江西省南昌市育华学校2020-2021学年七年级上学期 期末数学试卷(图片版,无答案)

合集下载

2020-2021学年南昌市七年级上学期期末数学试卷(附答案解析)

2020-2021学年南昌市七年级上学期期末数学试卷(附答案解析)

2020-2021学年南昌市七年级上学期期末数学试卷一、选择题(本大题共6小题,共18.0分)1.若a,b互为倒数,则1的值为()abD. 1A. −1B. 0C. 122.下列计算正确的是()A. 8a+a=8a2B. 5x3y−2x3y=3x3yC. 5y−2y=3D. 4a+2b=6ab3.下列变形错误的是()A. 由x+7=,得x+7−7=5−7;B. 由3x−2=,得x=C. 由4−3x=4x−3,得4+3=D. 由−2x=,得x=−.4.如图是正方体的表面展开图,在正方形的A处填一个数,使它和相对面的数互为相反数,则A为()A. 2B. 3C. −3D. −25.如图,M,N是数轴上的两点,它们分别表示−4和2,P为数轴上另一点,PM=2PN,则点P表示的数是()A. 1B. 0C. 8D. 0或86.如图,已知OC是∠AOB内部的一条射线,∠AOC=30°,OE是∠COB的平分线.当∠BOE=40°时,∠AOB的度数是()A. 70°B. 80°C. 100°D. 110°二、填空题(本大题共6小题,共18.0分)7. 有一种“24点”游戏,其游戏规则是:任取1~13之间的4个自然数,将这4个数(每个数且只能用一次)进行加减乘除四则运算,使运算结果为24,例如,对1,2,3,4可作运算:(1+2+3)×4=24.现有数3,4,−6,10,请运用上述规则,写出一种运算式子,使其结果等于24.运算式子如下:______.(只需写出算式)8. a 、b 在数轴上表示如图所示,则a 与b 的大小关系为______ .9. 将50364000四舍五入并保留到万位是______ .10. 填上适当的分数:16时= ______ 天.11. ∠α=20°21′35″,则3∠α= ______ .12. 如图,若∠3:∠2=2:5,且∠2−∠1=12°,∠3等于______.三、计算题(本大题共4小题,共23.0分)13. 3(x +1)=4(x −2)14. 解方程和方程组①4x −3(5−x)=6②{x+13=2y 2(x +1)−y =11. 15. (12分) 对于任何实数a ,b ,c ,d ,我们规定符号的意义是(1)按照这个规定请你计算的值;(2)按照这个规定请你计算:.16. 甲、乙两个物流公司分别在相距400km的A、B两地之间进行货物交换,C地为两车的货物中转站,假设A、B、C三地在同一条直线上,甲车以每小时120km的速度从A地出发赶往C地,乙车以每小时80千米的速度从B地出发也赶往C地,两车同时出发,在C地相遇,并且在C地利用0.5小时交换货物,然后各自按原速返回自己的出发地.假设两车在行驶过程中各自速度保持不变.(1)求两车行驶了多长时间相遇?(2)A、C两地相距________km;B、C两地相距________km;(3)求两车相距50km时的行驶时间?四、解答题(本大题共6小题,共41.0分)17. 已知:方程(m+2)x|m|−1−m=0①是关于x的一元一次方程.(1)求m的值;(2)若上述方程①的解与关于x的方程x+6x−a3=a6−3x②的解互为相反数,求a的值.18. 一个四边形的周长为48cm,已知第一边长a cm,第二边比第一边的2倍长3cm,第三边等于第一、第二两条边的和.(1)求出表示第四边长的式子;(2)当a=3时,还能得到四边形吗?若能,指出四边形的形状;若不能,说明理由.19. 如图,点C是线段AB上的一点,点M是线段AC的中点,点N是线段BC的中点.(1)如果AB=12cm,AM=5cm,求BC的长;(2)如果MN=8cm,求AB的长.20. 新沟桥中学校园正在进行绿地改造,原有一正方形绿地,现将它每边都增加3米,面积增加了63平方米,问原绿地的边长为多少?21. 如图,射线OC的端点O在直线AB上,∠AOC的度数比∠BOC的3倍多20°,求∠BOC的度数是多少?22. 如图,已知∠AOC=70°,∠BOD=100°,∠AOB是∠DOC的3倍,求∠AOB的度数.参考答案及解析1.答案:D解析:【试题解析】解:∵a,b互为倒数,∴ab=1,的值为:1.则1ab故选:D.直接利用倒数:乘积是1的两数互为倒数,进而得出答案.此题主要考查了倒数的定义,正确掌握倒数的定义是解题关键.2.答案:B解析:解:A.8a+a=9a,故本选项不合题意;B.5x3y−2x3y=3x3y,正确,故本选项符合题意;C.5y−2y=3y,故本选项不合题意;D.4a与2b不是同类项,所以不能合并,故本选项不合题意.故选:B.根据合并同类项法则判断即可.本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.3.答案:D解析:解析:等式两边同时加上或者减去同一个数或一个式子,等式仍然成立。

