变力做功的计算
变力做功的计算
变力做功的计算 Prepared on 22 November 2020变力做功的计算公式适用于恒力功的计算,对于变力做功的计算,一般有以下几种方法。
一、微元法对于变力做功,不能直接用进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F是恒力,用求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。
这种处理问题的方法称为微元法,这种方法具有普遍的适用性。
但在高中阶段主要用于解决大小不变、方向总与运动方向相同或相反的变力的做功问题。
例1. 用水平拉力,拉着滑块沿半径为R的水平圆轨道运动一周,如图1所示,已知物块的质量为m,物块与轨道间的动摩擦因数为。
求此过程中摩擦力所做的功。
图1思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小不变,方向时刻变化,是变力,不能直接用求解;但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果。
图2正确解答:把圆轨道分成无穷多个微元段,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别为,,…,,摩擦力在一周内所做的功。
误点警示:对于此题,若不加分析死套功的公式,误认为位移s=0,得到W=0,这是错误的。
必须注意本题中的F是变力。
小结点评:对于变力做功,一般不能用功的公式直接进行计算,但有时可以根据变力的特点变通使用功的公式。
如力的大小不变而方向总与运动方向相同或相反时,可用计算该力的功,但式子中的s不是物体运动的位移,而是物体运动的路程。
[发散演习]如图3所示,某个力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向任何时刻与作用点处的切线方向保持一致。
则转动半圆,这个力F做功多少图3答案:。
二、图象法在直角坐标系中,用纵坐标表示作用在物体上的力F,横坐标表示物体在力的方向上的位移s。
如果作用在物体上的力是恒力,则其F-s图象如图4所示。
变力做功的计算
G ο60ο30A B变力做功的计算对于功的定义式W =αcos Fl ,其中的F 是恒力,适用于求恒力做功,其中的l 是力F 的作用点发生的位移,α是力F 与位移s 的夹角。
在高中阶段求变力做功问题,是学生学习的难点。
求变力做功的方法很多,比如用动能定理、功率的表达式Pt W=、功能关系、平均值、x F -图像、微元累积法等来求变力做功。
一、化变力做功为恒力做功求某个过程中的変力做功,可以通过等效法把求该変力做功转换成求与该変力做功相同的恒力的功,此时可用功定义式W =αcos Fl 求恒力的功,从而可知该変力的功。
等效转换的关键是分析清楚该変力做功到底与哪个恒力的功是相同的。
例1:人在A 点拉着绳通过一定滑轮吊起质量m=50Kg 的物体,如图所示,开始绳与水平方向夹角为ο60,当人匀速提起重物由A 点沿水平方向运动m s2=而到达B 点,ο30角,求人对绳的拉力做了多少功?二、运用F-x 图象求变力做功 某些求変力做功的问题,如果能够画出変力F 与位移x 的图像,则F-x 图像中与x 轴所围的面积表示该过程中変力F 做的功。
运用F-x 图像中的面积求变力做功的关键是先表示出変力F 与位移x 的函数关系,再在画出F-x 图像。
例2:用铁锤将一铁钉击入木块,设阻力与钉子进入木板的深度成正比,每次击钉时锤子对钉子做的功相同,已知第一次击后钉子进入木板1cm ,则第二次击钉子进入木板的深度为多少?三、运用平均值求变力做功 求変力做功可通过l F W⋅=求,但只有在変力F 与位移l 成正比例、或一次函数关系时,即成线性关系时,221F F F +=才成立。
用平均值求变力做功的关键是先判断変力F 与位移l 是否成线性关系,然后求出该过程初状态的力1F 和末状态的力2F 。
例3:某人用竖直向上的力匀速提起长为L、质量为m的置于地面上的铁链,求将铁链从提起到刚提离地面时,提力所做的功.四、运用动能定理求变力做功动能定理的表述:合外力对物体做功等于物体的动能的改变,或外力对物体做功的代数和等于物体动能的改变。
如何求变力做功
F 图1如何求变力做功在高中阶段求变力做功的问题是很常见的。
既可以运用公式W=FScos α来求解,又可以运用动能定理、功能原理等来求解。
对于具体问题要具体分析。
为此笔者在教学中总结了以下几种方法。
一、运用公式W=FScos α求解在不知物体初、末位置的速度时,就无法运用动能定理或功能原理求解,只有将变力转化为恒力,依据功的定义式W=FScos α求解。
例1 如图1所示,某个力F 作用于半径为R 的圆盘, 力F 的大小不变,但方向始终与过力的作用点的圆盘的切线 一致,则转动圆盘一周该力做多少功。
分析与解 在转动转盘一周过程中,力F 的方向时刻变化,但每一瞬时力F 总是与该瞬时的速度同向(切线方向),既F 在每瞬时与转盘转过的极小位移∆s 同向。
这样,无数瞬时的极小位移∆s 1,∆s 2,∆s 3…∆s n 都与当时的F 方向同向。
因而在转动一周过程中,力F 做的功应等于在各极小位移段所做功的代数和。
即W=F ∆s 1+F ∆s 2+…F ∆s n= F(∆s 1+∆s 2+∆s 3+…∆s n )=F 2πR当变力始终与速度在同一直线上或成某一固定角度时可把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W=FScos α计算功,而且变力所做功等于变力在各小段所做功之和。
再者,若问题中的变力与位移成线形关系,即F=ks+b ,其F-s 图象如图2所示。
则图中阴影部分的面积大小在数值上等于变力所做功的大小,即W=)(21221s s F F -+。
