晶体的宏观对称性
晶体的宏观对称性
2 n
表1 描述晶体宏观对称性与分子对称性时常用 对称元素及与其相应的对称操作对照表
除了对称元素和对称操作的符号和名称的不完全相同外,晶 体的宏观对称性与有限分子的对称性最本质的区别是:晶体的点 阵结构使晶体的宏观对称性受到了限制,这种限制主要表现在两 方面: 在晶体的空间点阵结构中,任何对称轴(包括旋转轴、反轴 以及以后介绍的螺旋轴)都必与一组直线点阵平行,与一组 平面点阵垂直(除一重轴外);任何对称面(包括镜面及微观对 称元素中的滑移面)都必与一组平面点阵平行,而与一组直 线点阵垂直。 晶体中的对称轴(包括旋转轴,反轴和螺旋轴)的轴次n并不是 可以有任意多重,n仅为1,2,3,4,6,即在晶体结构中,任何 对称轴或轴性对称元素的轴次只有一重、二重、三重、四 重和六重这五种,不可能有五重和七重及更高的其它轴次, 这一原理称为“晶体的对称性定律”。 所以,综合前面的讨论,由于点阵结构的限制,晶体中实际 存在的独立的宏观对称元素总共只有八种,见表2:
点
群 对称元素
称元素
无
序 熊夫里 国际记号 号 斯记号 1 2 3 4 5
abc
90
abc
斜
90
abc
cs c2 h
D2
D 2v
c1 ci c2
1
m
1 2 m 2
2
i
m 2, m, i
32 2, 2
低
正 两个互相垂 直的m或三 交 个互相垂的
组合程序: 组合时先进行对称轴与对称轴的组合,再在此基础上进行 对称轴与对称面的组合,最后为对称轴、对称面与对称中心 的组合。 按照以上程序及限制进行组合,我们可以得到的对称元 素系共32种,即32个点群:
1-3 晶体对称性
2
1 2 3 4 6 2 2 6 4 6
示
平行 斜插纸 纸面 面
二、宏观对称性的组合关系
1. 如果晶体中有两个或两个以上的镜面相交,则每两 个镜面的交线必定是一个对称轴,而对称轴的转角比 定时镜面夹角的二倍。
镜面夹角 180° 90° 60° 45° 30°
旋转轴转 角
360°
180°
120°
90°
Th
Td
O
Oh
晶类(点群)符号 国际符号(全) 国际符号(缩)
1 I(1)
1 I(1)
m
m
2
2
2/m
2/m
3
3
3
3
3m
3m
32
32
32/m
3m
2mm
mm
222
222
2/m2/m2/m
mmm
23
23
2/m3
m3
43m
43m
432
43
4/m32/m
m3m
全对称要素组合
I m(2)
2 2mI
3 3(3I) 33m 332 3323m(3323mI) 23m
三、平移群、布拉菲点阵 例:四方晶系
C→P
F→I
4
晶系 三斜 单斜
菱形
正交
立方
最低对称要素 无
一根二次旋转轴2 或旋转-反演轴2
一根三次旋转轴3 或旋转-反演轴3
三根相互垂直的旋 转轴32或旋转-反 演轴32
四根三次旋转轴43
熊夫列斯符号
C1 Ci(S2) Cs(C1h)
C2 C2h C3 C3i(S6) C3V D3 D3d C2V D2(V) D2h(Vh) T
晶体的宏观对称性
对称性:若一个物体(或晶体图形)当对其施行某
种规律的动作以后,它仍然能够恢复原状(即其中
点、线、面都与原始的点、线、面完全重合)时,
就把该物体(图形)所具有的这种特性称之为“对 称性”。
目录
上页
下页
退出
目录
上页
下页
退出
对称条件
a〕物体或图形必须包含若干个彼此相同部分或本身可以被 划分若干个彼此相同部分。 b〕相同部分必须借助某种特定动作而发生有规律重复。 对称操作:能使对称物体或图形中各个相同部分作有规律
目录
上页
下页
退出
表1.3 晶体的32种点群
晶系 三斜 单斜
m 2 2/m
正交
2 2 2 2/m 2/m 2/m
四方
4
菱方
3
3
六方
6
立方
2 3 2/m 3
4
2 m m 表1.3 1 晶体的32种点群
1
对 称 要 素
4 4/m
4 2m
6 6/m
6
1
3m 32
3 2/m
2 m
3 m 432
4 m m 4 2 2
对称中心 对称面 点
回转-反演轴 3次 4次 6次
直线
绕直线旋转
360 1 180 2 120 3 90 4 60 6
平面
直线和直线上的定点 绕线旋转+对点反演
对称操作
基转角α 国际符号
对点反演 对面反映
120 i
1
90
4
60
6
m
2
3
3+i
3+m
晶体宏观对称性
(立方体、八面体)
绿柱石常见晶形 (六方柱)
电气石常见晶形 复三方柱
石榴石常见晶形 四角三八面体
对称操作(对称变换):借助某种几何要素,
能使物体(或对称图形)恢复原状所施行的 某种规律的动作,就称为“对称操作”。如
旋转、反映(镜面对称)、反演(中心对称)
等。
对称元素(对称要素):对物体(或图形)
