高斯求积公式
合集下载
高斯求积公式
x m ( x)dx,
0
x f ( x)dx 0.389111 f (0.821162)
0.277556 f (0.289949).
由于非线性方程组较复杂, 故一般不通过解方程
通常 n 2就很难求解.
求xk 及Ak (k 0,1,, n) ,
而从分析高斯点的特性来构造高斯求积公式.
7
1
0
x f ( x)dx A0 f ( x0 ) A 1 f ( x1 ).
x0 0.821162, A0 0.389111,
x1 0.289949; A1 0.277556.
m 0,1, ,2n 1.
这样,高斯公式是 A xm
k 0 1
n
k
b
a
4
根据定义要使求积公式具有 2n 1次代数精度,只要对
f ( x) x (m 0,1, ,2n 1),
m
令 a f ( x) ( x)dx Ak f ( xk ),
b k 0
n
精确成立,
m A x x k ( x)dx, k 0 m k b a n
a
a
10
由于求积公式是插值型的, 即
b a n 1
它对于q( x) H n 是精确的,
n
P( x) ( x) ( x)dx 0. q( x) ( x)dx A q( x
b a k 0 k
k
).
再注意到
n1 ( xk ) 0 (k 0,1,,n),
知
q( xk ) f ( xk ) (k 0,1,,n),
第07章 03-高斯型求积公式
第七章
§7.7 数值微分
数值积分与微分
泰勒公式是建立数值微分的工具之一,设 h x1 x0 ,
根据泰勒公式可得:
f x0 h f x0 f x0 O h h h h f x0 f x0 2 2 f x0 O h2 h
1 t
0
1
t
2
dt 。
解:(1)首项系数为1的三次勒让德多项式为:
3 2 d x 1 3! 3 3 3 x x x 3 6! dx 5 3 3 , x1 0, x2 取其零点 x0 作为高斯点 5 5 3
第七章
§7.6 高斯求积公式
N
(充分性得证)
第七章
§7.6 高斯求积公式
数值积分与微分
定理7.6 表明,若能够找到满足
N+1次多项式 N 1 x ,则积分公式的高斯点就确定了, 从而确定了一个高斯型求积公式。为此,引入勒让德 (Legendre)多项式。 定义:一个仅以区间[-1, 1]上的高斯点 xi i 0 为零点的
j 0
N
关于高斯求积公式的误差有如下结论:高斯积分公式 的误差是可控的,稳定性比其他积分方法好。特别当
f x 在[-1, 1] 上连续时,高斯型求积公式必收敛。
第七章
数值积分与微分
总结
1 梯形求积公式和辛普生求积公式是低精度的方法,但对 于光滑性较差的函数有时比用高精度方法能得到更好的 效果。复化梯形公式和辛普生求积公式,精度较高,计 算较简,使用非常广泛。 2 龙贝格求积方法,算法简单,当节点加密提高积分近似 程度时,前面的计算结果可以为后面的计算使用,因此, 对减少计算量很有好处。并有比较简单的误差估计方法。 3 Gauss型求积,它的节点是不规则的,所以当节点增加时, 前面计算的函数值不能被后面利用。计算过程比较麻烦, 但精度高,特别是对计算无穷区间上的积分和旁义积分, 则是其他方法所不能比的。
高斯求积公式
定理4 求积公式(2.2)是Gauss型的 Gauss点a<x0<…<xn <b
是[a,b]上关于权 ( x)的n+1次正交多项式的根。
分析:“充分性”即是引理1的结论。以下只证必要性
“必要性”,即Gauss点作为节点正是n+1次正交多项式的根。
只需证 n1(x) 关于( x) 正交。 证明:取2n 1次多项式f ( x) n1( x)q( x) ( x x0 ) ( x xn )q( x),
q( x)为次数 n的多项式。
则有
b
Gauss点 的 定 义
a ( x)n1( x)q( x)dx
n
Akn1 ( xk )q( xk ) 0,
k 0
由于左端等于0,即( n1 ( x),q( x)) 0,
n1 ( x)在a, b上关于权 ( x)是n 1次正交多项式,
则 x(k k 0,1, ,n)是n 1次正交多项式 n1( x)的根。
max
a
a
2、收敛性 引理2 对于有限闭区间[a, b] 上的任何连续函数 f ( x)有
lim R[ f ] 0
(2.4)
n
证明 : [a, b] 上的连续函数 f ( x) 可以用代数多项式一致逼近,
对任意给定的
max |
a xb
f
0,
(x
存在某个多项式
) qm ( x) | b
2 (
qm (x x)dx
由
b
a ( x)H2n1( x)dx
n
Ak H 2n1( xk )
k0
b
n
Ak f ( xk ) (
k0
b
( x) f ( x)dx I( f ))
高斯求积公式
3 3 )+ f( ), 求积公式为 ∫ f ( x )dx ≈ f ( − -1 3 3 1 2 3 4 3 4 2 4 4 对于f ( x) = x , I ( f ) = ∫ x dx = ≠ Q( x) = (− ) + ( ) = -1 5 3 3 9
1
只要证明 ∀ 2 n + 2次多项式 f ( x ), I ( f ) = ∫ f ( x )dx ≠ ∑ Ak f ( x k ) a k =0 即可。 = Q( f )即可。 2 2 则 事实上, 事实上,令f ( x ) = [( x − x 0 )( x − x1 )L( x − x n )] = ω n +1 ( x ), f ( x ) ≥ 0,
⇒ m = 3 = 2 × 1 + 1。 一般地, 一般地,对于任意求积节点 a ≤ x0 < x1 < L< xn ≤ b ,任意求积 b 系数, 系数,求积公式 I ( f ) = ∫ f ( x )dx ≈ ∑ Ak f ( x k ) = Q ( f )的代数精度 a m < 2n + 2。 分析: 分析: n b
§2 Gauss型求积公式 型求积公式
本节 问题 关键
例4 求节点 x0,x1 ,使插值型求积公式
∫
1
−1
f ( x)dx ≈ A0 f ( x0 ) + A1 f ( x1 )
( 2 .1 )
具有尽可能高的代数精度。 具有尽可能高的代数精度。 分析:四个未知量A 分析:四个未知量 0,A1,x0,x1,并知道插值型求积公式的 代数精度最高。因此按插值型求积公式来 求积公式来求 代数精度最高。因此按插值型求积公式来求A0,A1。 x − x0 x − x1 待定, l , l1 ( x) = , 解:x0 , x1待定,0 ( x) =
数值分析课件高斯求积公式
1
1
1 f ( x)dx A0 f (
求 A0 , A:1
3 ) A1 f (
) 3
令 f ( x) ,1,代x入公式精确成立,得到: A0 A1 1
或
1
1
A0 1 l0 ( x)dx 1, A1 1 l1( x)dx 1
两点Gauss-Legendre求积公式
3次代数精度
1
1
1
一、 Gauss积分问题的提法
n
积分公式的一般形式: In ( f ) Ak f ( xk ) k0
➢为了提高代数精度,需要适当选择求积节点:
①当求积节点个数确定后,不管这些求积节点如何选
取,求积公式的代数精度最高能达到多少?2n 1
②具有最高代数精度的求积公式中求积节点如何选取?