也就是说,变力F 由F 1线形地变化到F 2的过程中所做的功等于该过程的平均力221F F F +=-所做的功。
二、用动能定理求解动能定理告诉我们,外力对物体所做的功等于物体动能的变化,即W 外 =∆E K ,W 外系指物体受到的所有外力对物体所做功的代数和,∆E K 是物体动能的变化量。
例2 如图3所示,质量为m 的物块在半径为R 的半球形容器中从上部边缘A 由静止起下滑,滑到最底点B时对容器底部的压力为2mg 。
变力做功的六种常见计算方法
变力做功的六种常见计算方法s,但是学生在应用在高中阶段,力做功的计算公式是W=FScoα时,只会计算恒力的功,对于变力的功,高中学生是不会用的。
下面介绍六种常用的计算变力做功的方法,希望对同学们有所启发。
方法一:用动能定理求若物体的运动过程很复杂,但是如果它的初、末动能很容易得出,而且,除了所求的力的功以外,其他的力的功很好求,可选用此法。
例题1:如图所示。
质量为m的物体,用细绳经过光滑的小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个数值F时,转动半径为R;拉力逐渐减小到0.25F时,物体仍然做匀速圆周运动,半径为2R,求外力对物体所做的功的大小。
解析:当拉力为F时,小球做匀速圆周运动,F提供向心力,则F=mv12/2R。
此题中,当半径由R2/R;当拉力为0.25F时,0.25F=mv2变为2R的过程中,拉力F为变力,由F变为2F,我们可以由动能定2=0.25RF。
理,求2—0.5mv2得外力对物体所做的功的大小W=0.5mv1方法二:用功率的定义式求若变力做功的功率和做功时间是已知的,则可以由W=Pt来求解变力的功。
例题2:质量为m=500吨的机车,以恒定的功率从静止出发,经过时间t=5min在水平路面上行使了s=2.25km,速度达到最大值v=54km/h。
假设机车受到的阻力为恒力。
求机车在运动中受到的阻力大小。
解析:机车先做加速度减小的变加速直线运动,再做匀速直线运动。
所以牵引力F先减小,最后,F恒定,而且跟阻力f平衡,此时有功率P=Fv=fv。
在变加速直线运动阶段,牵引力是变力,它在此阶段所作的功可以由w=Pt来求。
由动能定理,Pt—fs=0.5mv2—0,把P=Fv=fv代入得,阻力f=25000N。
方法三:平均力法如果变力的变化是均匀的(力随位移线性变化),而且方向不变时,可以把变力的平均值求出后,将其当作恒力代入定义式即可。
例题3:如图所示。
轻弹簧一端与竖直墙壁连接,另一端与一质量为m的木块相连,放在光滑的水平面上,弹簧的劲度系数为k,开始时弹簧处于自然状态。
思想方法:变力做功的计算方法
思想方法7.变力做功的计算方法方法一平均力法如果力的方向不变,力的大小随位移按线性规律变化时,可用力的算术平均值(恒力)代替变力,即F=F1+F22再利用功的定义式W=F l cos α来求功.【典例1】用锤子击打钉子,设木板对钉子的阻力跟钉子进入木板的深度成正比,每次击打钉子时锤子对钉子做的功相同.已知第一次击打钉子时,钉子进入的深度为1 cm,则第二次击打时,钉子进入的深度是多少?即学即练1质量是2 g的子弹,以300 m/s的速度射入厚度是5 cm的木板(如图5-1-8所示),射穿后的速度是100 m/s.子弹射穿木板的过程中受到的平均阻力是多大?你对题目中所说的“平均”一词有什么认识?方法二用微元法求变力做功将物体的位移分割成许多小段,因小段很小,每一小段上作用在物体上的力可以视为恒力,这样就将变力做功转化为在无数多个无穷小的位移上的恒力所做元功的代数和.此法在中学阶段,常应用于求解力的大小不变、方向改变的变力做功问题.【典例2】如图5-1-9所示,一个人推磨,其推磨杆的力的大小始终为F,与磨杆始终垂直,作用点到轴心的距离为r,磨盘绕轴缓慢转动.则在转动一周的过程中推力F做的功为().A.0B.2πrF C.2Fr D.-2πrF即学即练2如图5-1-10所示,半径为R,孔径均匀的圆形弯管水平放置,小球在管内以足够大的初速度在水平面内做圆周运动,设开始运动的一周内,小球与管壁间的摩擦力大小恒为F f,求小球在运动的这一周内,克服摩擦力所做的功.方法三用图象法求变力做功在F-x图象中,图线与两坐标轴所围的“面积”的代数和表示力F做的功,“面积”有正负,在x轴上方的“面积”为正,在x轴下方的“面积”为负.【典例3】一物体所受的力F随位移x变化的图象如图5-1-11所示,求在这一过程中,力F对物体做的功为多少?即学即练3如图5-1-12甲所示,静止于光滑水平面上坐标原点处的小物块,在水平拉力F作用下,沿x轴方向运动,拉力F随物块所在位置坐标x的变化关系如图乙所示,图线为半圆.则小物块运动到x0处时F做的总功为().A.0B.12F m x2C.π4F m x0D.π4x2方法四利用W=Pt求变力做功这是一种等效代换的观点,用W=Pt计算功时,必须满足变力的功率是一定的这一条件.【典例4】如图5-1-13所示,用跨过光滑定滑轮的缆绳将海面上一艘失去动力的小船沿直线拖向岸边.已知拖动缆绳的电动机功率恒为P,小船的质量为m,小船受到的阻力大小恒为F f,经过A点时的速度大小为v0,小船从A点沿直线加速运动到B点经历时间为t1,A、B两点间距离为d,缆绳质量忽略不计.求:(1)小船从A点运动到B点的全过程克服阻力做的功WF f;(2)小船经过B点时的速度大小v1.即学即练4汽车的质量为m,输出功率恒为P,沿平直公路前进距离s的过程中,其速度由v1增至最大速度v2.假定汽车在运动过程中所受阻力恒定,求汽车通过距离s所用的时间.方法五 利用动能定理求变力的功动能定理既适用于直线运动,也适用于曲线运动,既适用于求恒力功也适用于求变力功.因使用动能定理可由动能的变化来求功,所以动能定理是求变力功的首选.【典例5】 如图5-1-14所示,AB 为四分之一圆周轨道,半径R =0.8 m ,BC 为水平轨道,长为L =3 m .现有一质量m =1 kg 的物体,从A 点由静止滑下,到C 点刚好停止.