型,相对于VAR模型而言,VECM 模型更加复杂。

非线性时间序列分析与预测

非线性时间序列分析与预测

非线性时间序列分析与预测时间序列分析是一种重要的统计学方法,用于研究时间序列数据的内在规律和趋势。

线性时间序列分析方法广泛应用于股市、天气、经济等领域的预测和分析中。

然而,传统的线性时间序列模型往往忽略了数据间的非线性关系,因此在某些复杂的系统中表现得并不理想。

为了进一步提高预测模型的准确性和稳定性,非线性时间序列分析方法应运而生。

非线性时间序列分析方法关注的是序列间的非线性依赖关系,通过刻画不同序列数据之间的非线性关系,揭示数据背后的深层结构和机制。

非线性时间序列分析通常包括非线性动力学、盒子维数、延迟坐标等方法。

首先,非线性动力学是非线性时间序列分析的核心方法之一。

它基于动力系统理论,将时间序列数据视为系统状态的演化过程,并通过构建非线性微分方程的数学模型来描述数据的动力学行为。

通过对非线性动力学系统的分析,我们可以更好地了解其内在的演化规律和趋势。

其次,盒子维数是衡量数据集中不规则程度的指标。

对于线性时间序列数据,在经典的离散傅里叶变换等方法中,我们可以得到精确的盒子维数。

然而,对于非线性时间序列数据,精确的盒子维数往往难以获得。

因此,非线性时间序列分析中通常使用分形维数或局部盒子维数来描述数据的复杂性和自相似性。

最后,延迟坐标方法是非线性时间序列分析中常用的一种方法。

该方法通过构造延迟嵌入向量来反映数据的时间延迟特性,并将原始的高维数据降维到低维空间中进行分析。

通过延迟坐标方法,我们可以还原数据间的非线性关系,从而更好地理解时间序列数据的动态特性。

非线性时间序列分析方法在众多领域中都得到了广泛的应用。

在金融市场中,非线性时间序列分析方法可以用于股票价格的预测和波动性分析;在气象预测中,非线性时间序列分析方法可以用于预测台风路径和强度变化;在经济中,非线性时间序列分析方法可以用于GDP增长和通货膨胀预测。