n 个1求积节点, n个求1 积系数,共 个2n未知2量,需要
f p max f p axb
则Gauss型求积公式(*)是收敛的。
证明:由Weierstrass定理知 对 0
存在m次多项式 p( x满)足
下证 N , 当 n 时N
f
p 2
b
( x)dx
a
b
n
f ( x)( x)dx
a
Ak f ( xk )
k0
b
n
f ( x)( x)dx
➢ Gauss-Chebyshev求积公式
(x)
1
n
f ( x)( x)dx
1
Ak f ( xk )
k0
1 1 x2
其中求积节点
多项式的零点
xk
n [a, b] 是n+1次Chebyshev
k0
数值分析(高斯求积公式)
2
推论 Gauss求积公式是稳定的. 定理3. 6.4
设f x C a , b , 则Gauss求积公式是收敛的,即
lim Ak f xk f x dx
b n k 0 a
n
常用的Gauss求积公式
1. Gauss-Legendre求积公式 取权函数 ( x ) 1,? 积分区间[a , b] [1,1], Gauss点为Legendre多项式的零点, 则得到 Gauss Legendre求积公式 :
例3.6.1
1
取 ( x ) 1, 积分区间为[1,1], 求x0 , x1和A0 , A1,使
1
求积公式 f x dx A0 f x0 A1 f x1 为Gauss求积公式. 解法二:
注意到f xk q xk 2 xk r xk r xk , k 0,1.
两端ai i 0,1,2,, m 的系数相等。即
A0 A1 A2 An 0 ,
其中,i x i ( x )dx .
a
b
A0 x0 A1 x1 A2 x2 An xn 1 ,
2 2 2 2 A0 x0 A1 x1 A2 x2 An xn 2 ,
则有 f x dx q x 2 x dx r x dx, 3.6.8
1 1 1 1 1 1
注意到r x 是一次式,故对求积公式准确成立,即
r x dx A r x A r x .
1 1 0 0 1 1
b a k 0
n
k
f ( xk )
的余项为
R
推论 Gauss求积公式是稳定的. 定理3. 6.4
设f x C a , b , 则Gauss求积公式是收敛的,即
lim Ak f xk f x dx
b n k 0 a
n
常用的Gauss求积公式
1. Gauss-Legendre求积公式 取权函数 ( x ) 1,? 积分区间[a , b] [1,1], Gauss点为Legendre多项式的零点, 则得到 Gauss Legendre求积公式 :
例3.6.1
1
取 ( x ) 1, 积分区间为[1,1], 求x0 , x1和A0 , A1,使
1
求积公式 f x dx A0 f x0 A1 f x1 为Gauss求积公式. 解法二:
注意到f xk q xk 2 xk r xk r xk , k 0,1.
两端ai i 0,1,2,, m 的系数相等。即
A0 A1 A2 An 0 ,
其中,i x i ( x )dx .
a
b
A0 x0 A1 x1 A2 x2 An xn 1 ,
2 2 2 2 A0 x0 A1 x1 A2 x2 An xn 2 ,
则有 f x dx q x 2 x dx r x dx, 3.6.8
1 1 1 1 1 1
注意到r x 是一次式,故对求积公式准确成立,即
r x dx A r x A r x .
1 1 0 0 1 1
b a k 0
n
k
f ( xk )
的余项为
R
高斯求积公式
(k = 0,1 ⋯ n), 使(5.1)具有 2n +1次代数精度. , ,
定义4 定义4
如果求积公式(5.1)具有 2n +1次代数精度,
则称其节点 xk (k = 0,1 ⋯, n) 为高斯点 高斯点,相应公式(5.1)称 高斯点 , 为高斯求积公式 高斯求积公式. 高斯求积公式
3
根据定义要使(5.1)具有 2n +1次代数精度,只要对
充分性. 对于 ∀f (x) ∈H2n+1, 用 ωn+1(x) 除 f (x) , , 记商为 P(x),余式为 q(x) 即 f (x) = P(x)ωn+1(x) + q(x) , 其中 P(x),q(x)∈Hn. 由(5.5)可得
∫
b
a
f (x)ρ(x)dx = ∫ q(x)ρ(x)dx.