3)旋转轴(国际符号n):为一假想的直线,相 应的对称变换为围绕此直线的旋转:每转过一定 角度,各个相同部分就发生一次重复。 整个物体复原需要的最小转角则称为基转角 (用a表示); n为轴次,n=360 °/ a 。 晶体对称定律:在晶体中,只可能出现轴次为 一次、二次、三次、四次和六次的对称轴,而不 可能存在五次及高于六次的对称轴。 国际符号:1,2,3,4,6
群的定义:
若有一个元素的集合G=(E,A,B,……)满 足以下条件,则称该集合G构成一个群。
(1)封闭性; (2)G中有单位元E; (3)逆元素;
(4)结合律 A(BC)=(AB)C
若干个点对称操作Oi(又称对称元素,注意 与对称性区别)的组合C(集合),满足:
(1)封闭性:Oj Oi C = Oj (Oi C) = Oj C; (2)单位元:全同操作1; (3)逆元:Oi-1 C = Oi-1 Oi C = 1 C = C;
进行对称操作所凭借的几何元素。如旋转轴、 反映面、反演中心 有旋转轴、反映 面、反演中心的 格点分布图
仅仅从“有限的晶体图形”(宏观晶体)的
外观上的对称点、线或面,对其所施行的对称操
作,即称“宏观对称操作”;这时所借助参考的
几何元素,即称“宏观对称元素”。 从晶体内部空间格子中相应“格点”的对称 性进行考查而施行的对称操作,则称为“微观对 称操作”;而借以动作的“几何要素”即称为
晶体的宏观对称性
5
2017/2/23
推论一:如果在偶次旋转轴上有对称中心,则必有一反映面 与旋转轴垂直相交于对称中心。
对称元素的组合:对称图形中具有两个(以上)对 称元素,通常用加号表示。如四次轴和对称中心的组 合表示为:4 i。
显然,如果对称图形具有两个(以上)对称元素, 它们的连续操作必定为复合对称操作。
镜转轴(象转轴):图形绕一直线旋转一定角度后, 再以垂直于该直线的平面进行反映,相应的对称动 作为旋转和反映的复合操作。
反映面的惯用符号:P;国际符号:m;圣佛里斯符号:Cs
1
反映面的极射赤面投影
2017/2/23
立方体中的反映面
反映操作联系起来的两部分互为对映体。如晶体自身 存在反映面,该晶体不存在对映体。
九个反映面
六个反映面
三个反映面
对称中心的极射赤面投影
对称中心(centre of symmetry/inversion centre):对称物体或 图形中,存在一定点,作通过该点的任意直线,在直线上 距该点等距离两端,可以找到对应点,则该定点即为对称 中心。相应的对称操作为反演。
第二章 晶体的宏观对称性
第一节 对称性基本概念 第二节 晶体的宏观对称元素 第三节 宏观对称元素组合原理 第四节 晶体的三十二点群
2017/2/23
点阵格子
晶胞
(等效)晶向指数
(等效)晶面指数
第一节 对称性基本概念
对称– 物体或图形的相同(equivalent)部分有规律的 重复。
对称动作(操作)– 使物体或图形相同部分重复出现 的动作。
C i(Ci)
1
P
L3i L4i L6i
晶体的宏观对称性
某些晶体在几何外形上体现出明显旳对称, 如立方等构造,这种对称性不但表目前几何外形 上,而且反应在晶体旳宏观物理性质上,对于研 究晶体旳性质有极主要旳意义。
、对称性
(a)
(b)
(c)
(d)
1 图 对称性不同旳几种图形
以上分析所用旳措施,就是考察在一定几何 变换之下物体旳不变性。我们把旋转及反射统称 为正交变换。概括宏观对称性旳系统措施正是考 察物体在正交变换下旳不变性,在三维情况下, 正交变换能够写成:
(2)存在单位元素E,使得全部元素满足:AE=A
(3)对于任意元素A,存在逆元素A-1,有:AA-1=E
(4)元素间旳“乘法运算”满足结合律:A(BC)=A (BC)
一种物体全部对称操作旳集合,也满足上述群旳定义 ,这时运算法则就是“连续操作”,不动操作作为单 位元素,绕轴转θ角旳逆为绕该轴转-θ角;中心反演 旳逆还是中心反演。
、对称操作群:一种物体全部对称操作旳集合,构成 对称操作群。
最终,作为一种例子,我们应用对称操作旳概念,证 明具有立方对称旳晶体旳介电性能够归结为一种标量 介电常数。
按照一般表达(D为电位移矢量,E为电场强度, 为介
电常数):
D E
, —— X,Y,Z轴分量
—— X,Y,Z轴为立方体旳三个立方轴方向
假设电场沿Y轴方向 Ey E, Ex Ez 0
x ' a11 a12 a13 x
y
'
a12
a22
a23
y
z ' a13 a13 a33 z
{aij}, i, j 1, 2, 3,为正交矩阵
绕z轴转角旳正交矩阵是:
cos sin 0
sin cos 0
晶体的宏观对称性
晶体的宏观对称性一宏观对称性晶体的点阵结构使晶体的对称性跟分子的对称性有一定的差别。
晶体的宏观对称性仍然具有分子对称性的4种类型,但受到点阵的制约:旋转轴和反轴的轴次只能为1、2、3、4、6等几种。