江西省育华学校2025届数学七年级第一学期期末综合测试模拟试题含解析

江西省育华学校2025届数学七年级第一学期期末综合测试模拟试题含解析

江西省育华学校2025届数学七年级第一学期期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭与大雁从北海和南海同时起飞,经过x 天相遇,可列方程为( )A .(9﹣7)x=1B .(9+7)x=1C .11()179x -=D .11()179x += 2.一个几何体的展开图如图所示,则该几何体的顶点有( )A .10个B .8个C .6个D .4个3.如果A ∠的补角与A ∠的余角互补,那么2A ∠是( )A .锐角B .直角C .钝角D .以上三种都可能4.下列计算正确的是( )A .3m+4n =7mnB .﹣5m+6m =1C .3m 2n ﹣2mn 2=m 2nD .2m 2﹣3m 2=﹣m 2 5.点B 在线段AC 上,则不能确定B 是AC 中点的是( )A .AB BC = B .12AB AC = C .2AB ACD .AB BC AC +=6.绝对值不大于5的所有整数的和是( )A .—1B .0C .1D .67.参加国庆70周年阅兵的全体受阅官兵由人民解放军、武警部队和民兵预备役部队月15000名官兵,把15000用科学记数法表示为( )A .31510⨯B .50.1510⨯C ..41510⨯D ..31510⨯8.如图,将两块三角板的直角顶点重合后叠放在一起,若∠1=40°,则∠2的度数为( )A .60°B .50°C .40°D .30°9.如图将一张长方形纸的一角折叠过去,使顶点A 落在'A 处,BC 为折痕,若AB AC =且BD 为CBE ∠的平分线,则A BD '∠=( )A .45B .67.5C .22.5D .89.510.如图,点A 到线段BC 的距离指的是下列哪条线段的长度A .AB B .AC C .AD D .AE11.在春节到来之际,某童装推出系列活动,一位妈妈看好两件衣服,她想给孩子都买下来作为新年礼物,与店员商量希望都以60元的价格卖给她.销售员发现这样一件就会盈利25%,另一件就会亏损25%,但是卖出这两件衣服总的是盈利还是亏损或是不盈不亏呢?请你用学过的知识帮着判断一下( )A .不盈不亏B .盈利50元C .盈利8元D .亏损8元12.若整数a 使关于x 的方程39ax x +=--有负整数解,且a 也是四条直线在平面内交点的个数,则满足条件的所有a 的个数为( )A .3B .4C .5D .6二、填空题(每题4分,满分20分,将答案填在答题纸上)13.已知下列各数1234,,,2345,按此规律第2019个数是__________14.当x =___时,代数式()31x -与()21x -+的值相等.15.如图,DE ∥BC ,EF ∥AB ,图中与∠BFE 互补的角有_____个.16.己知:如图,直线,AB CD 相交于点O ,90COE ∠=︒,:1BOD BOC ∠∠=:5,过点O 作OF AB ⊥,则∠EOF的度数为_______.17.已知代数式25x -与33x -互为相反数,则x 的值是________.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)如图所示,一张边长为10的正方形的纸片,剪去两个一样的小直角三角形和一个长方形,图中阴影部分得到一个形如“囧”字的图案,设剪去的小长方形长和宽分别为x 、y ,剪去的两个小直角三角形的两直角边长也分别为x 、y .(1)用含有x 、y 的代数式表示图中剪去后剩下“囧”字图案的面积;(2)当x =3,y =2时,求此时“囧”字图案的面积.19.(5分)解下列一元一次方程(1)()521x x +=- (2)43135x x --=- 20.(8分)学校购买一批教学仪器,由某班学生搬进实验室,若每人搬8箱,还余16箱,若每人搬9箱,还缺少32箱,这个班有多少名学生?这批教学仪器共有多少箱?21.(10分)如图,已知线段AB=20,C 是AB 上的一点,D 为CB 上的一点,E 为DB 的中点,DE=1.(1)若CE=8,求AC 的长;(2)若C 是AB 的中点,求CD 的长.22.(10分)解方程(1)()()2321161x x x +-=-+ ; (2)758142x x -+-=. 23.(12分)先化简后求值:M=(﹣1x 1+x ﹣4)﹣(﹣1x 1﹣),其中x=1.参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、D【分析】直接根据题意得出野鸭和大雁的飞行速度,进而利用它们相向而行何时相逢进而得出等式.【详解】解:设野鸭大雁与从北海和南海同时起飞,经过x 天相遇,可列方程为:11()179x +=.故选D .【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示出每天飞行的距离是解题关键.2、C【解析】解:观察图可得,这是个上底面、下底面为三角形,侧面有三个正方形的三棱柱的展开图,则该几何体的顶点有6个.故选C .3、B【分析】由题意可得A ∠的补角为180°-∠A ,A ∠的余角为90°-∠A ,再根据它们互补列出方程求出∠A ,即可解答.【详解】解:∵A ∠的补角为180°-∠A ,A ∠的余角为90°-∠A∴180°-∠A+(90°-∠A )=180∴2A ∠=90°故答案为B .【点睛】本题考查了余角、补角以及一元一次方程,正确表示出∠A 的余角和补角是解答本题的关键.4、D【分析】根据合并同类项法则即可求解.【详解】解:A 、3m 与4n 不是同类项,所以不能合并,故本选项不合题意;B 、﹣5m+6m =m ,故本选项不合题意;C 、3m 2n 与﹣2mn 2不是同类项,所以不能合并,故本选项不合题意;D 、2m 2﹣3m 2=﹣m 2,故本选项符合题意;故选:D .【点睛】此题主要考查合并同类项,解题的关键是熟知整式的加减运算法则.5、D【分析】根据线段中点的特点,逐一判定即可.【详解】A 选项,AB BC =,可以确定B 是AC 中点;B 选项,12AB AC =,可以确定B 是AC 中点; C 选项,2AB AC ,可以确定B 是AC 中点;D 选项,AB BC AC +=,不能确定B 是AC 中点;故选:D.【点睛】此题主要考查线段中点的理解,熟练掌握,即可解题.6、B【分析】找出绝对值不大于5的所有整数,求出它们的和即可解答.【详解】解:绝对值不大于5的所有整数为-5,-4,-3,-2,-1,1,1,2,3,4,5,它们的和为1.故选B .【点睛】此题考查了有理数的加法和绝对值,数量掌握是解题的关键.7、C【分析】用科学记数法表示较大数时的形式是10n a ⨯ ,其中110a ≤< ,n 是正整数,只要找到a,n 即可.【详解】易知 1.5a =,15000整数位数是5位,所以4n =415000 1.510∴=⨯故选:C .【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键.8、C【解析】如图:∵∠1+∠BOC=90°,∠2+∠BOC=90°,∴∠2=∠1=40°.故选:C.9、C【分析】利用等腰直角三角形的性质可求∠ABC=45°,利用折叠的性质可得∠A’BC=∠ABC =45°,再利用角平分线的性质和平角的定义可求∠CBD=67.5°,由此得到∠A’BD=∠CBD-∠A’BC即可求解.【详解】解:∵∠A=90°,AC=AB,∴∠ABC=45°,∵将顶点A折叠落在A’处,∴∠ABC=∠A’BC=45°,∵BD为∠CBE的平分线,∴∠CBD=∠DBE=12×(180°- 45°)=67.5°,∴∠A’BD=67.5°- 45°=22.5°.故选:C.【点睛】考查了图形的折叠问题,解题的关键是熟练掌握折叠的性质、等腰三角形的性质、角平分线定义及平角的定义等.10、C【分析】直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.【详解】由图可得,AD⊥BC于D,点A到线段BC的距离指线段AD的长,故选:C.【点睛】此题主要考查了点到直线的距离的概念.点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.11、D【解析】解:设盈利25%的那件衣服的进价是x元,亏损25%的那件衣服的进价是y元,由题意得:()125%60x +=,()125%60y -=,解得:48x =,80y =,故60248808⨯--=-,所以选D .【点睛】该题是关于销售问题的应用题,解答本题的关键是根据售价=进价(1+利润率)得出方程求解.12、B【分析】从平行线的角度考虑,先考虑四条直线都平行,再考虑三条、两条直至都不平行,作出草图即可看出四条直线在平面内交点的个数;再解方程求出关于a 的x 的值,根据“方程有负整数解”得出a 的值,看是否符合题意,即可得出满足条件的所有a 的个数.【详解】解:四条直线在平面内交点的个数有以下几种情况:(1)当四条直线平行时,无交点,(2)当三条平行,另一条与这三条不平行时,有三个交点,(3)当两两直线平行时,有4个交点,(4)当有两条直线平行,而另两条不平行时,有5个交点,(5)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点,(6)当四条直线同交于一点时,只有一个交点,(7)当四条直线两两相交,且不过同一点时,有6个交点,故四条直线在平面内交点的个数为:0或1或3或4或5或6;解方程39ax x +=--得:x=121a -+, ∵方程组有负整数解, ∴121a -+=-1或121a -+=-2或121a -+=-3或121a -+=-4或121a -+=-6或121a -+=-12, 解得:a=11或5或3或2或1或0,∵a 也是四条直线在平面内交点的个数,∴满足条件的a的值有:0,1,3,5共四个,故选:B.【点睛】本题考查平行线与相交线的位置关系,没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都平行,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出所有答案.也考查了解一元一次方程,一元一次方程的整数解.二、填空题(每题4分,满分20分,将答案填在答题纸上)13、2019 2020【分析】仔细观察这组数,找到规律,利用规律求解即可.【详解】观察这组数发现:各个数的分子等于序列数,分母等于序列数+1,所以第2019个数是2019 2020,故答案为:2019 2020.【点睛】考查了数字的变化类问题,解题的关键是仔细观察数据并认真找到规律,难度不大.14、1 5【解析】根据题意得:3(x-1)=-2(x+1),去括号得:3x-3=-2x-2,移项得:3x+2x=-2+3合并同类项得:5x=1系数为1得:x=15,故答案是:1 5 .15、1【分析】先找到∠BFE的邻补角∠EFC,再根据平行线的性质求出与∠EFC相等的角即可.【详解】∵DE∥BC,∴∠DEF=∠EFC,∠ADE=∠B,又∵EF∥AB,∴∠B=∠EFC,∴∠DEF=∠EFC=∠ADE=∠B,∵∠BFE的邻补角是∠EFC,∴与∠BFE 互补的角有:∠DEF 、∠EFC 、∠ADE 、∠B .故答案为1.【点睛】本题主要考查的是平行线的性质,解题时注意:两直线平行,同旁内角互补且同位角相等.16、150︒.【分析】先利用已知结合平角的定义得出∠BOD 的度数,利用垂线的定义结合互余的定义分析得出答案.【详解】∵:1:5BOD BOC ∠∠=,180BOD BOC ∠+∠=︒, ∴1180306BOD ∠=⨯︒=︒, ∵90COE ∠=︒∴∠EOD=180︒-∠EOC=90︒,∵OF ⊥AB ,∴∠BOF=90︒,∴∠DOF=∠BOF-∠BOD=90︒-30︒=60︒,∴∠EOF=∠EOD+∠DOF=90︒+60︒=150︒.故答案为:150︒.【点睛】本题考查了余角和补角的定义以及性质,等角的补角相等.等角的余角相等,解题时认真观察图形是关键.17、﹣2【分析】根据相反数的定义列出关于x 的方程,进而求出x 的值.【详解】解:∵代数式25x -与33x -互为相反数,∴25x -+33x -=0,∴x =﹣2故答案为:﹣2【点睛】本题考查相反数的定义和解一元一次方程,利用相反数的含义列出关于x 的方程是解题的关键.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18、(1)100﹣2xy ;(2)1【分析】(1)用正方形的面积减去两个三角形的面积和一个长方形的面积,列式即可;(2)将x =3,y =2代入(1)的结果计算即可.【详解】解:(1)S “囧”字图案=S 正方形﹣2S 三角形﹣S 长方形=100﹣2×12xy﹣xy=100﹣2xy;(2)当x=3,y=2时,S“囧”字图案=100﹣2×3×2=100﹣12=1.【点睛】此题考查列代数式,已知字母的值求代数式的值,正确掌握正方形的面积公式,长方形的面积公式,三角形的面积公式是解题的关键.19、(1)x=7;(2)x=5.5【分析】(1)先去括号,先移项,再合并同类项,最后化系数为1,从而得到方程的解;(2)要先去分母,再去括号,最后移项、合并同类项,化系数为1,从而得到方程的解.【详解】(1)去括号,得:x+5=2x-2,移项,合并同类项,得:-x=-7,系数化为1,得x=7;(2)去分母,得:5(4-x)=3(x-3)-15,去括号,得:20-5x=3x-9-15,移项,得:-5x−3x=-9-15-20,合并同类项,得:-8x=-44,则x=5.5【点睛】本题考查了一元一次方程的解法,去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.20、这个班有1名同学,这批教学仪器共有400箱【分析】设这个班有x名同学,就有教学仪器为(8x+16)或(9x−32)箱,根据教学仪器的数量不变建立方程求出其解即可.【详解】设这个班有x名同学,由题意,得8x+16=9x−32,解得:x=1.故这批教学仪器共有:8×1+16=400箱.答:这个班有1名同学,这批教学仪器共有400箱.【点睛】本题考查列方程解实际问题的运用,根据教学仪器的总箱数不变建立方程是关键.21、(1)9;(2)2.【解析】(1)由E 为DB 的中点,得到BD=DE=1,根据线段的和差即可得到结论;(2)由E 为DB 的中点,得到BD=2DE=6,根据C 是AB 的中点,得到BC=AB=10,根据线段的和差即可得到结论.【详解】解:(1)∵E 为DB 的中点,∴BD=DE=1,∵CE=8,∴BC=CE+BE=11,∴AC=AB ﹣BC=9;(2)∵E 为DB 的中点,∴BD=2DE=6,∵C 是AB 的中点,∴BC=AB=10,∴CD=BC ﹣BD=10﹣6=2.【点睛】此题考查了两点间的距离,熟练掌握中点的定义和线段的和差关系是解本题的关键.22、 (1) 2x =;(2) 3x =-【解析】试题分析:(1)先去括号,然后移项合并同类项,最后系数化为1,(2)先去分母,然后再去括号,再移项合并同类项,最后系数化为1.试题解析:(1)去括号得:263161x x x +-=--,移项得:261613x x x ++=-+,合拼同类项得:918x =,系数化为1得:2x =,(2)去分母得:()()72584x x --+=,去括号得:710164x x ---=,移项得:104716x x -=++,合并同类项得:927x -=,x=-,系数化为1得:323、x﹣5;-1.【解析】对M先去括号再合并同类项,最后代入x=1即可. 【详解】解:M=﹣1x1+x﹣4+1x1+x﹣1=x﹣5,当x=1时,原式=×1﹣5=3﹣5=﹣1.【点睛】本题考查了整式中的先化简再求值.。

2020-2021学年七年级上学期期末考试数学试题(含答案)

2020-2021学年七年级上学期期末考试数学试题(含答案)
--- I
-,... -•-.已·忘---·---�.,...I.,·,·.
rIr' ·----勹,`I---

'L ,,, --
L __
---r, -,一一,,
'---卜I - -一I:
'
I
I _ _ _,,I
I
__ _,I
J"--
..I.. __一
I
.. 0己.I
.. __一 I..
|
--1
--- I I
I
I


L.--.... I`
' , I
l
I
I
'
__
J..-
-..I.___合I 一一-
`
I
视图
,. ·-·,. -- 气一 -•,---T ---,
t
I
I
I
I
I
I
I
I
I
l
I
LI __ - Il.-- JI二=二 :IJ;;:.gLI ··皇!l
I
I
I
I
'
'
Ii--�-.,..
__
1
4-
---1 ---今1 --一,
2¾+11f 1:
17.
18. (8分)如图是用 10 块完全相同的小正方体搭成的几何体
正面
广__ 勹 -一 '-- - "'I.--.,---,
1
I
I
I
I
I
}l --+I -· -1I-- -+I --1I ---!I
I
I
I

江西省南昌市2021年七年级上学期期末数学试卷(II)卷

江西省南昌市2021年七年级上学期期末数学试卷(II)卷

江西省南昌市2021年七年级上学期期末数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2017七上·昆明期中) 的相反数是()A .B .C .D .2. (2分)已知-25a2mb和7b3-na4是同类项,则m+n的值是()A . 2B . 3C . 4D . 63. (2分)(2017·农安模拟) 2017年春节期间(1月27日至2月2日),长春龙嘉国际机场保障航班起降1695架次,运送旅客大约228600人次,228600这个数用科学记数法表示为()A . 22.86×104B . 2.286×105C . 2.286×106D . 0.2286×1064. (2分)关于x的方程2x+1=-3与的解相同,则a的值是()A . 4B . 1C . 0D . 55. (2分) (2019七上·东阳期末) 已知∠α是锐角,∠β是钝角,且∠α+∠β=180°,那么下列结论正确的是()A . 的补角和的补角相等B . 的余角和的补角相等C . 的余角和的补角互余D . 的余角和的补角互补6. (2分)(2020·绵阳) 下列四个图形中,不能作为正方体的展开图的是()A .B .C .D .二、填空题 (共6题;共6分)7. (1分)(2012·扬州) 扬州市某天的最高气温是6℃,最低气温是﹣2℃,那么当天的日温差是________.8. (1分) (2020七上·柳州期末) 若一个角的余角比这个角大,则这个角的补角大小为________.9. (1分) (2017七上·锡山期末) 在国家房贷政策调控下,某楼盘为促销打算降价销售,原价a元/平方米的楼房,按八五折销售,人们购买该楼房每平方米可节省________元.10. (1分) (2020七上·莲湖期末) 如图,按图中的程序进行计算,如果输入的数是-2,那么输出的数是________。

江西省南昌市2020-2021学年七年级上学期期末数学试题 (1)

江西省南昌市2020-2021学年七年级上学期期末数学试题 (1)
(2)在图2中画一个直角,使直角的内部含有3个数字,且数字之积等于数字之和;
(3)在图3中画一个钝角,使钝角的内部含有4个数字,且数字之和最小;
(4)在图4中画一个平角,使平角的内部与外部的数字之和相等;
(5)在图5中画两个直角,使这两个直角的内部含有的3个数字之和相等.
22.已知长方形纸片 ,点 在边 上,点 在边 上,将 沿 翻折到 ,射线 与 交于点 .点 在边 上,将 沿 翻折到 ,射线 与 交于点 .
D.如果 ,移项得,a=b-c,不符合等式的性质,熟练掌握等式的基本性质是解本题的关键.
4.C
【分析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
【详解】
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“文”与“昌”是相对面,
“明”与“市”是相对面,
(1)七(1)班有男生、女生各多少人?
(2)原计划男生负责剪圆柱侧面,女生负责剪圆柱底面,要求一个圆柱侧面配两个圆柱底面,那么每小时剪出的筒身与筒底能配套吗?如果不配套,那么男生应向女生支援多少人时,才能使每小时内剪出的侧面与底面配套.
20.微信运动和腾讯公益推出了一个爱心公益活动:一天中走路若步数达到10000步及以上,则可通过微信运动和腾讯基金会向公益活动捐款,每步可捐0.0002元;若步数在10000步以下,则不能参与爱心公益捐款.
3.在下列等式变形中,正确的是()
A.如果 ,那么 B.如果 ,那么
C.如果 ,那么 D.如果 ,那么
4.如图,是表面上分别写有“文明城市南昌”的正方体展开图,则在正方体中与“南”字所在的面相对的面上写的字是()
A.文B.明C.城D.市
5.对于等式: ,下列说法正确的是()