b a
18
令它对 f (x) =1, x 都准确成立,有
A + A = 2; 0 1 A − 1 + A 1 = 0. 1 0 3 3
由此解出 A = A =1, 从而得到两点高斯-勒让德求积公式 0 1
∫
1
1 −
f (x)dx ≈ f (−
1 1 ) + f (− ). 3 3
b n→ ∞ k =0 a n
16
4.5.2
高斯高斯-勒让德求积公式
在高斯求积公式(5.1)中,若取权函数 ρ(x) =1, 区间为
[−11 则得公式 , ],
n
∫
1
−1
f (x)dx ≈ ∑A f (xk ). k
k =0
(5.9)
由于勒让德多项式是区间 [−11]上的正交多项式,因此, , 勒让德多项式 P 1(x) 的零点就是求积公式(5.9)的高斯点. n+ 形如(5.9)的高斯公式称为高斯-勒让德求积公式. 高斯-勒让ρ(x) ≥ 0, 由积分中值定理得(5.1)的余项为
定义4 定义4
如果求积公式(5.1)具有 2n +1次代数精度,
则称其节点 xk (k = 0,1 ⋯, n) 为高斯点 高斯点,相应公式(5.1)称 高斯点 , 为高斯求积公式 高斯求积公式. 高斯求积公式
3
根据定义要使(5.1)具有 2n +1次代数精度,只要对
充分性. 对于 ∀f (x) ∈H2n+1, 用 ωn+1(x) 除 f (x) , , 记商为 P(x),余式为 q(x) 即 f (x) = P(x)ωn+1(x) + q(x) , 其中 P(x),q(x)∈Hn. 由(5.5)可得
∫
b
a
f (x)ρ(x)dx = ∫ q(x)ρ(x)dx.
b a
18
令它对 f (x) =1, x 都准确成立,有
A + A = 2; 0 1 A − 1 + A 1 = 0. 1 0 3 3
由此解出 A = A =1, 从而得到两点高斯-勒让德求积公式 0 1
∫
1
1 −
f (x)dx ≈ f (−
1 1 ) + f (− ). 3 3
b n→ ∞ k =0 a n
16
4.5.2
高斯高斯-勒让德求积公式
在高斯求积公式(5.1)中,若取权函数 ρ(x) =1, 区间为
[−11 则得公式 , ],
n
∫
1
−1
f (x)dx ≈ ∑A f (xk ). k
k =0
(5.9)
由于勒让德多项式是区间 [−11]上的正交多项式,因此, , 勒让德多项式 P 1(x) 的零点就是求积公式(5.9)的高斯点. n+ 形如(5.9)的高斯公式称为高斯-勒让德求积公式. 高斯-勒让ρ(x) ≥ 0, 由积分中值定理得(5.1)的余项为
数值分析4。4高斯型求积公式
1 n ik
2 或可证得 Ak 1 xk2 [ Pn1 ( xk )]2
, k 0,1,
,n
高斯-勒让德求积公式的余项为
22n3[(n 1)!]4 (2 n 2) R[ f ] f ( ), (1,1) 3 (2n 3)[(2n 2)!]
华长生制作
此定积分的精确值为 I=e-2=0.718281828,得n=1时的误差为 0.0063340054, n=2时的误差为0.000030049。
华长生制作 17
2.高斯-切比雪夫求积公式
在区间[-1,1]上取权函数 x
多项式。n+1次Chebyshev多项式
1 1 x2
的正交多项式是Chebyshev正交
i 2 ,3 , , n
Ax b 4.4 高斯型求积公式
在Newton-Cotes求积公式中,节点是等距的, 从而限制了求积公式的代数精度.下面的讨 论将取消这个限制条件,使求积公式的代数 精度尽可能高.首先以简单情形论证这样做 是可行的,然后给出概念和一般理论。
华长生制作
2
例 确定下列求积公式中的待定参数,使其代数精度尽 1 量高。
b
a
x f x dx a x Qx dx
b
由于是插值型求积,它对于Q(x)能准确立即
华长生制作 8
即
x Q x dx A Q x
b a k 0 k k
n
注意到 n1 xk 0 知
Qxk f xk
推论
n+1次正交多项式的零点是n+1点Gauss公式的Gauss点
。
利用正交多项式得出Guass点 x0 , x 1 , xn
2 或可证得 Ak 1 xk2 [ Pn1 ( xk )]2
, k 0,1,
,n
高斯-勒让德求积公式的余项为
22n3[(n 1)!]4 (2 n 2) R[ f ] f ( ), (1,1) 3 (2n 3)[(2n 2)!]
