2020届高考数学模拟考试试卷及答案(理科)(六)
2020年高考理科数学模拟试题含答案及解析5套
绝密 ★ 启用前2020年高考模拟试题(一)理科数学时间:120分钟 分值:150分注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a ,b 都是实数,那么“22a b >”是“22a b >”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必2.抛物线22(0)x py p =>的焦点坐标为( )A .,02p ⎛⎫⎪⎝⎭B .1,08p ⎛⎫⎪⎝⎭C .0,2p ⎛⎫ ⎪⎝⎭D .10,8p ⎛⎫ ⎪⎝⎭3.十字路口来往的车辆,如果不允许掉头,则行车路线共有( )A .24种B .16种C .12种D .10种4.设x ,y 满足约束条件36020 0,0x y x y x y ⎧⎪⎨⎪+⎩---≤≥≥≥,则目标函数2z x y =-+的最小值为( )A .4-B .2-C .0D .2 5.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(网格纸上小正方形的边长为1),则该“阳马”最长的棱长为( )A .5B .34C .41D .526. ()()()()sin ,00,xf x x x=∈-ππ大致的图象是( )A .B .C .D .此卷只装订不密封姓名 准考证号 考场号 座位号7.函数()sin cos (0)f x x x ωωω=->ω的取值不可能为( )A .14 B .15 C .12D .348.运行如图所示的程序框图,设输出数据构成的集合为A ,从集合A 中任取一个元素a ,则函数a y x =,()0,x ∈+∞是增函数的概率为( )A .35B .45C .34D .37开始输出y结束是否3x =-3x ≤22y x x=+1x x =+9.已知A ,B 是函数2xy =的图象上的相异两点,若点A ,B 到直线12y =的距离相等,则点A ,B 的横坐标之和的取值范围是( )A .(),1-∞-B .(),2-∞-C .(),3-∞-D .(),4-∞-10.在四面体ABCD 中,若AB CD ==2AC BD ==,AD BC ==面体ABCD 的外接球的表面积为( )A .2πB .4πC .6πD .8π11.设1x =是函数()()32121n n n f x a x a x a x n +++=--+∈N 的极值点,数列{}n a 满足11a =,22a =,21log n n b a +=,若[]x 表示不超过x 的最大整数,则122320182019201820182018b b b b b b ⎡⎤+++⎢⎥⎣⎦=( )A .2017B .2018C .2019D .202012[]0,1上单调递增,则实数a 的取值范围( )A .()1,1-B .()1,-+∞C .[]1,1-D .(]0,+∞第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.命题“00x ∃>,20020x mx +->”的否定是__________.14.在ABC △中,角B2π3C =,BC =,则AB =__________.15.抛物线24y x =的焦点为F ,过F 的直线与抛物线交于A ,B 两点,且满足4AFBF=,点O 为原点,则AOF △的面积为__________.16.已知函数()()2cos2cos 0222xxxf x ωωωω=+>的周期为2π3,当π03x ⎡⎤∈⎢⎥⎣⎦,时,函数()()g x f x m=+恰有两个不同的零点,则实数m 的取值范围是__________.三、解答题:共70分。
2020届高考数学大二轮刷题首选卷理数文档:第三部分 2020高考仿真模拟卷(六) Word版含解析
2020高考仿真模拟卷(六)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足z (1+i)=|-1+3i|,则复数z 的共轭复数为( ) A .-1+i B .-1-i C .1+i D .1-i答案 C解析 由z (1+i)=|-1+3i|=(-1)2+(3)2=2,得z =21+i =2(1-i )(1+i )(1-i )=1-i ,∴z -=1+i.故选C.2.已知集合A ={(x ,y )|x 2=4y },B ={(x ,y )|y =x },则A ∩B 的真子集的个数为( )A .1B .3C .5D .7答案 B解析 依题意,在同一平面直角坐标系中分别作出x 2=4y 与y =x 的图象,观察可知,它们有2个交点,即A ∩B 有2个元素,故A ∩B 的真子集的个数为3,故选B.3.已知命题p :“∀a >b ,|a |>|b |”,命题q :“∃x 0<0,2x 0 >0”,则下列为真命题的是( )A .p ∧qB .(綈p )∧(綈q )C .p ∨qD .p ∨(綈q ) 答案 C解析 对于命题p ,当a =0,b =-1时,0>-1, 但是|a |=0,|b |=1,|a |<|b |,所以命题p 是假命题. 对于命题q ,∃x 0<0,2x 0 >0,如x 0=-1,2-1=12>0. 所以命题q 是真命题,所以p ∨q 为真命题.4.(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A-b sin B =4c sin C ,cos A =-14,则bc =( )A .6B .5C .4D .3答案 A解析 由题意,得a 2-b 2=4c 2,则-14=cos A =b 2+c 2-a 22bc ,∴c 2-4c 22bc =-14,∴3c 2b =14,∴b c =32×4=6,故选A.5.执行如图所示的程序框图,则输出的T =( )A .8B .6C .7D .9答案 B解析 由题意,得T =1×log 24×log 46×…×log 6264=lg 4lg 2×lg 6lg 4×…×lg 64lg 62=lg 64lg 2=6,故选B.6.要得到函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象,只需将函数y =2sin x cos x 的图象( )A .向左平移π3个单位 B .向右平移π3个单位 C .向左平移π6个单位 D .向右平移π6个单位 答案 C解析 将函数y =2sin x cos x =sin2x 的图象向左平移π6个单位可得到y =sin2⎝ ⎛⎭⎪⎫x +π6,即y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象,故选C.7.已知双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的离心率为3,且经过点(2,2),则双曲线的实轴长为( )A .12B .1C .2 2D . 2答案 C解析 由题意双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的离心率为3,即ca =3⇒c 2=3a 2.又由c 2=a 2+b 2,即b 2=2a 2,所以双曲线的方程为y 2a 2-x 22a 2=1,又因为双曲线过点(2,2),代入双曲线的方程,得4a 2-42a 2=1,解得a =2,所以双曲线的实轴长为2a =2 2.8.若x ,y 满足⎩⎨⎧x -2y +7≥0,2x +y ≥3,3x -y +1≤0,则x 2+y 2的最大值为( )A .5B .11.6C .17D .25答案 C解析 作出不等式组所表示的可行域如下图所示,则x 2+y 2的最大值在点B (1,4)处取得,故x 2+y 2的最大值为17.9.设函数f (x )=|lg x |,若存在实数0<a <b ,满足f (a )=f (b ),则M =log 2a 2+b 28,N =log 2⎝⎛⎭⎪⎫1a +b 2,Q =ln 1e 2的关系为( )A .M >N >QB .M >Q >NC .N >Q >MD .N >M >Q答案 B解析 ∵f (a )=f (b ),∴|lg a |=|lg b |, ∴lg a +lg b =0,即ab =1, ∵⎝ ⎛⎭⎪⎫1a +b 2=1a +b +2=1a +1a +2<12+2=14, ∴N =log 2⎝⎛⎭⎪⎫1a +b 2<-2, 又a 2+b 28>ab 4=14,∴a 2+b 28>14>⎝⎛⎭⎪⎫1a +b 2, ∴M =log 2a 2+b 28>-2, 又Q =ln 1e 2=-2,∴M >Q >N .10.正三棱柱ABC -A 1B 1C 1中,各棱长均为2,M 为AA 1的中点,N 为BC 的中点,则在棱柱的表面上从点M 到点N 的最短距离是( )A .10B .4+ 3C .2+ 3D .4+ 3答案 D解析 ①从侧面到N ,如图1,沿棱柱的侧棱AA 1剪开,并展开,则MN =AM 2+AN 2=12+(2+1)2=10.②从底面到N 点,沿棱柱的AC ,BC 剪开、展开,如图2. 则MN =AM 2+AN 2-2AM ·AN cos120°=12+(3)2+2×1×3×12=4+3,∵4+3<10,∴MN min =4+ 3.11.(2019·江西景德镇第二次质检)已知F 是抛物线x 2=4y 的焦点,点P 在抛物线上,点A (0,-1),则|PF ||P A |的最小值是( )A .22B .32C .1D .12答案 A解析 由题意可得,抛物线x 2=4y 的焦点F (0,1),准线方程为y =-1,过点P 作PM 垂直于准线,垂足为M ,由抛物线的定义可得|PF |=|PM |,则|PF ||P A |=|PM ||P A |=sin ∠P AM ,因为∠P AM 为锐角,故当∠P AM 最小时,|PF ||P A |最小,即当P A 和抛物线相切时,|PF ||P A |最小,设切点P (2a ,a ),由y =14x 2,得y ′=12x ,则切线P A 的斜率为12×2a =a =a +12a ,解得a =1,即P (2,1),此时|PM |=2,|P A |=22,所以sin ∠P AM =|PM ||P A |=22,故选A.12.(2019·天津部分区一模联考)已知函数y =f (x )的定义域为(-π,π),且函数y =f (x +2)的图象关于直线x =-2对称,当x ∈(0,π)时,f (x )=πln x -f ′⎝ ⎛⎭⎪⎫π2sin x (其中f ′(x )是f (x )的导函数),若a =f (log π3),b =f (log 139),c =f (π13 ),则a ,b ,c 的大小关系是( )A .b >a >cB .a >b >cC .c >b >aD .b >c >a答案 D解析 ∵f (x )=πln x -f ′⎝ ⎛⎭⎪⎫π2sin x ,∴f ′(x )=πx -f ′⎝ ⎛⎭⎪⎫π2cos x ,则f ′⎝ ⎛⎭⎪⎫π2=2-f ′⎝ ⎛⎭⎪⎫π2cos π2=2,即f ′(x )=πx -2cos x ,当π2≤x <π时,2cos x ≤0,f ′(x )>0;当0<x <π2时,πx >2,2cos x <2,∴f ′(x )>0,即f (x )在(0,π)上单调递增,∵y =f (x +2)的图象关于x =-2对称,∴y =f (x +2)向右平移2个单位得到y =f (x )的图象关于y 轴对称,即y =f (x )为偶函数,b =f (log 139)=f (-2)=f (2),0=log π1<log π3<log ππ=1,1=π0<π13<π12 <2,即0<log π3<π13 <2<π,∴f (2)>f (π13 )>f (log π3),即b >c >a .二、填空题:本题共4小题,每小题5分,共20分.13.平面向量a 与b 的夹角为45°,a =(1,-1),|b |=1,则|a +2b |=________. 答案10解析 由题意,得a ·b =|a ||b |cos45°=2×1×22=1,所以|a +2b |2=a 2+4a ·b +4b 2=2+4×1+4×1=10,所以|a +2b |=10.14.已知函数f (x )=ax -log 2(2x +1)(a ∈R )为偶函数,则a =________. 答案 12解析 由f (x )=f (-x ),得ax -log 2(2x +1)=-ax -log 2(2-x +1),2ax =log 2(2x+1)-log 2(2-x+1)=log 22x +12-x +1=x ,由于x 的任意性,所以a =12.15.如图,为测量竖直旗杆CD 的高度,在旗杆底部C 所在水平地面上选取相距421 m 的两点A ,B 且AB 所在直线为东西方向,在A 处测得旗杆底部C 在西偏北20°的方向上,旗杆顶部D 的仰角为60°;在B 处测得旗杆底部C 在东偏北10°方向上,旗杆顶部D 的仰角为45°,则旗杆CD 的高度为________ m.答案 12解析 设CD =x ,在Rt △BCD 中,∠CBD =45°,∴BC =x ,在Rt △ACD 中,∠CAD =60°,∴AC =CD tan60°=x 3,在△ABC 中,∠CAB =20°,∠CBA =10°,AB =421, ∴∠ACB =180°-20°-10°=150°,由余弦定理可得AB 2=AC 2+BC 2-2AC ·BC ·cos150°, 即(421)2=13x 2+x 2+2·x 3·x ·32=73x 2,解得x =12.即旗杆CD 的高度为12 m.16.已知腰长为2的等腰直角△ABC 中, M 为斜边AB 的中点,点P 为该平面内一动点,若|PC →|=2,则(P A →·PB →)·(PC →·PM→) 的最小值是________.答案 32-24 2解析 根据题意,建立平面直角坐标系, 如图所示,则C (0,0),B (2,0),A (0,2),M (1,1),由|PC→|=2,知点P 的轨迹为圆心在原点,半径为2的圆,设点P (2cos θ,2sin θ),θ∈[0,2π); 则P A →=(-2cos θ,2-2sin θ), PB→=(2-2cos θ,-2sin θ),PC →=(-2cos θ,-2sin θ), PM→=(1-2cos θ,1-2sin θ), ∴(P A →·PB →)·(PC →·PM →)=[(-2cos θ)(2-2cos θ)+(-2sin θ)(2-2sin θ)]·[(-2cos θ)(1-2cos θ)+(-2sin θ)(1-2sin θ)]=(4-4cos θ-4sin θ)(4-2cos θ-2sin θ) =8(3-3cos θ-3sin θ+2sin θcos θ), 设t =sin θ+cos θ,∴t =2sin ⎝ ⎛⎭⎪⎫θ+π4∈[-2,2],∴t 2=1+2sin θcos θ, ∴2sin θcos θ=t 2-1,∴y =8(3-3t +t 2-1)=8⎝ ⎛⎭⎪⎫t -322-2,当t =2时,y 取得最小值为32-24 2.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(本小题满分12分)已知等比数列{a n }中,a n >0,a 1=164,1a n -1a n +1=2a n +2,n ∈N *.(1)求{a n }的通项公式;(2)设b n =(-1)n ·(log 2a n )2,求数列{b n }的前2n 项和T 2n . 