南昌市数学七年级上学期期末数学试题题

南昌市数学七年级上学期期末数学试题题

南昌市数学七年级上学期期末数学试题题一、选择题1.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .2.一周时间有604800秒,604800用科学记数法表示为( ) A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯3.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( ) A .2B .22C .2D .324.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A .171B .190C .210D .3805.下列分式中,与2x yx y---的值相等的是() A .2x yy x +-B .2x yx y+-C .2x yx y--D .2x yy x-+6.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( ) A .1 B .﹣1 C .3 D .﹣3 7.化简(2x -3y )-3(4x -2y )的结果为( )A .-10x -3yB .-10x +3yC .10x -9yD .10x +9y 8.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1)B .(3,3)C .(2,3)D .(3,2)9.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( ) A .赚了10元B .赔了10元C .赚了50元D .不赔不赚10.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟B .42分钟C .44分钟D .46分钟11.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利 60% ,另一个亏损20%,在这次买卖中,这家商店( ) A .不盈不亏B .盈利 37.5 元C .亏损 25 元D .盈利 12.5 元12.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=ba;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1 B .﹣1 C .±1 D .a≠1二、填空题13.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.14.把53°30′用度表示为_____.15.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.16.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 17.若a 、b 是互为倒数,则2ab ﹣5=_____.18.A 学校有m 个学生,其中女生占45%,则男生人数为________. 19.数字9 600 000用科学记数法表示为 .20.已知一个角的补角是它余角的3倍,则这个角的度数为_____. 21.若x 、y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y)2019的值为_____.22.当12点20分时,钟表上时针和分针所成的角度是___________.23.一个长方体水箱从里面量得长、宽、高分别是50cm、40cm和30cm,此时箱中水面高8cm,放进一个棱长为20cm的正方体实心铁块后,此时水箱中的水面仍然低于铁块cm.的顶面,则水箱中露在水面外的铁块体积是______324.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).三、压轴题25.已知长方形纸片ABCD,点E在边AB上,点F、G在边CD上,连接EF、EG.将∠BEG 对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.(1)如图1,若点F与点G重合,求∠MEN的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.26.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.27.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值. 28.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.29.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.30.如图1,线段AB 的长为a .(1)尺规作图:延长线段AB 到C ,使BC =2AB ;延长线段BA 到D ,使AD =AC .(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB 所在的直线画数轴,以点A 为原点,若点B 对应的数恰好为10,请在数轴上标出点C ,D 两点,并直接写出C ,D 两点表示的有理数,若点M 是BC 的中点,点N 是AD 的中点,请求线段MN 的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D 处开始,在点C ,D 之间进行往返运动;乙从点N 开始,在N ,M 之间进行往返运动,甲、乙同时开始运动,当乙从M 点第一次回到点N 时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.31.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.32.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称1-、2分别为|1|x +与|2|x -的零点值).在有理数范围内,零点值1x =-和2x =可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x <-;(2)1-≤2x <;(3)x ≥2.从而化简代数式|1||2|x x ++-可分为以下3种情况:(1)当1x <-时,原式()()1221x x x =-+--=-+; (2)当1-≤2x <时,原式()()123x x =+--=; (3)当x ≥2时,原式()()1221x x x =++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ; (2)化简式子324x x -++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】【分析】从正面看:共分3列,从左往右分别有1,1,2个小正方形,据此可画出图形. 【详解】∵从正面看:共分3列,从左往右分别有1,1,2个小正方形, ∴从正面看到的平面图形是,故选:A . 【点睛】本题考查简单组合体的三视图,解题时注意:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.2.B解析:B 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】604800的小数点向左移动5位得到6.048, 所以数字604800用科学记数法表示为56.04810⨯, 故选B . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值. 3.C解析:C 【解析】 【分析】把64代入转换器,根据要求计算,得到输出的数值即可. 【详解】64,是有理数, ∴继续转换, 38,是有理数, ∴继续转换,∵22,是无理数,∴输出, 故选:C. 【点睛】本题考查的是算术平方根的概念和性质,一个正数的平方根有两个,正的平方根是这个数的算术平方根;注意有理数和无理数的区别.4.B解析:B 【解析】分析:由于第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,由此得到3=1+2,6=1+2+3,那么第四个图5条直线相交,最多有1+2+3+4=10个,以此类推即可求解. 详解:∵第一个图2条直线相交,最多有1个交点, 第二个图3条直线相交最多有3个交点, 第三个图4条直线相交,最多有6个, 而3=1+2,6=1+2+3,∴第四个图5条直线相交,最多有1+2+3+4=10个,∴20条直线相交,最多交点的个数是1+2+3+…+19=(1+19)×19÷2=190. 故选B .点睛:此题主要考查了平面内直线相交时交点个数的规律,解题时首先找出已知条件中隐含的规律,然后根据规律计算即可解决问题.5.A解析:A 【解析】 【分析】根据分式的基本性质即可求出答案. 【详解】 解:原式=22x y x yx y y x++-=--, 故选:A . 【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型.6.B解析:B 【解析】 【分析】将1x =-代入2ax x -=,即可求a 的值. 【详解】解:将1x =-代入2ax x -=,可得21a --=-, 解得1a =-, 故选:B . 【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解与方程的关系是解题的关键.7.B解析:B 【解析】分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可. 详解:原式=2x ﹣3y ﹣12x +6y =﹣10x +3y . 故选B .点睛:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.8.C解析:C 【解析】 【分析】根据数对(1,2)表示教室里第1列第2排的位置,可知第一个数字表示列,第二个数字表示排,由此即可求得答案. 【详解】∵(1,2)表示教室里第1列第2排的位置, ∴教室里第2列第3排的位置表示为(2,3), 故选C. 【点睛】本题考查了数对表示位置的方法的灵活应用,分析出数对表示的意义是解题的关键.9.A解析:A 【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元. 考点:一元一次方程的应用10.C解析:C 【解析】试题解析:设开始做作业时的时间是6点x 分, ∴6x ﹣0.5x=180﹣120, 解得x≈11;再设做完作业后的时间是6点y 分,∴6y ﹣0.5y=180+120, 解得y≈55,∴此同学做作业大约用了55﹣11=44分钟. 故选C .11.D解析:D 【解析】 【分析】设盈利的计算器的进价为x ,则(160%)100x +=,亏损的计算器的进价为y ,则(120%)100y -=,用售价减去进价即可.【详解】解:设盈利的计算器的进价为x ,则(160%)100x +=,62.5x =,亏损的计算器的进价为y ,则(120%)100y -=,125y =,20062.512512.5--=元,所以这家商店盈利了12.5元.. 故选:D 【点睛】本题考查了一元一次方程的应用,找准等量关系列出方程是解题的关键.12.A解析:A 【解析】要把原方程变形化简,去分母得:2ax=3x ﹣(x ﹣6), 去括号得:2ax=2x+6,移项,合并得,x=31a -,因为无解,所以a ﹣1=0,即a=1. 故选A .点睛:此类方程要用字母表示未知数后,清楚什么时候是无解,然后再求字母的取值.二、填空题13.【解析】 【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可. 【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元 解析:(23)a b +【解析】 【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.14.5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:5330’用度表示为53.5,故答案为:53.5.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以解析:5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53︒30’用度表示为53.5︒,故答案为:53.5︒.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.15.-2【解析】【分析】根据图和题意可得出答案.【详解】解:表示的数互为相反数,且,则A表示的数为:.故答案为:.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.解析:-2【解析】【分析】根据图和题意可得出答案.【详解】解:,A B 表示的数互为相反数,且4AB =,则A 表示的数为:2-.故答案为:2-.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.16.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+b a b a b a b b =1a b- 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.17.-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒解析:-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒数的性质,掌握并灵活应用倒数的性质是解答本题的关键. 18.【解析】【分析】将男生占的比例:,乘以总人数就是男生的人数.【详解】男生占的比例是,则男生人数为55%,故答案是55%.【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其解析:55%m【解析】【分析】-,乘以总人数就是男生的人数.将男生占的比例:145%【详解】-=,则男生人数为55%m,男生占的比例是145%55%故答案是55%m.【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其中的运算关系,正确地列出代数式.19.6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a |<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是解析:6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).9 600 000一共7位,从而9 600 000=9.6×106.20.45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.21.﹣1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,所以,()2019=()201解析:﹣1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,所以,(xy)2019=(22)2019=(﹣1)2019=﹣1.故答案为:﹣1.【点睛】本题考查了非负数的性质.解答本题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.22.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.23.4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=50×40×h,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.24.>.【解析】【分析】先求出两个数的绝对值,再根据绝对值大的反而小进行比较.【详解】∵|﹣8|=8,|﹣9|=9,8<9,∴﹣8>﹣9.故答案是:>.【点睛】考查简单的有理数比较大小解析:>.【解析】【分析】先求出两个数的绝对值,再根据绝对值大的反而小进行比较.【详解】∵|﹣8|=8,|﹣9|=9,8<9,∴﹣8>﹣9.故答案是:>.【点睛】考查简单的有理数比较大小,比较两个负数的大小的解题关键是绝对值大的反而小.三、压轴题25.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.26.(1)135,135;(2)∠MON=135°;(3)同意,∠MON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【解析】【分析】(1)由题意可得,∠MON=12×90°+90°,∠MON=12∠AOC+12∠BOD+∠COD,即可得出答案;(2)根据“OM和ON是∠AOC和∠BOD的角平分线”可求出∠MOC+∠NOD,又∠MON =(∠MOC+∠NOD)+∠COD,即可得出答案;(3)设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,进而求出∠MOC和∠BON,又∠MON=∠MOC+∠BOC+∠BON,即可得出答案.【详解】解:(1)图2中∠MON=12×90°+90°=135°;图3中∠MON=1 2∠AOC+12∠BOD+∠COD=12(∠AOC+∠BOD)+90°=1290°+90°=135°;故答案为:135,135;(2)∵∠COD=90°,∴∠AOC+∠BOD=180°﹣∠COD=90°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC+∠NOD=12∠AOC+12∠BOD=12(∠AOC+∠BOD)=45°,∴∠MON=(∠MOC+∠NOD)+∠COD=45°+90°=135°;(3)同意,设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC=12∠AOC=12(180°﹣x°)=90°﹣12x°,∠BON=12∠BOD=12(90°﹣x°)=45°﹣12x°,∴∠MON=∠MOC+∠BOC+∠BON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【点睛】本题考查的是对角度关系及运算的灵活运用和掌握,此类问题的练习有利于学生更好的对角进行理解.27.(1)3;(2)12;-3,2,-4或2,-3,-4.(3)a=11或4或10.【解析】【分析】(1)根据上述材料给出的方法计算其相应的最佳值为即可;(2)按照三个数不同的顺序排列算出最佳值,由计算可以看出,要求得这些数列的最佳值的最小值;只有当前两个数的和的绝对值最小,最小只能为|−3+2|=1,由此得出答案即可;(3)分情况算出对应的数值,建立方程求得a的数值即可.【详解】(1)因为|−4|=4,-4-32=3.5,-4-312+=3,所以数列−4,−3,1的最佳值为3.故答案为:3;(2)对于数列−4,−3,2,因为|−4|=4,432--=72,432||2--+=52,所以数列−4,−3,2的最佳值为52;对于数列−4,2,−3,因为|−4|=4,||422-+=1,432||2--+=52,所以数列−4,2,−3的最佳值为1;对于数列2,−4,−3,因为|2|=2,224-=1,432||2--+=52,所以数列2,−4,−3的最佳值为1;对于数列2,−3,−4,因为|2|=2,223-=12,432||2--+=52,所以数列2,−3,−4的最佳值为1 2∴数列的最佳值的最小值为223-=12,数列可以为:−3,2,−4或2,−3,−4.故答案为:12,−3,2,−4或2,−3,−4.(3)当22a+=1,则a=0或−4,不合题意;当92a-+=1,则a=11或7;当a=7时,数列为−9,7,2,因为|−9|=9,972-+=1,9722-++=0,所以数列2,−3,−4的最佳值为0,不符合题意;当972a-++=1,则a=4或10.∴a =11或4或10.【点睛】此题考查数字的变化规律,理解新定义运算的方法是解决问题的关键.28.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)] =(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x 分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.29.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.【解析】【分析】(1)根据“n 节点”的概念解答;(2)设点D 表示的数为x ,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E 在BA 延长线上时,②当点E 在线段AB 上时,③当点E 在AB 延长线上时,根据BE=12AE ,先求点E 表示的数,再根据AC+BC=n ,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D表示的数为2.5或-2.5;故答案为-2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=12 AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=12AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,∵BE=12 AE,∴BE=AB=4,∴点E表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.【点睛】本题考查数轴,一元一次方程的应用,解题的关键是掌握“n节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.30.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767.【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t4﹣1123﹣30﹣15+2t4=1123,t4=91621(秒)。