华长生制作
此定积分的精确值为 I=e-2=0.718281828,得n=1时的误差为 0.0063340054, n=2时的误差为0.000030049。
华长生制作 17
2.高斯-切比雪夫求积公式
在区间[-1,1]上取权函数 x
多项式。n+1次Chebyshev多项式
1 1 x2
的正交多项式是Chebyshev正交
i 2 ,3 , , n
Ax b 4.4 高斯型求积公式
在Newton-Cotes求积公式中,节点是等距的, 从而限制了求积公式的代数精度.下面的讨 论将取消这个限制条件,使求积公式的代数 精度尽可能高.首先以简单情形论证这样做 是可行的,然后给出概念和一般理论。
华长生制作
2
例 确定下列求积公式中的待定参数,使其代数精度尽 1 量高。
b
a
x f x dx a x Qx dx
b
由于是插值型求积,它对于Q(x)能准确立即
华长生制作 8
即
x Q x dx A Q x
b a k 0 k k
n
注意到 n1 xk 0 知
Qxk f xk
推论
n+1次正交多项式的零点是n+1点Gauss公式的Gauss点
。
利用正交多项式得出Guass点 x0 , x 1 , xn
高斯(Gauss)求积公式
数值分析
(2)利用正交多项式构造高斯求积公式 )
为正交多项式序列, 设Pn(x),n=0,1,2,…,为正交多项式序列, Pn(x) 为正交多项式序列 具有如下性质: 具有如下性质: 1)对每一个 ,Pn(x)是 n 次多项式。 n=0,1,… )对每一个n 是 次多项式。 2) 正交性 b ρ( x)P ( x)P ( x)dx = 0,(i ≠ j) ) 正交性) (正交性
∫
1
1
f ( x)dx ≈ f (0.5773502692) + f (0.5773502692)
n=2
∫
1
1
f ( x)dx ≈ 0.555555556 f (0.7745966692)
+0.888888889 f (0) + 0.555555556 f (0.7745966692)
数值分析
数值分析
例: 运用三点高斯-勒让德求积公式与辛卜生求积 公式计算积分∫ x + 1.5dx 1 解:由三点高斯-勒让德求积公式有
1
∫
1
1
x + 1.5dx
≈ 0.555556( 0.725403 + 2.274596) + 0.888889 1.5 = 2.399709 由三点辛卜生求积公式有 1 1 ∫1 x + 1.5dx ≈ 3 ( 0.5 + 4 1.5 + 2.5) = 2.395742
b k=0 k=0
b b
n
n
由性质3) 由性质 )及(4)式,有 式
ρ( x) f ( x)dx = ∫a ρ( x)q( x)P +1( x)dx + ∫a ρ( x)r( x)dx n a
数值分析-高斯求积分
p( x)ωn ( x)dx
Ak p( xk )ωn ( xk ) 0
a
k1
即ωn( x)与任意次数不超过n 1的多项式p( x)
在[a, b]上正交
充分性:如果w(x)与任意次数不超过n-1的多项式正 交,则其零点必为Gauss点
设f ( x)为任意次数不超过2n 1次的多项式,
用n ( x)除f ( x)得
3.6 高斯(Gauss)型求积公式
主要内容
• 具有(n+1)个求积节点的Newton-Cotes公式,
b
n
f ( x)dx
Ak f ( xk )
a
k1
至少具有n阶代数精度
•在确定求积公式求积系数Ak的过程中限定求积节点 为等分节点,简化了处理过程,但也降低了求积公 式的代数精度
去掉求积节点 为等分节点的限制条件,会有什么 结果??
1v( x)du(n 1)( x)
-1
1
1
u(n 1)( x)v ( x)d x
-1
v(1)u(n 1) (1) v(1)u(n 1) (1)
1
u(n 1) ( x)v ( x)d x
-1
v (1)u(n 2) (1)
1
u(n 2) ( x)v ( x)d x
-1
v(1)u(n 1) (1) v (1)u(n 2) (1)
a
证明: 必要性: 若x1, x2 ,, xn是高斯点,则求积公式
b
f ( x)dx
a
n
Ak f ( xk )具有2n 1次代数精度
k1
作多项式, ωn( x) ( x x1)( x x2 ) ( x xn ), 设p( x)为
4.3 高斯求积公式
解之得
A1 x1 0 2 2 A1 x1 3 3 A1 x1 0 3 3 A0 A1 1 x0 x0 3 3
A0 A x 0 0 2 A x 0 0 A x3 0 0
A1 2
代入(1)即得
1
1
可以验证,所得公式(2)是具有3次代数精度的插 值型求积公式。 这个例子告诉我们,只要适当选择求积节点, 可使插值型求积公式的代数精度达到最高。这就是 本节要介绍的高斯求积公式。
高斯求积公式的误差
定理: 设 f ( x )在[ a , b ]上 2 n +2 阶连续可微, ( x ) 0, 则带权函数 ( x )的 Gauss型求积公式的余项为
R ( f ) ( x ) f ( x ) dx Ak f ( xk )
a k 0 b n
f ( ) 2 ( x ) ( x ) dx ( a , b ) (2 n +2)! a
a b
b
( x )q ( x )
a n k 1 k k
b
n
( x ) dx ( x ) r ( x ) dx
a
b
( x ) r ( x )dx A r ( x
a
)
A
k 1
n
k
f ( xk )
结论:
区 间[ a , b ]上 关 于 权 函 数 ( x )的 正 交 多 项 式 系 中 的 n +1 次 正 交 多 项 式 的 根 就 是 Gauss点 。
a k 0
b
n
对 f ( x ) x l (l 0,1, , 2 n 1) 精确成立
第五章高斯求积公式
a
b
当 f ( x) 是 不 超过 n 次 的多 项式 的时
n 1 f ( ) 0 ,从而 R f 0 ,说明插 候,
值型求积公式的代数精度至少是 n 次 . 那么能否适当选取求积节点,使插值求 积公式具有更高的代数精度呢?19 世纪 初,高斯证明了存在唯一一种选择求积 节点的方法,使得插值求积公式具有
可以证明 Ln ( x) 与任一不超过 n 1 次多项 式正交,即满足(5.26 )且 Ln ( x) 有 n 个 互异的零点, 因此, 这 n 个零点就是 n 点 高斯公式的高斯点,以后就可以先利用 Legendre 多 项 式 求 得 高 斯 点 再 利 用 (5.27)求得高斯求积系数,从而得到 高斯求积公式.