然而,非线性时间序列分析方法也面临着一些挑战和局限性。

首先,非线性时间序列分析方法对数据的质量和精确性要求较高,若数据存在缺失值或噪声,将影响预测结果的准确性。

非线性时间序列预测模型研究

非线性时间序列预测模型研究

非线性时间序列预测模型研究第一章引言时间序列分析在许多领域中被广泛应用,它能够揭示数据中的趋势和周期性变化,并对未来的发展做出预测。

然而,很多现实世界的时间序列数据并不是线性的,包含着复杂的非线性关系。

因此,研究非线性时间序列预测模型成为当前的研究热点。

本章将首先介绍非线性时间序列预测模型的研究背景和意义,然后概述目前主要的非线性时间序列预测方法,并最后给出本文的研究内容和组织结构。

第二章非线性时间序列预测模型概述2.1 非线性时间序列的特点非线性时间序列数据与线性时间序列数据相比具有一些特殊的性质。

例如,非线性时间序列数据可能包含多个不同的周期性变化、季节性变化和趋势变化,同时还可能受到外部因素的影响。

此外,非线性时间序列数据还可能存在非平稳性和噪声干扰等问题。

2.2 非线性时间序列预测方法的分类目前,研究人员提出了许多非线性时间序列预测方法,这些方法可以根据其模型结构和预测方法分为不同的分类。

常见的非线性时间序列预测方法包括支持向量机、神经网络、深度学习和基于混沌理论的方法等。

2.3 非线性时间序列预测模型评价指标为了评估非线性时间序列预测模型的性能,研究人员提出了一系列的评价指标。

这些指标包括均方根误差、平均绝对百分比误差和相关系数等。

第三章支持向量机在非线性时间序列预测中的应用3.1 支持向量机的原理和模型支持向量机是一种基于统计学习理论的非线性分类和回归方法。

它通过寻找一个最优的超平面将样本分为不同的类别,从而实现对非线性时间序列的预测。

3.2 支持向量机在非线性时间序列预测中的应用案例本节将以股票市场的预测为例,介绍支持向量机在非线性时间序列预测中的应用。

通过使用支持向量机模型,可以对股票市场的波动进行有效的预测和分析。

3.3 支持向量机在非线性时间序列预测模型中的优缺点在使用支持向量机进行非线性时间序列预测时,虽然可以取得不错的预测效果,但也存在一些问题和限制。

本节将对这些问题和限制进行详细的讨论。

非线性时间序列分析在统计学中的应用评估

非线性时间序列分析在统计学中的应用评估

非线性时间序列分析在统计学中的应用评估时间序列分析是统计学中一种重要的分析方法,用于研究随时间变化的数据,如股票价格、气温变化等。

传统的时间序列分析方法主要关注线性关系,即假设数据之间存在线性的关联。

然而,现实世界中的许多现象并不满足线性假设,因此非线性时间序列分析应运而生。

非线性时间序列分析是研究时间序列数据中非线性关系的一种方法。

它通过拟合非线性模型来描述数据中的非线性关系,并通过一系列统计量来评估模型的拟合程度和预测能力。

非线性时间序列分析的应用范围广泛,包括金融、气象、生态学等领域。

在金融领域,非线性时间序列分析可以用于预测股票价格的波动。

传统的线性模型往往无法捕捉到股票市场中的非线性特征,而非线性时间序列分析可以通过引入非线性函数来更好地描述股票价格的变化。

例如,通过引入ARCH模型,可以更好地描述股票价格的波动性,并提高预测的准确性。

在气象领域,非线性时间序列分析可以用于预测气温的变化。

气温变化受到多种因素的影响,包括季节性、地理位置、大气环流等。

传统的线性模型往往无法捕捉到这些非线性因素的影响,而非线性时间序列分析可以通过引入非线性函数来更好地描述气温的变化规律。

例如,通过引入ARIMA模型的非线性版本,可以更好地预测气温的季节性变化和极端气候事件。

在生态学领域,非线性时间序列分析可以用于研究物种数量的变化。

生态系统中的物种数量往往呈现出复杂的非线性关系,包括周期性波动、相位差等。

传统的线性模型往往无法捕捉到这些非线性关系,而非线性时间序列分析可以通过引入非线性函数来更好地描述物种数量的变化规律。

例如,通过引入Lotka-Volterra模型,可以更好地理解物种之间的相互作用和竞争关系。

除了上述领域,非线性时间序列分析还可以应用于信号处理、医学研究等领域。

在信号处理领域,非线性时间序列分析可以用于分析复杂信号的频谱特征和相位特征。

在医学研究领域,非线性时间序列分析可以用于研究心电图、脑电图等生理信号的非线性特征,从而提供更准确的诊断和治疗方法。

非线性时间序列分析方法综述

非线性时间序列分析方法综述

非线性时间序列分析方法综述引言时间序列分析是一种用于研究时间上连续观测数据的统计方法。

在传统的时间序列分析中,线性模型被广泛应用,但随着对非线性现象的认识不断增加,非线性时间序列分析方法逐渐受到关注。