已知物体与BC 段轨道间的动摩擦因数为μ=115,求物体在AB 段轨道受到的阻力对物体所做的功.(g 取10 m/s 2)即学即练5 如图5-1-15甲所示,一质量为m =1 kg 的物块静止在粗糙水平面上的A 点,从t =0时刻开始物块受到如图乙所示规律变化的水平力F 的作用并向右运动,第3 s 末物块运动到B 点时速度刚好为0,第5 s 末物块刚好回到A 点,已知物块与粗糙水平面间的动摩擦因数μ=0.2,(g =10 m/s 2)求:(1)A 与B 间的距离;(2)水平力F 在前5 s 内对物块做的功. 附:对应高考题组(PPT 课件文本,见教师用书)1.(2012·上海卷,18)如图所示,位于水平面上的物体在水平恒力F 1作用下,做速度为v 1的匀速运动;若作用力变为斜向上的恒力F 2,物体做速度为v 2的匀速运动,且F 1与F 2功率相同.则可能有( ).A .F 2=F 1 v 1>v 2B .F 2=F 1 v 1<v 2C .F 2>F 1 v 1>v 2D .F 2<F 1 v 1<v 22.(2012·四川卷,21)如图所示,劲度系数为k 的轻弹簧的一端固定在墙上,另一端与置于水平面上质量为m 的物体接触(未连接),弹簧水平且无形变.用水平力F 缓慢推动物体,在弹性限度内弹簧长度被压缩了x 0,此时物体静止.撤去F 后,物体开始向左运动,运动的最大距离为4x 0.物体与水平面间的动摩擦因数为μ,重力加速度为g .则( ).A .撤去F 后,物体先做匀加速运动,再做匀减速运动B .撤去F 后,物体刚运动时的加速度大小为kx 0m-μgC .物体做匀减速运动的时间为2x 0μgD .物体开始向左运动到速度最大的过程中克服摩擦力做的功为μmg ()x 0-μmgk3.(2012·江苏卷,3)如图所示,细线的一端固定于O 点,另一端系一小球.在水平拉力作用下,小球以恒定速率在竖直平面内由A 点运动到B 点.在此过程中拉力的瞬时功率变化情况是( ).A .逐渐增大B .逐渐减小C .先增大,后减小D .先减小,后增大4.(2011·海南卷,9)一质量为1 kg 的质点静止于光滑水平面上,从t =0时起,第1秒内受到2 N 的水平外力作用,第2秒内受到同方向的1 N 的外力作用.下列判断正确的是( ).A .0~2 s 内外力的平均功率是94WB .第2秒内外力所做的功是54JC .第2秒末外力的瞬时功率最大D .第1秒内与第2秒内质点动能增加量的比值是455.(2011·上海卷,15)如图,一长为L 的轻杆一端固定在光滑铰链上,另一端固定一质量为m 的小球.一水平向右的拉力作用于杆的中点,使杆以角速度ω匀速转动,当杆与水平方向成60°时,拉力的功率为( ).A .mgLωB .32mgLω C.12mgLω D .36mgLω【典例1】解析 设木板对钉子的阻力为F f =kx ,x 为钉子进入木板的深度,第一次击打后钉子进入木板的深度为x 1,第二次击打钉子时,钉子进入木板的总深度为x 2,则有W 1=F f 1x 1=0+kx 12·x 1=12kx 21W 2=F f 2(x 2-x 1)=kx 1+kx 22·(x 2-x 1)=12k (x 22-x 21) 由于W 1=W 2,代入数据解得x 2=2x 1=1.41 cm 所以钉子第二次进入的深度为 Δx =x 2-x 1=0.41 cm. 答案 0.41 cm即学即练1解析 设子弹所受的平均阻力为F f ,根据动能定理W 合=12m v 22-12m v 21得 F f l cos 180°=12m v 22-12m v 21所以F f =-m (v 22-v 21)2l =-2×10-3×(1002-3002)2×5×10-2N =1.6×103N 子弹在木板中运动5 cm 的过程中,所受木板的阻力各处不同,题中所说的平均阻力是相对子弹运动这5 cm 的过程来说的.答案 1.6×103 N 见解析 【典例2】解析 磨盘转动一周,力的作用点的位移为0,但不能直接套用W =Fs cos α求解,因为在转动过程中推力F 为变力.我们可以用微元的方法来分析这一过程.由于F 的方向在每时刻都保持与作用点的速度方向一致,因此可把圆周划分成很多小段来研究,如图所示,当各小段的弧长Δs i 足够小(Δs i →0)时,F 的方向与该小段的位移方向一致,所以有:W F =F Δs 1+F Δs 2+F Δs 3+…+F Δs i =F 2πr =2πrF (这等效于把曲线拉直).答案 B即学即练2解析 将小球运动的轨迹分割成无数个小段,设每一小段的长度为Δx ,它们可以近似看成直线,且与摩擦力方向共线反向,如图所示,元功W ′=F f Δx ,而在小球运动的一周内小球克服摩擦力所做的功等于各个元功的和,即W =ΣW ′=F f ΣΔx =2πRF f .答案 2πRF f【典例3】解析 力F 对物体做的功等于x 轴上方梯形“面积”所表示的正功与x 轴下方三角形“面积”所表示的负功的代数和.S 梯形=12×(3+4)×2=7S 三角形=-12×(5-4)×2=-1所以力F 对物体做的功为W =7 J -1 J =6 J. 答案 6 J 即学即练3解析 F 为变力,但F -x 图象包围的面积在数值上表示拉力做的总功.由于图线为半圆,又因在数值上F m =12x 0,故W =12πF 2m=12π·F m ·12x 0=π4F m x 0. 答案 C利用W =Pt 求变力做功这是一种等效代换的观点,用W =Pt 计算功时,必须满足变力的功率是一定的这一条件. 【典例4】解析 (1)小船从A 点运动到B 点克服阻力做功 WF f =F f d ①(2)小船从A 点运动到B 点,电动机牵引缆绳对小船做功 W =Pt 1②由动能定理有W -WF f =12m v 21-12m v 20③ 由①②③式解得v 1=v 20+2m (Pt 1-F f d )④ 答案 (1)F f d (2)v 20+2m (Pt 1-F f d )即学即练4解析 当F =F f 时,汽车的速度达到最大速度v 2,由P =F v 可得F f =Pv 2对汽车,根据动能定理,有Pt -F f s =12m v 22-12m v 21联立以上两式解得t =m (v 22-v 21)2P +s v 2.