解 (1)设等比数列{a n }的公比为q ,则q >0, 因为1a n -1a n +1=2a n +2,所以1a 1q n -1-1a 1q n =2a 1q n +1,因为q >0,解得q =2,所以a n =164×2n -1=2n -7,n ∈N *.4分(2)b n =(-1)n ·(log 2a n )2=(-1)n ·(log 22n -7)2=(-1)n ·(n -7)2, 设c n =n -7,则b n =(-1)n ·(c n )2,6分T 2n =b 1+b 2+b 3+b 4+…+b 2n -1+b 2n =-(c 1)2+(c 2)2+[-(c 3)2]+(c 4)2+…+[-(c 2n -1)2]+(c 2n )2=(-c 1+c 2)(c 1+c 2)+(-c 3+c 4)·(c 3+c 4)+…+(-c 2n -1+c 2n )(c 2n -1+c 2n )=c 1+c 2+c 3+c 4+…+c 2n -1+c 2n =2n [-6+(2n -7)]2=n (2n -13)=2n 2-13n .12分18.(2019·四川百校模拟冲刺)(本小题满分12分)如图,在三棱柱A 1B 1C 1-ABC 中,D 是棱AB 的中点.(1)证明:BC 1∥平面A 1CD ;(2)若AA 1⊥平面ABC ,AB =2,BB 1=4,AC =BC ,E 是棱BB 1的中点,当二面角E -A 1C -D 的大小为π4时,求线段DC 的长度.解 (1)证明:连接AC 1交A 1C 于点F ,则F 为AC 1的中点,连接DF ,而D 是AB 的中点,则BC 1∥DF ,因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD , 所以BC 1∥平面A 1CD .4分(2)因为AA 1⊥平面ABC ,所以AA 1⊥CD ,又AC =BC ,E 是棱BB 1的中点, 所以DC ⊥AB ,所以DC ⊥平面ABB 1A 1,5分以D 为坐标原点,过D 作AB 的垂线为x 轴,DB 为y 轴,DC 为z 轴建立如图所示的空间直角坐标系Dxyz ,设DC 的长度为t ,则C (0,0,t ),E (2,1,0),A 1(4,-1,0),D (0,0,0),所以EA 1→=(2,-2,0),A 1C →=(-4,1,t ),DA 1→=(4,-1,0),DC →=(0,0,t ), 分别设平面EA 1C 与平面DA 1C 的法向量为m =(x 1,y 1,z 1),n =(x 2,y 2,z 2), 由⎩⎨⎧2x 1-2y 1=0,-4x 1+y 1+tz 1=0,令x 1=1,得m =⎝ ⎛⎭⎪⎫1,1,3t ,同理可得n =(1,4,0),9分 由cos 〈m ,n 〉=1+417×2+9t 2=22,解得t =3174, 所以线段DC 的长度为3174.12分19.(2019·湖南长沙统一检测)(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为13,左、右焦点分别为F 1,F 2,A 为椭圆C 上一点,AF 1与y 轴相交于点B ,|AB |=|F 2B |,|OB |=43.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A 1,A 2,过A 1,A 2分别作x 轴的垂线l 1,l 2,椭圆C 的一条切线l :y =kx +m (k ≠0)与l 1,l 2交于M ,N 两点,求证:∠MF 1N =∠MF 2N .解 (1)连接AF 2,由题意,得|AB |=|F 2B |=|F 1B |, 所以BO 为△F 1AF 2的中位线,又因为BO ⊥F 1F 2,所以AF 2⊥F 1F 2,且|AF 2|=2|BO |=b 2a =83, 又e =c a =13,a 2=b 2+c 2,得a 2=9,b 2=8, 故所求椭圆C 的标准方程为x 29+y 28=1.4分 (2)证明:由题意可知,l 1的方程为x =-3, l 2的方程为x =3.直线l 与直线l 1,l 2联立可得M (-3,-3k +m ),N (3,3k +m ),又F 1(-1,0), 所以F 1M →=(-2,-3k +m ),F 1N →=(4,3k +m ),所以F 1M →·F 1N →=-8+m 2-9k 2. 联立⎩⎪⎨⎪⎧x 29+y 28=1,y =kx +m ,得(9k 2+8)x 2+18kmx +9m 2-72=0.7分 因为直线l 与椭圆C 相切,所以Δ=(18km )2-4(9k 2+8)(9m 2-72)=0,化简,得m 2=9k 2+8. 所以F 1M →·F 1N →=-8+m 2-9k 2=0, 则F 1M →⊥F 1N →,故∠MF 1N 为定值π2.10分 同理F 2M →=(-4,-3k +m ),F 2N →=(2,3k +m ), 因为F 2M →·F 2N →=0,所以F 2M →⊥F 2N →,∠MF 2N =π2. 故∠MF 1N =∠MF 2N .12分20.(本小题满分12分)某快递公司收取快递费用的标准是:重量不超过1 kg 的包裹收费10元;重量超过1 kg 的包裹,除1 kg 收费10元之外,超过1 kg 的部分,每超出1 kg(不足1 kg ,按1 kg 计算)需再收5元.该公司将最近承揽的100件包裹的重量统计如下:公司对近(1)计算该公司未来3天内恰有2天揽件数在101~400之间的概率; (2)①估计该公司对每件包裹收取的快递费的平均值;②公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每天揽件不超过150件,日工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润更有利?解 (1)样本中包裹件数在101~400之间的天数为48,频率f =4860=45,故可估计概率为45.显然未来3天中,包裹件数在101~400之间的天数X 服从二项分布,即X ~B ⎝ ⎛⎭⎪⎫3,45, 故所求概率为C 23×⎝ ⎛⎭⎪⎫452×15=48125.4分(2)①样本中快递费用及包裹件数如下表:10×43+15×30+20×15+25×8+30×4100=15(元),故该公司对每件包裹收取的快递费的平均值可估计为15元.6分②根据题意及①,揽件数每增加1,可使前台工资和公司利润增加15×13=5(元),将题目中的天数转化为频率,得;8分 若裁员1人,则每天可揽件的上限为300件,公司每日揽件数情况如下:10分 因975<1000,故公司将前台工作人员裁员1人对提高公司利润不利.12分 21.(2019·江西南昌一模)(本小题满分12分)已知函数f (x )=e x (-x +ln x +a )(e 为自然对数的底数,a 为常数,且a ≤1).(1)判断函数f (x )在区间(1,e)内是否存在极值点,并说明理由; (2)若当a =ln 2时,f (x )<k (k ∈Z )恒成立,求整数k 的最小值. 解 (1)f ′(x )=e x ⎝ ⎛⎭⎪⎫ln x -x +1x +a -1,令g (x )=ln x -x +1x +a -1,x ∈(1,e), 则f ′(x )=e x g (x ),2分 g ′(x )=-x 2-x +1x 2<0恒成立, 所以g (x )在(1,e)上单调递减, 所以g (x )<g (1)=a -1≤0, 所以f ′(x )=0在(1,e)内无解.所以函数f (x )在区间(1,e)内无极值点.5分(2)当a =ln 2时,f (x )=e x (-x +ln x +ln 2),定义域为(0,+∞), f ′(x )=e x ⎝ ⎛⎭⎪⎫ln x -x +1x +ln 2-1, 令h (x )=ln x -x +1x +ln 2-1, 由(1)知,h (x )在(0,+∞)上单调递减, 又h ⎝ ⎛⎭⎪⎫12=12>0,h (1)=ln 2-1<0,所以存在x 1∈⎝ ⎛⎭⎪⎫12,1,使得h (x 1)=0,且当x ∈(0,x 1)时,h (x )>0,即f ′(x )>0,当x ∈(x 1,+∞)时,h (x )<0,即f ′(x )<0.所以f (x )在(0,x 1)上单调递增,在(x 1,+∞)上单调递减,所以f (x )max =f (x 1)=e x 1(-x 1+ln x 1+ln 2).8分由h (x 1)=0,得ln x 1-x 1+1x 1+ln 2-1=0,即ln x 1-x 1+ln 2=1-1x 1,所以f (x 1)=e x 1⎝ ⎛⎭⎪⎫1-1x 1,x 1∈⎝ ⎛⎭⎪⎫12,1,令r (x )=e x ⎝ ⎛⎭⎪⎫1-1x ,x ∈⎝ ⎛⎭⎪⎫12,1,则r ′(x )=e x ⎝ ⎛⎭⎪⎫1x 2-1x +1>0恒成立,所以r (x )在⎝ ⎛⎭⎪⎫12,1上单调递增,所以r ⎝ ⎛⎭⎪⎫12<r (x )<r (1)=0,所以f (x )max <0,又因为f ⎝ ⎛⎭⎪⎫12=e 12 ⎝ ⎛⎭⎪⎫-12-ln 2+ln 2=-e 2>-1,所以-1<f (x )max <0,所以若f (x )<k (k ∈Z )恒成立,则k 的最小值为0.12分 (二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的极坐标方程是ρ=2,以极点为原点,极轴为x 轴的正半轴,取相同的单位长度,建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =2-12t ,y =1+32t (t 为参数).(1)写出直线l 的普通方程与曲线C 的直角坐标方程;(2)设曲线C 经过伸缩变换⎩⎨⎧x ′=x ,y ′=2y 得到曲线C ′,设曲线C ′上任一点为M (x 0,y 0),求3x 0+12y 0的取值范围.解 (1)由直线l 的参数方程消去参数可得它的普通方程为3x +y -23-1=0,由ρ=2两端平方可得曲线C 的直角坐标方程为x 2+y 2=4.4分(2)曲线C 经过伸缩变换⎩⎨⎧x ′=x ,y ′=2y得到曲线C ′的方程为x ′2+y ′24=4,即x ′24+y ′216=1,则点M 的参数方程为⎩⎨⎧x 0=2cos θ,y 0=4sin θ(θ为参数),代入3x 0+12y 0,得3×2cos θ+12×4sin θ=2sin θ+23cos θ=4sin ⎝ ⎛⎭⎪⎫θ+π3,由三角函数的基本性质,知4sin ⎝ ⎛⎭⎪⎫θ+π3∈[-4,4].10分23.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x -a |-|3x +2|(a >0). (1)当a =1时,解不等式f (x )>x -1;(2)若关于x 的不等式f (x )>4有解,求a 的取值范围. 解 (1)当a =1时,即解不等式|x -1|-|3x +2|>x -1.当x >1时,不等式可化为-2x -3>x -1,即x <-23,与x >1矛盾,无解. 当-23≤x ≤1时,不等式可化为-4x -1>x -1, 即x <0,所以解得-23≤x <0.当x <-23时,不等式可化为2x +3>x -1,即x >-4,所以解得-4<x <-23.综上所述,所求不等式的解集为(-4,0).5分(2)f (x )=⎩⎪⎨⎪⎧2x +a +2,x <-23,-4x -2+a ,-23≤x ≤a ,-2x -a -2,x >a ,7分因为函数f (x )在⎝ ⎛⎭⎪⎫-∞,-23上单调递增,在⎝ ⎛⎭⎪⎫-23,+∞上单调递减,所以当x =-23时,f (x )max =23+a ,8分 不等式f (x )>4有解等价于f (x )max =23+a >4, 解得a >103.故a 的取值范围为⎝ ⎛⎭⎪⎫103,+∞.10分。
2020年高考_理科数学模拟试卷(含答案和解析)
【高仿咫卷•理科数学 笫1页(共4页)】2020年普通高等学校招生全国统一考试高仿密卷理科数学注意事项:L 本卷满分150分,考试时间120分钟.答题前,先将自己的姓名、准考证号 厦写在试题卷和答题卡上,并将准考证号条影码粘贴在答勉卡上的曲 定位JL 。
2.选择题的作答:每小题选出答案后•用2B 铅爸把答题卡上对应题目的答案 标号涂浜,写在试晦卷、草稿纭和答题卡上的非答题区域均无殁°3,非选释题的作答:用签字名直报答在卷麴卡上对应的答意区域内。
客在试 场卷、草稿纸和答邈卡上的非答邈.区域均无效。
4.选考题的作冬:先把所选题目的期号在笔超卡上指定的位置用2B 铅笔涂耍.至案写在答题卡上 对应的冬题区域内,写在试题卷、草稿纸和答题卡上的非答麴区域均无效. 5,考试结束后,请将本试四卷和答题于一并上交,一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要 求的61.已知复数2=~<i 为虚数单位八则|片十2| = £ 1 A.ZB.75D.HH IgGr-DV1卜廿二《衣|2炉一9父+4t0},则AD 《C RB>=A. (1,4)B. (y.4)C. (4J + /I^)D. (1,14-710)2 .已知集合A={3 .已知向量:%。
则“E| =㈤"是口一2川=12。
一加”的 A.充分不必要条件 C,充要条件B.必鬟不充分条件 口既不充分也不必要条件4 .我国古代名著仪孙子算经》中有如卜有趣的问题广今有三女,长女五日一归,中女四日一归•少女三日一归.问三女何n 相会之意思是「一家有三个女儿郴已出嫁.大女儿五天回一次娘家9二女儿四天回一 次娘家,小女儿三天回一次娘家,三个女儿从娘冢同一天走后•至少再隔多少天三人可以再次在娘家相 会?:三人再次在娘家相会■则要隔的天数可以为A. 90 天C. 270 天S.执行如图所示的程序框图,则输出S 的值为B. 180天B. 2 020 *2 019 2Q21 '2 020n 2 020I I ------- 276.已知等差数列{。
2020年高考数学(理科)模拟试题-共6套(含答案及解析)
2020年高考数学(理科)模拟试题-第2套2020年高考数学(理科)模 Nhomakorabea试题-第3套
2020年高考数学(理科)模拟试题-第4套
2020年高考数学(理科)模拟试题-第5套
2020年高考数学(理科)模拟试题-第6套
2020年高考数学(理科)模拟试题-第1套答案及解析
2020年高考数学(理科)模拟试题-第2套答案及解析
2020年高考数学(理科)模拟试题-第3套答案及解析
2020年高考数学(理科)模拟试题-第4套答案及解析
2020年高考数学(理科)模拟试题-第5套答案及解析
2020年高考数学(理科)模拟试题-第6套答案及解析
2020年高考理科数学模拟卷及答案详细解析
日平均睡眠时间分组
[4,5)
[5,6)
[6,7)
[7,8)
[8,9)
[9,10]
频数
13
28
49
56
42
12
(1)填写下面的列联表,并根据列联表判断是否有99%的把握认为给市20岁至60岁市民的日平均睡眠时间与年龄有关;
年龄在区间[20,40)
绝密★启用前
2020年高考理科数学模拟卷及答案解析
考试范围:xxx;考试时间:100分钟;命题人:xxx
题号
一
二
三
总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上
第Ⅰ卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一.选择题(共12小题)
1.已知集合A={x|x2﹣4x+3≤0},B={x∈N|﹣1<x<3},则A∩B中的元素个数为( )
A.1B.2C.3D.4
2.已知复数1+i是关于x的方程x2+mx+2的一个根,则实数m的值为( )
A.﹣2B.2C.﹣4D.4
3.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( )
(1)证明:平面ABB1A1⊥平面ACC1A1;
(2)求平面AB1C1与平面ADE所成角二面角的余弦值.