因此,宏观对称元素只有:n=1,2,3,4,6;i,m,二宏观对称元素组合和32个点群对于宏观对称元素而言,进行组合是必须严格遵从两个条件的限制:第一,晶体的多面体外形是一种有限图形,因而各对称元素组合必须通过一个公共点,否则将会产生出无限多个对称元素来,这是与有限外形相互矛盾的;第二,晶体具有周期性的点阵结构,任何对称元素组合的结果,都不允许产生与点阵结构不相容的对称元素(如5、7、…等),可产生32个点群。
三晶系根据晶体的对称性,按有无某种特征对称元素为标准,将晶体分成7个晶系:立方晶系:在立方晶胞4个方向对角线上均有三重旋转轴(a=b=c, α=β=γ=90)六方晶系:有1个六重对称轴(a=b, α=β=90;, γ=120;)四方晶系:有1个四重对称轴(a=b, α=β=γ=90;)三方晶系:有1个三重对称轴(a=b, α=β=90;, γ=120;)正交晶系:有3个互相垂直的二重对称轴或2个互相垂直的对称面(α=β=γ=90;)单斜晶系:有1个二重对称轴或对称面(α=γ=90;)三斜晶系:没有特征对称元素十四种空间点阵由于这些型式是由布拉维(A.Bravais)在1885年推引得出的,故也称为"布拉维空间格子"。
⑴简单三斜(ap)⑵简单单斜(mP)⑶C心单斜(mC,mA,mI⑷简单正交(oP)⑸C心正交(oC,oA,oB)⑹体心正交(oI)⑺面心正交(oF)⑽简单四方(tP)⑾体心四方(tI)⑻简单六方(hP)⑼R心六方(hR)⑿简单立方(cP)⒀体心立方(cI)⒁面心立方(cF)。
晶体的宏观对称性
代入
进一步选择其它的对称操作,最后得到 对于n阶张量形式的物理量,系数用n阶张量表示
在坐标变换下 如果A为对称操作 —— 这样可以简化n阶张量
3) 对于任意元素A, 存在逆元素A-1, 有:AA-1=E
4) 元素间的“乘法运算”满足结合律:A(BC)=(AB)C
正实数群 —— 所有正实数(0 除外)的集合,以普通乘法为 运算法则
整数群 —— 所有整数的集合,以加法为运算法则
—— 一个物体全部对称操作的集合满足上述群的定义 运算法则 —— 连续操作
可以证明
—— 满足结合律
S’
6 立方对称晶体的介电系数为一个标量常数的证明 — 1
—— X,Y,Z轴分量 —— X,Y,Z轴为立方体的三个立方轴方向 假设电场沿Y轴方向
将晶体和电场同时绕Y轴转动/2
Y
Z
转动的实施
X
—— 电场没变
—— 同时是一个对称操作,晶体转动前后没有任何差别
应有
xy zy 0
—— 对称素为镜面
—— 用
表示
一个物体的全部对称操 作构成一个对称操作群
5 群的概念
—— 群代表一组“元素”的集合,G {E, A ,B, C, D ……} 这些“元素”被赋予一定的“乘法法则”,满足下列
性质 1) 集合G中任意两个元素的“乘积”仍为集合内的元素
—— 若 A, B G, 则AB=C G. 叫作群的封闭性 2) 存在单位元素E, 使得所有元素满足:AE = A
0 0 0
D 0E
—— 正四面体晶体上述结论亦然成立 —— 介电常数的论证和推导也适合于一切具有二阶张量形
式的宏观性质:如导电率、热导率……等
立方对称晶体的介电系数为一个标量常数的证明 — 2
晶体的宏观对称性
☆对称中心—C 操作为反伸,是位于晶体中心的 一个假想的点。 。只可能在晶体中心,只可能一 个。
对称中心(C)
总结:凡是有对称中心的晶体,晶面总是成对出现且两 两反向平行、同形等大。
L22P
L33P L44P L66P
Li2 L2P=L22P
Li3 3L2 3P= L3 3L2 3PC Li4 2L22P
3L2 3PC
L3 3L2 3PC L44L2 5PC
Li6 3L2 3P= L3 3L2 L66L2 7PC 4P
六、晶体的对称分类
1、晶族、晶系、晶类的划分,见表3-1。 这个表非常重要,一定要熟记。
四、对称要素的组合
在结晶多面体中,可以有一个对称要素单独存在, 也可以有若干各对称要素组合在一起共同存在。
◆ 对称要素组合不是任意的,必须符合对
称要素的组合定律; ◆ 当对称要素共存时,也可导出新的对称 要素。
定理1:如果有(能找到)一个对称面P包含Ln,则必有(必能 找到)n个对称面包含此Ln(Ln即为这n个对称面的交线), 且任意二相邻P之间的交角δ等于 360 2n 。 简式为:Ln P// LnnP//; 逆定理:两个对称面P以δ相交,其交线必为一Ln,n 360 2
6)旋转反伸轴单独存在。可能的对称型为: Li1=C; Li2=P;Li3=L3C;;Li6=L3P。 7)旋转反伸轴Lin与垂直它的L2(或包含它的P)的 组合。根据组合规律,当n为奇数时LinnL2nP,可能 的对称型为:(Li1L2P=L2PC);Li33L23P=L33L23PC; 当n为偶数时 Lin(n /2)L2(n /2)P,可能的对称型为: (Li2L2P=L22P);Li42L22P;Li63L23P=L33L24P。