本文将对非线性时间序列分析方法进行综述,包括非线性动力学方法、复杂网络方法和机器学习方法。

非线性动力学方法非线性动力学方法是研究非线性时间序列的一种重要方法。

其中,相空间重构是一个核心概念。

相空间重构通过将一维时间序列转化为高维相空间中的轨迹,揭示了时间序列中的非线性结构。

常用的相空间重构方法有延迟重构和嵌入维度选择。

延迟重构通过选择不同的延迟时间,将一维时间序列转化为多维相空间中的轨迹,从而恢复出时间序列中的非线性动力学信息。

嵌入维度选择是指确定相空间重构中的嵌入维度,常用的方法有自相关函数法和最小平均互信息法。

复杂网络方法复杂网络方法是一种基于图论的非线性时间序列分析方法。

它将时间序列数据转化为网络结构,通过研究网络的拓扑特性来揭示时间序列中的非线性关系。

常用的复杂网络方法包括小世界网络、无标度网络和模块化网络。

小世界网络描述了网络中节点之间的短路径长度和高聚集性特征,可以用来分析时间序列中的局部关联。

无标度网络描述了网络中节点的度分布呈幂律分布的特性,可以用来分析时间序列中的长尾分布。

模块化网络描述了网络中节点的聚类特性,可以用来分析时间序列中的模式和结构。

机器学习方法机器学习方法是一种基于统计学习理论的非线性时间序列分析方法。

它通过构建预测模型来揭示时间序列中的非线性关系。

常用的机器学习方法包括支持向量机、人工神经网络和随机森林。

支持向量机是一种基于结构风险最小化理论的分类器,可以用于时间序列的分类和回归分析。

人工神经网络是一种模拟大脑神经元工作原理的计算模型,可以用于时间序列的模式识别和预测分析。

随机森林是一种基于集成学习的分类器,可以用于时间序列的多样本预测和异常检测。

结论非线性时间序列分析方法是研究时间序列中非线性关系的重要工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近代时间序列分析选讲:一. 非线性时间序列二. GARCH模型三. 多元时间序列四. 协整模型非线性时间序列第一章.非线性时间序列浅释1.从线性到非线性自回归模型2.线性时间序列定义的多样性第二章. 非线性时间序列模型1. 概述2. 非线性自回归模型3.带条件异方差的自回归模型4.两种可逆性5.时间序列与伪随机数第三章.马尔可夫链与AR模型1. 马尔可夫链2. AR模型所确定的马尔可夫链3. 若干例子第四章. 统计建模方法1. 概论2. 线性性检验3.AR模型参数估计4.AR模型阶数估计第五章. 实例和展望1. 实例2.展望第一章.非线性时间序列浅释1. 从线性到非线性自回归模型时间序列{x t}是一串随机变量序列, 它有广泛的实际背景, 特别是在经济与金融领域中尤其显著. 关于它们的从线性与非线性概念, 可从以下的例子入手作一浅释的说明.考查一阶线性自回归模型---LAR(1): x t=αx t-1+e t, t=1,2,… (1.1)其中{e t}为i.i.d.序列,且Ee t=0, Ee t=σ2<∞, 而且e t与{x t-1,x t-1,…}独立. 反复使用(1.1)式的递推关系, 就可得到x t=αx t-1+e t= e t + αx t-1= e t + α{ e t-1 + αx t-2}= e t + αe t-1 + α2 x t-2=…= e t + αe t-1 + α2e t-2+…+ αn-1e t-n+1 +αn x t-n. (1.2)如果当n→∞时,αn x t-n→0, (1.3){e t+αe t-1+α2e t-2+…+αn-1e t-n+1}→∑j=0∞αj e t-j . (1.4)虽然保证以上的收敛是有条件的, 而且要涉及到具体收敛的含义, 但是, 对以上的简单模型, 不难相信, 当|α|<1时, (1.3)(1.4)式成立. 于是, 当|α|<1时, 模型LAR(1)有平稳解, 且可表达为x t=∑j=0∞αj e t-j . (1.5)通过上面叙述可见求LAR(1)模型的解有简便之优点, 此其一. 还有第二点, 容易推广到LAR(p)模型. 为此考查如下的p阶线性自回归模型LAR(p):x t =α1x t-1+α2x t-2+...+αp x t-p +e t ,t=1,2,… (1.6)其中{e t }为i.i.d.序列,且Ee t =0, Ee t =σ2<∞,而且e t 与{x t-1, x t-1,…}独立.虽然反复使用(1.6)式的递推式, 仍然可得到(1.2)式的类似结果, 但是,用扩张后的一阶多元AR 模型求解时, 可显示出与LAR(1)模型求解的神奇的相似. 