2020高考模拟考试试卷数学理科数学含答案
a为.y y⎪数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两分部.共 150 分,考试时间 120 分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若 z = 2 - bi (b ∈R )为纯虚数,则 b 的值为.2 + iA .- 1B .1C .- 2D .4 2. 在等差数列 { }中, a + a = 16, a = 1 ,则 a 的值是. n5739A .15B .30C . - 31D .643.给出下列命题:① 若平面 α 内的直线 l 垂直于平面 β 内的任意直线,则α ⊥ β ; ② 若平面 α 内的任一直线都平行于平面 β ,则 α // β ; ③ 若平面 α 垂直于平面 β ,直线 l 在平面内 α ,则 l ⊥ β ; ④ 若平面 α 平行于平面 β ,直线 l 在平面内 α ,则 l // β .其中正确命题的个数是.A .4B .3C .2D .14.已知函数 f ( x ) = ⎛ 1 ⎫ x -1 - 1 ,则 f ( x ) 的反函数 f -1 ( x ) 的图像大致 ⎝ 2 ⎭y y-1ox -1 ox -1 ox -1oxABCD5.定义集合 M 与 N 的运算: M * N = {x x ∈ M 或x ∈ N , 且x ∉ M I N } ,⎪4C . π - αD . 3π - α4 B . α +π则 (M * N ) * M = A . M I NB . M Y NC . MD . N6.已知 cos(α + π ) = 1 ,其中 α ∈ (0, π ) ,则 sin α 的值为.432A . 4 - 2B . 4 + 2C . 2 2 - 1D . 2 2 - 166 6 37.已 知 平 面 上 不 同 的 四 点 A 、 B 、 C 、 D , 若DB ·DC + CD ·DC + DA ·BC = 0 ,则三角形 ABC 一定是.A .直角或等腰三角形B .等腰三角形C .等腰三角形但不一定是直角三角形D .直角三角形但不一定是等腰三角形8.直线: x + y + 1 = 0 与直线: x sin α + y cos α - 2 = 0⎛ π < α < π ⎫ 的夹⎝ 4 2 ⎭角为.A . α - π4 49.设函数 f ( x ) 是定义在 R 上的以 5 为周期的奇函数,若f (2) > 1, f (3) = a 2 + a + 3,则 a 的取值范围是.a - 3A . (-∞,-2) Y (0,3)B . (-2,0) Y (3,+∞)C . (-∞,-2) Y (0,+∞)D . (-∞,0) Y (3,+∞)10. 若 log x = log x = log 21a2a系为.(a +1)x > 0 (0 < a < 1) ,则 x 、x 、x 的大小关3 1 2 3A . x < x < x32 1D . x < x < x231B . x < x < x2 13C . x < x < x1 3211. 点 P 是双曲线 y 2 - x 2 = 1 的上支上一点,F 1、F 2 分别为双曲线9 16的上、下焦点,则∆PF F 的内切圆圆心 M 的坐标一定适合的方程是.1 2A . y = -3B . y = 3C . x 2 + y 2 = 5D . y = 3x 2 - 212. 一个三棱椎的四个顶点均在直径为 6 的球面上,它的三条侧棱两两垂直,若其中一条⎨ ⎪5 - bx, x > 1.侧棱长是另一条侧棱长的 2 倍,则这三条侧棱长之和的最大值为.A .3B . 4 3C . 2 105D . 2 21555第Ⅱ卷(非选择题,共 90 分)二、填空题:本大题共四小题,每小题4 分,共 16 分,把答案填在题中横线上.⎧2 x , 13 .设函数 f ( x ) = ⎪a,x < 1,x = 1, 在 x = 1 处连续,则实数 a, b 的值分别⎩为.14.以椭圆 x 2 + y 2 = 1 的右焦点为焦点,左准线为准线的抛物线方程 5 4为.15.如图,路灯距地面 8m ,一个身高 1.6m过路A的人沿穿灯的直路以 84m/min 的速度行走,人影1.6O NC M B长度变化速率是m/min .16.在直三棱柱 ABC - A B C 中,有下列三个条件:1 1 1① A B ⊥ AC ;② A B ⊥ B C ;③ B C = A C .11111 11 1以其中的两个为条件,其余一个为结论,可以构成的真命题是(填上所有成立的真命题,用条件的序号表示即可).三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分 12 分)已知函数 f ( x ) = cos x( 3 sin x - cos x), x ∈ R . (Ⅰ)求函数 f ( x ) 的最大值;(Ⅱ)试说明该函数的图像经过怎样的平移和伸缩变换,可以得到y=sin x,x∈R的图像?18.(本小题满分12分)已知数列{a}的首项a=2,且2a=a+1(n∈N*).n1n+1n(Ⅰ)设b=na,求数列{b}的前n项和T;n n n n(Ⅱ)求使不等式a-a<10-9成立的最小正整数n.(已知n+1nlg2=0.3010)19.(本小题满分12分)甲、乙两人进行投篮比赛,每人投三次,规定:投中次数多者获胜,投中次数相同则成平局.若甲、乙两人的投篮命中的概率分别为2和1,且两人每次投篮是否命中是相互独立的.32(Ⅰ)求甲、乙成平局的概率;P(Ⅱ)求甲获胜的概率.D C 20.(本小题满分12分)A B如图,四棱锥P—ABCD中,底面ABCD为直角梯形,且AB//CD,AB⊥AD,AD=CD=2A B=2,侧面∆APD为等边三角形,且平面APD⊥平面ABCD.(Ⅰ)若M为PC上一动点,当M在何位置时,PC⊥平面MDB,并证明之;(Ⅱ)求直线AB到平面PDC的距离;(Ⅲ)若点G为∆PBC的重心,求二面角G-BD-C的大小.21.(本小题满分12分)y M B 1A 1o A2xB2如图,已知 A 1、A 2 为双曲线 C : x 2 - y 2 = 1(a > 0, b > 0) a 2b 2的两个顶点,过双曲线上一点 B 1 作 x 轴的垂线,交双 曲线于另一点 B 2,直线 A 1B 1、A 2B 2 相交于点 M . (Ⅰ)求点 M 的轨迹 E 的方程;(Ⅱ)若 P 、Q 分别为双曲线 C 与曲线 E 上不同于A 1、A 2 的动点,且 A P + A P = m ( A Q + A Q ) ( m ∈ R ,且 m > 1),1212设直线 A 1P 、A 2P 、A 1Q 、A 2Q 的斜率分别为 k 1、k 2、k 3、k 4, 试问 k 1+k 2+k 3+k 4 是否为定值?说明理由.22.(本小题满分 14 分)已知函数 f ( x ) = 1 x 3 + ax 2 - bx + 1 ( x ∈ R, a ,b 为实数)有极值,且3x = 1 在处的切线与直线 x - y + 1 = 0 平行.(Ⅰ)求实数 a 的取值范围;(Ⅱ)是否存在实数 a ,使得函数 f ( x ) 的极小值为 1,若存在,求出实数 a 的值;若不存在,请说明理由;(Ⅲ)设 a = 1 , f ( x ) 的导数为 f '( x ) ,令 g ( x ) = f '( x + 1) - 3, x ∈ (0,+∞) ,2 x求证:g n ( x ) - x n- 1≥ 2 n - 2 (n ∈ N * ) .x n=3sin2x-………………………………………(2=sin(2x-)-…………………………………………(46)有最大值1.此时函数f(x)的值最大,最大值为数学(理科)参考答案一、选择题:DABCD ADAAD BC二、填空题:13.a=2,b=3;14.y2=12(x+2);15.21;16.①②⇒③;①③⇒②;②③⇒①.三、解答题:17.(Ⅰ)f(x)=3sin x cos x-cos2x1+cos2x22分)π162分)当2x-π=2kπ+π,(k∈Z),即x=kπ+π,(k∈Z)时,623sin(2x-π1.……(6分)2(Ⅱ)将y=sin(2x-π)-1的图像依次进行如下变换:62①把函数y=sin(2x-π)-1的图像向上平移1个单位长度,得到622函数y=sin(2x-π6)的图像;…………………………………………(8分)②把得到的函数图像上各点横坐标伸长到原来的2倍(纵坐标不变),得到函数y=sin(x-π)6的图像;…………………………………………(10分)③将函数y=sin(x-π)的图像向左平移π个单位长度,就得到66函数y=sin x的图2 ∴ a = ⎪⎝2⎭⎝ 2 ⎭ ⎪ ∴T = 1· ⎪ + 2· ⎪ + 3· ⎪ + Λ + n · ⎪⎝2⎭ ⎝2 ⎭ ⎝ 2 ⎭ ⎝ 2 ⎭∴ T = 1· ⎪ + 2· ⎪ + Λ + (n - 1) ⎪ 1 n (n + 1) ………+ n · ⎪ + ·T = 4 - (4 + 2n) ⎪ + ⎝ 2 ⎭ - a = ⎪ < 10 -9⎝2⎭C ⨯ ⎪ ⨯ ⨯ C 2 ⨯ ⎪ =⎝3⎭ 3⎝ 2 ⎭像.…………………………………………(12 分)(注:如考生按向量进行变换,或改变变换顺序,只要正确,可给相应分数)18.(Ⅰ)由 2an +1= a + 1得 ann +1 - 1 = 1 2(a - 1) n可知数列{a - 1} 是以 a - 1 = 1 为首项,公比为 1 的等比数列. n 1n⎛ 1 ⎫ n -1+ 1 (n ∈ N * ) . …………………………………………(4分)从而有 b = na = n ·⎛ 1 ⎫n -1+ n .n nT = b + b +Λ + b n 1 2n n⎛ 1 ⎫ 0 ⎛ 1 ⎫1 ⎛ 1 ⎫ 2 ⎛ 1 ⎫ n -1 + (1 + 2 + Λ + n) ………①1 ⎛ 1 ⎫1 ⎛ 1 ⎫2 ⎛ 1 ⎫ n -12 n ⎝ 2 ⎭ ⎝ 2 ⎭ ⎝ 2 ⎭ ⎛ 1 ⎫ n⎝ 2 ⎭ 2 2②n ①⎛1⎫ n- ② 并 整 理 得n(n + 1) . ………………(8 分)2(Ⅱ) a n +1n⎛ 1 ⎫ n两边取常用对数得: n > 9 ≈ 29.9lg 2∴ 使 不 等 式 成 立 的 最 小 正 整 数30. ………………………………(12 分)19.(Ⅰ) 甲、乙各投中三次的概率:n 为⎛ 2 ⎫ 3 ⎛ 1 ⎫ 3 ⎪ ⨯ ⎪ =⎝ 3 ⎭ ⎝ 2 ⎭ 1 , …………………………………………(1 分) 27甲、 乙各投中两次的概率:23 3 ⎛ 2 ⎫ 2 1 ⎛ 1 ⎫ 3 1 , …………………………………( 2 61 ,…………………………( 3C 1 ⨯ ⎪ ⨯ ⎪ ⨯ C 1 ⨯ ⎪ = ⎝ 3 ⎭ ⎝ 3 ⎭ ⎝ 2 ⎭ 12⎪ ⨯ 1 - ⎪ =2 ,………( 9C ⨯ ⎪ ⨯ ⨯ ⎢C 0 ⨯ ⎪ + C 1 ⨯ ⎪ ⎥=⎝ 3 ⎭ 3 ⎢ 3 ⎝ 2 ⎭ ⎝ 2 ⎭ ⎥ 9C 1 ⨯ ⎪ ⨯ ⎪ ⨯ ⎪ = ⎝ 3 ⎭ ⎝ 3 ⎭ ⎝ 2 ⎭分)甲、 乙各投中一次的概率:⎛ 2 ⎫ ⎛ 1 ⎫ 2 ⎛ 1 ⎫ 333 分)甲、 乙两人均投三次,三次都不中的概率:⎛ 1 ⎫ 3 ⎛ 1 ⎫ 3⎪ ⨯ ⎪ =⎝ 3 ⎭ ⎝ 2 ⎭ 1 , …………………………………………(4 216分)∴甲、乙平局的概率是: 1 + 1 + 1 + 1 = 7 . ……………27 6 12 216 24(6 分)(Ⅱ) 甲投中三球获胜的概率:⎛ 2 ⎫ 3 ⎛ 1 ⎫ 7 , …………………………………⎝ 3 ⎭ ⎝ 8 ⎭ 27(8 分)甲投中两球获胜的概率:⎛ 2 ⎫ 2 1 ⎡ ⎛ 1 ⎫ 3 ⎛ 1 ⎫ 3 ⎤ 2 3 3分)甲投中一球获胜的概率:3⎛ 2 ⎫ ⎛ 1 ⎫ 2 ⎛ 1 ⎫ 31 , (36)(10 分)甲获胜的概率为: 7 + 2 + 1 = 55 .………………………27 9 36 108(12 分)20.(Ⅰ) 当 M 在中点时,PC ⊥ 平面 MDB ………………………………(1 分)连结 BM 、DM ,取 AD 的中点 N ,连结 PN 、NB . ∵ PN ⊥ AD 且面 P AD ⊥ 面 ABCD , ∴ PN ⊥ 面 ABCD . 在 Rt ∆PNB 中, PN = 3, NB = 2, ∴ PB = 5,CM =又 BC = 5 . ∴ BM ⊥ PC……………………………………(3分)又 PD = DC = 2, 又 DM I BM = M ,∴ DM ⊥ PC ,∴ PC ⊥ 面 MDB . ……………………(4分)(Ⅱ) AB // CD, C D ⊂ 面 PDC , AB ⊄ 面 PDC ,∴ AB // 面 PDC .∴AB 到面 PDC 的距离即 A 到面 PDC 的距离. ………………(6 分)Θ CD ⊥ DA, C D ⊥ PN , DA I PN = N , ∴ CD ⊥ 面 PAD ,又 DC ⊂ 面 PDC ,∴面 P AD ⊥ 面 PDC .作 AE ⊥ PD ,AE 就是 A 到面 PDC 的距离,∴ AE = 3 , 即 AB 到平面 PDC 的距离为 3 .………………(8 分)(Ⅲ)过 M 作 MF ⊥ BD 于 F ,连结 CF .Θ PC ⊥ 面 MBD ,∴ ∠MFC 就是二面角 G - BD - C 的平面角. ………………(10分)在 ∆BDC 中, BD = 5, DC = 2, BC = 5,∴ CF = 4 5, 又 CM = 2,5∴ s in ∠MFC = 10 . CF 4即二面角 G - BD - C 的大小是 arcsin 10 .4……………(12分)21.(Ⅰ) 设 B ( x , y ) 、 B ( x ,- y ) 且 y ≠ 0 ,由题意 A (-a,0) 、 A (a,0) ,1212则直线 A 1B 1 的方程为: y = x + a ………①y x + a0 0直线 A 2B 2 的方程为: - y = x - a ………②…………(2y x - a0 0分)x , 由①、②可得 ⎪⎪⎨ 0⎩a 2 b 2b 2 x + a x - a x 2 - a 2 a 2 y a 2 y∴O 、P 、Q 三点共线,………………………………yy⎧ a 2 x = ⎪ y = ay . ⎪ 0 x………………………………( 4分)a 4 a 2 y 2又点 B ( x , y ) 在双曲线上,所以有 x 2 - x 2 = 1 ,1 0 0 整理得 x2 + y 2 = 1 ,a 2b 2所以点 M 的轨迹 E 的方程为 x 2 + y 2 = 1( x ≠ 0 且 y ≠ 0 ).……a 2b 2(6 分)(Ⅱ) k 1+k 2+k 3+k 4 为定值.设 P ( x , y ) ,则 x 2 - a 2 = a 2 y 12 ,1 1 1分)则 k + k = y 1 + y 1 = 2 x 1 y 1 = 2b 2 · x 1 ……③ 1 2 1 1 1 1设 Q ( x , y ) ,则同理可得 k + k = - 2b 2 · x 2 ……④ ………(82 234 2设 O 为原点,则 A P + A P = 2OP , A Q + A Q = 2OQ .1212Θ A P + A P = m ( A Q + A Q)∴ O P = mOQ1 212(10 分)∴ x 1 = x 2 , 再由③、④可得,k 1+k 2+k 3+k 4 = 0 yy12∴k 1+k 2+k 3+k 4 为定值 0.………………………………(12 分)另解:由 A P + A P = m ( A Q + A Q ) ,1212得 ( x + a , y ) + ( x - a , y ) = m [( x + a , y ) + ( x - a , y )] 111122 2 2即 ( x , y ) = m ( x , y )∴ x1 = x2 ,112212再由③、④可得,k 1+k 2+k 3+k 4 = 022.(Ⅰ) ∵ f ( x ) = 1 x 3 + ax 2 - bx + 13xx 10 0 3∴ -a + a 2 + 2a = 4∴ a = - < -2 ,- 3 = x 2 + 1= x +∴ f '( x ) = x 2 + 2ax - b由题意 f '(1) = 1 + 2a - b = 1∴ b = 2a……①………………………………………(2 分)∵ f ( x ) 有极值,∴方程 f '( x ) = x 2 + 2ax - b = 0 有两个不等实根.∴ ∆ = 4a 2 + 4b > 0∴ a 2 + b > 0 ……②由①、②可得, a 2 + 2a > 0∴ a < -2 或a > 0 .故实数 a 的取值范围是 a ∈ (-∞,-2) Y (0,+∞)…………(4 分)(Ⅱ)存在 a = - 8 ,………………………………………(5 分)3由(Ⅰ)可知 f '( x ) = x 2 + 2ax - b ,令 f '( x ) = 0 ,∴ x = -a + a 2 + 2a , x = -a - a 2 + 2a12(-∞, x )( x , x )1 12x 2( x ,+∞)2f '( x )f ( x )+ - +单调增 极大值 单调减 极小值 单调增(7 分)(8 分)∴ x = x 时, f ( x ) 取极小值, ………………………………………2则 f ( x ) = 1 x 3 + ax 2 - 2ax + 1 = 1, ∴ x = 0 或 x 2 + 3ax - 6a = 0 , 2 2 2 2 2 2若 x = 0 ,即 - a + a 2 + 2a = 0 ,则 a = 0 (舍) ………………2若 x 2 + 3ax - 6a = 0 ,又 f '( x ) = 0 ,∴ x 2 + 2ax - 2a = 0 ,22222∴ ax - 4a = 0 ,Θ a ≠ 0∴ x = 4 , 2283∴存在实数 a = - 8 , 使 得 函 数 f ( x ) 的 极 小 值 为31.…………(9 分)(Ⅲ) Θ a = 1 , f '( x ) = x 2 + x - 12 ∴ f '( x + 1) = x 2 + 3x + 1 ,∴ f '( x + 1)1 , x x x∴ g ( x ) = x + ,x ∈ (0,+∞) .…………………………………( 10= x + ⎪ - x n - = C x ⎪+ C2 x n -2 ⎪ +Λ + C n -2 x 2 ⎪ + C n -1 x ⎪ x ⎭ ⎝ x ⎭ ⎝ x ⎭ ⎝ x ⎭ ⎝ 2 ⎢⎣ n ⎝ x n -2 ⎭ ⎝ ⎝ x n -2 + x n -2 ⎪⎥ 2 ⎣ x n -2 x n -4⎢1 x分)g n ( x ) - x n -1 ⎛ 1 ⎫ nx n ⎝ x ⎭ 1 x n⎛ 1 ⎫ ⎛ 1 ⎫ 2 ⎛ 1 ⎫ n -2 ⎛ 1 ⎫ n -1 1 n -1 n n n n= 1 ⎡ ⎛ 1 ⎫ ⎛ 1 ⎫ ⎛ 1 C 1 x n -2 + ⎪ + C 2 x n -4 + ⎪ + Λ + C n -1 n n ⎫⎤ ⎭⎦≥ 1 ⎡C 1 2 x n -2 · 1 + C 2 2 x n -4 · 1 + Λ + C n -1 2 n n n 1 x n -2 ⎤·x n -2 ⎥ ⎦= C 1 + C 2 + Λ + C n -1 = 2 n - 2n n n∴其中等号成立的条件为 x = 1 .…………………………………(13 分)∴ g n ( x ) - x n - 1 ≥ 2 n - 2 (n ∈ N * )…………………………( 14x n分)。
2020年高考全真模拟卷理科数学06(含解析)