江西省南昌市2020-2021学年七年级上学期期末数学试题(word版 含答案)

江西省南昌市2020-2021学年七年级上学期期末数学试题(word版 含答案)
21.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.
(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=;
(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;
(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD= ∠AOE,求∠BOD的度数.
22.在“清洁乡村”活动中,某村长提出了两种购买垃圾桶方案.
方案一:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元;
方案二:买不分类垃圾桶,需要费用1000元,以后每月的垃圾处理费用500元.
设交费时间为x个月,方案一的购买费和垃圾处理费共为M元,方案二的购买费和垃圾处理费共为N元.
A.0.86×108B.86×106C.8.6×108D.8.6×107
3.下列运算正确的是().
A.2a-a=1B.2a+b=3abC.2a+3a=5aD.3a2+2a2=5a4
4.下列方程中,解为x=2的方程是( )
A.2(x+1)=6B.5x﹣3=1C. D.3x+6=0
5.如图,射线 表示的方向是()
(1)数轴上点B表示的数为,点P表示的数为.(用含t的式子表示);
(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P,Q同时出发.
①求点P运动多少秒追上点Q?
②求点P运动多少秒时与点)中的速度同时分别从点A,B向右运动,同时点R从原点O以每秒4个单位的速度向右运动,是否存在常数m,使得QR-OP+mOR为定值,若存在,请求出m的值以及这个定值;若不存在,请说明理由.(其中QR表示数轴上点Q与点R之间的距离,OP表示数轴上点O与点P的距离,OR表示数轴上点O与点R的距离.)

南昌市七年级上学期期末考试数学试卷及详细答案解析(共6套)

南昌市七年级上学期期末考试数学试卷及详细答案解析(共6套)