为此记X t =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+--11p t t t x x x , U=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛001 , A=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00000121 pααα, (1.7)于是(1.6)式可写成如下的等价形式:X t=A X t-1+ e t U. (1.8)反复使用此式的递推关系, 形式上仿照(1.2)式可得X t=AX t-1+e t U= e t U+e t-1AU+A2x t-2=⋯=e t U+e t-1AU+e t-2A2U+…+e t-n+1A n-1U+A n x t-n.如果矩阵A的谱半径(A的特征值的最大模)λ(A), 满足如下条件λ(A)<1, (1.10) 由上式可猜想到(1.8)式有如下的解: X t=∑k=0∞A k Ue t-k. (1.11)其中向量X t的第一分量x t形成的序列{x t}, 就是模型(1.6)式的解. 由此不难看出, 它有以下表达方式x t=∑k=0∞ϕk e t-k. (1.11)其中系数ϕk由(1.6)式中的α1,α2, ... ,αp 确定, 细节从略. 不过, (1.11)式给了我们重要启发, 即考虑形如x t=∑k=0∞ψk e t-k, ∑k=0∞ψk2<∞, (1.12)的时间序列类 (其中系数ψk能保证(1.12)式中的x t有定义). 在文献中, 这样的序列{x t}就被称为线性时间序列.虽然以上给出了线性时间序列的定义, 以下暂时不讨论什么是非线性时间序列, 代之先讨论一阶非线性自回归模型---NLAR(1), 以便与LAR(1)模型进行比较分析. 首先写出NLAR(1)模型如下x t=ϕ(x t-1)+e t, t=1,2,… (1.13)其中{e t}为i.i.d.序列,且Ee t=0, Ee t=σ2<∞,而且e t与{x t-1,x t-2,…}独立, 这些假定与LAR(1)模型相同, 但是, ϕ(x t-1)不再是x t-1的线性函数, 代之为非线性函数, 比如ϕ(x t-1)=x t-1/{a+bx t-12}.此时虽然仍可反复使用(1.13)式进行迭代, 但是所得结果是x t=ϕ (x t-1) +e t= e t+ ϕ (x t-1)= e t+ ϕ ( e t-1+ ϕ (x t-2))= e t+ ϕ ( e t-1+ ϕ ( e t-2+ ϕ (x t-3))) =…=e t+ϕ ( e t-1+ ϕ ( e t-2+ …+ϕ (x t-n))…).(1.14)根据此式, 我们既不能轻易判断ϕ(x t-1)函数满足怎样的条件时, 上式会有极限, 也不能猜测其极限有怎样的形式.对于p阶非线性自回归模型x t =ϕ(x t-1,x t-2,…,x t-p )+e t ,t=1,2,… (1.15)仿照(1.6)至(1.9)式的扩张的方法, 我们引入如下记号Φ( x t-1,x t-2,…,x t-p )≡⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+-----1121,...,,(p t t p t t t x x x x x ϕ, (1.16)我们得到与(1.15)式等价的模型X t =Φ(X t-1) +e t U, t=1,2,… (1.17)但是, 我们再也得不出(1.9)至(1.14)式的结果,至此我们已将看出, 从线性到非线性自回归模型有实质性差异, 要说清楚它们, 并不是很简单的事情. 从数学角度而言,讨论线性自回归模型可借用泛函分析方法, 然而, 讨论非线性自回归模型, 则要借用马尔可夫链的理论和方法. 这也正是本讲座要介绍的主要内容.2. 线性时间序列定义的多样性现在简单叙述一下非线性时间序列定义的复杂性, 它与线性时间序列的定义有关. 前一小节中(1.12)式所显示的线性时间序列, 只是一种定义方式. 如果改变对系数 k的限制条件, 就会给出不同的定义. 更为重要的是, 在近代研究中, 将(1.12)式中的i.i.d.序列{e t}放宽为平稳鞅差序列, 这在预报理论中很有意义.无论引用哪一种线性时间序列定义, 都对相应的序列的性质有所研究, 因为其研究成果可用于有关的线性时间序列模型解的特性研究. 事实上, 已经有丰富的成果被载入文献史册.依上所述可知, 由于线性时间序列定义的多样性, 必然带来非线性时间序列定义的复杂性. 这里需要强调指的是, 对于非线性时间序列, 几乎没有文章研究它们的一般性质, 这与线性时间序列情况不同. 于是人们要问, 我们用哪些工具来研究非线性时间序列模型解的特性呢? 这正是本次演讲要回答的问题. 