2020年高考全真模拟卷(6)数学(理)(考试时间:120分钟 试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数z =21i+在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.已知集合{}230,{|17},M x x x N x x =->=≤≤,则()R C M N =I ( )A .{}37x x <≤B .{}37x x ≤≤C .{}13x x ≤≤D .{}13x x ≤<3.下列叙述中正确的是( )A .函数222()2f x x x =++的最小值是2 B .“04m <„”是“210mx mx ++…”的充要条件C .若命题2:,10p x R x x ∀∈-+≠,则2000:,10p x R x x ⌝∃∈-+=D .“已知,x y R ∈,若1xy <,则,x y 都不大于1”的逆否命题是真命题4.已知双曲线22221(0,0)x y a b a b-=>>的焦距为且两条渐近线互相垂直,则该双曲线的实轴长为( )A .2B .4C .6D .85.函数3x xe e y x x--=-的图像大致是( )A .B .C .D .6.一个几何体的三视图如右图所示,且其左视图是一个等边三角形,则这个几何体的体积为( )A B C D .(4π+7.设a =20.1,b =ln 12,c =log 32,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .b >a >cD .b >c >a8.执行如图所示的程序框图,则输出S 的值为( )A .213log 32+B .2log 3C .2D .39.设函数()3sin 2cos 244f x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,则( ) A .()y f x =在,04π⎛⎫-⎪⎝⎭上单调递增,其图象关于直线4x π=对称B .()y f x =在,04π⎛⎫-⎪⎝⎭上单调递增,其图象关于直线2x π=对称C .()y f x =在,04π⎛⎫-⎪⎝⎭上单调递减,其图象关于直线4x π=对称D .()y f x =在,04π⎛⎫-⎪⎝⎭上单调递减,其图象关于直线2x π=对称10.6(1)(1)ax x -+的展开式中,3x 项的系数为-10,则实数a 的值为( )A .23B .2C .2-D .23-11.已知球O 的半径为R ,,,A B C 三点在球O 的球面上,球心O 到平面ABC 的距离为12R ,2AB AC ==,120BAC ︒∠=,则球O 的表面积为( )A .169π B .163π C .649π D .643π 12.若存在0a >,使得函数2()6ln f x a x =与2()4g x x ax b =--的图象在这两个函数图象的公共点处的切线相同,则b 的最大值为( ) A .213e -B .216e -C .216e D .213e 二、填空题:本题共4小题,每小题5分,共20分.13.若,x y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2z x y =+的最大值为 .14.已知向量()()1,,2,4a k b =-=-v v ,若()3//a b a +v v v,则实数k = .15.已知抛物线C :22y px =(0p >)的焦点为F ,准线为l ,过F 的直线交抛物线C 于P ,Q 两点,交l 于点A ,若3PF FQ =u u u r u u u r ,则AQQF= . 16.在ABC ∆中,AB AC =,D 为AC 边上的点,且AC 3AD =,4BD =,则ABC ∆面积的最大值为 .三、解答题:(本大题共6小题,共计70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知数列{}n a 为等差数列,7210a a -=,且1621a a a ,,依次成等比数列. (I )求数列{}n a 的通项公式; (II )设11n n n b a a +=,数列{}n b 的前n 项和为n S ,若225n S =,求n 的值.18.(本小题满分12分)某职业学校有2000名学生,校服务部为了解学生在校的月消费情况,随机调查了100名学生,并将统计结果绘成直方图如图所示.(I)试估计该校学生在校月消费的平均数;(II)根据校服务部以往的经验,每个学生在校的月消费金额x(元)和服务部可获得利润y(元),满足关系式:10,200400,30,400800,50,8001200,xy xx≤<⎧⎪=≤<⎨⎪≤≤⎩根据以上抽样调查数据,将频率视为概率,回答下列问题:(i)将校服务部从一个学生的月消费中,可获得的利润记为ξ,求ξ的分布列及数学期望.(ii)若校服务部计划每月预留月利润的14,用于资助在校月消费低于400元的学生,估计受资助的学生每人每月可获得多少元?19.(本小题满分12分)如图,在多面体ABCDEF 中,四边形ABCD 为菱形,//AF DE ,AF AD ⊥,且平面BED ⊥平面ABCD .(I )求证:AF CD ⊥;(II )若60BAD ∠=o ,12AF AD ED ==,求二面角A FB E --的余弦值.20.(本小题满分12分)设直线l 与抛物线22x y =交于A ,B 两点,与椭圆22143x y +=交于C ,D 两点,直线OA ,OB ,OC ,OD (O 为坐标原点)的斜率分别为1k ,2k ,3k ,4k ,若OA OB ⊥.(I )是否存在实数t ,满足1234()k k t k k +=+,并说明理由; (II )求OCD ∆面积的最大值.21.(本小题满分12分) 设函数()ln 1af x x x =+-,()0a > (I )当130a =时,求函数()f x 的单调递增区间; (II )若()f x 在10,e ⎛⎫⎪⎝⎭内有极值点,当()10,1x ∈,()21,x ∈+∞,求证:()()21423f x f x e ->-.()2.71828e =⋯请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程(本小题满分10分)在直角坐标系xOy 中,曲线C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (I )求曲线C 的极坐标方程;(II )设,A B 为曲线C 上不同两点(均不与O 重合),且满足4AOB π∠=,求OAB ∆的最大面积.23.选修4-5:不等式选讲(本小题满分10分) 设函数()|2||2|f x x x =+-- (I )解不等式()2f x ≥;(II )当x ∈R ,01y <<时,证明:11|2||2|1x x y y+--≤+-.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数z =21i+在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D【解析】由题意得22(1)2(1)11(1)(1)2i i z i i i i --====-++-,∴复数21iz =+在复平面内对应的点的坐标为(1,1)-,位于第四象限,故选D .2.已知集合{}230,{|17},M x x x N x x =->=≤≤,则()R C M N =I ( )A .{}37x x <≤ B .{}37x x ≤≤C .{}13x x ≤≤D .{}13x x ≤<【答案】C【解析】由{}{2303M x x x x x =->=>或}0x <,∴{}03R C M x x =≤≤,又{|17}N x x =≤≤,(){}13R C M N x x ∴⋂=≤≤,故选C .3.下列叙述中正确的是( )A .函数222()2f x x x =++的最小值是2 B .“04m <„”是“210mx mx ++…”的充要条件C .若命题2:,10p x R x x ∀∈-+≠,则2000:,10p x R x x ⌝∃∈-+=D .“已知,x y R ∈,若1xy <,则,x y 都不大于1”的逆否命题是真命题 【答案】C【解析】对于A :()2222222222f x x x x x =+=++-++2≥中,22222x x +=+的等号不成立,A 错;当0m =时210mx mx ++≥也成立,B 错;当13x =,2y =时1xy <也成立,又原命题与逆否命题真假性一致,∴D 错,故选C .4.已知双曲线22221(0,0)x y a b a b-=>>的焦距为且两条渐近线互相垂直,则该双曲线的实轴长为( )A .2B .4C .6D .8【答案】B【解析】∵双曲线22221(0,0)x y a b a b -=>>的两条渐近线为b y x a=±,∵两条渐近线互相垂直,∴21b a ⎛⎫-=- ⎪⎝⎭,得a b =,∵双曲线焦距为,∴c =222c a b =+可知228a =,∴2a =,∴实轴长为24a =,故选B .5.函数3x xe e y x x--=-的图像大致是( )A .B .C .D .【答案】A【解析】令()3x xe ef x x x--=-,则()()f x f x -=,故函数为偶函数,图像关于y 轴对称,排除C 选项.由30x x -≠,解得0x ≠且1x ≠±.()0.50.510.500.1250.5e e f -=<-,排除D 选项.()10101101100010e ef -=>-,故可排除B 选项.故选A .6.一个几何体的三视图如右图所示,且其左视图是一个等边三角形,则这个几何体的体积为( )ABCD.(4π+【答案】B【解析】该几何体是圆锥的一半与一四棱锥的组合体.圆锥底半径为1,四棱锥的底面是边长为2的正方形,高均为B . 7.设a =20.1,b =ln 12,c =log 32,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .b >a >cD .b >c >a【答案】B【解析】由题意得a =20.1>1,b =ln 12<0,c =log 32∈(0,1),∴a >c >b ,故选B . 8.执行如图所示的程序框图,则输出S 的值为( )A .213log 32+ B .2log 3C .2D .3【答案】C【解析】模拟程序的运行,可得s =3,i=1;满足条件i 3≤,执行循环体s =3+log i=2;满足条件i 3≤,执行循环体s =3+log +log ,i=3;满足条件i 3≤,执行循环体,s =3+log +4log log +=,i=4;不满足条件i 3≤,退出循环,输出s 的值为s =242log =;故选C . 9.设函数()3sin 2cos 244f x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,则( ) A .()y f x =在,04π⎛⎫-⎪⎝⎭上单调递增,其图象关于直线4x π=对称B .()y f x =在,04π⎛⎫-⎪⎝⎭上单调递增,其图象关于直线2x π=对称C .()y f x =在,04π⎛⎫-⎪⎝⎭上单调递减,其图象关于直线4x π=对称D .()y f x =在,04π⎛⎫-⎪⎝⎭上单调递减,其图象关于直线2x π=对称【答案】B【解析】∵()3sin 2cos 2244f x x x x ππ⎛⎫⎛⎫=++-= ⎪ ⎪⎝⎭⎝⎭, 由222,πππ-+≤≤∈k x k k Z 得,2πππ-+≤≤∈k x k k Z ,由222,k x k k Z πππ≤≤+∈得,2πππ≤≤+∈k x k k Z ,即()y f x =的单调递增区间为,,2πππ⎡⎤-+∈⎢⎥⎣⎦k k k Z ;单调递减区间为,,2πππ⎡⎤+∈⎢⎥⎣⎦k k k Z ;∴()y f x =在,04π⎛⎫-⎪⎝⎭上单调递增;由2,π=∈x k k Z 得,2k x k Z π=∈;即函数()y f x =的对称轴为:,2k x k Z π=∈;因此其图象关于直线2x π=对称,故选B .10.6(1)(1)ax x -+的展开式中,3x 项的系数为-10,则实数a 的值为( ) A .23B .2C .2-D .23-【答案】B【解析】6(1)x +展开式的通项公式为16r r r T C x +=,分别令2,3x x ==,可求得2x 的系数为2615C =,3x 的系数为3620C =,故6(1)(1)ax x -+的展开式中,3x 项的系数为1201510a ⨯-=-,解得2a =,故选B .11.已知球O 的半径为R ,,,A B C 三点在球O 的球面上,球心O 到平面ABC 的距离为12R ,2AB AC ==,120BAC ︒∠=,则球O 的表面积为( )A .169π B .163π C .649π D .643π 【答案】D【解析】在ABC V 中,2120AB AC BAC ==∠=︒Q ,,BC ∴==正弦定理可得平面ABC 截球所得圆的半径(即ABC V 的外接圆半径),2r ==,又∵球心到平面ABC 的距离12d R =, ∴球的O半径2163R R =∴=,故球O 的表面积26443S R ππ==, 故选D . 12.若存在0a >,使得函数2()6ln f x a x =与2()4g x x ax b =--的图象在这两个函数图象的公共点处的切线相同,则b 的最大值为( ) A .213e-B .216e-C .216eD .213e【答案】D【解析】设曲线()y f x =与()y g x =的公共点为()00,x y ,∵26(),a f x x'=()24g x x a '=-,∴200624a x a x -=,则220230x ax a --=,解得0x a =-或3a , 又00x >,且0a >,则03x a =.∵()()00f x g x =,∴2200046ln x ax b a x --=,2236ln 3b a a a =--(0)a >.设()h a b =,∴()12(1ln3)h a a a '=-+,令()0h a '=,得13ea =. ∴当103e a <<时,()0'>h a ;当13e a >时,()0h a '<,∴b 的最大值为2113e 3eh ⎛⎫= ⎪⎝⎭,故选D . 二、填空题:本题共4小题,每小题5分,共20分.13.若,x y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2z x y =+的最大值为 .【答案】4【解析】当直线z =2x +y 经过直线2x -y =0与直线x +y =3的交点(1,2)时,z 取最大值2×1+2=4.14.已知向量()()1,,2,4a k b =-=-v v ,若()3//a b a +v v v,则实数k = .【答案】2.【解析】由题意,得()()()331,2,45,34a b k k +=-+-=--r r,∵()3//a b a +r r r ,∴()()13450k k ⨯----=,解得2k =,故答案为:2.15.已知抛物线C :22y px =(0p >)的焦点为F ,准线为l ,过F 的直线交抛物线C 于P ,Q 两点,交l 于点A ,若3PF FQ =u u u r u u u r ,则AQQF= .【答案】2【解析】过P ,Q 分别作PM ,QN 垂直准线l 于,M N ,如图,3PF FQ =u u u r u u u rQ ,1||||4QF PQ ∴=,由抛物线定义知,||||,||||PM PF QF QN ==,||3||PM QN ∴=,//PM QN Q ,||||1||||3AQ QN AP PM ∴==, 11||||4||2||22AQ QP QF QF ∴==⨯=,2AQ QF ∴=,故答案为:2.16.在ABC ∆中,AB AC =,D 为AC 边上的点,且AC 3AD =,4BD =,则ABC ∆面积的最大值为 . 【答案】9【解析】∵AC 3AD =,∴3ABC ABD S S ∆∆=,设AD x =,则3AB x =,由343x x x x +>>-得12x <<,222291658cos 233x x x A x x x +--==⋅⋅,sin A ==11sin 322ABDS AB AD A x ∆=⋅=⋅⋅==,∵12x <<,∴252x =时,ABD S ∆取得最大值3=,∴ABC S ∆最大值为9,故答案为:9. 三、解答题:(本大题共6小题,共计70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)已知数列{}n a 为等差数列,7210a a -=,且1621a a a ,,依次成等比数列. (I )求数列{}n a 的通项公式; (II )设11n n n b a a +=,数列{}n b 的前n 项和为n S ,若225n S =,求n 的值. 【解析】(I )设数列{a n }为公差为d 的等差数列,a 7﹣a 2=10,即5d =10,即d =2, a 1,a 6,a 21依次成等比数列,可得a 62=a 1a 21,即(a 1+10)2=a 1(a 1+40),解得a 1=5, 则a n =5+2(n ﹣1)=2n +3. (II )b n ()()111123252n n a a n n +===++(112325n n -++), 即有前n 项和为S n 12=(11111157792325n n -+-++-++L )12=(11525n -+)()525n n =+, 由S n 225=,可得5n =4n +10,解得n =10. 18.(本小题满分12分)某职业学校有2000名学生,校服务部为了解学生在校的月消费情况,随机调查了100名学生,并将统计结果绘成直方图如图所示.(I )试估计该校学生在校月消费的平均数;(II )根据校服务部以往的经验,每个学生在校的月消费金额x (元)和服务部可获得利润y (元),满足关系式:10,200400,30,400800,50,8001200,x y x x ≤<⎧⎪=≤<⎨⎪≤≤⎩根据以上抽样调查数据,将频率视为概率,回答下列问题:(i )将校服务部从一个学生的月消费中,可获得的利润记为ξ,求ξ的分布列及数学期望. (ii )若校服务部计划每月预留月利润的14,用于资助在校月消费低于400元的学生,估计受资助的学生每人每月可获得多少元?【解析】(I )学生月消费的平均数113(300500700400010001000x =⨯+⨯+⨯ 119001100)20068020004000+⨯+⨯⨯=. (II )(i )月消费值落入区间[)200,400、[)400,800、[]800,1200的频率分别为0.05、0.80、0.15, 因此()100.05P ξ==,()300.80P ξ==,()500.15P ξ==, 即ξ的分布列为ξ的数学期望值()100.05300.80500.1532E ξ=⨯+⨯+⨯=.(ii )服务部的月利润为32200064000⨯=(元),受资助学生人数为20000.05100⨯=, 每个受资助学生每月可获得1640001001604⨯÷=(元). 19.(本小题满分12分)如图,在多面体ABCDEF 中,四边形ABCD 为菱形,//AF DE ,AF AD ⊥,且平面BED ⊥平面ABCD .(I )求证:AF CD ⊥;(II )若60BAD ∠=o ,12AF AD ED ==,求二面角A FB E --的余弦值. 【解析】(I )证明:连接AC ,由四边形ABCD 为菱形可知AC BD ⊥,∵平面BED ⊥平面ABCD ,且交线为BD ,∴AC ⊥平面BED ,∴AC ED ⊥, 又//AF DE ,∴AF AC ⊥,∵,AF AD AC AD A ⊥⋂=,∴AF ⊥平面ABCD ,∵CD ⊂平面ABCD ,∴AF CD ⊥. (II )解:设AC BD O ⋂=,过点O 作DE 的平行线OG ,由(I )可知,,OA OB OG 两两互相垂直, 则可建立如图所示的空间直角坐标系O xyz -,设()1202AF AD ED a a ===>,则)())(),0,0,0,,0,,0,2,0,,4A B a F a E a a -,∴()()()),,0,0,0,2,0,2,4,,,2AB a AF a BE a a BF a a ===-=-u u u v u u u v u u u v u u u v,设平面ABF 的法向量为(),,m x y z v=,则·0·0m AB m AF ⎧=⎨=⎩u u u v v u u u v v ,即020y z ⎧+=⎪⎨=⎪⎩,取y =则()m =v 为平面ABF 的一个法向量,同理可得()0,2,1n =v为平面FBE的一个法向量,则cos ,5m n ==, 又二面角A FB E --的平面角为钝角,则其余弦值为.20.