南昌市七年级上学期期末考试数学试卷(一)一、选择题1、如果+2%表示增加2%,那么﹣6%表示()A、增加14%B、增加6%C、减少6%D、减少26%2、如图所示的几何体,从上面看得到的平面图形是()A、B、C、D、3、利用一副三角板上已知度数的角,不能画出的角是()A、15°B、135°C、165°D、100°4、如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC 等于()A、30°B、45°C、50°D、60°5、若|a|=3,|b|=4,且ab<0,则a+b的值是()A、1B、﹣7C、7或﹣7D、1或﹣16、在“十一五”期间,中国减少二氧化碳排放1 460 000 000吨,赢得国际社会广泛赞誉.将1 460 000 000用科学记数法表示为()A、146×107B、1.46×107C、1.46×109D、1.46×10107、骰子是一种特别的数字立方体(见右图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是()A、B、C、D、8、有下列四种说法:①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③如果两个角是同一个角的补角,那么它们相等;④锐角和钝角互补.其中正确的是()A、①②B、①③C、①②③D、①②③④9、由上饶到南昌的某一次列车,运行途中停靠的车站依次是:上饶﹣横峰﹣弋阳﹣贵溪﹣鹰潭﹣余江﹣东乡﹣莲塘﹣南昌,那么要为这次列车制作的火车票有()A、9种B、18种C、36种D、72种二、填空题10、如图,OA的方向是北偏东15°,OC的方向是北偏西40°,若∠AOC=∠AOB,则OB的方向是________.11、若规定“*”的运算法则为:a*b=ab﹣1,则2*3=________12、若(x﹣2)2+|y+ |=0,则y x=________.13、在8:30分,这一时刻钟面上时针与分针的夹角是________度.14、一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是________元.15、观察下面两行数第一行:4,﹣9,16,﹣25,36,…第二行:6,﹣7,18,﹣23,38,…则第二行中的第7个数是________;第n个数是________.三、解答题16、解方程:.17、解方程:2x﹣(x+3)=﹣x+3.18、计算:﹣12016+24÷(﹣2)3﹣32×()2.19、先化简再求值:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣3y2+2x3),其中x=﹣3,y=﹣2.20、已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.21、如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注式子的值相等,求x的值.22、列方程解应用题:油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?23、某市电话拨号上网有两种收费方式,用户可以任选其一:(A)计时制:0.05元每分钟;(B)包月制:60元每月(限一部个人住宅电话上网);此外,每一种上网方式都得加收通信费0.02元每分钟.(1)某用户某月上网的时间为x小时,请分别写出两种收费方式下该用户应该支付的费用;(2)你知道怎样选择计费方式更省钱吗?24、张华和李明周末去黄山鲁公园登山,张华每分钟登高10m,并且先出发30分钟,李明每分钟登高15m,两人同时登到山顶.(1)设张华登山用了x分钟,请用含x的式子表示李明登山所用的时间;(2)使用方程求出x的值;(3)由x的值能求出山高吗?如果能,请求出山的高度.25、如图,∠AOB=90°,∠BOC=30°,射线OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)、(2)、(3)的结果中,你能看出什么规律?答案解析部分一、<b >选择题</b>1、【答案】C【考点】正数和负数【解析】【解答】解:如果+2%表示增加2%,那么﹣6%表示减少6%,故选C【分析】利用想法意义量的定义判断即可.2、【答案】B【考点】简单组合体的三视图【解析】【解答】解:从上面看得到的平面图形是两个同心圆,故选:B.【分析】根据所看位置,找出此几何体的三视图即可.3、【答案】D【考点】角的计算【解析】【解答】解:A、15°的角,45°﹣30°=15°;B、135°的角,45°+90°=135°;C、165°的角,90°+45°+30°=165°;D、100°的角,无法用三角板中角的度数拼出.故选D.【分析】用三角板画出角,无非是用角度加减法.根据选项一一分析,排除错误答案.4、【答案】A【考点】角的计算【解析】【解答】解:∵∠AOB=∠COD=90°,∠AOD=150°∴∠BOC=∠AOB+∠COD﹣∠AOD=90°+90°﹣150°=30°.故选A.【分析】从如图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.5、【答案】D【考点】绝对值,有理数的加法,有理数的乘法【解析】【解答】解:∵|a|=3,|b|=4,∴a=±3,b=±4.∵ab<0,∴a、b异号,当a=3时,b=﹣4,a+b=﹣1;当a=﹣3时,b=4,a+b=1.故选:D.【分析】由绝对值的性质先求得a、b的值,然后再求a+b的值.6、【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将1 460 000 000用科学记数法表示为:1.46×109.故选:C.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.7、【答案】A【考点】几何体的展开图【解析】【解答】解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A、4点与3点是向对面,5点与2点是向对面,1点与6点是向对面,所以可以折成符合规则的骰子,故本选项正确;B、1点与3点是向对面,4点与6点是向对面,2点与5点是向对面,所以不可以折成符合规则的骰子,故本选项错误;C、3点与4点是向对面,1点与5点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误;D、1点与5点是向对面,3点与4点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误.故选A.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.8、【答案】B【考点】余角和补角【解析】【解答】解:①锐角的补角一定是钝角;根据补角的定义和钝角的定义可判断其正确性,故此选项正确;②一个角的补角一定大于这个角;当这个角为钝角时,它的补角小于90°,故此选项错误;③如果两个角是同一个角的补角,那么这两个角相等;利用同补角定义得出,此选项正确;④中没有明确指出是什么角,故此选项错误.故正确的有:①③,故选:B.【分析】要判断两角的关系,可根据角的性质,两角互余,和为90°,互补和为180°,据此可解出本题.9、【答案】C【考点】直线、射线、线段【解析】【解答】解:每两站点都要设火车票,所以从一个城市出发到其他8个城市有8种车票,但是已知中是由上饶到南昌的某一次列车,运行途中停靠的车站依次是:上饶﹣横峰﹣弋阳﹣贵溪﹣鹰潭﹣余江﹣东乡﹣莲塘﹣南昌,故没有往返车票,是单程车票,所以要为这次列车制作的火车票有×8×9=36(种).故选:C.【分析】每两站点都要设火车票,从一个城市出发到其他8个城市有8种车票,进而得出答案.二、<b >填空题</b>10、【答案】北偏东70°【考点】解直角三角形的应用-方向角问题【解析】【解答】解:∵OA的方向是北偏东15°,OC的方向是北偏西40°,∴∠AOC=15°+40°=55°,∵∠AOC=∠AOB,∴∠AOB=55°,15°+55°=77°,故OB的方向是北偏东70°.故答案为:北偏东70°.【分析】先根据角的和差得到∠AOC的度数,根据∠AOC=∠AOB得到∠AOB的度数,再根据角的和差得到OB的方向.11、【答案】5【考点】有理数的混合运算【解析】【解答】解:∵a*b=ab﹣1,∴2*3=2×3﹣1=5,故答案为:5.【分析】根据已知得出2*3=2×3﹣1,求出即可.12、【答案】【考点】绝对值【解析】【解答】解:∵(x﹣2)2+|y+ |=0,∴x﹣2=0,y+ =0,解得x=2,y=﹣.∴y x=(﹣)2= .【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.13、【答案】75【考点】钟面角、方位角【解析】【解答】解:30分钟,钟面上时针从8开始转的度数为30×0.5°=15°,分针从12开始转的度数为30×6°=180°,所以此时钟面上时针与分针夹角的度数=8×30°+15°﹣180°=75°.故答案是:75.【分析】根据分针每分钟转6°,时针每分钟转0.5°可计算出30分钟时针与分针所转的角度,而8时时它们相距240°,所以此时钟面上时针与分针夹角的度数=8×30°+15°﹣180°.14、【答案】125【考点】一元一次方程的应用【解析】【解答】解:设这种服装每件的成本价是x元,由题意得:(1+40%)x×80%=x+15,解得:x=125.故答案为:125.【分析】首先设这种服装每件的成本价是x元,根据题意可得等量关系:进价×(1+40%)×8折=进价+利润15元,根据等量关系列出方程即可.15、【答案】66;(﹣1)n+1(n+1)2+2【考点】探索数与式的规律【解析】【解答】解:第一行:第一个数:4=22,第二个数:﹣9=﹣32,第三个数:16=42,…第7个数:82=64,第n个数:(﹣1)n+1(n+1)2;所以,第二行:第一个数:6=22+2,第二个数:﹣7=﹣32+2,第三个数:18=42+2,…所以,第7个数:64+2=66,第n个数:(﹣1)n+1(n+1)2+2;故答案为:66,(﹣1)n+1(n+1)2+2.【分析】根据第一行数发现:第一个数:4=22,第二个数:﹣9=﹣32,第三个数:16=42,所以得出第一行的第7个数和第n个数;由已知发现,第二行的每一个数都比第一行对应的数大2,由此得出结论.三、<b >解答题</b>16、【答案】解:去分母得:2(2x+1)﹣(x﹣3)=12,去括号得:4x+2﹣x+3=12,移项合并得:3x=7,解得:x=【考点】解一元一次方程【解析】【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.17、【答案】解:去分母得:6x﹣2(x+3)=﹣3x+9,去括号得:6x﹣2x﹣6=﹣3x+9,移项合并得:7x=15,解得:x=【考点】解一元一次方程【解析】【分析】方程去分母,去括号,移项合并,将x系数化为1,即可求出解.18、【答案】解:﹣12016+24÷(﹣2)3﹣32×()2=﹣1+24÷(﹣8)﹣9×=﹣1﹣3﹣1=﹣5.【考点】有理数的混合运算【解析】【分析】根据幂的乘方和有理数的乘除法和加法可以解答本题.【答案】解:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣3y2+2x3)=2x3﹣4y2﹣x+2y﹣x+3y2﹣2x3=﹣y2﹣2x+2y,当x=﹣3,y=﹣2时,原式=﹣(﹣2)2﹣2×(﹣3)+2×(﹣2)=﹣2【考点】整式的加减【解析】【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.20、【答案】解:设AB=2xcm,BC=5xcm,CD=3xcm所以AD=AB+BC+CD=10xcm因为M是AD的中点所以AM=MD= AD=5xcm所以BM=AM﹣AB=5x﹣2x=3xcm因为BM=6 cm,所以3x=6,x=2故CM=MD﹣CD=5x﹣3x=2x=2×2=4cm,AD=10x=10×2=20 cm【考点】两点间的距离【解析】【分析】由已知B,C两点把线段AD分成2:5:3三部分,所以设AB=2xcm,BC=5xcm,CD=3xcm,根据已知分别用x表示出AD,MD,从而得出BM,继而求出x,则求出CM和AD的长.21、【答案】解:根据题意得,x﹣3=3x﹣2,解得:x=﹣【考点】几何体的展开图【解析】【分析】利用正方体及其表面展开图的特点,列出方程x﹣3=3x﹣2解答即可.【答案】解:设生产圆形铁片的工人为x人,则生产长方形铁片的工人为42﹣x 人,根据题意可列方程:120x=2×80(42﹣x),解得:x=24,则42﹣x=18.答:生产圆形铁片的有24人,生产长方形铁片的有18人【考点】一元一次方程的应用【解析】【分析】可设生产圆形铁片的工人为x人,则生产长方形铁片的工人为42﹣x人,根据两张圆形铁片与一张长方形铁片可配套成一个密封圆桶可列出关于x的方程,求解即可.23、【答案】(1)解:A计时制花费为:3X B包月制花费为:60+1.2X(2)解:3X=60+1.2X X=100/3即通话时间大于100/3小时选B,通话时间等于10/3小时A.B,通话时间小于100/3小时选A【考点】列代数式【解析】【分析】(1)根据题意列出代数式解答即可;(2)比较两种计费方式解答即可.24、【答案】(1)解:用含x的式子表示李明登山所用的时间为:(x﹣30)分钟(2)解:依题意有10x=15(x﹣30),解得x=90(3)解:能,山的高度为10x=900m【考点】一元一次方程的应用【解析】【分析】(1)设张华登山用了x分钟,则李明登山所用的时间为(x ﹣30)分钟;(2)根据两人所走的距离相同可得出方程,解出即可;(3)把x 的值代入即可求解.【答案】(1)解:∠AOB=90°,∠BOC=30°,∴∠AOC=90°+30=120°.由角平分线的性质可知:∠MOC= ∠AOC=60°,∠CON= ∠BOC=15°.∵∠MON=∠MOC﹣∠CON,∴∠MON=60°﹣15°=45°(2)解:∠AOB=α,∠BOC=30°,∴∠AOC=α+30°.由角平分线的性质可知:∠MOC= ∠AOC= α+15°,∠CON=∠BOC=15°.∵∠MON=∠MOC﹣∠CON,∴∠MON= α+15°﹣15°= α(3)解:∠AOB=90°,∠BOC=β,∴∠AOC=β+90°.由角平分线的性质可知:∠MOC= ∠AOC= β+45°,∠CON= ∠BOC=β.∵∠MON=∠MOC﹣∠CON,∴∠MON= β+45°﹣β=45°(4)解:根据(1)、(2)、(3)可知∠MON= ∠BOC,与∠BOC的大小无关【考点】角平分线的定义,角的计算【解析】(1)先求得∠AOC的度数,然后由角平分线的定义可知∠MOC=60°,【分析】∠CON=15°,最后根据∠MON=∠MOC﹣∠CON求解即可;(2)先求得∠AOC=α+30°,由角平分线的定义可知∠MOC= α+15°,∠CON=15°,最后根据∠MON=∠MOC﹣∠CON求解即可;(3)先求得∠AOC=β+90°,由角平分线的定义可知∠MOC= β+15°,∠CON= β,最后根据∠MON=∠MOC﹣∠CON求解即可;(4)根据计算结果找出其中的规律即可.南昌市七年级上学期期末考试数学试卷(二)一、选择题1、﹣2的相反数等于()A、B、﹣C、﹣2D、22、下列算式中,正确的是()A、2x+3y=5xyB、3x2+2x3=5x5C、x3﹣x2=xD、x2﹣3x2=﹣2x23、下列说法中正确的是()A、数轴上距离原点2个单位长度的点表示的数是2B、﹣1是最大的负整数C、任何有理数的绝对值都大于0D、0是最小的有理数4、立方体盒子的每个面上都写了一个字,其平面展开图如图所示,那么该立方体盒子上,“强”相对的面上所写的文字是()A、文B、明C、主D、富5、已知m﹣2n=﹣1,则代数式1﹣2m+4n的值是()A、﹣3B、﹣1C、2D、36、在矩形ABCD中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽AE.若AE=x(cm),依题意可得方程()A、6+2x=14﹣3xB、6+2x=x+(14﹣3x)C、14﹣3x=6D、6+2x=14﹣x二、填空题7、如图,把弯曲的河道改直,能够缩短航程,这样做根据的道理是________.8、节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人,350000000用科学记数法表示为________.9、计算:57.41°÷3=________°________′________″.10、若方程﹣(m+3)x|m|﹣2﹣5=0是关于x的一元一次方程,则m=________.11、若﹣2a x﹣3b3与5ab2y﹣1是同类项,则x+y=________.12、如图将两块三角板的直角顶点重叠在一起,∠DOB与∠DOA的比是2:11,则∠BOC=________.13、用同样规格的黑白两种颜色的正方形瓷砖按如图方式铺地板,则第n个图形中需要黑色瓷砖________块(用含n的代数式表示).14、无限循环小数0. 