确切地说, 我们将介绍马尔可夫链, 并借助于此来讨论非线性自回归模型解的问题.第二章. 非线性时间序列模型1. 概论从(1.12)式可见,一个线性时间序列{x t}, 被{e t}的分布和全部系数 i 所决定. 在此有无穷多个自由参数,这对统计不方便,因此人们更关心只依赖有限个自由参数的线性时间序列,这就是线性时间序列的参数模型. 其中最常用的如ARMA模型. 对于非线性时间序列而言, 使用参数模型方法几乎是唯一的选择. 由于非线性函数的多样性, 带来了非线性时间序列模型的多样性. 但是, 迄今为止被研究得较多, 又有应用价值的非线性时序模型, 为数极少, 而且主要是针对非线性自回归模型. 在介绍此类模型之前, 我们先对非线性时序模型的分类作一概述.通用假定: {εt}为i.i.d.序列,且Eεt=0, 而且εt与{x t-1, x t-2,…}独立.可加噪声模型:x t=ϕ(x t-1,x t-2,…)+εt,t=1,2,… (2.1)其中ϕ(…)是自回归函数. 当它仅依赖于有限个未知参数时, 记此参数向量为α, 其相应的(2.1)模型常写成x t=ϕ(x t-1,x t-2,…;α)+εt,t=1,2,… (2.2)否则, 称(2.1)式称为非参数模型.关于(2.1)(2.2)的模型的平稳性, 要在下一章讨论, 但是, 它有类似于线性AR 模型的几个简单性质, 是重要的而且容易获得的, 它们是:E(x t|x t-1,x t-2,…)=E{ϕ(x t-1,x t-2,…)+εt|x t-1,x t-2,…}=ϕ(x t-1,x t-2,…)+E(εt|x t-1,x t-2,…)=ϕ(x t-1,x t-2,…) (2.3)var{x t|x t-1, x t-2 , …}≡E{[x t-ϕ(x t-1,…)]2|x t-1, x t-2 , …}= E{εt2|x t-1, x t-2 , …}= Eεt2=σ2. (2.4)P{x t<x|x t-1,x t-2, …}= P{ϕ(x t-1,…)+εt<x|x t-1,x t-2, …}= P{εt<x-ϕ(x t-1,…)|x t-1,x t-2, …}=Fε(x-ϕ(x t-1,…)). (2.5)其中Fε是εt的分布函数.带条件异方差的模型:x t=ϕ(x t-1,x t-2,…)+S(x t-1,x t-2,…)εt,t=1,2,… (2.6)其中ϕ(…)和S(…)也有限参数与非参数型之分, 这都是不言自明的. 另外, (2.6)式显然不属于可加噪声模型. 但是, 它比下面的更一般的非可加噪声模型要简单得多.这可通过推广(2.3)(2.4)(2.5)式看出, 即有,E(x t|x t-1,x t-2,…)=E{ϕ(x t-1,x t-2,…)+S(x t-1,x t-2,…)εt|x t-1,x t-2,…}=ϕ(x t-1,x t-2,…)+S(x t-1,x t-2,…)E{εt|x t-1,x t-2,…}=ϕ(x t-1,x t-2,…) .(2.3)’var{x t|x t-1, x t-2 , …}≡E{[x t-ϕ(x t-1,…)]2|x t-1, x t-2 , …}=E{S2(x t-1,x t-2,…)εt2|x t-1, x t-2 , …}=S2(x t-1,x t-2,…)E{εt2|x t-1, x t-2 , …}=S2(x t-1,x t-2,…)σ2. (2.4)’P{x t<x|x t-1,x t-2, …}=P{ϕ(x t-1,…)+S(x t-1,…)εt<x|x t-1, x t-2 , …}= P{εt<[x-ϕ(x t-1,…)]/S(x t-1,…)}=Fε([x-ϕ(x t-1,…)]/S(x t-1,…)).(2.5)’一般非线性时序模型:x t=ψ(x t-1,x t-2,…; εt, εt-1,…)t=1,2,… (2.7)其中ψ(…)也有参数与非参数型之区别, 这也是不言自明的. 显然, (2.7)式既不是可加噪声模型, 也不属于(2.6)式的带条件异方差的模型. 虽然, 它可能具有条件异方差性质. 相反, 后两者都是(2.7)式的特殊类型. 虽说(2.7)式是更广的模型形式, 在文献中却很少被研究. 只有双线性模型作为它的一种特殊情况, 在文献中有些应用和研究结果出现. 现写出其模型于后, 可供理解其双线性模型的含义x t=∑j=1pαj x t-j+∑j=1qβjεt-j+∑i=1P∑j=1Qθijεt-i x t-j.2. 非线性自回归模型在前一小节中的(2.1)和(2.2)式就是非线性自回归模型, 而且属于可加噪声模型类. 在这一小节里, 我们将介绍几种(2.2)式的常见的模型.函数后的线性自回归模型:f(x t)=α1f(x t-1)+α2f(x t-2)+...