材料物理课件12晶体的宏观对称性
对称性与物理性质的关系
对称性与物理性质密切相关, 不同对称性的晶体表现出不同 的物理性质。
点对称性决定了晶体的光学、 电磁学等性质,镜面对称性则 影响晶体的热学、力学等性质 。
对称性越高,晶体的物理性质 越稳定,对称性破缺可能导致 某些物理性质的变化或异常。
02
晶体宏观对称性的表现形式
晶体宏观对称操作的种类
02
在晶体中,对称性表现为晶体在 不同方向上具有相同的晶格结构 和物理性质。
对称性的分类
晶体宏观对称性分为点对称性和 镜面对称性两类。
点对称性是指晶体在三维空间中 具有旋转、反演、倒转等对称元 素,如立方晶系的旋转轴、四方
晶系的四重轴等。
镜面对称性是指晶体在某一方向 上具有对称的平面,如单斜晶系
的b轴和c轴构成的平面。
理论计算方法
密度泛函理论
通过计算电子密度分布,推导出晶体的电子结构 和对称性。
分子力学计算
基于分子力学的原理,模拟晶体分子在平衡状态 下的构型和对称性。
群论分析方法
利用群论的原理,对晶体对称性进行分类和描述 。
计算机模拟方法
分子动力学模拟
通过模拟大量原子或分子的运动,预测晶体的结构和对称性。
蒙特卡洛模拟
材料物理课件12晶体的宏观对称 性
contents
目录
• 晶体宏观对称性的基本概念 • 晶体宏观对称性的表现形式 • 晶体宏观对称性的应用 • 晶体宏观对称性的研究方法 • 晶体宏观对称性的未来发展
01
晶体宏观对称性的基本概念
对称性的定义
01
对称性是指一个物体或系统在不 同方向上保持相同或相似形态的 性质。
对称性破缺会导致晶体物理性质的变 化,例如光学、电学、热学等方面的 性质改变。
晶体的宏观对称性
推论一:两个二次轴相交,交角为α/2,则垂直于这两个 二次轴所定平面,必有一基转角为α的n次轴。 推论二:一个二次轴和一个n次轴垂直相交,,则有n个二 次轴同时与n次轴相交,且相邻两二次轴的交角为n次轴基 转角的一半。
二次轴和四次 轴的组合 L44L2
第四节 晶体的三十二点群
晶体点群的推导 晶体的分类 晶体的定向 点群的符号 晶体的晶型
L6
L33L2
3L24L3、旋转轴型与反映面的组合 1、旋转轴与反映面垂直 L1 + P⊥ = P (Cs) L3 + P⊥ = L3 P (C3h) L6 + P⊥ = L6 PC (C6h) L33L2 + P⊥ = L33L24P (D3h) L66L2 + P⊥ = L66L27PC (D6h) 3L24L3 + P⊥ = 3L24L33PC (Th) 4L33L46L2 + P⊥ = 4L33L46L29PC (Oh) 组合原理:定理三及推论(偶次轴);定理四或定理二 L2 + P⊥= L2 PC (C2h) L4 + P⊥ = L4 PC (C4h) 3L2 + P⊥ = 3L23PC (D2h) L44L2 + P⊥ = L44L25PC (D4h)
第二节 晶体的宏观对称元素
宏观对称元素(Symmetry element)和对称动作 (symmetry operation)
对称动作类型 对称元素 反映面 对称中心 旋转轴 反轴 对称动作 反映 倒反(反演) 旋转 旋转倒反
简单 复合
反映面:对称物体或图形中,存在一平面,作垂直于该平面 的任意直线,在直线上距该平面等距离两端上必定可以找到 对应的点。这一平面即为反映面。相应的对称操作为反映。
晶体的宏观对称性
晶体的宏观对称性物理科学学院 季淑英 2014020231摘 要: 晶体是内部原子或离子在三维空间呈周期性重复排列的固体,通过对晶体三类宏观对称操作的介绍,找出了晶体的8种基本宏观对称操作。
关键词:对称中心; 反映面; 旋转轴一 什么是晶体人们最早认识晶体是从石英开始的,只知道它天然的具有规则的几何多面体,真正揭开晶体内部结构是在1914年,人类首次测定了Nacl 的晶体结构。
此后,人们积累大量测定资料开始认识到:无论晶体的外形是否规则,它们内部的原子有规则地在三维空间呈周期性重复排列。
所以,晶体是内部原子或离子在三维空间呈周期性重复排列的固体,或着说晶体是具有格子结构的固体。
而晶体的规则几何外形,只是晶体内部格子构造的外在部表现。
二 晶体的宏观对称对称性是晶体的基本性质之一,一切晶体都是对称的;但不同的晶体的对称性往往又是互有差异的。
1 对称操作对一种晶体而言,其内部结构的质点表现出某种对称性的规律排列,当在进行某种操作(线性变换)后能使自身复原,这种对称性是晶体的一个客观存在的基本性质,是晶体内部结构的规律在几何形状上的表现,晶体的许多宏观性质都与其结构上的对称性有密切关系。
对称操作:维持整个物体不变而进行的操作称作对称操作,物体在某一正交变换下保持不变,即:操作前后物体任意两点间的距离保持不变的操作。
一个物体的对称操作越多,其对称性越高。