答案 m (v 22-v 21)2P +s v 2.【典例5】解析 物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,且W G =mgR ,W f BC =-μmgL ,由于物体在AB 段受到的阻力是变力,做的功不能直接求解.设物体在AB 段轨道受到的阻力对物体所做的功为W fAB ,从A 到C ,根据动能定理有mgR +W fAB -μmgL =0,代入数据解得W fAB =-6 J.答案 -6 J 即学即练5 .解析 (1)A 、B 间的距离与物块在后2 s 内的位移大小相等,在后2 s 内物块在水平恒力作用下由B 点匀加速运动到A 点,由牛顿第二定律知F -μmg =ma ,代入数值得a =2 m/s 2,所以A 与B 间的距离为s =12at 2=4 m.(2)前3 s 内物块所受力F 是变力,设整个过程中力F 做的功为W ,物体回到A 点时速度为v ,则v 2=2as ,由动能定理知W -2μmgs =12m v 2,所以W =2μmgs +mas =24 J.答案 (1)4 m (2)24 J附:对应高考题组(PPT 课件文本,见教师用书)1.解析 水平恒力F 1的作用时有P 1=F 1v 1,斜向上恒力F 2作用时有P 2=F 2v 2cos θ,其中θ为F 2与水平方向的夹角,又F 2cos θ=μ(mg -F 2sin θ),F 1=μmg ,故F 2cos θ<F 1,由于P 1=P 2,所以v 1<v 2,F 1与F 2的关系不确定,故选项B 、D 正确,A 、C 错误.答案 BD2.解析 撤去F 后,物体向左先做加速运动,其加速度大小a 1=kx -μmg m =kxm-μg ,随着物体向左运动,x 逐渐减小,所以加速度a 1逐渐减小,当加速度减小到零时,物体的速度最大,然后物体做减速运动,其加速度大小a 2=μmg -kxm=μg -kx m ,a 2随着x 的减小而增大.当物体离开弹簧后做匀减速运动,加速度大小a 3=μmg m =μg ,所以选项A 错误.根据牛顿第二定律,刚撤去F 时,物体的加速度a =kx 0-μmg m =kx 0m-μg ,选项B 正确.物体做匀减速运动的位移为3x 0,则3x 0=12a 3t 2,得物体做匀减速运动的时间t =6x 0a 3=6x 0μg,选项C 错误.当物体的速度最大时,加速度a ′=0,即kx =μmg ,得x =μmgk,所以物体克服摩擦力做的功W =μmg (x 0-x )=μmg ()x 0-μmg k ,选项D 正确. 答案 BD3.解析 小球速率恒定,由动能定理知:拉力做的功与克服重力做的功始终相等,将小球的速度分解,可发现小球在竖直方向分速度逐渐增大,重力的瞬时功率也逐渐增大,则拉力的瞬时功率也逐渐增大,A 项正确.答案 A4.解析 根据牛顿第二定律得,物体在第1 s 内的加速度a 1=F 1m =2 m/s 2,在第2 s 内的加速度a 2=F 2m =11 m/s 2=1 m/s 2;第1 s 末的速度v 1=a 1t =2 m/s ,第2 s 末的速度v 2=v 1+a 2t =3 m/s ;0~2 s 内外力做的功W =12m v 22=92 J ,平均功率P =W t =94 W ,故A 正确.第2 s 内外力所做的功W 2=12m v 22-12m v 21=()12×1×32-12×1×22J =52 J ,故B 错误.第1 s 末的瞬时功率P 1=F 1v 1=4 W .第2 s 末的瞬时功率P 2=F 2v 2=3 W ,故C 错误.第1 s 内动能的增加量ΔE k1=12m v 21=2 J ,第2 s 内动能的增加量ΔE k2=W 2=52J ,所以ΔE k1ΔE k2=45,故D 正确.答案 AD5.解析 由能的转化及守恒可知:拉力的功率等于克服重力的功率.P G =mg v y =mg v cos 60°=12mgωL ,故选C.答案 C。
变力做功的六种常见计算方法
变力做功的六种常见计算方法变力做功是指当力的大小和方向随着对象运动的位置而变化时,力对物体所做的功。
下面将介绍六种常见的计算变力做功的方法。
1.通过力的曲线面积计算功:当力的大小和方向随着位置的变化而变化时,可以通过绘制力与位置的曲线图,然后计算曲线下的面积来求得所做的功。
2.利用求和法计算功:将运动过程划分成若干个小的位移段,对每个位移段内力的大小和方向保持不变,然后通过求和法计算每个位移段上力所做的功,最后将所有位移段上力所做的功相加得到总功。
3.应用积分法计算功:对力和位移变化连续的问题,可以利用微积分中的积分法来计算变力做功。
通过计算力在位移方向上的积分,即对力关于位移的函数进行积分,来得到变力做功的结果。
4.利用功率和时间计算功:如果已知物体在一段时间内所受到的平均力和物体的平均速度,可以利用功率和时间的关系来计算功。
功率定义为单位时间内做功的大小,根据功率公式P=W/t,其中W是做功的大小,t是时间,可以通过已知的其它量来计算功。
5.利用速度和质量计算功:在一些特定的情况下,可以利用物体的速度和质量来计算变力做功。
根据力学中的动能定理,物体的动能变化等于外力所做的功,其中动能定义为 K=1/2 mv^2,其中 m 是质量, v 是速度。
6.利用万有引力计算功:当物体受到的力是万有引力时,可以利用万有引力公式来计算变力做功。
万有引力公式为F=GmM/r^2,其中F是力,m和M是物体的质量,G 是万有引力常数,r是两物体之间的距离。
通过将力乘以物体的位移并将结果进行积分,可以得到变力做功的计算结果。
这些是常见的计算变力做功的方法,根据具体问题的条件和要求,选择适合的方法来计算变力做功。