考察 n
1 时的高斯点,由于
L2 ( x ) x 2 1 3
其零点
1
1 1 x1 , x2 3 3
1 1 f ( x)dx f ( ) f ( ) 1 3 3
与(5.28)是一致的.
n 2 时的高斯点,由于
其零点
1
3 L3 ( x) x x 5
3
3 3 x1 , x2 0 , x3 5 5
5 3 8 5 3 f ( ) f (0) f ( ) 9 5 9 9 5
(5.29)
f ( x)dx
1
这是三点高斯公式
例 5.10
用三点高斯公式计算积分
2 x
I
解:
1
0
x e dx
1 x 令 2 (1 t ) ,则 I
1
如果是如下积分,我们如何用高斯求积公式呢?
b
a
f ( x)dx
b
当 f ( x) 是 不 超过 n 次 的多 项式 的时
n 1 f ( ) 0 ,从而 R f 0 ,说明插 候,
值型求积公式的代数精度至少是 n 次 . 那么能否适当选取求积节点,使插值求 积公式具有更高的代数精度呢?19 世纪 初,高斯证明了存在唯一一种选择求积 节点的方法,使得插值求积公式具有
可以证明 Ln ( x) 与任一不超过 n 1 次多项 式正交,即满足(5.26 )且 Ln ( x) 有 n 个 互异的零点, 因此, 这 n 个零点就是 n 点 高斯公式的高斯点,以后就可以先利用 Legendre 多 项 式 求 得 高 斯 点 再 利 用 (5.27)求得高斯求积系数,从而得到 高斯求积公式.
考察 n
1 时的高斯点,由于
L2 ( x ) x 2 1 3
其零点
1
1 1 x1 , x2 3 3
1 1 f ( x)dx f ( ) f ( ) 1 3 3
与(5.28)是一致的.
n 2 时的高斯点,由于
其零点
1
3 L3 ( x) x x 5
3
3 3 x1 , x2 0 , x3 5 5
5 3 8 5 3 f ( ) f (0) f ( ) 9 5 9 9 5
(5.29)
f ( x)dx
1
这是三点高斯公式
例 5.10
用三点高斯公式计算积分
2 x
I
解:
1
0
x e dx
1 x 令 2 (1 t ) ,则 I
1
如果是如下积分,我们如何用高斯求积公式呢?
b
a
f ( x)dx
高斯型求积公式课件
自编程实现
要点一
理解高斯型求积公式的原理
在自编程实现高斯型求积公式时,需要深入理解高斯型求 积公式的原理和数学推导过程,以确保编程实现的正确性 。
要点二
编写代码并进行测试
根据高斯型求积公式的原理,编写相应的代码并进行测试 ,以确保代码的正确性和可靠性。在编写代码时,需要注 意代码的可读性和可维护性,以提高代码的质量和可复用 性。
收敛性分析
对高斯型求积公式的收敛性进行深入分析,有 助于进一步优化其收敛速度。
稳定性
在提高收敛速度的同时,保持高斯型求积公式的稳定性是关键。
高斯型求积公式的并行化改的计算过程分解为多个子任务
,可以实现并行计算,进一步提高计算效率。
并行算法设计
02 设计高效的并行算法是实现高斯型求积公式并行化的
在微积分基本定理推导过程中,我们需要理解微积分的基本 概念和定理的证明过程,以确保推导的正确性和可靠性。
数值积分公式推导
数值积分公式是高斯型求积公式的另一种形式,通过数值积分公式的推导,我们可以将高斯型求积公 式应用到数值计算中。
在数值积分公式推导过程中,我们需要理解数值计算的基本原理和方法,以确保数值计算的准确性和 可靠性。
03
高斯型求积公式的实现
编程语言实现
Python实现
Python是一种通用编程语言,具有简洁的语法和丰富的科学计算库。使用Python实现高斯型求积公式可以充分 利用NumPy等科学计算库,提高计算效率。
C实现
C是一种高效的系统编程语言,适合进行大规模数值计算。通过C实现高斯型求积公式,可以充分利用其编译型语 言的性能优势,提高计算速度。
高斯型求积公式具有高精度、高稳定 性和易于实现等优点,因此在数值计 算中得到了广泛应用。
数值分析8-高斯型求积公式
为要利用中点公式
计算导数值 f′(a),首先必须选取合适的步长.为此需要 进行误差分析.分别将 f(a ±h)在 x=a 泰勒展开有
中点公式的误差
代入上式得
由此得知,从截断误差的角度来看,步长越小, 计算结果越准确.且
h2 f ( a ) G ( h) M 6 其中M max f ( x )
举例(一)
例:试确定 x0 , x1 以及系数 A0, A1,使得下面的求积
公式具有尽可能高的代数精度。
1
1
f ( x ) dx A0 f ( x0 ) A1 f ( x1 )
解:将 f (x) = 1, x, x2, x3 代入,使其精确成立得
A0 A1 2 解得 A0 x0 A1 x1 0 2 2 A0 x0 A1 x1 2 / 3 A x3 A x3 0 1 1 0 0 不是线性方程 组,不易求解
1 d n1 ( x 2 1) n1 Pn1 ( x ) n1 2 ( n 1)! dx n1
取其 n+1 个零点作为 Gauss 点,即可得 Gauss-Legendre 求积公式。
G-L 公式的余项
定理 设 f (x) C 2n+2[-1, 1] ,则 G-L求积公式的余项为
i 0
n
的代数精度不超过 2n+1。 即Gauss公式是插值型求积公式中代数精度最高的。
Gauss-Legendre 公式
设 f (x) C[-1, 1] ,考虑 Gauss型 求积公式
1
1
f ( x ) dx Ai f ( xi )
i 0
n
在 [-1, 1] 上的正交多项式为Legendre多项式
计算导数值 f′(a),首先必须选取合适的步长.为此需要 进行误差分析.分别将 f(a ±h)在 x=a 泰勒展开有
中点公式的误差
代入上式得
由此得知,从截断误差的角度来看,步长越小, 计算结果越准确.且
h2 f ( a ) G ( h) M 6 其中M max f ( x )
举例(一)
例:试确定 x0 , x1 以及系数 A0, A1,使得下面的求积
公式具有尽可能高的代数精度。
1
1
f ( x ) dx A0 f ( x0 ) A1 f ( x1 )
解:将 f (x) = 1, x, x2, x3 代入,使其精确成立得
A0 A1 2 解得 A0 x0 A1 x1 0 2 2 A0 x0 A1 x1 2 / 3 A x3 A x3 0 1 1 0 0 不是线性方程 组,不易求解
1 d n1 ( x 2 1) n1 Pn1 ( x ) n1 2 ( n 1)! dx n1
取其 n+1 个零点作为 Gauss 点,即可得 Gauss-Legendre 求积公式。
G-L 公式的余项
定理 设 f (x) C 2n+2[-1, 1] ,则 G-L求积公式的余项为
i 0
n
的代数精度不超过 2n+1。 即Gauss公式是插值型求积公式中代数精度最高的。
Gauss-Legendre 公式
设 f (x) C[-1, 1] ,考虑 Gauss型 求积公式
1
1
f ( x ) dx Ai f ( xi )
i 0
n
在 [-1, 1] 上的正交多项式为Legendre多项式
4高斯求积公式
1
截断误差为 R
2 (2 n ) f ( ), (1,1). 2n 2 (2n)!