(本小题满分12分)设直线l 与抛物线22x y =交于A ,B 两点,与椭圆22143x y +=交于C ,D 两点,直线OA ,OB ,OC ,OD (O 为坐标原点)的斜率分别为1k ,2k ,3k ,4k ,若OA OB ⊥.(I )是否存在实数t ,满足1234()k k t k k +=+,并说明理由; (II )求OCD ∆面积的最大值.【解析】设直线l 方程为y kx b =+,()11,A x y ,()22,B x y ,()33,C x y ,()44,D x y ,联立y kx b =+和22x y =,得2220x kx b --=,则122x x k +=,122x x b =-,21480k b ∆=+>.由OA OB ⊥,∴12120x x y y +=,得2b =.联立2y kx =+和223412x y +=,得()22341640kxkx +++=,∴3421634k x x k +=-+,342434x x k =+.由22192480k ∆=->,得214k >. (I )∵121212y y k k k x x +=+=,3434346y y k k k x x +=+=-,∴123416k k k k +=-+.(II)根据弦长公式34CD x =-,得:CD =.根据点O 到直线CD的距离公式,得d =,∴21234OCDS CD d k∆=⋅=+0t =>,则24OCD S t ∆=≤+,∴当2t =,即5k =±时,OCD S ∆21.(本小题满分12分) 设函数()ln 1af x x x =+-,()0a > (I )当130a =时,求函数()f x 的单调递增区间; (II )若()f x 在10,e ⎛⎫⎪⎝⎭内有极值点,当()10,1x ∈,()21,x ∈+∞,求证:()()21423f x f x e ->-.()2.71828e =⋯【解析】(I )函数()f x 的定义域为()()0,11,+∞U ,当130a =时,()()25665'1x x f x x x ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭=-, 令()'0f x >,得:65x >或56x <,∴函数单调增区间为:50,6⎛⎫ ⎪⎝⎭,6,5⎛⎫+∞ ⎪⎝⎭. (II )证明:()()()()222211'11x a x af x x x x x -++=-=--, 令()()()()2210g x x a x x m x n =-++=--=,∴2m n a +=+,1mn =,若()f x 在10,e ⎛⎫ ⎪⎝⎭内有极值点,不妨设10m e<<,则1n e m =>,且122a m n e e =+->+-, 由()'0f x >得:0x m <<或x n >;由()'0f x <得:1m x <<或1x n <<, ∴()f x 在()0,m 递增,(),1m 递减;()1,n 递减,(),n +∞递增,当()10,1x ∈时,()()1ln 1af x f m m m ≤=+-; 当()21,x ∈+∞时,()()2ln 1af x f n n ≥=+-,∴()()()()2111ln ln 2ln 1111a a f x f x f n f m n m n a n m n m ⎛⎫-≥-=+--=+- ⎪----⎝⎭12ln n n n =+-,n e >.设()12ln F n n n n =+-,n e >,则()222'10F n n n =++>,∴()F n 是增函数,∴()()12F n F e e e>=+-. 又()()23131411031032203333e e e e e e e e e e e ----+-⎛⎫+---=--+==> ⎪⎝⎭,∴()()21423f x f x e ->-.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程(本小题满分10分)在直角坐标系xOy 中,曲线C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (I )求曲线C 的极坐标方程;(II )设,A B 为曲线C 上不同两点(均不与O 重合),且满足4AOB π∠=,求OAB ∆的最大面积.【解析】(I )设曲线C 上任意点的极坐标为(,)ρθ,由题意,曲线C 的普通方程为22(2)4x y +-=,即2240x y y +-=,则24sin ρρθ=,故曲线C 的极坐标方程为4sin ρθ=.(II )设1(,)A ρθ,则2(,)4B πρθ+,故3(0,)4πθ∈, ∵点,A B 在曲线C 上,则14sin ρθ=,24sin()4πρθ=+,1sin 2AOB S OA OB AOB ∆∴=∠ ()23sin 4sin sin cos 2sin 22cos 22220,444θθθθθθθθθ⎛⎫πππ⎛⎫⎛⎫⎛⎫=+=+=-+=-+∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故38πθ=时,OAB ∆取到最大面积为2. 23.选修4-5:不等式选讲(本小题满分10分) 设函数()|2||2|f x x x =+-- (I )解不等式()2f x ≥;(II )当x ∈R ,01y <<时,证明:11|2||2|1x x y y+--≤+-. 【解析】(I )由已知可得:()4,22,224,2x f x x x x ≥⎧⎪=-<<⎨⎪-≤-⎩,当2x ≥时,42>成立;当22x -<<时,22x ≥,即1x ≥,则12x ≤<. ∴()2f x ≥的解集为{|1}x x ≥. (II )由(I )知,224x x +--≤,由于01y <<,则()1111112224111y yy y y y y y y y⎛⎫-⎡⎤+=++-=++≥+= ⎪⎣⎦---⎝⎭,当且仅当1=1y y y y --,即12y =时取等号,则有11221x x y y +--≤+-.。
2020年高考理科数学模拟试卷(含答案解析)
2020年高考理科数学模拟试卷一、选择题1.已知实数a,b满足(a+bi)•(1+i)=4i,其中i是虚数单位,若z=a+bi﹣4,则在复平面内,复数z所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A={x|5x2+x﹣4<0},B=,则A∩(∁R B)=()A.B.C.D.3.已知实数a,b满足,则()A.B.log2a>log2bC.D.sin a>sin b4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.B.C.D.5.下列函数中,既是奇函数,又在(1,+∞)上单调递减的是()A.f(x)=x B.C.D.f(x)=x3﹣6x 6.已知正方形ABCD内接于圆O,点E是AD的中点,点F是BC边上靠近B的四等分点,则往圆O内投掷一点,该点落在△CEF内的概率为()A.B.C.D.7.伟大的法国数学家笛卡儿(Descartes1596~1650)创立了直角坐标系.他用平面上的一点到两条固定直线的距离来确定这个点的位置,用坐标来描述空间上的点,因此直角坐标系又被称为“笛卡尔系”;直角坐标系的引入,将诸多的几何学的问题归结成代数形式的问题,大大降低了问题的难度,而直角坐标系,在平面向量中也有着重要的作用;已知直角梯形ABCD中,AB∥CD,∠BAD=90°,∠BCD=60°,E是线段AD上靠近A的三等分点,F是线段DC的中点,若,则=()A.B.C.D.8.已知函数f(x)=4sin x cos x+4sin x﹣2,则下列说法错误的是()A.函数f(x)的周期为B.函数f(x)的一条对称轴为x=﹣C.函数f(x)在[﹣,﹣π]上单调递增D.函数f(x)的最小值为﹣49.已知函数f(x)的图象如图所示,则f(x)的解析式可能是()A.B.C.D.10.执行如图所示的程序框图,若输出的S的值为365,则判断框中可以填()A.i>4B.i>5C.i>6D.i>711.过双曲线E:的右顶点A作斜率为﹣1的直线,该直线与E 的渐近线交于B,C两点,若=,则双曲线E的渐近线方程为()A.y=±x B.y=±4x C.y=±x D.y=±2x12.已知数列{a n}满足.令T n=|a n+a n+1+…+a n+5|(n∈N*),则T n的最小值为()A.20B.15C.25D.30二、填空题(共4小题,每小题5分,共20分.将答案填在题中的横线上.)13.二项式的常数项为a,则=.14.已知点(x,y)满足,则的取值范围为.15.已知A,B两点分别为椭圆的左焦点与上顶点,C为椭圆上的动点,则△ABC面积的最大值为.16.已知∃x0∈R,使得不等式能成立,则实数m的取值范围为.三、解答题(共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,内角A,B,C的对边分别为a,b,c,且=a.(1)求A的大小;(2)若a=,b+c=3+,求△ABC的面积.18.在一次体质健康测试中,某辅导员随机抽取了12名学生的体质健康测试成绩做分析,得到这12名学生的测试成绩分别为87,87,98,86,78,86,88,52,86,90,65,72.(1)请绘制这12名学生体质健康测试成绩的茎叶图,并指出该组数据的中位数;(2)从抽取的12人中随机选取3人,记ξ表示成绩不低于76分的学生人数,求ξ的分布列及期望.19.已知三棱柱ABC﹣A1B1C1中,AA1=2AB=2AC=2,∠BAC=90°,∠BAA1=120°.(1)求证:AB⊥平面AB1C;(2)若B1C=AA1,求平面AB1C1与平面BCB1所成二面角的余弦值.20.已知椭圆O:+=1(a>b>0)过点(,﹣),A(x0,y0)(x0y0≠0),其上顶点到直线x+y+3=0的距离为2,过点A的直线l与x,y轴的交点分别为M、N,且=2.(1)证明:|MN|为定值;(2)如图所示,若A,C关于原点对称,B,D关于原点对称,且=λ,求四边形ABCD面积的最大值.21.已知函数f(x)=alnx﹣x,且函数f(x)在x=1处取到极值.(1)求曲线y=f(x)在(1,f(1))处的切线方程;(2)若函数,且函数g(x)有3个极值点x1,x2,x3(x1<x2<x3),证明:ln()>﹣.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-4坐标系与参数方程]22.在极坐标系中,曲线C的极坐标方程为ρ=4(2cosθ+sinθ).现以极点O为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为(t为参数).(1)求曲线C的直角坐标系方程和直线l的普通方程;(2)求曲线C关于直线l对称曲线的参数方程.[选修4-5不等式选讲]23.已知定义在R上的函数f(x)=|x|.(1)求f(x+1)+f(2x﹣4)的最小值M;(2)若a,b>0且a+2b=M,求+的最小值.参考答案一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知实数a,b满足(a+bi)•(1+i)=4i,其中i是虚数单位,若z=a+bi﹣4,则在复平面内,复数z所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】利用复数的运算法则、复数相等、几何意义即可得出.解:实数a,b满足(a+bi)•(1+i)=4i,其中i是虚数单位,∴a﹣b+(a+b)i=4i,可得a﹣b=0,a+b=4,解得a=b=2.若z=a+bi﹣4,=﹣2+2i,则在复平面内,复数z所对应的点(﹣2,2)位于第二象限.故选:B.2.已知集合A={x|5x2+x﹣4<0},B=,则A∩(∁R B)=()A.B.C.D.【分析】求出集合A,B的补集,再计算即可.解:A={x|5x2+x﹣4<0}=(﹣1,),B=,∁R B=(),则A∩(∁R B)=[),故选:B.3.已知实数a,b满足,则()A.B.log2a>log2bC.D.sin a>sin b【分析】首先利用指数函数的性质得到a,b的范围,然后逐一考查所给的不等式即可求得最终结果.解:由指数函数的单调性可得:a>b>0,则:,sin a与sin b的大小无法确定.故选:B.4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.B.C.D.【分析】由三视图可知:该几何体由三部分组成:最上面是一个圆锥,中间是一个圆柱,最下面是一个长方体.利用表面积计算公式即可得出.解:由三视图可知:该几何体由三部分组成:最上面是一个圆锥,中间是一个圆柱,最下面是一个长方体.∴该几何体的表面积=+2π×1×1+42×6﹣π×12=()π+96.故选:D.5.下列函数中,既是奇函数,又在(1,+∞)上单调递减的是()A.f(x)=x B.C.D.f(x)=x3﹣6x 【分析】根据题意,逐项判断即可.解:对于A,其在定义域上为增函数,不符合题意,舍去;对于B,其在定义域上为偶函数,不符合题意,舍去;对于C,其是奇函数,又在(1,+∞)上单调递减,符合题意;对于D,f(2)=﹣4,f(3)=33﹣18=9,其在(1,+∞)上不为减函数,不符合题意,舍去.故选:C.6.已知正方形ABCD内接于圆O,点E是AD的中点,点F是BC边上靠近B的四等分点,则往圆O内投掷一点,该点落在△CEF内的概率为()A.B.C.D.【分析】根据已知可分别求解圆的面积及△CEF内解:设正方形的边长为4,则正方形的面积为4×4=16的面积,然后根据几何概率求解公式即可.△CEF的面积为16﹣=7,因为圆的直径2R=即R=2,圆的面积为8π,根据几何概率的公式可得P=.故选:C.7.伟大的法国数学家笛卡儿(Descartes1596~1650)创立了直角坐标系.他用平面上的一点到两条固定直线的距离来确定这个点的位置,用坐标来描述空间上的点,因此直角坐标系又被称为“笛卡尔系”;直角坐标系的引入,将诸多的几何学的问题归结成代数形式的问题,大大降低了问题的难度,而直角坐标系,在平面向量中也有着重要的作用;已知直角梯形ABCD中,AB∥CD,∠BAD=90°,∠BCD=60°,E是线段AD上靠近A的三等分点,F是线段DC的中点,若,则=()A.B.C.D.【分析】过B作BM⊥DC于M,根据向量的加减的几何意义和向量的数量积公式计算即可.解:过B作BM⊥DC于M,故AB=DM=2,因为BM=AD=,∠BCD=60°,故CM=1,则DF=则=(+)(+)=•+•=××(﹣1)+2×=故选:A.8.已知函数f(x)=4sin x cos x+4sin x﹣2,则下列说法错误的是()A.函数f(x)的周期为B.函数f(x)的一条对称轴为x=﹣C.函数f(x)在[﹣,﹣π]上单调递增D.函数f(x)的最小值为﹣4【分析】化简函数f(x),根据三角函数的图象和性质,判断即可.解:f(x)=4sin x cos x+4sin x﹣2=2=2=4(=4sin(3x﹣),周期为,x=﹣时,sin(3x﹣)=﹣1,故A,B成立,最小值为﹣4,成立,故D成立,x∈[﹣,﹣π]时,3x﹣∈[﹣,]=[﹣4π+,﹣4π+],f(x)递减,故选:C.9.已知函数f(x)的图象如图所示,则f(x)的解析式可能是()A.B.C.D.【分析】由排除法求解即可.解:由图象可知,函数的定义域中不含0,故排除D;若,则当x→0时,f(x)→+∞,故排除C;若,则,不符合题意,故排除A;故选:B.10.执行如图所示的程序框图,若输出的S的值为365,则判断框中可以填()A.i>4B.i>5C.i>6D.i>7【分析】根据条件进行模拟运算,寻找成立的条件进行判断即可.解:模拟程序的运行,可得S=0,i=1执行循环体,S=302.5,i=2,不满足判断框内的条件,执行循环体,S=315,i=3不满足判断框内的条件,执行循环体,S=327.5,i=4不满足判断框内的条件,执行循环体,S=340,i=5不满足判断框内的条件,执行循环体,S=352.5,i=6不满足判断框内的条件,执行循环体,S=365,i=7此时,应该满足判断框内的条件,退出循环,输出S的值为365.则判断框内的件为i>6?,故选:C.11.过双曲线E:的右顶点A作斜率为﹣1的直线,该直线与E的渐近线交于B,C两点,若=,则双曲线E的渐近线方程为()A.y=±x B.y=±4x C.y=±x D.y=±2x【分析】分别表示出直线l和两个渐近线的交点,利用=,=3,求得a 和b的关系,可得双曲线E的渐近线方程.解:直线l:y=﹣x+a与渐近线l1:bx﹣ay=0交于B(,),l与渐近线l2:bx+ay=0交于C(,﹣),A(a,0),∵=,∴=3∴﹣a=3(﹣a),∴b=2a,∴双曲线E的渐近线方程为y=±2x.故选:D.12.已知数列{a n}满足.令T n=|a n+a n+1+…+a n+5|(n∈N*),则T n的最小值为()A.20B.15C.25D.30【分析】本题先设数列{a n}的前n项和为S n,则可计算出S n=﹣.然后应用公式a n=即可计算出数列{a n}的通项公式,可发现数列{a n}是一个等差数列.然后应用等差数列的性质化简整理T n=|a n+a n+1+…+a n+5|,再根据绝对值的特点可得T n的最小值.解:依题意,由,可得:=.设数列{a n}的前n项和为S n,则S n=﹣.当n=1时,a1=S1=﹣=35.当n≥2时,a n=S n﹣S n﹣1=﹣﹣[﹣]=40﹣5n.n=1也满足上式,故a n=40﹣5n,n∈N*.很明显数列{a n}是以35为首项,﹣5为公差的等差数列.∴T n=|a n+a n+1+a n+2+a n+3+a n+4+a n+5|=|5a n+2+a n+5|=|5[40﹣5(n+2)]+40﹣5(n+5)|=|165﹣30n|∴当n=5或n=6时,T n取得最小值T5=T6=15.故选:B.二、填空题(共4小题,每小题5分,共20分.将答案填在题中的横线上.)13.二项式的常数项为a,则=.【分析】利用二项式定理的通项公式可得a,再利用微积分基本定理及其性质即可得出.解:T k+1=(2x)6﹣k=26﹣k,令6﹣=0,解得k=4.∴T5==a.∴=dx=+dx=0+=.故答案为:.14.已知点(x,y)满足,则的取值范围为[﹣2,1].【分析】首先画出可行域,利用z的几何意义:区域内的点与(﹣1,1)连接直线的斜率,因此求最值即可.解:由已知得到平面区域如图:z=表示区域内的点与原点连接的直线斜率,由解得A(2,2),由解得B(1,﹣2)当与A(2,2)连接时直线斜率最大为1,与B(1,﹣2)连接时直线斜率最小为﹣2,所以的取值范围为[﹣2,1];故答案为:[﹣2,1].15.已知A,B两点分别为椭圆的左焦点与上顶点,C为椭圆上的动点,则△ABC面积的最大值为2().【分析】由椭圆的方程可得A,B的坐标,进而求出直线AB的方程,及|AB|的长度,当三角形ABC的面积最大时为过C点的直线与直线AB平行且与椭圆相切时面积最大,设过C的直线方程与椭圆联立,由判别式等于0可得参数的值求出两条平行线的距离的最大值,代入面积公式可得面积的最大值.解:由椭圆方程可得A(﹣2,0),B(0,2)所以直线AB的方程为:x﹣y+2=0,且:|AB|=2,由题意可得当过C的直线与直线AB平行且与椭圆相切时,两条平行线间的距离最大时,三角形ABC的面积最大,设过C点与AB平行的切线方程l为:x﹣y+m=0,直线l与直线AB的距离为d=,联立直线l与椭圆的方程可得:,整理可得:3y2﹣2my+m2﹣8=0,△=4m2﹣12(m2﹣8)=0,可得m2=12,解得m=,所以当m=﹣2时d==2+最大,这时S△ABC的最大值为:==2(),故答案为:2().16.