可以用方程思想化成分数,设0. =x,0.=0.737373…可知,100x=73.7373…,所以100x﹣x=73,解方程,得x= ,请你动手试一试,0. 可以化成分数________.三、解答题15、计算(1)﹣(﹣2)2﹣[3+4×(﹣1 )]÷(﹣3)(2)(1 ﹣﹣)×(﹣1 )16、解方程.17、化简求值:2(﹣3xy+2x2)﹣[x2﹣3(4xy﹣x2)],其中x,y满足|x+2|+(y ﹣3)2=0.18、一个角补角比它的余角的2倍多30°,求这个角的度数.19、如图,C,D两点将线段AB分成2:3:4三部分,E为线段AB的中点,AD=10cm.求:(1)线段AB的长;(2)线段DE的长.20、如图,已知∠AOB是直角,OE平分∠AOC,OF平分∠BOC.(1)若∠BOC=60°,求∠EOF的度数;(2)若∠AOC=x°(x>90),此时能否求出∠EOF的大小,若能请求出它的数值;若不能,请用含x的代数式来表示.21、某厂生产一种计算器,其成本价为每只36元,现有两种销售方式:第一种是直接由厂门市部销售,每只售价为48元,但需要每月支出固定费用6480元(固定费用指门市部的房租等);第二种是批发给文化用品商店销售,批发价每只42元;又知两种方式均需缴纳的税款为销售金额的10%.(1)求该厂每月销售出多少只计算器时,两种方式所获利润相等;(2)该厂今年六月份计划销售这种计算器1500只,问应选用哪种销售方式才能使所获利润最大?(利润=售价﹣税款﹣进价)22、已知线段AB=30cm.(1)如图1,点P沿线段AB自点A向点B以2cm/s的速度运动,同时点Q沿线段BA自点B向点A以3cm/s的速度运动,几秒钟后,P,Q两点相遇?(2)几秒后,点P、Q两点相距10cm?(3)如图2,AO=PO=4cm,∠POB=60°,现点P绕着点O以30°/秒的速度逆时针旋转一周停止,同时点Q沿直线B自B点向A点运动,假若点P,Q两点能相遇,求点Q的运动速度.答案解析部分一、<b >选择题</b>1、【答案】D【考点】相反数【解析】【解答】解:﹣2的相反数是﹣(﹣2)=2.故选:D.【分析】根据相反数的概念解答即可.2、【答案】D【考点】同类项、合并同类项【解析】【解答】解:A、原式不能合并,错误;B、原式不能合并,错误;C、原式不能合并,错误;D、原式=﹣2x2,正确,故选D【分析】原式各项利用合并同类项法则计算得到结果,即可作出判断.3、【答案】B【考点】数轴【解析】【解答】解:A、数轴上距离原点2个单位长度的点表示的数是2或﹣2,故A错误;B、﹣1是最大的负整数,故B正确;C、0的绝对值等于零,故C错误;D、没有最小的有理数,故D错误;故选:B.【分析】根据数轴上到一点距离相等的点有两个,可判断A;根据整数,可判断B;根据绝对值的意义,可判断C;根据有理数,可判断D.4、【答案】C【考点】几何体的展开图【解析】【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“强”与面“主”相对,面“民”与面“文”相对,面“富”与面“明”相对.故选C.【分析】利用正方体及其表面展开图的特点解题.5、【答案】D【考点】代数式求值【解析】【解答】解:∵m﹣2n=﹣1,∴1﹣2m+4n=1﹣2(m﹣2n)=1﹣2×(﹣1)=3.故选:D.【分析】把代数式1﹣2m+4n为含m﹣2n的代数式,然后把m﹣2n=﹣1整体代入求得数值即可.6、【答案】B【考点】矩形的判定【解析】【解答】解:设AE为xcm,则AM为(14﹣3x)cm,根据题意得出:∵AN=MW,∴AN+6=x+MR,即6+2x=x+(14﹣3x)故选:B.【分析】设AE为xcm,则AM为(14﹣3x)cm,根据图示可以得出关于AN=MW的方程.二、<b >填空题</b>7、【答案】两点之间线段最短【考点】线段的性质:两点之间线段最短【解析】【解答】解:由两点之间线段最短可知,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最短,故答案为:两点之间线段最短.【分析】根据两点之间线段最短即可得出答案.8、【答案】3.5×108【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将350000000用科学记数法表示为:3.5×108.故答案为:3.5×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.9、【答案】19①8②12【考点】度分秒的换算【解析】【解答】解:57.41°÷3=19°8′12″.故答案为19,8,12.【分析】先把57.41°换算为57°24′36″,然后用57°24′36″除以3即可.10、【答案】3【考点】一元一次方程的定义【解析】【解答】解:∵方程﹣(m+3)x|m|﹣2﹣5=0是关于x的一元一次方程,∴|m|﹣2=1,m+3≠0,解得:m=3,故答案为:3【分析】利用一元一次方程的定义判断即可求出m的值.11、【答案】6【考点】同类项、合并同类项【解析】【解答】解:∵﹣2a x﹣3b3与5ab2y﹣1是同类项,∴x﹣3=1,2y﹣1=3,解得:x=4,y=2,则x+y=4+2=6,故答案为:6【分析】利用同类项的定义求出x与y的值,代入原式计算即可得到结果.12、【答案】70°【考点】余角和补角【解析】【解答】解:设∠DOB为2x,∠DOA为11x;∴∠AOB=∠DOA﹣∠DOB=9x,∵∠AOB=90°,∴9x=90°,∴x=10°,∴∠DOB=20°,∴∠BOC=∠COD﹣∠DOB=90°﹣20°=70°;故答案为:70°【分析】设出适当未知数∠DOB为2x,∠DOA为11x,得出∠AOB=9x,由∠AOB=90°,求出x=10°,得出∠DOB=20°,即可求出∠BOC=∠COD﹣∠DOB=70°.13、【答案】(3n+1)【考点】探索图形规律【解析】【解答】解:第一个图形有黑色瓷砖3+1=4块.第二个图形有黑色瓷砖3×2+1=7块.第三个图形有黑色瓷砖3×3+1=10块.…第n个图形中需要黑色瓷砖3n+1块.故答案为:(3n+1).【分析】找出数量上的变化规律,从而推出一般性的结论.14、【答案】【考点】解一元一次方程【解析】【解答】解:设0. =x,0. =0.989898…,可知,100x=98.9898…,所以100x﹣x=98,解方程,得x= .故答案为:.【分析】利用类比,设0. =x,列方程为100x﹣x=98,解出即可.三、<b >解答题</b>15、【答案】(1)解:原式=﹣4﹣(3﹣6)÷(﹣3)=﹣4﹣(﹣3)÷(﹣3)=﹣4﹣1=﹣5(2)解:原式=(﹣﹣)×(﹣)=(﹣﹣)×(﹣)= ×(﹣)=﹣【考点】有理数的混合运算【解析】【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)先通分计算括号内的,再计算乘法即可得到结果.16、【答案】解:由原方程去分母,得12﹣3x﹣4x﹣2=6,即10﹣7x=6,移项、合并同类项,得﹣7x=﹣4,化未知数的系数为1,得x=【考点】解一元一次方程【解析】【分析】先去分母,然后移项、合并同类项,再化未知数系数为1.17、【答案】解:由|x+2|+(y﹣3)2=0,得:x=﹣2,y=3,原式=﹣6xy+4x2﹣(x2﹣12xy+3x2)=﹣6xy+4x2﹣x2+12xy﹣3x2=6xy,当x=﹣2,y=3时,原式=6×(﹣2)×3=﹣36【考点】整式的加减【解析】【分析】根据非负数的和为零得出x、y的值,根据去括号、合并同类项,可化简整式,根据代数式求值,可得答案.18、【答案】解:设这个角为x,由题意得,180°﹣x=2(90°﹣x)+30°,解得x=30°.答:这个角的度数是30°【考点】余角和补角【解析】【分析】设这个角为x,根据余角和补角的概念列出方程,解方程即可.19、【答案】(1)解:设AC=2x,CD=3x,BD=4x,∵AD=10cm,∴5x=10,解得:x=2,∴AB=(2+3+4)×2=18cm(2)解:∵E为线段AB的中点,∴AE=9cm,∵AD=10cm,∴ED=10cm﹣9cm=1cm【考点】两点间的距离【解析】【分析】(1)根据C、D两点将线段AB分成2:3:4三部分设AC=2x,CD=3x,BD=4x,然后表示出AD=5x,再根据AD=10cm列出方程可得5x=10,再解可得x的值,进而得到AB长;(2)计算出AE长,然后利用AD﹣AE可得DE长.20、【答案】(1)解:∵OE平分∠AOC,OF平分∠BOC.∠AOB是直角,∠BOC=60°∴∠COE= ∠AOC=75°,∠COF= ∠BOC=30°∴∠EOF=∠COE﹣∠COF=45°(2)解:由(1)得:∠EOF= ∠AOC﹣∠BOC= (∠AOC﹣∠BOC)= ∠AOB=45°【考点】角平分线的定义【解析】【分析】(1)OE平分∠AOC,OF平分∠BOC.易得∠COE=75°,∠COF=30°,则∠EOF=∠COE﹣∠COF;(2)由(1)得∠EOF恒等于∠AOC的一半减去∠BOC的一半.21、【答案】(1)解:设该厂每月销售x个计算器时两种方式所获利润相等,根据题意可得:第一种方式:48x﹣48x×10%﹣6480﹣36x=7.2x﹣6480;第二种方式:42x﹣42x×10%﹣36x=1.8x,则48x﹣48x×10%﹣6480﹣36x=42x﹣42x×10%﹣36x解得:x=1200,答:该厂每月销售1200个计算器时两种方式所获利润相等(2)解:将x=1500代入两式第一种方式7.2x﹣6480=4320(元);第二种方式1.8x=2700(元);比较可知第一种方式所得利润较大【考点】一元一次方程的应用【解析】【分析】(1)分别利用第一种销售方式的月利润=销售总收入﹣总成本﹣纳税款﹣固定费用;第二种销售方式的月利润=销售总收入﹣总成本﹣纳税款,把得到的两个关系式相等求解即可;(2)把x=1500代入得到的两个关系式,计算后比较即可.22、【答案】(1)解:设经过ts后,点P、Q相遇.依题意,有2t+3t=30,解得:t=6.答:经过6秒钟后,点P、Q相遇(2)解:设经过xs,P、Q两点相距10cm,由题意得2x+3x+10=30或2x+3x﹣10=30,解得:x=4或x=8.答:经过4秒钟或8秒钟后,P、Q两点相距10cm(3)解:点P,Q只能在直线AB上相遇,则点P旋转到直线AB上的时间为=4(s)或=10(s)设点Q的速度为y cm/s,则有4y=30,解得 y=;或10y=30﹣8,解得y=答:点Q的速度为cm/s或cm/s.【考点】一元一次方程的应用,两点间的距离【解析】【分析】(1)根据相遇时,点P和点Q的运动的路程和等于AB的长列方程即可求解;(2)设经过xs,P、Q两点相距10cm,分相遇前和相遇后两种情况建立方程求出其解即可;(3)由于点P,Q只能在直线AB上相遇,而点P 旋转到直线AB上的时间分2种情况,所以根据题意列出方程分别求解.南昌市七年级上学期期末考试数学试卷(三)一、精心选一选1、在﹣1,0,﹣2,1这四个数中,最小的数是()A、﹣2B、﹣1C、0D、12、未来三年,国家将投入8 500亿元用于缓解群众“看病难,看病贵”问题.将8 500亿元用科学记数法表示为()A、0.85×104亿元B、8.5×103亿元C、8.5×104亿元D、85×102亿元3、已知关于x的方程2x+2m=5的解是x=﹣2,则m的值为()A、B、﹣C、D、﹣4、若|x﹣|+(y+2)2=0,则(xy)2015的值为()A、1B、﹣1C、﹣2015D、20155、当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时,这个代数式的值是()A、1B、﹣4C、6D、﹣56、在某文具店,一支铅笔的售价为1.2元,一支圆珠笔的售价为2元,该店在新年之际举行文具优惠销售活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.设该铅笔卖出x支,则可得的一元一次方程为()A、0.8×1.2x+0.9×2(60﹣x)=87B、0.8×1.2x+0.9×2(60+x)=87C、0.9×2x+0.8×1.2(60+x)=87D、0.9×2x+0.8×1.2(60﹣x)=87二、细心填一填7、开学整理教室时,老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,一会儿一列课桌摆在一条线上,整整齐齐,这是因为________.8、若a2n+1b2与5a3n﹣2b2是同类项,则n=________.9、如图,直线AB,CD相交于点O,∠DOE=∠BOE,OF平分∠AOD,若∠BOE=28°,则∠EOF的度数为________.10、单项式7πa2b3的次数是________.11、如果关于x的方程2x+1=3和方程的解相同,那么k的值为________.12、多项式8x2﹣3x+5与3x3+2mx2﹣5x+7相加后不含x的二次项,则常数m的值等于________.13、已知∠1与∠2互余,∠2与∠3互补,∠1=67°,则∠3=________.14、如果互为a,b相反数,x,y互为倒数,则2014(a+b)﹣2015xy的值是________.三、运算题15、计算下列各题:(1)(﹣3)×(﹣)÷(﹣1 )(2)48×()﹣(﹣48)÷(﹣8)(3)(﹣1)2013﹣22﹣|﹣|×(﹣10)2﹣19 ×19 (用简便方法计算)16、解方程:(1)3(x﹣3)﹣2(x﹣4)=4(2)﹣=1.17、2(3ab2﹣a3b)﹣3(2ab2﹣a3b),其中a=﹣,b=4.四、解答题18、已知线段AB的长度为4cm,延长线段AB到C,使得BC=2AB,D是AC的中点,求BD的长.19、如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD的度数;(3)请通过计算说明OE是否平分∠BOC.20、在沙坪坝住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图形如图所示)(1)用含m,n的代数式表示该广场的面积S;(2)若m,n满足(m﹣6)2+|n﹣5|=0,求出该广场的面积.五、列方程解应用题21、为了防控冬季呼吸道疾病,我校积极进行校园环境消毒工作,购买了甲、乙两种消毒液共100瓶,其中甲种每瓶6元,乙种每瓶9元,如果购买这两种消毒液共花去780元,求甲、乙两种消毒液各购买了多少瓶?22、少先队从夏令营到学校,先下山再走平路,一队员骑自行车以每小时12千米的速度下山,以每小时9千米的速度走平路,到学校共用了55分钟,回来时,通过平路的速度不变,但以每小时6千米的速度上山,回到营地共花去了70分钟的时间,问夏令营到学校多少千米?答案解析部分一、<b >精心选一选</b>1、【答案】A【考点】有理数大小比较【解析】【解答】解:∵﹣2<﹣1<0<1,∴最小的数是﹣2.故选A.【分析】根据正数大于0,0大于负数,正数大于负数直接进行比较大小,再找出最小的数.2、【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:按照科学记数法的形式8 500亿元应该写成8.5×103亿元.故选:B.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.3、【答案】C【考点】一元一次方程的解【解析】【解答】解:把x=﹣2代入方程得:﹣4+2m=5,解得:m= .故选C.【分析】把x=﹣2代入方程计算即可求出m的值.4、【答案】B【考点】平方的非负性,绝对值的非负性【解析】【解答】解:由题意得,x﹣=0,y+2=0,解得x= ,y=﹣2,所以,(xy)2015=[ ×(﹣2)]2015=﹣1.故选B.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.5、【答案】B【考点】代数式求值【解析】【解答】解:当x=2时,代数式ax3+bx+1的值为6,则8a+2b+1=6,8a+2b=5,∴﹣8a﹣2b=﹣5,则当x=﹣2时,ax3+bx+1=(﹣2)3a﹣2b+1=﹣8a﹣2b+1=﹣5+1=﹣4,故选B.【分析】根据已知把x=2代入得:8a+2b+1=6,变形得:﹣8a﹣2b=﹣5,再将x=﹣2代入这个代数式中,最后整体代入即可.6、【答案】A【考点】一元一次方程的应用【解析】【解答】解:设该铅笔卖出x支,则圆珠笔卖出(60﹣x)支,由题意得,0.8×1.2x+0.9×2(60﹣x)=87.故选A.【分析】设该铅笔卖出x支,则圆珠笔卖出(60﹣x)支,根据两种笔共卖出87元,列方程即可.二、<b >细心填一填</b>7、【答案】两点确定一条直线【考点】直线的性质:两点确定一条直线【解析】【解答】解:根据两点确定一条直线.故答案为:两点确定一条直线.【分析】根据直线的确定方法,易得答案.8、【答案】3【考点】同类项、合并同类项【解析】【解答】解:根据同类项的定义,2n+1=3n﹣2,解得n=3.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,从而求得n的值.9、【答案】90°【考点】角的计算【解析】【解答】解:∵∠DOE=∠BOE,∠BOE=28°,。