变力做功的六种常见计算方法
变力做功的六种常见计算方法第一种方法是曲线切线式。
在物体沿曲线运动的情况下,可以通过计算力的切线分量与物体速度的乘积来确定变力做功的大小。
具体计算方法是,首先需要确定物体在其中一时刻的速度,然后取该时刻的力的切线分量(即与物体速度方向相同的力的分量),最后将该切线分量与物体速度的乘积相乘,即可得到变力做功的大小。
第二种方法是常力法。
在物体受到一定的恒定力作用下,可以通过计算力与物体位移方向的夹角的余弦值再乘上力的大小来确定变力做功的大小。
具体计算方法是,首先需要确定力的大小,然后确定物体的位移方向与力的方向之间的夹角,最后将位移方向与力的方向之间夹角的余弦值乘以力的大小,即可得到变力做功的大小。
第三种方法是分力法。
当物体受到多个力的作用时,可以通过计算各个力的分力与物体位移方向之间的夹角的余弦值再分别乘上各个分力的大小来确定变力做功的大小,然后将各个分力的做功求和即可得到变力做功的总大小。
第四种方法是连续变力法。
在物体受到连续变化的力作用下,可以通过将力的大小关于物体位移的函数表示出来,然后对该函数进行积分来确定变力做功的大小。
具体计算方法是,首先需要确定力对物体位移的函数关系式,然后对该函数进行积分,最后得到的积分值即为变力做功的大小。
第五种方法是有功做功法。
在物体受到非保守力作用下,可以通过计算力的非保守分量与物体位移的乘积再加上势能变化的大小来确定变力做功的大小。
具体计算方法是,首先需要确定力的保守分量与非保守分量,然后将非保守分量与位移的乘积相加,再加上势能变化的大小,即可得到变力做功的大小。
第六种方法是负功做功法。
在物体受到反向力作用下,可以通过计算该反向力的绝对值与物体位移的乘积再乘上负一来确定变力做功的大小。
具体计算方法是,首先需要确定反向力的大小,然后将反向力的绝对值与位移的乘积相乘,并将结果乘以负一,即可得到变力做功的大小。
综上所述,变力做功的六种常见计算方法分别是曲线切线式、常力法、分力法、连续变力法、有功做功法和负功做功法。
变力做功的六种常见计算方法
变力做功的六种常见计算方法在高中阶段,力做功的计算公式是W=FScosα,但是学生在应用时,只会计算恒力的功,对于变力的功,高中学生是不会用的。
下面介绍六种常用的计算变力做功的方法,希望对同学们有所启发。
方法一:用动能定理求若物体的运动过程很复杂,但是如果它的初、末动能很容易得出,而且,除了所求的力的功以外,其他的力的功很好求,可选用此法。
例题1:如图所示。
质量为m的物体,用细绳经过光滑的小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个数值F时,转动半径为R;拉力逐渐减小到0。
25F时,物体仍然做匀速圆周运动,半径为2R,求外力对物体所做的功的大小.解析:当拉力为F时,小球做匀速圆周运动,F提供向心力,则F=mv12/R;当拉力为0。
25F时,0.25F=mv22/2R。
此题中,当半径由R 变为2R的过程中,拉力F为变力,由F变为2F,我们可以由动能定理,求得外力对物体所做的功的大小W=0。
5mv12—0。
5mv22=0。
25RF.方法二:用功率的定义式求若变力做功的功率和做功时间是已知的,则可以由W=Pt来求解变力的功。
例题2:质量为m=500吨的机车,以恒定的功率从静止出发,经过时间t=5min在水平路面上行使了s=2。
25km,速度达到最大值v=54km/h。
假设机车受到的阻力为恒力。
求机车在运动中受到的阻力大小。
解析:机车先做加速度减小的变加速直线运动,再做匀速直线运动。
所以牵引力F先减小,最后,F恒定,而且跟阻力f平衡,此时有功率P=Fv=fv。
在变加速直线运动阶段,牵引力是变力,它在此阶段所作的功可以由w=Pt来求。
由动能定理,Pt—fs=0。
5mv2—0,把P=Fv=fv代入得,阻力f=25000N.方法三:平均力法如果变力的变化是均匀的(力随位移线性变化),而且方向不变时,可以把变力的平均值求出后,将其当作恒力代入定义式即可.例题3:如图所示。
轻弹簧一端与竖直墙壁连接,另一端与一质量为m的木块相连,放在光滑的水平面上,弹簧的劲度系数为k,开始时弹簧处于自然状态。
变力做功的计算
在公式中,W=Flcosa其中l 代表的是位移还是路程?如果是位移,那么在变力作用下物体出现了弯曲的移动路线此时的功如何计算?分析:这里的L 表示位移,这个公式只适用于恒力做功。
变力做功一般是根据动能定理或者微元法来做。
功的计算在中学物理中占有十分重要的地位,中学阶段所学的功的计算公式W=FScosa 只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用,下面对变力做功问题进行归纳总结如下:1、等值法等值法即若某一变力的功和某一恒力的功相等,则可以通过计算该恒力的功,求出该变力的功。
而恒力做功又可以用W=FScosa 计算,从而使问题变得简单。
例1、如图1,定滑轮至滑块的高度为h ,已知细绳的拉力为F (恒定),滑块沿水平面由A 点前进S 至B 点,滑块在初、末位置时细绳与水平方向夹角分别为α和β。
求滑块由A 点运动到B 点过程中,绳的拉力对滑块所做的功。
分析与解:设绳对物体的拉力为T ,显然人对绳的拉力F 等于T 。
T 在对物体做功的过程中大小虽然不变,但其方向时刻在改变,因此该问题是变力做功的问题。
但是在滑轮的质量以及滑轮与绳间的摩擦不计的情况下,人对绳做的功就等于绳的拉力对物体做的功。
而拉力F 的大小和方向都不变,所以F 做的功可以用公式W=FScosa 直接计算。
由图1可知,在绳与水平面的夹角由α变到β的过程中,拉力F 的作用点的位移大小为:βαsin sin 21h h S S S -=-=∆ )sin 1sin 1(.βα-=∆==Fh S F W W F T 2、微元法当物体在变力的作用下作曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,且力与位移的方向同步变化,可用微元法将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和。