高斯积分的优点:少节点,高精度。
高斯型求积公式, 使用较少的节点, 可得到高精度的结果. 1 例如,计算积分 I dx . 1 x 0
它的精确值(八位有效数字)为 I = 0.693 147 18。 使用节点数为129的复化辛普生公式计算,得 I 0.693 146 70。
适当的选取n+1个节点和插值系数,插值型求积公式的代数精度 可以达到2n+1.
定义 如果求积结点x0, x1,· · · · · · ,xn,使插值型求积公式
1
1
f ( x )dx Ak f ( xk ), 其中Ak lk ( x )dx 1
1
n
k 0
的代数精度为2n+1,则称该求积公式为Gauss型求积 公式. 称这些求积结点为Gauss点.
a
b
是Gauss型求积公式,则它的求积系数 Ai 满足
(1) (2) Ai 0,
n i 0 i
i 0, 1, 2,
b a
,n ;
A
( x)dx .
证明略。
例2 试构造形如
1
1
x f ( x)dx Ai f ( xi )
2 i 1
n
的Gauss型求积公式。 解 利用正交化方法已求出在区间[-1,1]上带权
求插值型求积公式
1
1
f ( x )dx A0 f ( x0 ) A1 f ( x1 )
使其代数精度为3,取 f(x)=1, x, x2, x3
A0 A1 2 A x A x 0 0 0 1 1 2 2 2 A0 x 0 A1 x1 3 3 3 A x A x 1 1 0 0 0
截断误差为 R
2 (2 n ) f ( ), (1,1). 2n 2 (2n)!
高斯积分的优点:少节点,高精度。
高斯型求积公式, 使用较少的节点, 可得到高精度的结果. 1 例如,计算积分 I dx . 1 x 0
它的精确值(八位有效数字)为 I = 0.693 147 18。 使用节点数为129的复化辛普生公式计算,得 I 0.693 146 70。
适当的选取n+1个节点和插值系数,插值型求积公式的代数精度 可以达到2n+1.
定义 如果求积结点x0, x1,· · · · · · ,xn,使插值型求积公式
1
1
f ( x )dx Ak f ( xk ), 其中Ak lk ( x )dx 1
1
n
k 0
的代数精度为2n+1,则称该求积公式为Gauss型求积 公式. 称这些求积结点为Gauss点.
a
b
是Gauss型求积公式,则它的求积系数 Ai 满足
(1) (2) Ai 0,
n i 0 i
i 0, 1, 2,
b a
,n ;
A
( x)dx .
证明略。
例2 试构造形如
1
1
x f ( x)dx Ai f ( xi )
2 i 1
n
的Gauss型求积公式。 解 利用正交化方法已求出在区间[-1,1]上带权
求插值型求积公式
1
1
f ( x )dx A0 f ( x0 ) A1 f ( x1 )
使其代数精度为3,取 f(x)=1, x, x2, x3
A0 A1 2 A x A x 0 0 0 1 1 2 2 2 A0 x 0 A1 x1 3 3 3 A x A x 1 1 0 0 0
高斯求积公式
高斯求积公式
高斯求积公式,又称为高斯积分公式,是由18世纪德国数学家卡尔·高斯发现的重要的定积分计算公式。
它是用来计算一元函数定积分的有效方法,是数学计算中最重要的积分公式。
高斯求积公式包括两种不同的形式:一种叫做标准形式,另一种叫做拉格朗日形式。
两种形式的计算结果是一样的,所以可以任意使用其中一种形式来计算定积分。
标准形式的高斯求积公式为:
∫f(x)dx=Σwi*fi(xi) (i=1,2,3,…n)
其中,wi为积分权值,fi(xi)为积分点处函数值,xi为积分点,n 为积分点数。
拉格朗日形式的高斯求积公式为:
∫f(x)dx=Σwi*fi(xi)*fi'(xi) (i=1,2,3,…n)
其中,wi为积分权值,fi(xi)为积分点处函数值,fi'(xi)为积分点处函数一阶导数,xi为积分点,n为积分点数。
高斯求积公式的基本原理是:将函数拆分为多个函数,将定积分的计算拆分成多个简单的积分,然后再求和。
高斯求积公式可以计算
多项式、几何线性函数等积分,是一种十分有效的计算积分的方法。
高斯求积公式的优势在于它的公式简单,计算速度快,可以有效减少计算量,提高计算效率,使得复杂的积分可以轻松计算出来。
它也可以用来计算多元函数的积分,对于函数求积有着重要的意义。
总之,高斯求积公式是一种十分重要的定积分计算公式,可以用来计算一元函数的积分,也可以用来计算多元函数的积分,是数学计算中有效的方法。
6c高斯型求积公式
b
定理
若节点 xk , k 0,1, , n 是高斯点,则以这些点为根
n
的多项式 ( x) ( x xk ) 是最高次幂系数为 1 的的勒让德多项
k 0
式,即
(n 1)! d n 1 ( x 2 1) n 1 L n 1 (2n 2)! dx n 1
计算方法
第六章 数值积分与数值微分
—— Gauss 求积公式
1
本讲内容
Gauss 求积公式
一般理论: 公式, 余项, 收敛性, 稳定性
Gauss-Legendre 求积公式
Gauss-Chebyshev 求积公式
无限区间的 Gauss 求积公式
2
Gauss 型求积公式
考虑求积公式
0.4674
20
1 1
f ( x ) dx Ai f ( xi )
i 0
9
n
简单 G-L 公式
n =0 时, Pn1 ( x) x G-L 求积公式:
1 1