南昌市七年级(上)期末数学试卷含答案

南昌市七年级(上)期末数学试卷含答案

七年级(上)期末数学试卷题号一二三总分得分一、选择题(本大题共8小题,共24.0分)1.的倒数是−2( )A. B. 2C. D. −2−12122.a 的平方与b 的和,用式子表示,正确的是( )A. B. C. D. a +b 2a 2+b a 2+b 2(a +b )23.若,则x 的取值范围是|x−3|=|x|+3( )A. B. C. D. x ≥0x ≤0x >0x <04.若是关于x 的二次三项式,则m 、n 的值是−x m +(n−3)x +4( )A. ,B. ,m =2n =3m =2n ≠3C. ,D. ,n 为任意数m ≠2n =3m =25.若是关于x 的方程的解,则的值是x =2x2−a =x +2a 2−1( )A. 10B. C. 8 D. −10−86.如图是由四个正方体组合而成,当从正面看时,则得到的平面视图是( )A.B.C.D.7.小明用x 元买学习用品,若全买水笔,则可买6支;若全买笔记本,则可买4本.已知一支水笔比一本笔记本便宜1元,则下列所列方程中,正确的是( )A. B. C. D. x 6=x4−1x 6=x4+1x6=x−14x6=x +148.若将一副三角板按如图所示的不同方式摆放,则图中与相等的是∠a ∠β( )A. B.C. D.二、填空题(本大题共6小题,共18.0分)9.,且x 为整数,则x 的最小值是______|x|<310.若,则的值是______.|a +4|+|b−2|=0(a +1)b 11.若是关于x 的一元一次方程,则k 的值为______.(k−2)x |k|−1+3=012.若点O 是直线AB 上一点,OC 是一条射线,当时,则的度数是∠AOC =50°∠BOC ______.13.九章算术中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出《》八,盈三;人出七,不足四.问人数几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有______人.14.若A 、B 、P 是数轴上三点,且点A 表示的数为,点B 表示的数为3,点P 表示−1的数为x ,当其中一点到另外两点的距离相等时,则x 的值可以是______三、解答题(本大题共8小题,共58.0分)15.计算:;(1)22×(−12)−16+(−2)3计算:.(2)16.解方程:;(1)1−x 2=x +23−1求值:,其中.(2)2(4−3a 2)−3(a−2a 2)a =−217.已知线段,直线AB 上有一点C ,且,M 是线段AC 的中点,AB =7cm BC =3cm 求线段AM 的长.18.设、的度数分别为和,且、都是的补角∠α∠β(2n +5)°(65−n)°∠α∠β∠γ求n 的值;(1)与能否互余,请说明理由.(2)∠α∠β19.若有a ,b 两个数,满足关系式:,则称a ,b 为“共生数对”,记a +b =ab−1作.(a,b)例如:当2,3满足时,则是“共生数对”.2+3=2×3−1(2,3)若是“共生数对”,求x 的值;(1)(x,−2)若是“共生数对”,判断是否也是“共生数对”,请通过计算说明.(2)(m,n)(n,m)请再写出两个不同的“共生数对”(3)20.用火柴棒按下列方式搭建三角形:(1)当三角形个数为1时,需3根火柴棒;当三角形个数为2时,需5根火柴棒;则当三角形个数为100时,需火柴棒______根;当三角形个数为n时,需火柴棒______根用含n的代数式表示;()(2)当火柴棒的根数为2019时,求三角形的个数?(3)组成三角形的火柴棒能否为1000根,如果能,求三角形的个数;如果不能,请说明理由.21.东方风景区的团体参观门票价格规定如下表:购票人数1~5051~100101~150150以上(/)5 4.54 3.5价格元人(1)(2)某校七年级班和班共104人去东方风景区,当两班都以班为单位分别购票时,则一共需付492元.(1)你认为有更省钱的购票方式吗?如果有,能节省多少元?(2)(1)(2)(1)(2)若班人数多于班人数,求班的人数各是多少?(3)(3)若七年级班45人也一同前去参观时,如何购票显得更为合理?请你设计一种更省钱的方案,并求出七年级3个班共需多少元?∠AOC=60°22.如图1,点O为直线AB上一点,过点O作射线OC,使,将一直角三角板MON的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)∠CON求的度数;(2)10°如图2是将图1中的三角板绕点O以每秒的速度沿逆时针方向旋转一周的情况.在旋转的过程中,当第t秒时,三条射线OA、OC、OM构成相等的角,求此时t的值;(3)∠AOC将图1中的三角板绕点O逆时针旋转至图3,使ON在的内部时,请探究∠AOM∠CON与的数量关系,并说明理由.答案和解析1.【答案】C【解析】解:的倒数是,−2−12故选:C .根据倒数的定义:乘积是1的两数互为倒数.一般地,,就说a ⋅1a =1(a ≠0)a(a ≠0)的倒数是.1a 此题主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.【答案】B【解析】解:a 的平方与b 的和可以表示为:,a 2+b 故选:B .根据题意,可以列出相应的代数式,本题得以解决.本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.3.【答案】B【解析】解:当时,原式可化为:,无解;①x >3x +3=x−3当时,原式可化为:,此时;②0≤x ≤3x +3=3−x x =0当时,原式可化为:,等式恒成立.③x <0−x +3=3−x 综上所述,则.x ≤0故选:B .根据绝对值的性质,要化简绝对值,可以就,,三种情况进行分x >30≤x ≤3x <0析.本题考查含绝对值的一元一次方程,解决此题的关键是能够根据x 的取值范围进行分情况化简绝对值,然后根据等式是否成立进行判断.4.【答案】B【解析】解:由题意得:;,m =2n−3≠0,.∴m =2n ≠3故选:B .让最高次项的次数为2,保证第二项的系数不为0即可.本题考查了多项式次数和项数.解题的关键是能够从次数和项数两方面同时进行考虑.5.【答案】C【解析】解:依题意得:22−a =2+2解得,a =−3则.a 2−1=(−3)2−1=9−1=8故选:C .把代入已知方程得到关于a 的新方程,通过解新方程求得a 的值,再代入计算即x =2可求解.本题考查了一元一次方程的解.把方程的解代入原方程,等式左右两边相等.6.【答案】D【解析】解:从正面看,下面一行是横放3个正方体,上面一行最左边是一个正方体.故选:D .根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.本题考查了三种视图中的主视图,培养了学生空间想象能力.7.【答案】A【解析】解:由题意得:一枝水笔的价格是元,一个笔记本的价格是元,则方程为:x6x4.x 6=x4−1故选:A .首先根据题意表示出一枝水笔的价格是元,一个笔记本的价格是元,再根据关键语句x6x4“一支水笔比一本笔记本便宜1元”列出方程即可.此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,抓住题目中的关键语句,列出方程.8.【答案】B【解析】解:A 、由图形得:,不合题意;∠α+∠β=90°B 、由图形得:,,符合题意;∠β=45°∠α=90°−45°=45°C 、由图形得:,,不合题意;∠α=90°−45°=45°∠β=90°−30°=60°D 、由图形得:,即,不合题意.90°−∠β=60°−∠α∠α+30°=∠β故选:B .A 、由图形可得两角互余,不合题意;B 、由图形可分别求出与的度数,即可做出判断;∠α∠βC 、由图形可分别求出与的度数,即可做出判断;∠α∠βD 、由图形得出两角的关系,即可做出判断.此题考查了角的计算,余角与补角,弄清图形中角的关系是解本题的关键.9.【答案】−2【解析】解:因为,|x|<3所以,−3<x <3因为x 为整数,所以x 取值为,,0,1,2,−2−1−2所以x的最小值是,−2故答案为:.|x|<3−3<x<3由题意,得,再根据x为整数和x的最小值进行求解.此题考查了绝对值的性质,利用分类讨论的思想进行求解,使问题便得简单.10.【答案】9|a+4|+|b−2|=0【解析】解:因为,a+4=0b−2=0所以,,a=−4b=2解得,,(a+1)b=(−4+1)2=9所以,.故答案为:9.根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质和求代数式的值.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.11.【答案】−2【解析】解:根据题意,知k−2≠0|k|−1=1且,k=−2解得,;−2故答案为:.()1()一元一次方程的定义:只含有一个未知数元,并且未知数的指数是次的方程叫做ax+b=0(a,a≠0)一元一次方程.它的一般形式是b是常数且.本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1.12.【答案】130°∠BOC=180°−∠AOC=130°【解析】解:.130°故答案为:;根据补角的定义解答即可.本题主要考查了角的定义以及补角的性质,熟记定义是解答本题的关键.13.【答案】7【解析】解:设共有x人,8x−3=7x+4根据题意得:,x=7解得:.答:共有7人.故答案为:7.设共有x人,根据该物品的价格不变,即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.14.【答案】1或7或−5【解析】解:其中一点到另外两点的距离相等,∵,,,∴AB =AP BA =BP PA =PB ,,,∴|−1−3|=|−1−x||3−(−1)|=|3−x||x−(−1)|=|x−3|解得:,,,x =1x =7x =−5故答案为:1或7或.−5根据题意列方程即可得到结论.考查了数轴,一元一次方程的应用,解题的关键是找出题中的等量关系,列出方程并解答,难度一般.15.【答案】解:原式(1)=4×(−12)−16÷(−8);=−2+2=0原式(2)=16°4′42″×3.=48°14′6″【解析】根据有理数混合运算的法则计算即可;(1)根据有理数混合运算的法则计算即可.(2)本题考查了有理数混合运算,熟练掌握运算法则是解题的关键.16.【答案】解:去分母,得,(1)3(1−x)=2(x +2)−6去括号,得,3−3x =2x +4−6移项合并,得,−5x =−5系数化为1,得;x =1原式,(2)=8−6a 2−3a +6a 2=−3a +8当时,原式.a =−2=−3×(−2)+8=14【解析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解;(1)原式去括号合并得到最简结果,把a 的值代入计算即可求出值.(2)此题考查了整式的加减化简求值,熟练掌握运算法则是解本题的关键.−17.【答案】解:当点C 在线段AB 上时,有,AC =AB−BC =4cm 点M 是AC 的中点,∵;∴AM =12AC =2cm 当点C 在线段AB 延长线上时,有,AC =AB +BC =10cm 点M 是AC 的中点,∵.∴AM =12AC =5cm 【解析】应考虑到A 、B 、C 三点之间的位置关系的多种可能,即点C 在线段AB 的延长线上或点C 在线段AB 上.本题主要考查两点间的距离的知识点,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.18.【答案】解:由、都是的补角,得(1)∠α∠β∠γ,即.∠α=∠β(2n +5)°=(65−n)°解得;n =20与互余,理由如下:(2)∠α∠β,,∠α=(2n +5)°=45°∠β=(65−n)°=45°,∵∠α+∠β=90°与互为余角.∴∠α∠β【解析】根据补角的性质,可得、,根据解方程,可得答案;(1)∠α∠β根据余角的定义,可得答案.(2)本题考查了余角和补角,利用了补角的性质,余角的定义.19.【答案】解:是“共生数对”,(1)∵(x,−2),∴x−2=−2x−1解得;x =13也是“共生数对”,(2)(n,m)理由:是“共生数对”,∵(m,n),∴m +n =mn−1,∴n +m =m +n =mn−1=nm−1也是“共生数对”;∴(n,m)由,得,(3)a +b =ab−1b =a +1a−1当时,;当时,.∴a =3b =2a =−1b =0两个“共生数对”可以是和.∴(3,2)(−1,0)【解析】根据题意,可以得到关于x 的方程,从而可以求得x 的值;(1)根据“共生数对”的定义,可以解答本题;(2)本题答案不唯一,只要写出两组符合题意的数对即可(3)本题考查新定义、有理数的混合运算,解答本题的关键是明确题意,求出相应的数对,注意第三问答案不唯一.20.【答案】201 (2n +1)【解析】解:由图可得,(1)当时,火柴棒的根数为:,n =11+2×1=3当时,火柴棒的根数为:,n =21+2×2=5当时,火柴棒的根数为:,n =31+2×3=7当时,火柴棒的根数为:,n =41+2×4=9,…当时,火柴棒的根数为:,n =1001+2×100=201当三角形个数为n 时,需火柴棒的根数为:,1+2×n =2n +1(2n+1)故答案为:201,;(2)2n+1=2019n=1009令,得,即当火柴棒的根数为2019时,三角形的个数是1009;(3)1+2n=1000n=499.5令,得不是整数,故组成三角形的火柴棒不能为1000根.(1)根据题目中的图形,可以发现火柴棒根数的变化规律,从而可以得到当三角形个数为100时,需火柴棒的根数和当三角形个数为n时,需火柴棒的根数;(2)(1)根据中的结果,可以求得当火柴棒的根数为2019时,三角形的个数;(3)(1)根据中的结果,可以说明组成三角形的火柴棒能否为1000根.本题考查图形的变化类、列代数式,解答本题的关键是明确题意,发现题目中火柴棒根数的变化规律,利用数形结合的思想解答.21.【答案】解:当两班合起来购票时,需元,(1)104×4=416492−416=76可节省元.(2)104×5=520>492104×4.5=468<492由,,(1)(2)知班人数大于52,班人数小于52,(1)(2)(104−x)设班有x人,班有人,104−x=51x=53104×4.5≠492x≠53当时,,这,显然,104−x<51当时,4.5x+5(104−x)=492则由题意,得,x=56∴104−x=48解得,,∴(1)(2)班有56人,班有48人.(3)3149×4=596个班共有149人,按149人购票,需付购票费元,151×3.5=528.5但按151人购票,需付元,∵528.5<596,∴3528.5个班按151人购票更省钱,共需元.(1)=492−【解析】最节约的办法就是团体购票,节省的钱团体票价;(2)主要考虑有两种情况,分别计算,不符合的情况舍去就可以了;(3)102−150=×还是采用团体购票,总人数是149,在之间,总票价总人数单位票价.此题考查一元一次方程的应用,主要是找准确等量关系,要注意考虑全面,购票最省钱的办法就是团体购票.22.【答案】解:由图1可知,,(1)∠AOC=60°∠AON=90°∴∠CON=∠AOC+∠AON=60°+90°=150°;(2)在图2中,要分三种情况讨论:当时,此时旋转角,①∠AOC=∠COM=60°∠BOM=60°10°t=60°t=6由,解得,当时,此时旋转角,②∠AOM=∠COM=30°∠BOM=150°10°t=150°t=15由,解得;当时,此时旋转角,③∠AOC=∠AOM=60°∠BOM=240°10°t=240°t=24由,解得.综上所述,得知t的值为6或15或24;(3)∠AOC∠AOM−∠CON=30°当ON在内部时,,∠AON=x°∠AOM=∠MON−∠AON=(90−x)°其理由是:设,则有,∠CON=∠AOC−∠AON=(60−x)°,∴∠AOM−∠CON=(90−x)°−(60−x)°=30°.(1)【解析】根据角的和差即可得到结论;(2)①∠AOC=∠COM=60°②在图2中,要分三种情况讨论:当时,当∠AOM=∠COM=30°③∠AOC=∠AOM=60°时,当时,根据角的和差即可得到结论;(3)∠AOC当ON在内部时,根据角的和差即可得到结论.此题考查了等腰三角形的判定,角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系,是解题的关键.。