例2 、如图2所示,某力F=10N 作用于半径R=1m 的转盘的边缘上,力F 的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F 做的总功应为:A 、 0JB 、20πJC 、10JD 、20J.分析与解:把圆周分成无限个小元段,每个小元段可认为与力在同一直线上,故ΔW=F ΔS ,则转一周中各个小元段做功的代数和为W=F ×2πR=10×2πJ=20πJ=62.8J ,故B 正确。
035变力做功的6种计算方法 精讲精练-2022届高三物理一轮复习疑难突破微专题
一..变力做功的6种计算方法方法举例说法1.应用动能定理用力F把小球从A处缓慢拉到B处,F做功为W F,则有:W F-mgL(1-cosθ)=0,得W F=mgL(1-cosθ)2.微元法质量为m的木块在水平面内做圆周运动,运动一周克服摩擦力做功W f=F f·Δx1+F f·Δx2+F f·Δx3+…=F f(Δx1+Δx2+Δx3+…)=F f·2πR3.等效转换法恒力F把物块从A拉到B,绳子对物块做功W=F·⎝⎛⎭⎪⎫hsinα-hsinβ4.平均力法弹簧由伸长x1被继续拉至伸长x2的过程中,克服弹力做功W=kx1+kx22·(x2-x1)6.图像法在Fx图像中,图线与x轴所围“面积”的代数和就表示力F在这段位移上所做的功7.功率法汽车恒定功率为P,在时间内牵引力做的功W=Pt二.典型例题精讲题型一:应用动能定理例1:如图所示,质量均为m 的木块A 和B ,用一个劲度系数为k 的竖直轻质弹簧连接,最初系统静止,重力加速度为g ,现在用力F 向上缓慢拉A 直到B 刚好要离开地面,则这一过程中力F 做的功至少为( )A.m 2g 2kB.2m 2g2kC.3m 2g2kD.4m 2g2k答案 B解析 开始时,A 、B 都处于静止状态,弹簧的压缩量设为x 1,由胡克定律有kx 1=mg ;木块B 恰好离开地面时,弹簧的拉力等于B 的重力,设此时弹簧的伸长量为x 2,由胡克定律有kx 2=mg ,可得x 1=x 2=mgk,则这一过程中,弹簧弹力做功为零,木块A 上升的高度h =x 1+x 2=2mgk,设变力F 做的功为W F ,由动能定理得W F -W G =0,又W G =mgh =2m 2g2k,所以W F =2m 2g2k,B选项正确.题型二:微元法例2:如图所示,在水平面上,有一弯曲的槽道AB ,槽道由半径分别为R2和R 的两个半圆构成.现用大小恒为F 的拉力将一光滑小球从A 点沿槽道拉至B 点,若拉力F 的方向时时刻刻均与小球运动方向一致,则此过程中拉力所做的功为( )A .0B .FR C.32πFR D .2πFR答案 C解析 虽然拉力方向时刻改变,但力与运动方向始终一致,用微元法,在很小的一段位移内F 可以看成恒力,小球的路程为πR +π·R 2,则拉力做的功为32πFR ,故C 正确.题型三:等效转换法例3:如图所示,轻绳一端受到大小为F 的水平恒力作用,另一端通过定滑轮与质量为m 、可视为质点的小物块相连。
7.2求变力做功的几种
解:
W=2fs
二,等效替代法:用恒力作功取代变力作功: 例3:如图所示,一物体(可视为质点)在通过滑 轮的绳子作用下沿水平面从A处运动到B处过程中 绳对物体做的功为多少?已知:绳的自由端施加 的力恒为F,在A处绳与水平面夹角为α,在B处绳 与水平面的夹角为β,滑轮与地面间距离为H
H
F
A B
解:由于绳对物体的拉力在水平方向为 变力,故不能用W=FS求解,但绳的自 由端拉力所做的功等于绳对物体做的 功,物体从A移到B时绳的自由端下降 的位移为: H H S= sin - sin 绳对物体做的功为: H H W=FS=F( - sin )
例8:如图所示,原来质量为m的小球用 长L的细线悬挂而静止在竖直位置.用 水平拉力F将小球缓慢地拉到细线与竖 直方向成θ角的位置的过程中,拉力F 做功为( )
A. FL cos B. FL sin
ቤተ መጻሕፍቲ ባይዱ
C.FL1 cos
D.mgL1 cos
图2
七,用功和能的关系求变力作功:
关闭油门后,汽车的运动,由动量定理得:
- Ff t2 0 mvm
2 mvm mvm 5000 242 t2 s 48s Ff P 601000
则汽车运动的时间为:t=t1+t2=50s+48s=98s
六、运用动能定理求变力做功 动能定理:合外力对物体做功等于物 体的动能的改变,或外力对物体做功 的代数和等于物体动能的改变。 已知一个物体在某个过程中的初动能 和末动能,且可以求出该过程其它力 做功,则可以用动能定理求该过程中 変力做功。
F
解:W=
( F1 F2 ) 0 KS S= 2 2
S= 1 KS
求解变力做功的“五法”
第26点求解变力做功的“五法”1.变力的功=力×路程当力的大小不变而方向始终与运动方向相同或相反时,这类力所做的功等于力和路程的乘积,如滑动摩擦力、空气阻力等做的功.2.变力的功=平均力×x cos α当力的方向不变,大小随位移线性变化时,可先求出力的平均值F=F1+F22,再由W=F x cos α计算.3.变力的功=功率×时间当变力的功率P一定时,可用W=Pt求功.4.变力的功=“面积”作出变力F随位移x变化的图像,图像与横轴所夹的“面积”即为变力做的功,如图1中阴影部分所示.图15.变力的功=动能变化-其他恒力所做的功当物体受到变力(也可只受变力)及其他恒力作用引起物体的动能发生变化时,根据动能定理知,变力的功等于动能变化减去其他恒力所做的功.对点例题如图2所示,有一台小型石磨,某人用大小恒为F、方向始终与磨杆垂直的力推磨.假设施力点到固定转轴的距离为L,在使磨转动一周的过程中,推力做了多少功?