Gauss 点: x0 0
将 f (x)=1 代入求出 A0
f ( x ) dx 2 f (0)
1 2
n =1 时, Pn1 ( x ) (3 x 2 1) Gauss 点: x0 3 , x1 3
i 0
n
要证 xi 为 Gauss 点,即公式对 p(x) H2n+1精确成立 “ p( x) ( x)q( x) r( x) ” p(x), r(x)Hn 设
n1
b a
( x ) p( x )dx ( x)n1 ( x)q( x)dx ( x)r( x)dx
定理
若节点 xk , k 0,1, , n 是高斯点,则以这些点为根
n
的多项式 ( x) ( x xk ) 是最高次幂系数为 1 的的勒让德多项
k 0
式,即
(n 1)! d n 1 ( x 2 1) n 1 L n 1 (2n 2)! dx n 1
计算方法
第六章 数值积分与数值微分
—— Gauss 求积公式
1
本讲内容
Gauss 求积公式
一般理论: 公式, 余项, 收敛性, 稳定性
Gauss-Legendre 求积公式
Gauss-Chebyshev 求积公式
无限区间的 Gauss 求积公式
2
Gauss 型求积公式
考虑求积公式
0.4674
20
1 1
f ( x ) dx Ai f ( xi )
i 0
9
n
简单 G-L 公式
n =0 时, Pn1 ( x) x G-L 求积公式:
1 1
Gauss 点: x0 0
将 f (x)=1 代入求出 A0
f ( x ) dx 2 f (0)
1 2
n =1 时, Pn1 ( x ) (3 x 2 1) Gauss 点: x0 3 , x1 3
i 0
n
要证 xi 为 Gauss 点,即公式对 p(x) H2n+1精确成立 “ p( x) ( x)q( x) r( x) ” p(x), r(x)Hn 设
n1
b a
( x ) p( x )dx ( x)n1 ( x)q( x)dx ( x)r( x)dx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总结
1:梯形求积公式和抛物线求积公式是低精度的方法,但对于光滑 性较差的函数有时比用高精度方法能得到更好的效果。复化梯形 公式和抛物线求积公式,精度较高,计算较简,使用非常广泛。 2:Romberg求积方法,算法简单,当节点加密提高积分近似程度 时,前面的计算结果可以为后面的计算使用,因此,对减少计算 量很有好处。并有比较简单的误差估计方法。 3。Gauss型求积,它的节点是不规则的,所以当节点增加时,前 面的计算的函数值不能被后面利用。计算过程比较麻烦,但精度 高,特别是对计算无穷区间上的积分和旁义积分,则是其他方法 所不能比的。
n
证明: 时代入公式, 证明:分别取 f(x)=1, x,x2,...xn 时代入公式,并让其成为等式得 ,
A1 + A2 + …… + An =∫ab1dx.= b-a +xn An =∫abxdx.= (b2-a 2)/2 ...... x1 rA1 + x2 rA2+ …… +xn rAn =∫abxr dxr =(br+1-a r+1)/ (r+1) 等式, 个待定系数 变元),要想如上方程组有唯一解 个待定系数(变元 要想如上方程组有唯一解, 上式共有 r 个 等式,2n个待定系数 变元 要想如上方程组有唯一解,应有方 程组中方程的个数等于变元的个数,即 程组中方程的个数等于变元的个数 即 r=2n,这样求出的解答应的求积公式的代 这样求出的解答应的求积公式的代 数精度至少是2n-1,下面证明代数精度只能是2n-1. 下面证明代数精度只能是 数精度至少是 下面证明代数精度只能是 [ 如果事先已选定 ,b]中求积节点 k如下a≤x1 ≤…x n≤b,上式成为 个未知 如果事先已选定[a 中求积节点x 上式成为n个未知 中求积节点 如下 ≤ 上式成为 元线性方程组, 时方程组有唯一解 有唯一解] 数 A1、...An的n元线性方程组,此时要 元线性方程组 此时要r=n 时方程组有唯一解 、 x1 A1 + x2 A2+ ……
∫
b
a
ρ( x) f ( x)dx = ∑ Ak f ( xk )
k =1
n
ρ( x) ≥ 0 是权函数
注意此时的代数精度最高为2n-1 注意此时的代数精度最高为
(一)定理: 定理:
求积公式 超2n-1次。 次
∫
b
a
ρ( x) f ( x)dx ≈ ∑ Ak f ( xk ) 的代数精度最高不
k =1
1 f (6) (η) 15750
f (8) (η) 3472875
f (η) 1237732650
(10)
例题利用高斯求积公式计算
[解]令x=1/2 (1+t), 则 1 dx 1 dt I =∫ =∫ −1 3 + t 0 1+ x 用高斯-Legendre求积公式计算 求积公式计算.取n=5 求积公式计算
1
四、 Romberg公式 公式 K Tn Sn Cn Rn 0 0.9207355 1 0.9397933 0.9461459 2 0.9445135 0.9460869 0.9400830 3 0.9456906 0.9460833 0.9460831 0.9460831
五、Gauss公式 公式 令x=(t+1)/2, 个节点的Gauss公式 用2个节点的 个节点的 公式
常用的高斯求积公式
1.Gauss - Legendre 求积公式
1
∫
−1
f ( x)dx ≈ ∑ Ak f ( xk )