已知∃x0∈R,使得不等式能成立,则实数m的取值范围为m <1或m>4e.【分析】由题意可得m(x0﹣1)>e x0(2x0﹣1),分别x0=1,x0>1,x0<1,运用参数分离和构造函数,求得导数和单调性、最值,结合能成立思想可得所求范围.解:不等式,即为m(x0﹣1)>e x0(2x0﹣1),若x0=1则不等式显然不成立;当x0>1时,可得m>,设f(x)=,f′(x)=,则f(x)在(1,)时递减,在(,+∞)递增,即有f(x)在x=处取得最小值4e,由题意可得m>4e,又当x0<1时,可得m<,设f(x)=,f′(x)=,则f(x)在(0,1)时递减,在(﹣∞,0)递增,即有f(x)在x=0处取得最大值1,由题意可得m<1,综上可得m的范围是m<1或m>4e,故答案为:m<1或m>4e.三、解答题(共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,内角A,B,C的对边分别为a,b,c,且=a.(1)求A的大小;(2)若a=,b+c=3+,求△ABC的面积.【分析】(1)由已知结合正弦定理及和差角公式进行化简可得B+C=2A,然后结合三角形的内角和定理即可求解;(2)由已知结合余弦定理可求bc,然后结合三角形的面积公式即可求解.解:(1)∵=a.∴(b+c)cos A=a cos B+a cos C,由正弦定理可得sin B cos A+sin C cos A=sin A cos B+sin A cos C,即sin(B﹣A)=sin(A﹣C),所以B﹣A=A﹣C,即B+C=2A,又因为A+B+C=π,故A=,(2)由余弦定理可得,==,∴bc=2,S△ABC===.18.在一次体质健康测试中,某辅导员随机抽取了12名学生的体质健康测试成绩做分析,得到这12名学生的测试成绩分别为87,87,98,86,78,86,88,52,86,90,65,72.(1)请绘制这12名学生体质健康测试成绩的茎叶图,并指出该组数据的中位数;(2)从抽取的12人中随机选取3人,记ξ表示成绩不低于76分的学生人数,求ξ的分布列及期望.【分析】(1)由这12名学生的测试成绩能绘制这12名学生体质健康测试成绩的茎叶图,并求出该组数据的中位数.(2)ξ的可能取值为0,1,2,3,分虽求出相应的概率,由此能求出ξ的分布列和数学期望E(ξ).解:(1)绘制这12名学生体质健康测试成绩的茎叶图,如下:该组数据的中位数为:=86.(2)抽取的12人中,成绩不低于76分的有9人,从抽取的12人中随机选取3人,记ξ表示成绩不低于76分的学生人数,则ξ的可能取值为0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==.P(ξ=3)==,∴ξ的分布列为:ξ0123P数学期望E(ξ)==.19.已知三棱柱ABC﹣A1B1C1中,AA1=2AB=2AC=2,∠BAC=90°,∠BAA1=120°.(1)求证:AB⊥平面AB1C;(2)若B1C=AA1,求平面AB1C1与平面BCB1所成二面角的余弦值.【分析】(1)求出B₁A⊥AB,又AB⊥AC,利用线面垂直的判定定理求出即可;(2)根据题意,以A为原点,以AB,AC,AB₁分别为x,y,z轴建立空间直角坐标系,求出平面AB1C1与平面BCB1的法向量,利用夹角公式求出即可.解:(1)在三角形BB₁A中,∠BAA1=120°,得∠B₁BA=60°,由AB₁2=22+12﹣2×1×2×cos60°=3,所以BB₁2=AB2+AB₁2,B₁A⊥AB又∠BAC=90°,AB⊥AC,AC∩AB₁=A,故AB⊥平面AB1C;(2)根据题意,以A为原点,以AB,AC,AB₁分别为x,y,z轴建立空间直角坐标系,A(0,0,0),B(1,0,0),C(0,1,0),B₁(0,0,),,,设平面AB1C1的法向量为,由,,得,设平面BCB1的法向量为,由,得,由cos<>=,故平面AB1C1与平面BCB1所成二面角的余弦值20.已知椭圆O:+=1(a>b>0)过点(,﹣),A(x0,y0)(x0y0≠0),其上顶点到直线x+y+3=0的距离为2,过点A的直线l与x,y轴的交点分别为M、N,且=2.(1)证明:|MN|为定值;(2)如图所示,若A,C关于原点对称,B,D关于原点对称,且=λ,求四边形ABCD面积的最大值.【分析】(1)其上顶点(0,b)到直线x+y+3=0的距离为2,利用点到直线的距离公式可得,根据椭圆O:+=1(a>b>0)过点(,﹣),解得a2.可得椭圆的标准方程为:=1.设经过点A的直线方程为:y﹣y0=k(x﹣x0),可得M,N(0,y0﹣kx0).利用=2,可得k=﹣.利用两点之间的距离公式可得|MN|.(2)设∠AOD=α.由=λ,可得2|OD|=3λ.由题意可得:S四边形ABCD==2×|OA|•sinα,即可得出.【解答】(1)证明:其上顶点(0,b)到直线x+y+3=0的距离为2,∴,解得b=1.又椭圆O:+=1(a>b>0)过点(,﹣),∴=1,解得a2=4.∴椭圆的标准方程为:=1.点A在椭圆上,∴=1.设经过点A的直线方程为:y﹣y0=k(x﹣x0),可得M,N(0,y0﹣kx0).∵=2,∴﹣x0=,即k=﹣.∴|MN|===3为定值.(2)解:设∠AOD=α.∵=λ,∴2|OD|=3λ.由题意可得:S四边形ABCD==2×|OA|•sinα≤3λ|OA|.21.已知函数f(x)=alnx﹣x,且函数f(x)在x=1处取到极值.(1)求曲线y=f(x)在(1,f(1))处的切线方程;(2)若函数,且函数g(x)有3个极值点x1,x2,x3(x1<x2<x3),证明:ln()>﹣.【分析】(1)求出原函数的导函数,由f′(1)=0求解a值,则曲线y=f(x)在(1,f(1))处的切线方程可求;(2)求出函数g(x)的解析式,由g′(x)=0,构造函数h(x)=2lnx+﹣1,根据零点存在定理,可知函数的一个零点x0∈(1,2),则x0>m,再根据导数和函数的极值的关系即可证明x=m是f(x)极大值点,h()是h(x)的最小值;由g(x)有三个极值点x1<x2<x3,得h()=2ln+1<0,得m<,则m的取值范围为(0,),当0<m<时,h(m)=2lnm<0,h(1)=m﹣1<0,得x2=m,即x1,x3是函数h(x)的两个零点.构造函数φ(x)=2xlnx﹣x,求导可得φ(x)在(0,)上递减,在(,+∞)上递增,把证明ln()>﹣转化为证明φ(x3)>φ(﹣x1)即可.解:(1)f(x)=alnx﹣x,f′(x)=,∵函数f(x)在x=1处取到极值,∴f′(1)=a﹣1=0,即a=1.则f(x)=lnx﹣x,f(1)=﹣1,∴曲线y=f(x)在(1,f(1))处的切线方程为y=﹣1;(2)g(x)=(0<m<1),函数的定义域为(0,+∞)且x≠1,∴g′(x)==,令h(x)=2lnx+,∴h′(x)=,h(x)在(0,)上单调递减,在(,+∞)上单调递增;∵h(1)=m﹣1<0,h(2)=2ln2+﹣1=ln+>0,∴h(x)在(1,2)内存在零点,设h(x0)=0,∴x0>m,当g′(x)>0时,即0<x<m,或x>x0,函数单调递增,当g′(x)<0时,即m<x<x0,函数单调递减,∴当x=m时,函数有极大值,∴当0<m<1时,x=m是f(x)极大值点;h()是h(x)的最小值;∵g(x)有三个极值点x1<x2<x3,∴h()=2ln+1<0,得m<.∴m的取值范围为(0,),当0<m<时,h(m)=2lnm<0,h(1)=m﹣1<0,∴x2=m;即x1,x3是函数h(x)的两个零点.∴,消去m得2x1lnx1﹣x1=2x3lnx3﹣x3;令φ(x)=2xlnx﹣x,φ′(x)=2lnx+1,φ′(x)的零点为x=,且x1<<x3.∴φ(x)在(0,)上递减,在(,+∞)上递增.要证明ln()>﹣,即证x1+x3>,等价于证明x3>﹣x1,即φ(x3)>φ(﹣x1).∵φ(x1)=φ(x3),∴即证φ(x1)>φ(﹣x1).构造函数F(x)=φ(x)﹣φ(﹣x),则F()=0;∴只要证明在(0,]上F(x)单调递减,函数φ(x)在(0,]单调递减;∵x增大时,﹣x减小,φ(﹣x)增大,﹣φ(﹣x)减小,∴﹣φ(﹣x)在(0,]上是减函数.∴φ(x)﹣φ(﹣x)在(0,]上是减函数.∴当0<a<时,x1+x3>.即ln()>﹣.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-4坐标系与参数方程]22.在极坐标系中,曲线C的极坐标方程为ρ=4(2cosθ+sinθ).现以极点O为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为(t为参数).(1)求曲线C的直角坐标系方程和直线l的普通方程;(2)求曲线C关于直线l对称曲线的参数方程.【分析】(1)由x=ρcosθ,y=ρsinθ,ρ2=x2+y2,可得曲线C的直角坐标方程;由代入法可得直线l的普通方程;(2)由圆关于直线的对称为半径相等的圆,由点关于直线对称的特点,解方程可得所求曲线的方程.解:(1)由x=ρcosθ,y=ρsinθ,ρ2=x2+y2,可得曲线C的极坐标方程ρ=4(2cosθ+sinθ)的直角坐标方程为x2+y2=8x+4y,即为(x﹣4)2+(y﹣2)2=20;直线l的参数方程为(t为参数),消去t,可得2x﹣y+4=0;(2)可设曲线C:(x﹣4)2+(y﹣2)2=20关于直线l:2x﹣y+4=0对称曲线为圆(x ﹣a)2+(y﹣b)2=20,由可得,则曲线C关于直线l对称曲线的直角坐标方程为(x+4)2+(y﹣6)2=20,其参数方程为(θ为参数).[选修4-5不等式选讲]23.已知定义在R上的函数f(x)=|x|.(1)求f(x+1)+f(2x﹣4)的最小值M;(2)若a,b>0且a+2b=M,求+的最小值.【分析】(1)先对函数化简,然后结合函数的单调性即可求解函数的最值,(2)结合基本不等式及二次函数的性质可求.解:(1)因为f(x)=|x|.所以f(x+1)+f(2x﹣4)=|x+1|+|2x﹣4|,当x≤﹣1时,f(x)=3﹣3x单调递减,当﹣1<x<2时,f(x)=﹣x+5单调递减,当x≥2时,f(x)=3x﹣3单调递增,故当x=2时,函数取得最小值M=3;(2)若a,b>0且a+2b=3,∴即ab,当且仅当a=2b即a=,b=时取等号,则+===,令t=,t,而y=的开口向上,对存在t=,在[)上单调递增,结合二次函数的性质可知,当t=,取得最小值.。
2020届高考数学(理)一轮必刷题 专题06 函数的奇偶性与周期性(解析版)
考点06 函数的奇偶性与周期性1.下列函数为奇函数的是( ) A .f (x )=x B .f (x )=e x C .f (x )=cos x D .f (x )=e x -e -x【答案】D【解析】对于A ,定义域不关于原点对称,故不是;对于B, f (-x )=e -x =1e x ≠-f (x ),故不是;对于C ,f (-x )=cos(-x )=cos x ≠-f (x ),故不是;对于D ,f (-x )=e -x -e x =-(e x -e -x )=-f (x ),是奇函数,故选D.2.设函数f (x )=x +sin x (x ∈R),则下列说法错误的是( ) A .f (x )是奇函数 B .f (x )在R 上单调递增 C .f (x )的值域为R D .f (x )是周期函数【答案】D【解析】因为f (-x )=-x +sin(-x )=-(x +sin x )=-f (x ),所以f (x )为奇函数,故A 正确;因为f ′(x )=1+cos x ≥0,所以函数f (x )在R 上单调递增,故B 正确;f (x )的值域为R ,故C 正确;f (x )不是周期函数,故D 错误.3.对于函数f (x )=a sin x +bx 3+cx +1(a ,b ,c ∈R),选取a ,b ,c 的一组值计算f (1),f (-1),所得出的正确结果可能是( ) A .2和1 B .2和0 C .2和-1 D .2和-2【答案】B【解析】设g (x )=a sin x +bx 3+cx ,显然g (x )为定义域上的奇函数,所以g (1)+g (-1)=0,所以f (1)+f (-1)=g (1)+g (-1)+2=2,只有B 选项中两个值的和为2.4.已知函数f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .-13B .13C .-12D .12【答案】B【解析】∵f (x )是偶函数,∴f (-x )=f (x ),∴b =0.又a -1=-2a ,∴a =13,∴a +b =13.故选B.5.已知y =f (x )是偶函数,且当0≤x ≤1时,f (x )=sin x ,而y =f (x +1)是奇函数,则a =f (-3.5),b =f (7),c =f (12)的大小关系是( ) A .c <b <a B .c <a <b C .a <c <b D .a <b <c【答案】B【解析】因为y =f (x )是偶函数,所以f (x )=f (-x ), 因为y =f (x +1)是奇函数,所以f (x )=-f (2-x ), 所以f (-x )=-f (2-x ),即f (x )=f (x +4). 所以函数f (x )的周期为4,又因为当0≤x ≤1时,f (x )=sin x ,所以函数在[0,1]上单调递增, 因为a =f (-3.5)=f (-3.5+4)=f (0.5); b =f (7)=f (7-8)=f (-1)=f (1), c =f (12)=f (12-12)=f (0), 又因为f (x )在[0,1]上为增函数, 所以f (0)<f (0.5)<f (1),即c <a <b .6.已知函数f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(-2,0)时,f (x )=2x 2,则f (2 019)=( ) A .-2 B .2 C .-98 D .98【答案】B【解析】由f (x +4)=f (x )知,函数f (x )的周期为4,则f (2 019)=f (504×4+3)=f (3), 又f (3)=f (-1),且f (-1)=2,∴f (2 019)=2.7.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是( ) A .(-∞,-1)∪(2,+∞) B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)【答案】C【解析】∵f (x )是奇函数,∴当x <0时,-x >0,∴f (-x )=(-x )2-2x ,∴-f (x )=x 2-2x ,∴f (x )=-x 2+2x .作出函数f (x )的大致图象如图中实线所示,结合图象可知f (x )是R 上的增函数,由f (2-a 2)>f (a ),得2-a 2>a ,解得-2<a <1.8.设e 是自然对数的底数,函数f (x )是周期为4的奇函数,且当0<x <2时,f (x )=-ln x ,则e f (73)的值为( )A.35 B .34C .43D .53【答案】D【解析】因为函数以4为周期,所以f ⎝⎛⎭⎫73=f ⎝⎛⎭⎫73-4=f ⎝⎛⎭⎫-53=-f ⎝⎛⎭⎫53=ln 53,所以e f (73)=eln 53=53.故选D. 9.对任意的实数x 都有f (x +2)-f (x )=2f (1),若y =f (x -1)的图象关于x =1对称,且f (0)=2,则f (2 019)+f (2 020)=( ) A .0 B .2 C .3 D .4【答案】B【解析】∵y =f (x -1)的图象关于x =1对称,则函数y =f (x )的图象关于x =0对称,即函数f (x )是偶函数. 令x =-1,则f (-1+2)-f (-1)=2f (1), 即f (1)-f (1)=2f (1)=0,即f (1)=0.则f (x +2)-f (x )=2f (1)=0,即f (x +2)=f (x ),即函数的周期是2,又f (0)=2,则f (2 019)+f (2 020)=f (1)+f (0)=0+2=2,故选B.10.已知偶函数f (x )的定义域为R ,若f (x -1)为奇函数,且f (2)=3,则f (5)+f (6)的值为( ) A .-3 B .-2 C .2 D .3【答案】C【解析】依题意f (x )在(0,+∞)上单调递减,且在R 上是奇函数,所以f (x )在(-∞,0)上单调递减,所以f (-2)=-f (2)=0,结合图象可知f (x )>0的解集为(-∞,-2)∪(0,2).故选C.11.已知函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≥0,-3x ,x <0,若a [f (a )-f (-a )]>0,则实数a 的取值范围是( )A .(1,+∞)B .(2,+∞)C .(-∞,-1)∪(1,+∞)D .(-∞,-2)∪(2,+∞) 【答案】B【解析】由题意,偶函数f (x )在[0,+∞)上是减函数,即不等式f (a )≥f (x )对任意x ∈[1,2]恒成立,即不等式f (|a |)≥f (|x |)对任意x ∈[1,2]恒成立,所以|a |≤|x |对任意x ∈[1,2]恒成立,所以|a |≤1,则-1≤a ≤1.故选B. 12.已知函数f (x )对任意x ∈R ,都有f (x +6)+f (x )=0,y =f (x -1)的图象关于点(1,0)对称,且f (2)=4,则f (2 014)=( ) A .0 B .-4 C .-8 D .-16【答案】B【解析】由题意可知,函数f (x )对任意x ∈R ,都有f (x +6)=-f (x ),∴f (x +12)=f [(x +6)+6]=-f (x +6)=f (x ),∴函数f (x )的周期T =12.把y =f (x -1)的图象向左平移1个单位得y =f (x -1+1)=f (x )的图象,关于点(0,0)对称,因此函数f (x )为奇函数,∴f (2 014)=f (167×12+10)=f (10)=f (10-12)=f (-2)=-f (2)=-4.故选B. 13.已知定义在R 上的函数f (x )满足f (x -3)=-f (x ),在区间⎣⎡⎦⎤0,32上是增函数,且函数y =f (x -3)为奇函数,则( )A .f (-31)<f (84)<f (13)B .f (84)<f (13)<f (-31)C .f (13)<f (84)<f (-31)D .f (-31)<f (13)<f (84) 【答案】A.【解析】根据题意,函数f (x )满足f (x -3)=-f (x ),则有f (x -6)=-f (x -3)=f (x ),则函数f (x )为周期为6的周期函数.若函数y =f (x -3)为奇函数,则f (x )的图象关于点(-3,0)成中心对称,则有f (x )=-f (-6-x ),又由函数的周期为6,则有f (x )=-f (-x ),函数f (x )为奇函数.又由函数在区间⎣⎡⎦⎤0,32上是增函数,则函数f (x )在⎣⎡⎦⎤-32,32上为增函数,f (84)=f (14×6+0)=f (0),f (-31)=f (-1-5×6)=f (-1),f (13)=f (1+2×6)=f (1),则有f (-1)<f (0)<f (1),即f (-31)<f (84)<f (13),故选A.14.已知函数f (x )是定义在R 上的周期为2的奇函数,且当0<x <1时,f (x )=9x ,则f ⎝⎛⎭⎫-52+f (2)=________. 【答案】-3【解析】∵函数f (x )是定义在R 上的周期为2的奇函数, ∴f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-12-2=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12. 