图2解题指导因力F的大小恒定,且始终与运动方向相同,故F的功等于力乘以路程,即W=F·2πL=2πFL答案2πFL一质量为2 kg的物体,在水平恒定拉力的作用下以某一速度在粗糙的水平面上做匀速运动,当运动一段时间后,拉力逐渐减小,且当拉力减小到零时,物体刚好停止运动,图3中给出了拉力随位移变化的关系图像.已知重力加速度g=10 m/s2.根据以上信息能精确得出或估算得出的物理量有()图3A.物体与水平面间的动摩擦因数B.合外力对物体所做的功C.物体匀速运动时的速度D.物体运动的时间答案ABC解析物体做匀速运动时,受力平衡,则f=F=7 N;再由滑动摩擦力公式可求得物体与水平面间的动摩擦因数;故A正确;4 m后物体做减速运动,图像与坐标轴围成的面积表示拉力做的功,则由图像中减速过程包括的方格数可知拉力所做的功;再由摩擦力与位移的乘积求出摩擦力的功;则可求得总功;故B正确;已求出物体合外力所做的功;则由动能定理可求得物体开始时做匀速运动时的速度;故C正确;由于不知道具体的运动情况,无法求出减速运动的时间,故D错误.。
求变力做功的十种方法
变力做功的十种方法河南省信阳高级中学 陈庆威功是高中物理的重要概念,对力做功的求解也是高考物理的重要考点,恒力的功可以用公式θcos FS W =直接求解,但变力做功就不能直接用公式了,这里总结了一些求变力做功的方法,希望能对读者有帮助。
一. 动能定理法例1. 如图所示,质量为m 的物体从A 点沿半径为R 的粗糙半球内表面以的速度开始下滑,到达B 点时的速度变为,求物体从A 运动到B 的过程中,摩擦力所做的功是多少?【解析】物体由A 滑到B 的过程中,受重力G 、弹力和摩擦力三个力的作用,因而有,即,式中为动摩擦因数,v 为物体在某点的速度,为物块与球心的连线与竖直方向的夹角。
分析上式可知,物体由A 运动到B 的过程中,摩擦力是变力,是变力做功问题,根据动能定理有,在物体由A 运动到B 的过程中,弹力不做功;重力在物体由A 运动到C 的过程中对物体所做的正功与物体从C 运动到B 的过程中对物体所做的负功相等,其代数和为零。
因此,物体所受的三个力中摩擦力在物体由A 运动到B 的过程中对物体所做的功,就等于物体动能的变化量,则有:即 可见,如果所研究的物体同时受几个力的作用,而这几个力中只有一个力是变力,其余均为恒力,且这些恒力所做的功和物体动能的变化量容易计算时,此类方法解决问题是行之有效的。
【点评】利用动能定理可以求变力做功,但不能用功的定义式直接求变力功,并且用动能定理只要求始末状态,不要求中间过程。
这也是动能定理比牛顿运动定律优越的一个方面。
二. 微元法对于变力做功,不能直接用θcos FS W =进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F 是恒力,用θcos FS W =求出每一小段内力F 所做的功,然后累加起来就得到整个过程中变力所做的功。
这种处理问题的方法称为微元法,具有普遍的适用性。
例2. 用水平拉力,拉着滑块沿半径为R 的水平圆轨道运动一周,如图所示,已知物块的质量为m ,物块与轨道间的动摩擦因数为μ。
求解变力做功的八种方法
求解变力做功的八种方法在物理学中,做功是指力对物体施加作用力并使其产生位移的过程中所做的功。
而当作用力是变化的时候,求解变力做功就变得相对复杂。
本文将介绍八种常用的方法来求解变力做功问题,帮助读者更好地理解这一物理概念。
一、分割法分割法是将变力分割成多个小的力,然后分别计算每个小力在相应的位移上所做的功,再将它们累加起来。
通过将变力离散化,我们可以近似所需求解的变力做功。
二、辅助函数法辅助函数法是将变力关于位移进行积分,得到一个辅助函数,再通过求导的方法求解变力做功。
这个方法需要对变力进行积分和求导,适用于一些特殊的变力情况。
三、力的分解法力的分解法是将变力分解成两个简化的力,一般是平行和垂直于位移的力,然后分别计算每个简化力在相应的位移上所做的功,再将它们相加。
通过将变力进行分解,我们可以将复杂的问题简化为分别求解两个力的功的问题。
四、动能定理法动能定理法利用了动能的变化与外力做功的关系,即外力做功等于物体动能的变化。
通过对物体的动能变化进行分析,我们可以求解变力做功的问题。
五、引入势函数法引入势函数法是将变力与势函数建立联系,通过势函数的导函数来求解变力做功。
这个方法需要找到一个合适的势函数,适用于一些具有简单势函数形式的变力情况。
六、平均值法平均值法是将变力近似为一个平均力,然后计算该平均力在整体位移上所做的功。
虽然这种方法只是对变力做功的近似,但在一些情况下可以提供一个比较准确的结果。
七、图形法图形法是通过绘制力与位移之间的图形来求解变力做功。
通过图形分析,我们可以计算图形下的面积或曲线的积分,进而得到变力做功的值。
八、牛顿第二定律法牛顿第二定律法利用了牛顿第二定律与功的关系,即力乘以位移等于质量乘以加速度乘以位移。
通过将力进行分解,我们可以将变力做功的问题转化为求解加速度和位移的问题。
综上所述,以上八种方法是常用的求解变力做功的方法。
在实际问题中,根据具体情况选择合适的方法求解变力做功问题,可以帮助我们更好地理解力学中的变力概念,并解决具体的物理问题综合上述八种方法,我们可以看出,求解变力做功问题的方法有多种多样,每种方法在不同情况下都有其适用性和限制性。
求解变力做功的十种方法
求解变力做功的十种方法变力做功是指力的大小和方向在作功过程中发生变化的情况。
下面将介绍十种常见的变力做功的方法。
1.拉力做功:当一个物体被施加拉力时,拉力在作功过程中的大小和方向都是持续变化的。
通常情况下,拉力的大小会逐渐增加,直到物体被拉到目标位置。
这个过程中拉力所做的功等于力的大小乘以物体的位移。
2.推力做功:推力做功与拉力做功类似,只不过是力的方向相反。
当一个物体被施加推力时,推力也会在作功过程中发生变化,直到物体被推到目标位置。
推力所做的功也等于力的大小乘以物体的位移。
3.弹力做功:当一个物体被施加弹性势能时,弹力会在作功过程中发生变化。