例如密度ρ作为位矢r 的函数,即)r (ρ。
我们可以定义一个引起坐标变换的操作g 满足’r gr r =→,如果这导致)r ()gr ()’r (ρρρ==那么g 是)r (ρ的一个对称操作。
2 对称元素对称操作过程中保持不变的几何要素:对称点,反演中心(i );对称线,旋转轴(n 或者n C )和旋转反演轴(n );对称面,反映面(m )等。
以上,考察在一定几何变换之下物体的不变性,使用的几何变换(旋转和反射)都是正交变换——保持两点距离不变的变换:⎪⎪⎪⎭⎫ ⎝⎛•⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛z y x a a aa a a a a a z y x 333231232221131211,,,其中,M 为正交矩阵,⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a aa a a a a a M 2.1 对称中心和反演(i )取晶体中心为原点,将晶体中任一点()z ,y ,x 变成()z -,y -,x - ⎪⎪⎪⎭⎫⎝⎛=1-0001-0001-M2.2 对称面和反映(m )以0z =作为镜面,将晶体中的任何一点()z ,y ,x 变成()z -y x ,, ⎪⎪⎪⎭⎫ ⎝⎛=1-00010001M2.3 n 次旋转对称轴(n 或者n C )和n 次旋转反演轴(n ) 2.3.1n 次旋转对称轴(n 或者n C )若晶体绕某一固定轴旋转角度/n π2=α以后能自身重合,则称该轴为n 次旋转对称轴。
材料设计—8-晶体的宏观对称性
小结
对称操作;变换矩阵:旋转和反演
对称素;
晶体可能具有的旋转对称操作;
晶体中独立的8种对称素;
分析立方体,正四面体的对称素 物理张量与对称性
谢 谢
先绕2转动180°,再绕2’转动180°,则N点 从N’回复到N点,所以NN’所在直线上的点 不动,而其它点只能是绕NN’的转动。 同时两次转动后,2轴变为2’’轴,之间夹 角为2θ。
考虑到NN’轴只能是1,2,3,4,6次轴,所以:
晶体不可能具有多于1条6次轴,也不可能有一条6次轴和 一条4次轴相交。 假设n次轴和m次轴交与O点,取m次轴 上的B点,绕n次轴转n次得到n变形。
取B为顶点的正n变形两条边,绕m次轴 转动,得到正m面顶椎体。这m个内角 之和为:
显然当m=n=6以及m=6,n=4时候不满足上式。
三 实例
立方对称性(sc,bcc,fcc)
三条4次轴<100> (9) 四条3次轴<111> 六条2次轴<110> 一个不动操作 E (8) (6) (1)
以上操作与反演操作的组合操作 (24)
立方体对称性
(1)立方轴C4:
(2)体对角线C3:
(3)面对角线C2: 6个2度轴;
3个立方轴; 4个3度轴;
四面体对称性
三条4次旋转反演轴 <100> 四条3次轴<111> (9) (8) (6)
六条2次旋转反演轴<110>,即对称晶面 不动操作 E (1)
三、晶体的宏观对称性和宏观物理量
介电函数张量
由此得到:
绕着x轴旋转180度:
由此得到:
所以所有非对角元都是0
再次考虑沿着(111)方向转动2π/3:
晶体的宏观对称
• •
对称的概念 日常生活和自然界中的许多物体都具有对称性。例如, 图中所示的建筑物,沿着纸面一分为二的话,左右两阅 相等;又如图中的铅笔,围绕它的长轴也具有对称性。 生活中类似的例子比比皆是。在生物界具有对称性的物 种也不少见.如蝴蝶、花朵等等也具有一定的对称性 从上述几个例子不难理解,一个对称的物体,其中一定 包含若干等同的部分,并且等同部分经过某种变换后可 以重台在一起。如上例中建筑物和蝴蝶,其左右两侧等 同,通过垂直纸面的一个镜像反映,则两侧等同部分可 以完全重合。铅笔和花朵则是围绕一个轴旋转,旋转一 定角度后,其等同部分重合。 由此可以结出所谓对称的 定义,即物体(或图形)中相同部分之间有规律的重复。
对称的几个例子
晶体的宏观对称元素和对称操作
• 对称操作的本身意味着对应点进行坐标的 变换。利用数学原理,可以对对称操作进 行严密的数学表达,这样在处理复杂对称 问题的时候就简单化了。在一个固定的坐 标系中,如果没空间中的一点坐标为(x,y, z),经过对称操作后变换到另外一点(X,Y, Z),则普遍有
晶体的宏观对称
• 对称性是晶体的基本性质之一,一切晶体都 是对称的。晶体的对称性首先员直观地表现在 它们的几何多面体外形上,但不同晶体的对称 性往往又是互有差异的。因此,可以根据晶体 对称特点的差异来对晶体进行科学分类。此外, 晶体的对称性不仅包含宏观几何意义上的对称, 而且也包含物理性质等宏观意义上的对称。对 称性对于理解晶体的一系列性质和识别晶体, 以至对晶体的利用都具有重要的意义。本章将 只限于讨论晶体在宏观范畴内所表现的对称性, 即晶体的宏观对称。