+αp f(x t-p)+ε,tt=1,2,… (2.8)其中f(.)是一元函数, 它有已知和未知的不同情况, 不过总考虑单调增函数的情况, α=(α1,α2,…,αp)τ是未知参数. 在实际应用中, {x t}是可获得量测的序列.当f(.)是已知函数时, {f(x t)}也是可获得量测的序列, 于是只需考虑y t=f(x t)所满足的线性AR模型y t=α1y t-1+α2y t-2+...+αp y t-p+εt,t=1,2,… (2.9)此时可不涉及非线性自回归模型概念. 在宏观计量经济分析中, 常常对原始数据先取对数后, 再作线性自回归模型统计分析, 就属于此种情况. 这种先取对数的方法, 不仅简单, 而且有经济背景的合理解释,它反应了经济增长幅度的量化规律. 虽然在统计学中还有更多的变换可使用, 比如Box-Cox变换, 但是, 由于缺少经济背景的合理解释, 很少被使用. 由此看来, 当f(.)有实际背景依据时, 可以考虑使用(2.7)式的模型.当f(.)是未知函数时, {f(x t)}不是可量测的序列, 于是只能考虑(2.8)模型. 注意f(.)是单调函数, 可记它的逆变换函数为f-1(.), 于是由(2.8)模型可得x t= f-1(α1f(x t-1)+α2f(x t-2)+...+αp f(x t-p)+εt),t=1,2,… (2.9)’此式属于(2.7)式的特殊情况, 此类模型很少被使用. 取而代之是考虑如下的模型x t=α1f(x t-1)+α2f(x t-2)+...+αp f(x t-p)+εt,t=1,2,… (2.10)其中f(.)是一元函数, 也有已知和未知之分, 可不限于单调增函数. 此式属于(2.1)式的特殊情况, 有一定的使用价值.当(2.10)式中的f(.)函数是已知时, 此式还有更进一步的推广模型,x t=α1f1(x t-1,…,x t-s)+α2f2(x t-1,…,x t-s)+...+αp f p (x t-1,…,x t-s )+εt ,t=1,2,… (2.11)其中f k (…)(k=1,2,…,p)是已知的s 元函数.例如, 以后将要多次提到的如下的模型:x t =α1I(x t-1<0)x t-1+α2I(x t-1≥0)x t-1+εt ,t=1,2,… (2.12)其中I(.)是示性函数. 此模型是分段线性的, 是著名的TAR 模型的特殊情况. 为了有助于理解它, 我们写出它的分段形式:x t =.0,0,,111211≥<⎩⎨⎧++--t t t t x x x x εαεα t=1,2,…请注意, (2.8)(2.10)和(2.11)式具有一个共同的特征, 就是未知参数都以线性形式出现在模型中. 这一特点在统计建模时带来极大的方便. 此类模型便于实际应用. 但是, 对于{x t }而言不具有线性特性, 所以, 讨论它们的平稳解的问题, 讨论它们的建模理论依据问题,都需要借助于马尔可夫链的工具.已知非线性自回归函数的模型:x t =ϕ(x t-1,x t-2,…,x t-p ;α)+εt ,t=1,2,… (2.13)其中ϕ(…)是p 元已知函数, 但是其中含有未知参数α=(α1,α2,…,αp )τ.一般说来, α在一定范围内取值.例如,x t =tt t x x εαα++--212111, t=1,2,…其中α=(α1,α2)τ是未知参数, 它们的取值范围是: -∞<α<∞, 0≤α<∞.这里需要指出, 使用上式的模型,不仅要借助于马尔可夫链的工具, 而且在统计建模时遇到两种麻烦, 其一是参数估计的计算麻烦, 二是确定ϕ(…)函数的麻烦. 一般来说, 只有根据应用背景能确定ϕ(…)函数时, 才会考虑使用此类模型.广义线性模型(神经网络模型):x t=ϕ(α1x t-1+α2x t-2+…+αp x t-p)+εt,t=1,2,… (2.14)其中ϕ(.)是一元已知或未知函数, 参数α=(α1,α2,…,αp)τ总是未知的. 为保证模型的唯一确定性, 或者说是可识别性, 要对α作些约定, 其一, ||α||=1, 其二, α=(α1,α2,…,αp)τ中第一个非零分量为正的. 不难理解, 若不加这两条约定, 模型(2.14)不能被唯一确定.当ϕ(.)是一元已知函数时, 与神经网络模型相通.当ϕ(.)是一元未知函数时, 与回归模型中的PP方法相通.除了以上两类模型外, 还有(2.1)式的非参数自回归模型, 以及从统计学中引入的半参数自回归模型. 对它们的统计建模更困难. 本讲座主旨在于介绍如何用马尔可夫链的工具, 描述非线性自回归模型的基本特性问题, 对这类模型不再仔细讨论.Welcome !!! 欢迎您的下载,资料仅供参考!。

相关文档
最新文档