又当0<x <1时,f (x )=9x ,∴f ⎝⎛⎭⎫-52=-912=-3. 又f (2)=f (0)=0,∴f ⎝⎛⎭⎫-52+f (2)=-3. 15.定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在[0,2]上为增函数,若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4的值为________. 【答案】-8【解析】因为f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,由f (x -4)=-f (x )可得f (x +2)=-f (x +6)=-f (x -2),因为f (x )是奇函数,所以f (x +2)=-f (x -2)=f (2-x ),所以f (x )的图象关于直线x =2对称,结合f (x )在[0,2]上为增函数,可得函数f (x )的大致图象如图,由图看出,四个交点中的左边两个交点的横坐标之和为2×(-6),另两个交点的横坐标之和为2×2,所以x 1+x 2+x 3+x 4=-8.16.若函数f (x )=ax 2+bx +1是定义在[-1-a,2a ]上的偶函数,则f (2a -b )=________. 【答案】5【解析】∵函数f (x )=ax 2+bx +1是定义在[-1-a,2a ]上的偶函数,∴-1-a +2a =0,即a =1. ∵f (x )=f (-x ),∴ax 2+bx +1=ax 2-bx +1,∴b =0,即f (x )=x 2+1. 则f (2a -b )=f (2)=5.17.已知函数f (x )在R 上为奇函数,且x >0时, f (x )=x +1,则当x <0时, f (x )=________. 【答案】--x -1【解析】∵f (x )为奇函数,且x >0时, f (x )=x +1,∴当x <0时,即-x >0,有 f (x )=-f (-x )=-(-x +1),即x <0时, f (x )=-(-x +1)=--x -1.18.已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x .若f (2-a 2)>f (a ),则实数a 的取值范围是________.【答案】(-2,1)【解析】∵f (x )是奇函数,∴当x <0时, f (x )=-x 2+2x .做出函数f (x )的大致图象如图所示,结合图象可知f (x )是R 上的增函数.由f (2-a 2)>f (a ),得2-a 2>a ,解得-2<a <1. 19.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.【答案】【解析】(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时, f (x )=x 2+2x =x 2+mx ,所以m =2. (2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].20.已知函数f (x )的定义域为D ={x |x ≠0},且满足对任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2). (1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2, 且f (x )在(0,+∞)上是增函数,求x 的取值范围. 【答案】(1) 0 (2) f (x )为偶函数 (3) (-15,1)∪(1,17)【解析】(1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0. (2)f (x )为偶函数.证明:令x 1=x 2=-1,有f (1)=f (-1)+f (-1), ∴f (-1)=12f (1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ),∴f (x )为偶函数. (3)依题意有f (4×4)=f (4)+f (4)=2,又由(2)知, f (x )是偶函数,∴f (x -1)<2⇔f (|x -1|)<f (16). ∵f (x )在(0,+∞)上是增函数, ∴0<|x -1|<16,解得-15<x <17且x ≠1. ∴x 的取值范围是(-15,1)∪(1,17).21.定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),f (x +2)=-f (x )且f (x )在[-1,0]上是增函数,给出下列几个命题:①f (x )是周期函数;②f (x )的图象关于x =1对称;③f (x )在[1,2]上是减函数;④f (2)=f (0),其中正确命题的序号是________(请把正确命题的序号全部写出来). 【答案】①②③④【解析】f (x +y )=f (x )+f (y )对任意x ,y ∈R 恒成立. 令x =y =0,所以f (0)=0.令x +y =0,所以y =-x , 所以f (0)=f (x )+f (-x ).所以f (-x )=-f (x ),所以f (x )为奇函数.因为f (x )在x ∈[-1,0]上为增函数,又f (x )为奇函数,所以f (x )在[0,1]上为增函数. 由f (x +2)=-f (x )⇒f (x +4)=-f (x +2)=f (x ), 所以周期T =4, 即f (x )为周期函数.f (x +2)=-f (x )⇒f (-x +2)=-f (-x ). 又因为f (x )为奇函数,所以f (2-x )=f (x ), 所以函数关于x =1对称.由f (x )在[0,1]上为增函数,又关于x =1对称,所以f(x)在[1,2]上为减函数.由f(x+2)=-f(x),令x=0得f(2)=-f(0)=f(0).。
2020届江苏高三高考数学全真模拟试卷06(原卷版)
2020届江苏高三高考数学全真模拟试卷06数学试题I一、填空题:本大题共14小题,每小题5分,共70分.1. 设集合M={-1,0,1},N={x|x2+x≤0},则M∩N=____________.2. 命题“∃x>1,使得x2≥2”的否定是“____________”.3. 已知i是虚数单位,复数z的共轭复数为z.若2z=z+2-3i,则z=____________.4. 现有4名学生A,B,C,D平均分乘两辆车,则“A,B两人恰好乘坐在同一辆车”的概率为________.5. 曲线y=e x在x=0处的切线方程是____________.6. 如图是一个输出一列数的算法流程图,则这列数的第三项是__________.7. 定义在R上的奇函数f(x),当x>0时,f(x)=2x-x2,则f(0)+f(-1)=______________.8. 已知等差数列{a n}的公差为d,若a1,a2,a3,a4,a5的方差为8,则d的值为____________.9. 如图,在长方体ABCDA1B1C1D1中,AB=AD=3 cm,AA1=2 cm,则三棱锥AB1D1D的体积为________ cm3.(第9题)10. 已知α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫π2,π,cos α=13,sin(α+β)=-35,则cos β=__________. 11. 已知函数f(x)=⎩⎪⎨⎪⎧1x ,x >1,x 3,-1≤x≤1.若关于x 的方程f(x)=k(x +1)有两个不同的实数根,则实数k 的取值范围是__________.12. 圆心在抛物线y =12x 2上,并且和该抛物线的准线及y 轴都相切的圆的标准方程为____________.13. 已知点P 是△ABC 内一点(不包括边界),且AP →=mAB →+nAC →,m ,n ∈R ,则(m -2)2+(n -2)2的取值范围是____________.14. 已知a +b =2,b >0,当12|a|+|a|b取最小值时,实数的a 值是____________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤. 15. (本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知bcos C +ccos B =2acos A. (1) 求A 的大小;(2) 若AB →·AC →=3,求△ABC 的面积.16.(本小题满分14分)如图,在四棱锥PABCD 中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,且PA =PD =22AD.若E ,F分别为PC ,BD 的中点.求证:(1) EF ∥平面PAD ; (2) EF ⊥平面PDC.17. (本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点P(3,1)在椭圆上,△PF 1F 2的面积为22,点Q 是PF 2的延长线与椭圆的交点. (1) ① 求椭圆C 的标准方程;② 若∠PQF 1=π3,求QF 1·QF 2的值;(2) 直线y =x +k 与椭圆C 相交于A ,B 两点.若以AB 为直径的圆经过坐标原点,求实数k 的值.18. (本小题满分16分)如图,某城市小区有一个矩形休闲广场,AB =20 m ,广场的一角是半径为16 m 的扇形BCE 绿化区域.为了使小区居民能够更好地在广场休闲放松,现决定在广场上安置两排休闲椅,其中一排是穿越广场的双人靠背直排椅MN(宽度不计),点M 在线段AD 上(不与端点重合),并且与曲线CE 相切;另一排为单人弧形椅沿曲线CN(宽度不计)摆放.已知双人靠背直排椅的造价每米为2a 元,单人弧形椅的造价每米为a 元,记锐角∠NBE =θ,总造价为W 元.(1) 试将W 表示为θ的函数W(θ),并写出cos θ的取值范围; (2) 如何选取点M 的位置,能使总造价W 最小.19. (本小题满分16分)在数列{a n }中,已知a 1=2,a n +1=3a n +2n -1. (1) 求证:数列{a n +n}为等比数列;(2) 记b n =a n +(1-λ)n ,且数列{b n }的前n 项和为T n .若T 3为数列{T n }中的最小项,求λ的取值范围.20. (本小题满分16分)已知函数f(x)=x -ln x ,g(x)=x 2-ax.(1) 求函数f(x)在区间[t ,t +1](t >0)上的最小值m(t);(2) 令h(x)=g(x)-f(x),A(x 1,h(x 1)),B(x 2,h(x 2))(x 1≠x 2)是函数h(x)图象上任意两点,且满足h (x 1)-h (x 2)x 1-x 2>1,求实数a 的取值范围;(3) 若存在x ∈(0,1],使f(x)≥a -g (x )x成立,求实数a 的最大值.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题........,并在相应的答题区域内作答............,若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修42:矩阵与变换](本小题满分10分)已知矩阵A =⎣⎢⎡⎦⎥⎤2 -21 -3,B =⎣⎢⎡⎦⎥⎤1 00 -1,设M =AB .(1) 求矩阵M ;(2) 求矩阵M 的特征值.B .[选修44:坐标系与参数方程](本小题满分10分)已知曲线C 的极坐标方程为ρ=2cos θ,直线l 的极坐标方程为ρsin ⎝⎛⎭⎫θ+π6=m.若直线l 与曲线C 有且只有一个公共点,求实数m 的值.C .[选修45:不等式选讲](本小题满分10分)解不等式:|x -1|+2|x|≤4x.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写 出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在底面为正方形的四棱锥PABCD 中,侧棱PD ⊥底面ABCD ,PD =DC ,点E 是线段PC 的中点.(1) 求异面直线AP 与BE 所成角的大小;(2) 若点F 在线段PB 上,使得二面角FDEB 的正弦值为33,求PFPB的值.23.(本小题满分10分)甲、乙两人轮流投篮,每人每次投一次篮,先投中者获胜.投篮进行到有人获胜或每人都已投球3次时结束.设甲每次投篮命中的概率为25,乙每次投篮命中的概率为23,且各次投篮互不影响.现由甲先投.(1) 求甲获胜的概率;(2) 求投篮结束时甲的投篮次数X 的分布列与期望.。
【备考2020】全国高考模拟考试数学试卷 (理科)6(含答案解析)
二〇二〇届全国高考模拟考试试卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的,共12题,满分60分。
1.已知双曲线2222:1x yCa b-=的左、右焦点分别为1F,2F,以12F F为直径的圆与双曲线的四个交点依次连线恰好构成一个正方形,则双曲线的离心率为().A.2B.22+C.2D.22+2.如图是求112122++的程序框图,图中空白框中应填入().A.A=12A+B.A=12A+C.A=112A+D.A=112A+3.设a∈Z,且0≤a<13,若512012+a能被13整除,则a=().A .0B .1C .11D .124.已知i 为虚数单位,,a b ∈R ,复数12ii a bi i+-=+-,则a bi -=( ). A .1255i -B .1255i +C .2155i -D .21i 55+5.已知数列{}n a 的通项公式2,,n a n n N =∈*则122334*********4455620142015.....a a a a a a a a a a a a a a a a ++++=( ).A .-16096B .-16104C .-16112D .-161206.在三棱锥S ABC -中,ABC ∆为正三角形,设二面角S AB C --,S BC A --,S CA B --的平面角的大小分别为,,,,2παβγαβγ⎛⎫≠ ⎪⎝⎭,则下面结论正确的是( ).A .111tan tan tan αβγ++的值可能是负数 B .32παβγ++<C .αβγπ++>D .111tan tan tan αβγ++的值恒为正数 7.函数()12sin f x x x π=--的所有零点之和等于( ). A .4 B .5 C .6 D .78.已知等比数列{}n a 的各项都为正数,当3n ≥时,242410nn a a -=,设数列{}lg n a 的前n 项和为n S ,1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则2020T 等于( ).A .20202021B .20192020C .20191010D .404020219.求由曲线y =2y x =-+及y 轴所围成的图形的面积错误..的为( ).A .4(2)x x dx -+⎰B .4xdx ⎰C .222(2)y y dy ---⎰D .022(4)y dy --⎰10.向量m ,n ,p 满足:2m n ==,2m n ⋅=-,1()()2m p n p m p n p -⋅-=-⋅-,则p 最大值为( ). A .2 B .2C .1D .411.设是直角坐标平面上的任意点集,定义.若,则称点集“关于运算*对称”.给定点集,,,其中“关于运算 * 对称”的点集个数为( ).A .B .C .D .12.古代数学名著《张丘建算经》中曾出现过高息借贷的题目:“今有举取他绢,重作券;要过限一日,息绢一尺;二日息二尺;如是息绢,日多一尺.今过限一百日,问息绢几何?”题目的意思是:债主拿欠债方的绢做抵押品,债务过期第一天要纳利息1尺绢,过期第二天利息是2尺,这样,每天利息比前一天增多1尺,若过期100天,欠债方共纳利息为( ). A .100尺B .4950尺C .5000尺D .5050尺二、填空题:本大题共4小题,每小题5分,共20分。
2020年高考理科数学模拟试题含答案及解析5套
2020年高考模拟试题(一)理科数学时间:120分钟 分值:150分注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a ,b 都是实数,那么“22a b>”是“22a b >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件2.抛物线22(0)x py p =>的焦点坐标为( )A .,02p ⎛⎫⎪⎝⎭B .1,08p ⎛⎫⎪⎝⎭C .0,2p ⎛⎫ ⎪⎝⎭D .10,8p ⎛⎫ ⎪⎝⎭3.十字路口来往的车辆,如果不允许掉头,则行车路线共有( ) A .24种B .16种C .12种D .10种4.设x ,y 满足约束条件36020 0,0x y x y x y ⎧⎪⎨⎪+⎩---≤≥≥≥,则目标函数2z x y =-+的最小值为( )A .4-B .2-C .0D .25.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(网格纸上小正方形的边长为1),则该“阳马”最长的棱长为( )A .5B .34C .41D .526. ()()()()sin ,00,xf x x x=∈-ππU 大致的图象是( ) A . B . C . D .7.函数()sin cos (0)f x x x ωωω=->在,22ππ⎛⎫- ⎪⎝⎭上单调递增,则ω的取值不可能为( ) A .14B .15C .12D .348.运行如图所示的程序框图,设输出数据构成的集合为A ,从集合A 中任取一个元素a ,则函数ay x =,()0,x ∈+∞是增函数的概率为( )A .35B .45C .34D .37开始输出y结束是否3x =-3x ≤22y x x=+1x x =+9.已知A ,B 是函数2xy =的图象上的相异两点,若点A ,B 到直线12y =的距离相等,则点A ,B 的横坐标之和的取值范围是( ) A .(),1-∞-B .(),2-∞-C .(),3-∞-D .(),4-∞-10.在四面体ABCD 中,若AB CD ==,2AC BD ==,AD BC ==体ABCD 的外接球的表面积为( ) A .2πB .4πC .6πD .8π11.设1x =是函数()()32121n n n f x a x a x a x n +++=--+∈N 的极值点,数列{}n a 满足11a =,22a =,21log n n b a +=,若[]x 表示不超过x 的最大整数,则122320182019201820182018b b b b b b ⎡⎤+++⎢⎥⎣⎦L =( ) A .2017B .2018C .2019D .202012.已知函数()()e exx af x a =+∈R 在区间[]0,1上单调递增,则实数a 的取值范围( ) A .()1,1- B .()1,-+∞ C .[]1,1-D .(]0,+∞第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.命题“00x ∃>,20020x mx +->”的否定是__________.14.在ABC △中,角B2π3C =,BC =,则AB =__________.15.抛物线24y x =的焦点为F ,过F 的直线与抛物线交于A ,B 两点,且满足4AFBF =,点O 为原点,则AOF △的面积为__________.16.已知函数()()2cos2cos 0222xxxf x ωωωω=+>的周期为2π3,当π03x ⎡⎤∈⎢⎥⎣⎦,时,函数()()g x f x m=+恰有两个不同的零点,则实数m 的取值范围是__________.三、解答题:共70分。
2020年高考数学模拟试题附参考答案解析(各省市模拟题汇编)(6)
求出直线 l 的方程;若不存在,请说明理由.