1 对称心
由对称心联系起来的两个面体ABCD和A1B1C1D1
2对称面
相对于对称面P,两个面体ABCD和A1B1C1D1互为镜像
第二章 晶体的宏观对称
六 晶体的对称分类
属于同一 对称型的 晶体
32晶类
高次轴的有无及 多少
高、中、低级Βιβλιοθήκη 族 轴次的高低 及数目7大晶系
低级晶族
三斜晶系 单斜晶系 正交晶系 三方晶系
L4
L6
L7
L8
A. B. C. D.
过一对平行晶面的中心 过一对晶棱的中心 相对两角顶的连线 角顶、晶面中心和棱中点任意两个的连线
对称轴可 能出现的 位置为
数目
0 L2 6 0 L3 4 0 L4 3 0 L6 1
对称中心(C)
定义:位于晶体几何中心的一个 假想的点 对称操作:是对此点的反伸
特点:如果通过此点作任意直线,则在此直线上 距对称中心等距离的两端上必定可以找到对应点
识别标志: 两两成对
所有 晶面
对对平行 同形等大 方向相反
旋转反伸轴(Lin)
定义:一根过晶体几何中心假想的直线 对称操作:围绕此直线的旋转和对此直线上的一个点反伸 的复合操作
旋转反伸轴与其他对称要素之间的关系
Lin (n/2)L2(n/2)P(n为偶数) 定理6 Lm Ln= nLmmLn 且Lm Ln=。
五 对称型的概念
概念 结晶多面体中全部对称要素的组合 种类 32
对称型符号
习惯符号 按一定的顺序表示出晶体所有对称要素的符号 mLnmPC(n-对称轴轴次,从高到低排列,m-对称 轴或对成面的数目) 国际符号(反映对称要素及其在空间的取向) 3L44L36L29PC
定义:通过晶体几何中心的一根假
晶体宏观对称性
a=b=c
四
a = =
方
3
120 90
菱面体晶胞
a=bc
中
三 方
a = = 90 = 120
六方晶胞
点
序 熊夫里 号 斯记号
c4v
D2d
D4h
c3
13
c 14
3i
15 D3
c 16
3v
17
D3d
18
群
4mm
国4际2记m号 422 mmm
3 3 32 3m
3m2
对称元素
4,4m 4,22,2m 4,42,5m, i
a==180° cos(/2)=-cos cos(/2)=cos(180+) =2 cosu=cos=0 u= =90 ° OC垂直两二次反轴,即OC垂直两对称 面旳法线OC平行于两对称面,OC是两对称面旳交线
定理四:经过二次旋转轴与对称面之交点并垂直 于该二次旋转轴旳对称面上旳直线恒为一倒转轴, 后者之基转角等于该二次旋转轴与对称面交角之 余角旳两倍。
总体来说,对称操作(涉及宏观和微观在 内),经研究得知,总共只有七种独立旳形式。
一、宏观对称元素
1)反演中心或对称中心(国际符号i):为一假想 旳几何点,相应旳对称变换是对于这个点旳反演 (倒反,反伸)。
F1 1
C
2
F2
2)反应面或对称面(国际符号m):为一假想旳 平面,相应旳对称操作为对此平面旳反应。
对称轴旳种类
名称
国际 符号
一次对称 1
二次对称 2
三次对称 3
四次对称 4
六次对称 6
基 转 角() 轴 次(n)作图符号
360 °
1
180 °
晶体的宏观对称性
α = β = 90 γ = 120
a=b≠c
α = β = γ = 90
注: 四方也不可能有底心,假如有,则破坏了“点阵点最少” 的条件,还可画出只有一个点阵点的格子。
单斜(P)
单斜(C)
三斜(P)
晶胞类型:
a ≠ b ≠ c
晶胞类型:
a ≠b≠c
α = γ = 90 β ≠ 90
α ≠ β ≠ γ ≠ 90
i
m
32 2, 2 m 3 2 , 3 m, i
2
α = β = γ = 90
a=b≠c
D 2h
中
四 方
4
10 11 12
α = β = γ = 90
c4 s4
c4h
D4
222 mm 2 22 2 mmm 4 4 4 m 422
4
4 4 , m, i 4, 4 2
续表:
对称 晶 性的 高低 系 四 方 特征对 晶胞类型 称元素 序 号 13 14 15 菱面体晶胞 点 熊夫里 斯记号 群 国际记号 对称元素
特征对称元素与7 特征对称元素与7个晶系
由于晶胞或空间点阵的小平行六面体都是不可能直接观察到的 内部微观结构,而特征对称元素却是它们在整个晶体外形上的反 映,是能够直接观察到的,所以特征对称结构可以作为实际划分 晶体的依据。 由表3我们已经知道,根据晶胞类型的不同,即与其相对应 的平行六面体形状的差异,可将32点群分为7类,即7个晶系。 七个晶系按照对称性的高低又可并归为三个晶族,即: 晶 族 包含的晶系 立方晶系 对称性强弱 对称性最高 高级晶族 中级晶族 低级晶族
六方、四方、三方晶系 对称性较弱 正交、单斜、三斜晶系 对称性最弱
明确了晶体对称性与规则性的关系,可以根据其宏观外形的 特征对称元素来判定晶体的晶系。