k =1
n
(1)
其中高斯点为Legendre多项式的零点
1 d n ( x2 −1)n • n 2 n! dxn
Ln(x)=
对于一般有限区间[a,b],用线性变换x=(a+b)/2+(b-a)t/2使它变成 ,用线性变换 对于一般有限区间 使它变成 为[-1,1]。 。
∫
1
f ( x) 1− x
2
−1
dx ≈ ∑ A f ( xk ) k
k =1
n
(2)
其中高斯点为Chebyshev 多项式Tn(x)的零点
Tn(x)=cos(narccos(x))
( 2 k − 1)π x k = cos 2n , Ak =
π
n
3.Gauss - Laguerre 求积公式
∫
∞
0
e f ( x)dx ≈ ∑ Ak f ( xk )
−x k =1
n
(3)
4 .Gauss - Hermite 求积公式
∫
+∞ −
−∞
e x f ( x)dx ≈ ∑ Ak f ( xk )
k =1
2
n
(4)
例题:分别用不同方法计算如下积分 并做比较 例题 分别用不同方法计算如下积分,并做比较 分别用不同方法计算如下积分
事实上,取 2n次多项式 次多项式g(x)=(x-x1)2(x-x2)2….(x-xn)2 代入求积公式,有 次多项式 左=
∫
b
a
ρ( x)g( x)dx > o
右=
∑ A g( x )=0
k =1 k k n
n
左≠右,故不成立等式,定理得证. 定义: 定义 使求积公式
∫
b
a
ρ( x) f ( x)dx ≈ ∑ Ak f ( xk )
二:用复化梯形公式 用复化梯形公式
令h=1/8=0.125
sin x h ∫0 x dx ≈ 2 { f (0) + 2[ f (h) + L + f (7h)] + f (1)} = 0.94569086
1
三:用复化抛物线
令h=1/8=0.125
sin x h dx ≈ { f (0) + 4[ f (h) +L+ f (7h)] + 2[ f (2h) +L+ f (6h)] + f (1)} = 0.946083305 ∫0 x 3
1 sin (0.7745907 + 1) 2 I ≈ 0.5555556 × 0.7745907 + 1
sin
1 2 + 0.8888889 × 0 +1 sin
+ 0 . 5555556
×
1 ( 0 . 7745907 + 1) 2 0 . 7745907 +1
=0.9460831
比较
此例题的精确值为0.9460831... 由例题的各种算法可知: 对Newton-cotes公式,当n=1时只有1位有效数字,当 n=2时有3位有效数字,当n=5时有7位有效数字。 对复化梯形公式有2位有效数字,对复化抛物线公式有 2 6位有效数字。 用复合梯形公式,对积分区间[0,1]二分了11次用2049 个函数值,才可得到7位准确数字。 用Romberg公式对区间二分3次,用了9个函数值,得到 同样的结果。 用Gauss公式仅用了3个函数值,就得到结果。
I =
∫
1 −1
sin( t + 1 ) / 2 dt t + 1
1 1 sin ( − 0 .5773503 + 1) sin ( 0 .5773503 + 1) 2 2 I ≈ + = 0 .9460411 − 0 . 5773503 + 1 0 .5773503 + 1
个节点的Gauss公式 用3个节点的 个节点的 公式
定理: 定理 若f(2n)(x)在[a,b]上连续,则高斯求积公式的余项为
f (2n) (η) b 2 Rn = ∫a源自ρ(x)wn (x)dx (2n)!
其中η∈(a,b),w(x)=(x-x1)(x-x2)…..(x-xn)。
高斯求积公式的系数A 恒为正,故高斯求积公式是稳定的 故高斯求积公式是稳定的. 高斯求积公式的系数 k恒为正 故高斯求积公式是稳定的 Guass求积公式有多种 他们的 求积公式有多种,他们的 系数A 求积公式有多种 他们的Guass点xk, Guass系数 k 点 系数 都有表可以查询. 都有表可以查询
∫
令I=
1
0
sin x dx x
∫
1
0
sin x dx x
各种做法比较如下: 一、Newton-Cotes公式 公式 当n=1时,即用梯形公式,I=0.9270354 当n=2时, 即用Simpson公式,I=0.9461359 当n=3时,I=0.9461090 当n=4时,I=0.9460830 当n=5时,I=0.9460831
dx ∫ 1+ x 0
1
1 1 1 (5) (5) I ≈A + A2 +L+ A5 (5) (5) (5) 3 + t1 3 + t2 3 + t5
(5) 1
≈ 0.69314719L
积分精确值为 I=ln2=0.69314718… 由此可见,高斯公式精确度是很高的
2.Gauss - Chebyshev 求积公式
k =1
达到最高代数精度2n-1的求积公式称为 的求积公式称为Guass求积公式 达到最高代数精度 的求积公式称为 求积公式 Guass求积公式的节点xk称为Guass点,系数Ak称为Guass系数 系数. 点 系数 因为Guass求积公式也是插值型求积公式,故有 结论:插值型求积公式的代数精度d满足 结论 插值型求积公式的代数精度 满足:n-1≤ d≤2n-1 插值型求积公式的代数精度 满足: ≤ ≤
n
1 2
xk(n)
0 -0.5773503 +0.5773503
Ak(n)