第Ⅰ卷
一、选择题:本大题共
12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符
合题目要求的.
1. [2019 ·金山中学 ] 已知集合 A x x 2 3x 4 0 , B x x 1 ,则 eR A B (
)
A.
B. 0,4
C. 1,4
D. 4,
2. [2019 ·湘钢一中 ] 已知 i 为虚数单位,若复数 1 ai 2 i 是纯虚数,则实数 a 等于(
为(
)
三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.( 12 分)[2019 ·顺义统考 ] 已知 an 是等差数列, bn 是等比数列, 且 b2 2 ,b5 16 ,a1 2b1 , a3 b4 . ( 1)求 bn 的通项公式; ( 2)设 cn an bn ,求数列 cn 的前 n 项和.
线方程为(
)
A. 3x 4 y 0
B. 3x 5y 0
C. 4 x 3 y 0
D. 5 x 4 y 0
7. [2019 ·天一大联考 ] 已知 f x A sin x
B A 0, 0,
π 的图象如图所示,则函数 2
f x 的对称中心可以为(
)
A. π,0 6
B. π,1 6
C. π,0 6
D. π,1 6
下表记录了我国在改革开放后某市 A, B,C, D, E 五个家庭在五个年份的恩格尔系数.
2
19.( 12 分) [2019 ·云南毕业 ] 在四棱锥 P ABCD 中,四边形 ABCD 为菱形,且 ABC 2π, M , 3
N 分别为棱 AP , CD 的中点. ( 1)求证: MN∥ 平面 PBC ; ( 2)若 PD 平面 ABCD , PB 2AB 2 ,求点 M 到平面 PBC 的距离.
2020届华大新高考联盟原创精准模拟考试(六)理科数学试卷
2020届华大新高考联盟原创精准模拟考试(六)理科数学试卷本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
7、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题(本题共12小题,每小题5分,共60分。
在每小题的四个选项中,只有一项是符合题目要求)1.已知全集{04}U x N x =∈≤≤,集合,,则=( )A .{0,4}B .{0,1,4}C . {1,4}D .{0,1}2.若i 为虚数单位,复数z 满足:(1)z i i +=,则( )A .2B .1C .D .23.向量在正方形网格中的位置如图所示.若向量与共线,则实数( )A .B .C .D .4.若双曲线22221(0,0)x y a b a b-=>>的一条渐近线与直线垂直,则该双曲线的离心率为( ) A .2B .C .D .5.如图的折线图是某公司2018年1月至12月份的收入与支出数据,若从7月至12月这6个月中任意选2个月的数据进行分析,则这2个月中至少有一个月利润(利润=收入-支出)不低于40万的概率为( ) A .15 B .25 C .35 D .456.已知tan 2,(0,)a απ=∈,则sin 2cos()2απα=+ ( )AB.CD.7、已知函数133,(1),()log ,(1),x x f x x x ⎧≤⎪=⎨>⎪⎩,则函数(1)y f x =-的大致图象是( )8.右图是某几何体的三视图,其中网格纸上小正方形的边长为1,则该几何体的体积为() A .12B .15C .403D .5039.执行如图所示的程序框图,若输入0,2m n ==,输出的 1.75x =,则空白判断框内应填的条件为( )A .1m n -<B .0.5m n -<C .0.2m n -<D .0.1m n -< 10.已知O 为坐标原点,抛物线2:8C y x =上一点A 到焦点F 的距离为4,若点P 为抛物线C 准线上的动点,则OP AP +的最小值为( ) A .B .8C .D .11、将函数πsin(2)6y x =+的图象向右平移π3个单位长度,再向上平移1个单位长度,得到B()g x 的图象.若12()()4g x g x =,且1x ,2[2π,2π]x ∈-,则122x x -的最大值为( )A .9π2B .7π2C .5π2D .3π212.已知A ,B ,C ,D 四点均在以点1O为球心的球面上,且AB AC AD ===,BC BD ==8=CD .若球2O 在球1O 内且与平面BCD 相切,则球2O 直径的最大值为( )A .1B .2C .4D .8 二、填空题(本题共4个小题,每小题5分,共20分) 13.8(1)(1)x x -+的展开式中,3x 的系数是_______.14.设函数x ax x x f 23ln )(2-+=,若1=x 是函数)(x f 是极大值点,则函数)(x f 的极小值为________15.若实数y x ,满足⎪⎩⎪⎨⎧-≥≤≤24kx y x x y 所表示的平面区域为Ω,若A (1,-2),B (3,0),C (2,-3)中有且仅有两个点在平面区域Ω内,则实数k 的取值范围是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届高考数学模拟考试试卷及答案(理科)(六)第I 卷 (选择题, 共60分)一、选择题(共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合{|24}x A x =≥,集合(){|lg 1}B x y x ==-,则A B ⋂=A. [)1,2B. (]1,2C. [)2,+∞D. [)1,+∞2.下列函数中,既是偶函数又在区间()0,1内单调递减的是A.2y x =B.cos y x =C.2x y =D.x y ln =3.设n S 是等差数列{}n a 的前n 项和,若311318,3a a S +==-,那么5a 等于A. 4B. 5C. 9D. 184.已知()οο15sin ,15cos =OA , ()οο75sin ,75cos =OB ,则=ABA. 2B. 3C. 2D. 15. 过原点且倾斜角为3π的直线被圆0422=-+y y x 所截得的弦长为 A. 3B. 2C. 6D. 326.设m l ,是两条不同的直线, βα,是两个不同的平面,给出下列条件, 其中能够推出l ∥m 的是 A. l ∥α,m ⊥β,α⊥β B. l ⊥α,m ⊥β,α∥β C. l ∥α,m ∥β,α∥βD. l ∥α,m ∥β,α⊥β7.函数()log 31a y x =-+(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny +-= 上,其中0,0>>n m ,则mn 的最大值为 A.161B. 81C.41D.21 8. 设n S 是数列{}n a 的前n 项和,若32-=n n a S ,则=n SA. 12+nB. 121-+nC. 323-⋅nD. 123-⋅n9.如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该几何体的体积为 A. 4B. 2C. 43D.2310. 千年潮未落,风起再扬帆,为实现“两个一百年”奋斗目标、实现中华民族伟大复兴的中国梦奠定坚实基础,哈三中积极响应国家号召,不断加大拔尖人才的培养力度,据不完全统计:年 份(届) 2014 2015 2016 2017 学科竞赛获省级一等奖及以上学生人数x 51 49 55 57 被清华、北大等世界名校录取的学生人数10396108107根据上表可得回归方程ˆˆˆy bx a =+中的ˆb 为1.35,我校2018届同学在学科竞赛中获省级一等奖及以上学生人数为63人,据此模型预报我校今年被清华、北大等世界名校录取的学生人数为 A. 111B. 117C.118D.12311.已知1F 、2F 为双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,点P 为双曲线C 右支上一点,直线1PF 与圆222x y a +=相切,且212PF F F =,则双曲线C 的离心率为 A.103B.43 C. 53D. 212. 设函数bx ax x x f ++=2ln )(,若1=x 是函数)(x f 的极大值点,则实数a 的取值范围是A. ⎪⎭⎫ ⎝⎛∞-21, B. ()1,∞- C. [)∞+,1 D. ⎪⎭⎫⎢⎣⎡∞+,212018年哈尔滨市第三中学第一次高考模拟考试数学试卷(理工类)第Ⅱ卷 (非选择题, 共90分)二、填空题(共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.) 13.已知正方形ABCD 边长为2, M 是CD 的中点,则BD AM ⋅= .14.若实数,x y 满足⎪⎩⎪⎨⎧-≥≥+≤111x y y x y ,则2x y +的最大值为 .15.直线l 与抛物线x y 42=相交于不同两点B A 、,若)4,(0x M 是AB 中点,则直线l 的 斜率=k .16.已知锐角111A B C ∆的三个内角的余弦值分别等于钝角222A B C ∆的三个内角的正弦值, 其中22π>A ,若122=C B ,则2222322C A B A +的最大值为 .三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)已知函数2()3sin sin cos f x x x x =+.(1)当0,3x π⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域;(2)已知ABC ∆的内角,,A B C 的对边分别为,,,a b c 3()22A f =,4,5a b c =+=,求ABC ∆的面积.18. (本小题满分12分)某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生平均每天课外体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟) 平均每天锻炼的时间/分[)0,10 [)10,20 [)20,30 [)30,40 [)40,50 [)50,60总人数 203644504010将学生日均课外体育锻炼时间在[)40,60的学生评价为“课外体育达标”. (1)请根据上述表格中的统计数据填写下面的22⨯列联表;课外体育不达课外体育达合计 男 女 20 110 合(2)通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?参考公式22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++()k K P ≥20.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001k1.3232.072 2.7063.841 5.024 6.635 7.87910.82819. (本小题满分12分)如图,直三棱柱111C B A ABC -中,ο120=∠ACB 且21===AA BC AC ,E 是棱1CC 上FBA1A 1B 1C E C动点,F 是AB 中点.(1)当E 是1CC 中点时,求证://CF 平面1AEB ;(2)在棱1CC 上是否存在点E ,使得平面1AEB 与平面ABC 所成锐二面角为6π, 若存在,求CE 的长,若不存在,请说明理由.20. (本小题满分12分)已知F 是椭圆12622=+y x 的右焦点,过F 的直线l 与椭圆相交于),(11y x A ,),(22y x B 两点.(1)若321=+x x ,求AB 弦长;(2)O 为坐标原点,θ=∠AOB ,满足64tan 3=⋅θOB OA ,求直线l 的方程.21. (本小题满分12分) 已知函数)0(12)2ln()(≥+++=x xax x f . (1)当2=a 时,求)(x f 的最小值;(2)若12ln 2)(+≥x f 恒成立,求实数a 的取值范围.请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程(本小题满分10分) 在极坐标系中,曲线1C 的方程为22312sin ρθ=+,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,曲线2C 的方程为⎪⎪⎩⎪⎪⎨⎧=+=t y t x 21232(t 为参数). (1)求曲线1C 的参数方程和曲线2C 的普通方程; (2)求曲线1C 上的点到曲线2C 的距离的最大值.23.选修4-5:不等式选讲(本小题满分10分) 已知函数()22f x x a x =--+.(1)当1a =时,求不等式()0f x ≥的解集;(2)当2a =时,函数()f x 的最小值为t ,114t mn+=- (0,0)m n >>,求m n +的最小值.理科数学答案一、选择题1 2 3 4 5 6 7 8 9 10 11 12 C B BDDBACDBCA二、填空题13. 2 14. 5 15. 2116. 10 三、解答题17.(1)题意知,由23()3sin sin cos sin(2)32f x x x x x π=+=-+∵0,3x π⎡⎤∈⎢⎥⎣⎦,∴2,333x πππ⎡⎤-∈-⎢⎥⎣⎦,∴33sin(2),322x π⎡⎤-∈-⎢⎥⎣⎦ 可得()0,3f x ⎡⎤∈⎣⎦(2)∵3()22A f =,∴sin()03A π-=,∵()0,A π∈可得3A π=FBA1A 1B 1CE C∵4,5a b c =+=,∴由余弦定理可得22216()3253b c bc b c bc bc =+-=+-=- ∴3bc =∴133sin 24ABC S bc A ∆==18. (1)课外体育不达标 课外体育达标 合计 男 603090 女 90 20 110 合计15050200(2) 22200(60203090)2006.060 6.635150509011033K ⨯-⨯===<⨯⨯⨯ 所以在犯错误的概率不超过0.01的前提下不能判断“课外体育达标”与性别有关.19.(1)取1AB 中点G ,连结FG EG 、,则FG ∥1BB 且121BB FG =.因为当E 为1CC 中点时,CE ∥1BB 且121BB CE =,所以FG ∥CE 且=FG CE .所以四边形CEGF 为平行四边形,CF ∥EG , 又因为1AEB CF 平面⊄,1AEB EG 平面⊂, 所以//CF 平面1AEB ;(2)假设存在满足条件的点E ,设()10≤≤=λλCE . 以F 为原点,向量1AA FC FB 、、方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系.则()0,0,3-A ,()2,0,31B ,()λ,1,0E ,平面ABC 的法向量()1,0,0=m ,平面1AEB 的法向量()3,333--=λ,n ,()2319933cos 2=-++=⋅=λnm n m n m ,, 解得1=λ,所以存在满足条件的点E ,此时1=CE .20.(1) 061212)13()2(63222222=-+-+⇒⎩⎨⎧-==+k x k x k x k y y x 613221=⇒=⇒=+AB k x x (2) 36264tan 3=⇒=⋅∆AOB S OB OA θ ()233,2-±==⇒x y x21. 01)2(4)(22≥++-+='x x ax a ax x f ,)( (1)当2=a 时3211)()(+-='x x x f ,12ln 2)1()(min +==f x f (2)00≥⇒≥a x①0=a 时, 12ln 212ln )1(+<+=f 不成立②4≥a 时, 0)(≥'x f ,)(x f 在),0(+∞递增, 12ln 222ln )0()(+>+=≥f x f 成立 ③40<<a 时, )(x f 在)4,0(a a -递减, ),4(∞+-aa递增 14224ln )4()(min +-++-=-=aaaaa a a f x f )(设14042+=⇒>=-t a t a a ,12214ln )()4()(2min ++++==-=t t t t g a a f x f )( 0)1()1(4)(222<++-='t t t t g ,所以)(t g 在),0(+∞递减,又12ln 2)1(+=g 所以⇒≤<10t 4214<≤⇒≤-a aa综上: 2≥a22. (1)曲线1C 的参数方程为13cos :sin x C y αα⎧=⎪⎨=⎪⎩(α为参数)曲线2C 的普通方程为320x y --=(2)设曲线1C 上任意一点(3cos ,sin )P αα,点P 到320x y --=的距离6cos()23cos 3sin 2422d πααα+---== ∵626cos()2624πα--≤+-≤- ∴6202d +≤≤ 所以曲线1C 上的点到曲线2C 的距离的最大值为622+ 23.(1)当1a =时,不等式为2120212x x x x --+≥⇔-≥+ 两边平方得224(1)(2)x x -≥+,解得4x ≥或0x ≤ ∴()0f x ≥的解集为(][),04,-∞⋃+∞(2)当2a =时,6,2,()22223,226,2x x f x x x x x x x -≤-⎧⎪=--+=--<<⎨⎪-≥⎩,可得4t =-,∴1144m n+=(0,0)m n >> ∴111()44m n m n m n ⎛⎫+=++ ⎪⎝⎭1515914444416n m m n ⎛⎫⎛⎫=++≥+= ⎪ ⎪⎝⎭⎝⎭ 当且仅当2m n =,即316n =,38m =时取等号.。