物理学相关 第6讲晶体的宏观对称性
E
ε xy E
因此
ε xy = −ε zy ε zy = ε xy , ε zy = −ε zy = 0 εxy = 0
如果将电场和晶体同时绕 z 轴转动 π / 2 ,同理可得: ε xz = εyz = 0
如果将电场和晶体同时绕 x 轴转动 π / 2 ,同理可得:
ε yx = εzx = 0
( ) ( ) Ai Aj Ak = Ai Aj Ak
(4.5) (4.6)
(4) 如果群中包含元素 Ai ,也一定包含 Ai 的逆元素 Ai−1 ,
Ai Ai−1 = Ai−1 Ai = E 。
(4.7)
条件 (1) 所得的乘积 Ak 与 Ai 及 Aj 的次序有关, Ai Aj = Ak 意味着 Aj , Ai 依次作用的结果与 Ak 作
操作的矩阵表示
以上所考虑的对称操作都是保持两点距离不变的正交变换。研究晶体的宏观对称性正是考查物体在
正交变换下的不变性。在三维情况下,正交变换可以写成
x y
→
x y
'
'
=
a11 a21
a12 a22
a13 a23
x y
z z ' a31 a32 a33 z
同的转动,以 D’表示转动后的矢量。设 E 沿 y 轴,则
37
Dx ε xx ε xy ε xz 0 ε xy E
D y = ε yx ε yy ε yz E = ε yy E
Dz
ε
zx
ε zy
ε zz 0
ε
zy
E
将电场和晶体同时绕 y 轴转动 π / 2 ,使 z 轴转动到 x 轴,x 轴转动到 -z 轴,电位移矢量 D 将作相同
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ex'
E
' y
=
'
Ex'
E
' y
'
A
Ex Ey
' zx
' zy
' zz
Ez'
Ez'
Ez
' A =A
可得 '=A A-1
例:立方对称晶体的介电系数为一个标量常数的证明
设对称操作对应的正交变换
a11 A a12
a12 a22
a13 a23
且有
A1 AT
a13 a13 a33
1 0 0 0 1 0
0
0
1
5) 以上24个对称操作加中心反演仍是对称操作 —— 立方体的对称操作共有48个
例2 正四面体的对称操作
四个原子位于正四面 体的四个顶角上,正 四面体的对称操作包 含在立方体操作之中
1) 绕三个立方轴转动
2) 绕4个立方体对角线轴
转动 2 , 4
33
—— 8个对称操作
s
2
in
2 0
代入 A A1, 得
sin
2
cos
2 0
0
0
1
0 1
0
1 0 0 0 0 1
11 22 , 12 21
即:
11 12
12 11
0 0
0 0 33
13 23 0,31 32 0
进一步选取对称操作B为绕X轴旋转/2,可得
11 33, 12 0
以加法为运算法则。 注意:一个物体全部对称操作的集合满足上述群的定义,
其运算法则为连续操作。
一个物体的全部对称操作的集合,构成对称操作群
1. 单位元素 —— 不动操作
2. 任意元素的逆元素 —— 绕转轴角度,其逆操作为绕转 轴角度- ;中心反演的逆操作仍是中心反演;
3.连续进行A和B操作 —— 相当于C操作
【1】已知氯化钠是立方晶体,其相对分子质量为58.46,在室温下的密度
· 是2.167*103kg m-3,试计算氯化钠结构的点阵常数。
【解】固体密度ρ=Zm/V,其中V是晶胞体积,Z是晶胞中的分子数,m为分 子的质量。 每个分子的质量m为
于是得到
m
58.46*10-3
kg/mol
1mol 6.02*1023
' zx
' zy
' zz
Ez'
新坐标系中:
左边:D'
=
Dx' Dy'
AD
A
Dx Dy
A
xx yx
xy yy
xz yz
Ex Ey
A
Ex Ey
Dz'
Dz zx zy zz Ez
Ez
右边:D'
' xx
' yx
' xy
' yy
' xz
' yz
—— 共有3个对称操作
1 0 0
3)
不动操作
0
1
0
0 0 1
—— 1个对称操作
注:立方轴、体对角线、面对角线都是参照立方体的体心为原点的坐标系来讨论的
4) 绕三个立方轴转动 , 3 加中心反演
22
—— 6个对称操作
5) 绕6条面对角线轴转动
加上中心反演 —— 6个对称操作
正四面体的对称操作共有24 个,包含在正方体中。
同时也是2重旋转-反演轴,计为 2
体对角线轴 ( 2 , 4 ) 为3重轴,计为3
33 同时也是3重旋转-反演轴,计为 3
例2: 正四面体
立方轴是4重旋转-反演轴 —— 不是4重轴
面对角线是2重旋转-反演轴 —— 不是2重轴 体对角线轴是3重轴 —— 不是3重旋转-反演轴
对称操作群