江西育华 初一上 数学期末试卷

江西育华 初一上 数学期末试卷

江西育华学校七年级数学期末试卷一、选择题(本大题共8小题,每小题3分,共24分)每小题只有一个正确选项,请将正确选项的代号填在题后的括号里.1、-2019的倒数是( )A 、-2019B 、2019C 、20191-D 、20191 2、a 的平方与b 的差,用式子表示,正确的是( ) A 、2b a - B 、b a -2C 、22b a -D 、()2b a - 3、若11+=-x x ,则x 的取值范围是( )A 、x <0B 、x ≤1C 、x >0D 、x ≤04、若3)2(-+-+x n x m 是关于x 的四次三项式,则m 、n 的值是( )A 、m=4,n=2B 、m=4,2n ≠C 、2,4m =≠nD 、m=4,n 为任意数5、若x=3是关于x 的方程3-x a x 32+=+的解,则1a -a 2+的值是( ) A 、3 B 、-1 C 、7 D 、-76、右图是由四个正方体组合而成,当从正面看时,则得到的平面视图是( )A 、B 、C 、D 、7、小明用x 元买美术用品,若全买彩笔,则可买3盒;若全买彩纸,则可买5包.已知一包彩纸比一盒彩笔便宜2元,则下列所列方程中,正确的是( )A 、253+=x xB 、253-=x xC 、523+=x xD 、523-=x x 8、若将一副三角板按如图所示的不同方式摆放,则图中α∠与β∠相等的是( )A 、B 、C 、D 、二、填空题(本大题共6小题,每小题3分,共18分)9、2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将60000用科学计数法表示是 .10、若2-x <5,且x 为整数,则x 的最大值是 .11、若0632=-+-m x m )(是关于x 的一元一次方程,则m 的值是 .12、若点O 是直线AB 上一点,OC 是一条射线,且o 36AOC =∠,当OD 平分BOC ∠时,则AOD ∠的度数是 .13、《九章算术》中有一道阐述“盈不足术”的问题,原文如下:“今有人共买物,人出八盈三,人出七不足四,问人数几何?”译文为:“现有一些人共同买一个物品,每人出8元还盈余3元,每人出7元还差4元,问共同购物的人数”是 .14、若A 、B 、C 是数轴上三点,且点A 表示的数为-3,点B 表示的数为1,点C 表示的数为x ,当其中一点是另外两点构成线段的中点时,则x 的值可以是 .三、解答题(本大题共4小题,每小题6分,共24分)15、(本大题共2小题,每小题3分,共6分)(1)计算:233-1841-2)()(÷+⨯; (2)4"2816"42'1721⨯︒-︒)(.16、(本大题共两小题,每小题3分,共6分)(1)解方程:14231+-=+x x (2)求值:)()(2232-13x x x --,其中x=-1.17、如图,已知︒=∠50AOB ,OD 是COB ∠的平分线.(1)如图1,当AOB ∠与COB ∠互补时,求COD ∠的度数;(2)如图2,当AOB ∠与COB ∠互余时,求COD ∠的度数.18、已知有理数x ,y ,z 满足关系式13+=z x ,421-=z y . (1)求x 与y 的关系式;(2)当z=-2时,请通过计算,判断x 与y 的大小关系.三、解答题(本大题共3小题,每小题8分,共24分)19、已知m 、n 满足关系式0382=-+-n m )(.(1)求m 、n 的值;(2)若线段AB=m ,在直线AB 上取一点P ,使AP=nPB ,点Q 为PB 的中点,求线段AQ 的长.20、如下图是用黑色的正六边形和白色的正方形按一定的规律组合而成的两色图案.(1)当黑色的正六边形的块数为1时,有6块白色的正方形配套;当黑色的正六边形块数为2时,有11块白色的正方形配套;则当黑色的正六边形块数为3,10时,分别写出白色的正方形配套的块数;(2)当白色的正方形块数为201时,求黑色的正六边形的块数?(3)组成白色的正方形的块数能否为100,如果能,求黑色的正六边形的块数;如果不能,请说明理由.21、凤凰景区的团队门票的价格规定如下表:某校七年级(1)班和(2)班共112人去凤凰景区进行研学春游活动,当两班都以班为单位分别购票时,则一共需付门票1060元.(1)你认为有更省钱的购票方式吗?如果有,能节省多少元?(2)若(1)班人数多于(2)班人数,求(1)(2)班的人数各是多少?(3)若七年级(3)班53人也一同前去春游,如何购票显得更为合理?请你设计一种更省钱的方案,并求出七年级3个班共需付门票多少元?四、探究题(本大题共1小题,共10分)22、如图1,点O 为直线AB 上一点,过点O 作射线OC ,使︒=∠60AOC ,将一直角三角板MON 的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)求CON ∠的度数;(2)如图2是将图1中的三角板绕点O 以每秒︒15的速度沿逆时针方向旋转一周的情况,在旋转的过程中,当第t 秒时,三条射线OA 、OC 、OM 构成两个相等的角,求此时t 的值;(3)将图1中的三角板绕点O 逆时针旋转至图3(使ON 在AOC ∠的外部)、图4(使ON 在AOC ∠的内部)时,请分别探究AOM ∠与CON ∠的数量关系,并说明理由.。

江西省南昌市2020-2021学年七年级上学期期末数学试题

江西省南昌市2020-2021学年七年级上学期期末数学试题
A.5B. C.2D.
6.下面四个图形是多面体的展开图,属于三棱柱的展开图的是()
A. B. C. D.
7. 、 两地相距350千米,甲、乙两车分别从 、 两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过 小时两车相距50千米,则 的值是()
A.2B.1.5C.2或1.5D.2或2.5
8.如图,一副三角尺按不同的位置摆放,下列摆放方式中∠α与∠β互余的是( )
A. B.
C. D.
二、填空题
9.“ 与1的差的2倍”用代数式表示是________.
10.若 ,则 的值是________.
11.若规定“*”的意义为 ,则方程 的解是________.
12.若 ,则 的值是________.
∴-1>-2,
∴3>0>-1>-2,
∴最小的数是-2.
故选:B.
【点睛】
此题主要考查了有理数大小比较,正确掌握比较方法是解题关键.
2.C
【解析】
将一个数用科学记数法表示就是将该数写成 (其中 ,n为整数)的形式.
对于110000而言,a取1.1,n取5,即 .
故本题应选C.
点睛:
本题考查了科学计数法的相关知识.在用科学计数法改写已知数时,应先写出已知数的符号,再按照相关的取值范围确定乘号前面的数,然后观察乘号前面的数与原数的关系,乘号前面的数是把原数的小数点向左移动几位得到的,那么乘号后面就是10的几次方.
A.11×104B.1.1×104C.1.1×105D.0.11×106
3.某两位数,十位上的数字为a,个位上的数字为b,则这个两位数可表示为 ( )
A.abB.a+bC.10a+bD.10b+a

南昌市2020年七年级上学期数学期末考试试卷B卷

南昌市2020年七年级上学期数学期末考试试卷B卷

南昌市2020年七年级上学期数学期末考试试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) -3的倒数是A . 3B . -3C .D .2. (2分)(2020·北京模拟) 某正方体的每个面上都有一个汉字,如图是它的一中展开图,那么在原正方体中,与点字所在面相对的面上的汉字是()A . 青B . 春C . 梦D . 想3. (2分) (2019七上·武汉期末) 美国、菲律宾等国不断在中国南海九段线内滋事,中国海军展现了维护中国领海主权的决心和信心,据悉,中国南海九段线以内的所有海域面积约为3120000平方千米,把数3120000用科学记数法表示为()A . 3.12×B . 3.12×C . 31.2×D . 0.312×4. (2分)下列调查方式中合适的是()A . 要了解一批空调使用寿命,采用全面调查方式B . 调查你所在班级同学的身高,采用抽样调查方式C . 环保部门调查木兰溪某段水域的水质情况采用抽样调查方式D . 调查仙游县中学生每天的就寝时间,采用全面调查方式5. (2分)如图所示,要在直线PQ上找一点C,使PC=3CQ,则点C应在()A . P,Q之间B . 点P的左边C . 点Q的右边D . P,Q之间或在点Q的右边6. (2分)下列说法上正确的是()A . 长方体的截面一定是长方形B . 正方体的截面一定是正方形C . 圆锥的截面一定是三角形D . 球体的截面一定是圆7. (2分) (2019八下·卢龙期中) 生态园位于县城东北方向5千米处,如图中表示准确的是()A .B .C .D .8. (2分) (2019七上·嵊州期末) 某款服装进价120元件,标价x元件,商店对这款服装推出“买两件,第一件原价,第二件打六折”的促销活动,按促销方式销售两件该款服装,商店仍获利48元,则x的值为A . 185B . 190C . 180D . 195二、填空题 (共8题;共8分)9. (1分) (2018七上·栾城期末) 下列生活、生产现象中,其中可用“两点之间,线段最短”来解释的现象有________.①用两颗钉子就可以把木条固定在墙上;②植树时,只要栽下两棵树,就可以把同一行树栽在同一直线上;③从A到B架设电线,总是尽可能沿线段AB架设;④把弯曲的公路改直,就能缩短路程.10. (1分)要比较两个角的大小,可以把它们________一起进行比较,也可以量出角的来比较.11. (1分) (2019七上·达孜期末) ________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档