群:代表一组“元素”的集合,G {E, A ,B, C, D ……} 这些“元素”被赋予一定的“乘法法则”,并且满足下列 性质 1) 集合G中任意两个元素的“乘积”仍为集合内的元素
cos sin 0
sin cos 0
0
0 1
• 空间转动加中心反演,矩阵行列式等于-1
x" r cos( ) r cos cos r sin sin x 'cos y 'sin y " r sin( ) r sin cos r cos sin x 'sin y 'cos
原的操作叫对称操作。 • 对称操作据以进行的几何要素叫做对称元素
1. 旋转轴与旋转操作:将物体绕通过其中心的轴旋转一定的角度 使物体复原的操作。能使物体复原的最小旋转角(0°除外)称 为基准角α;物体旋转一周复原的次数称为旋转轴的轴次n, n=360 °/ α; 旋转轴的符号为Cn; 晶体只存在C2,C3,C4,C6旋转轴;晶体中可存在一条或多条旋转轴。
晶体中最多可有一个对称中心。
i
4. 反轴与旋转反演操作:这是一个复合操作,
即旋转与反演的乘积。反轴写为In。
旋转--反演对称轴并不都是独立的基本对称素。如:
1i
1 2
2m
1
1
2
3 3i
3
5
1 4
6 2
6=3+m
3 3
5 5
1
1
6
2' 2
6 4
4
A B
D C
H G
E
F
7
4
3 1 3
1
2
4
2 4
D
即:
11
0
0
11
0 0
0 0 11
最后得到 ij 0 ij
☆六角对称晶体,将坐标轴取在 六角轴和垂直于六角轴的平面 内介电常数具有如下形式
|| 0 0 0 0 0 0
平行轴(六角轴)的分量 D|| ||E|| 垂直于六角轴平面的分量 D E
—— 由于六角晶体的各向异性,具有光的双折射现象 —— 立方晶体的光学性质则是各向同性的
A 操作 —— 绕OA轴转动/2 B 操作 —— 绕OC轴转动/2
上述操作中S和O没动,而T点转动到T’点
S’
—— 相当于一个操作C:绕OS轴转动2/3
上述操作中S和O没动,而T点转动到T’点 —— 相当于一个操作C:绕OS轴转动2/3
表示为 C BA
—— 群的封闭性
可以证明
A(BC) ( AB)C
31 32 33
—— 在坐标变换下
' AA1
原坐标系中:
新坐标系中:
D=
Dx Dy
xx yx
xy yy
xz yz
Ex Ey
D'
=
Dx' Dy'
' xx
' yx
' xy
' yy
' xz
' yz
Ex'
E
' y
Dz zx zy zz Ez
Dz'
A
G
H
C
B F
E
正四面体既无四 度轴也无对称心
4. 反轴与旋转反演操作:这是一个复合操作,即旋转与反演
的乘积。反轴写为In。 5. 恒等元素E与恒等操作:即物体不动的操作。
点对称操作: (1)旋转对称操作:1,2,3,4,6 度旋转对称操作。
C1,C2,C3,C4,C6 (用熊夫利符号表示)
(2)旋转反演对称操作: 1,2,3,4,6度旋转反演对称操作。 S1,S2,S3,S4,S6(用熊夫利符号表示)
晶体的对称性有宏观对称性和微观对称性之分, 前者指晶体的外形对称性,后者指晶体微观结构的 对称性。本节我们主要学习晶体的宏观对称性。
主要内容:
1. 宏观对称元素
2.宏观对称性的数学描述
3.三种几何体的对称操作
4. 群/对称操作群
5.宏观对称性与物理性质
• 对称是指物体相同部分作有规律的重复。 • 不改变物体/图形中任何两点的距离而能使图形复
电位移
☆对于立方对称的晶体,其为对角张量
0 , 立方对称
因此,介电常数可看作一个简单的标量 D 0 E
例:立方对称晶体的介电系数为一个标量常数的证明
设对称操作对应的正交变换
a11 A a12
a12 a22
a13 a23
且有
A1 AT
a13 a13 a33
11 12 13 介电常数 21 22 23
• n重旋转轴:一个物体绕某一个转轴2π/n以及它的倍数不变 时,这个轴称为n重旋转轴,记作n。
• n重旋转-反演轴:一个物体绕某一个转轴2π/n加上中心反 演的联合操作以及其联合操作的倍数不变时,这个轴称为n
n 重旋转轴,记作 。
例1: 立方体
立方轴 ( , , 3 ) 为4重轴,计为4
22 同时也是4重旋转-反演轴,计为 4 面对角线 ( )为2重轴,计为2
11 12 13 介电常数 21 22 23
31 32 33
A为对称变换 '
—— 在坐标变换下
Y’ ' AA1
X’ 绕z轴逆时针转90°
y
x
—— 对于立方晶体,选取对称操作A为绕Z轴旋转/2
cos
a11
A a12
a13
a12 a22 a13
a13 a23 a33
av1
a 2
v i
3a 2
v j,
av2
a 2
v i
3a 2
v j,
av3
v ck