例如,当拉伸弹簧时,弹簧的劲度系数会导致拉力的大小随着弹簧的伸长而增加。
弹力所做的功等于力的大小乘以物体的位移。
4.阻力做功:当一个物体受到空气阻力或其他形式的阻力时,阻力会在作功过程中发生变化。
通常情况下,阻力的大小与物体的速度成正比。
因此,在物体运动时,阻力所做的功等于力的大小乘以物体的速度与位移之积。
5.重力做功:当一个物体被抬高或下落时,重力会在作功过程中发生变化。
抬高物体时,重力的大小会减小,而下落时则会增大。
重力所做的功等于力的大小乘以物体的高度。
6.磨擦力做功:当一个物体受到摩擦力时,摩擦力会在作功过程中发生变化。
通常情况下,摩擦力的大小与物体的接触面积和物体间的粗糙程度有关。
磨擦力所做的功等于力的大小乘以物体的位移。
7.引力做功:当一个物体受到另一个物体的引力作用时,引力会在作功过程中发生变化。
例如,当地球绕太阳运动时,引力的大小会随着地球到太阳的距离的变化而变化。
引力所做的功等于力的大小乘以物体的位移。
8.中心力做功:中心力是指作用在物体上的力总是指向物体的中心。
例如,当一个物体沿着圆形轨道运动时,中心力会在作功过程中发生变化,因为物体距离中心的距离在变化。
中心力所做的功等于力的大小乘以物体的位移。
9.引力做功:引力做功是指一个物体由于受到其他物体的引力而发生位移时,引力所做的功。
变力做功的计算
,
汇报人:
目录
01 添 加 目 录 项 标 题
02 变 力 做 功 的 定 义
03 变 力 做 功 的 分 类
04 变 力 做 功 的 实 例
05 变 力 做 功 的 物 理 意 义
06 变 力 做 功 的 计 算 方 法
Prt One
单击添加章节标题
Prt Two
变力做功的定义
应用实例:物体从 高处下落重力做功 等于其势能的减少
应用条件:物体在 重力场中运动且只 有重力做功
应用意义:理解势 能定理可以更好地 理解变力做功的物 理意义
功能原理的应用
变力做功:物 体在力的作用 下发生位移力
对物体做功
功能原理:力 对物体做功等 于物体动能的
变化量
应用实例:汽 车加速、火箭 发射、电梯升
适用范围:适用于变力做功的力与时间关系较为简单的情况
注意事项:在计算过程中需要注意恒力做功的时间间隔与变力做功的时间间隔是否一 致以及恒力做功的力是否与变力做功的力相等或近似相等
THNKS
汇报人:
实例:汽车行驶过程中轮胎与地面之间的摩擦力 摩擦力方向:与汽车行驶方向相反 摩擦力大小:与汽车质量、速度、路面状况等因素有关 摩擦力做功:将汽车的动能转化为内能使汽车速度降低
流体压力做功
流体压力:流体对物体表面的压力 做功:流体压力对物体做功使物体运动或变形 实例:流体压力推动活塞运动使机械设备运转 应用:流体压力做功广泛应用于液压系统、气动系统等设备中
适用于非恒力做功的计算
适用于力随时间变化的做 功计算
Prt Three
变力做功的分类
恒力做功
定义:物体在恒力作用下从初位置移动到末位置所做的功 计算公式:W=F*S 特点:恒力做功与位移成正比与力的大小成正比 应用:恒力做功在物理学、工程学等领域有广泛应用如机械运动、电磁感应等
变力做功的计算
(5 + 15) × 10 4 × 100 J = 1.0 × 10 7 J =
2
三、利用W=Pt求变力做功 利用W=Pt求变力做功 W=Pt 这是一种等效代换的观点, W=Pt计算功时, 这是一种等效代换的观点,用W=Pt计算功时,必须满 计算功时 足变力的功率是一定的。 足变力的功率是一定的。 例3汽车的质量为m,输出功率恒为P,沿平直公路前进 汽车的质量为m 输出功率恒为P 距离s的过程中,其速度由v 增至最大速v 距离s的过程中,其速度由v1增至最大速v2。假定汽车在 运动过程中所受阻力恒定,则汽车通过距离s 运动过程中所受阻力恒定,则汽车通过距离s所用的时间为 ___. 思路点拨:汽车以恒定的功率P加速时, P=Fv可知, 思路点拨:汽车以恒定的功率P加速时,由P=Fv可知, 可知 牵引力逐渐减小,汽车做加速度逐渐减小的加速运动, 牵引力逐渐减小,汽车做加速度逐渐减小的加速运动,当 加速度减小到零,速度达到最大, F=Ff 时,加速度减小到零,速度达到最大,然后以最大 的速度做匀速直线运动。 的速度做匀速直线运动。
小结点评: 小结点评:若力随位移按一次方函数关系变化 求功时可用平均作用力来代替这个变力, 时,求功时可用平均作用力来代替这个变力,用恒 力功的公式求功,也可用图象求功; 力功的公式求功,也可用图象求功;若力随位移的 变化不是一次函数关系, 图象求功, 变化不是一次函数关系,则可用 F--s 图象求功, 而 不能用平均值求功。 不能用平均值求功。
kx2 = µmg
x2 =
µmg
k
0.4 × 2 × 10 = m = 0.016m 500
物体的位移: 物体的位移:
S 2 = x1 − x2 = 0.1m − 0.016m = 0.084m
求解变力做功问题的五种方法
求解变力做功问题的五种方法在高中阶段,应用做功公式W=FScosα来解题时,公式中F只能是恒力。
如果F是变力,就不能直接应用公式W=FScosα来求变力做功问题。
但是题目中又经常出现变力做功问题,下面介绍五种求解变力做功问题的方法。
一:将变力做功转化为恒力做功来求解我们知道变力做功不可以直接用公式W=FScosα来计算,但有些情况下,将变力转化成恒力做功,就可以用公式直接求解。
例题1:如图1所示,人用大小不变的力F拉着放在光滑平面上的物体,开始时与物体相连的绳子和水平面间的夹角是α,当拉力F作用一段时间后,绳子与水平面的夹角是β,图中的高度是h,求绳子拉力T对物体所做的功,(绳的质量,滑轮的质量和绳与滑轮之间的摩擦均不计)。
分析与解答:在物体向右运动过程中,绳子拉力T是一个变力,是变力做功问题。
但是拉力T大小等于力F的大小,且力F是恒力。
因此,求绳子拉力T对物体所做的功就等于力F所做的功。
由图可知,力F的作用点移动的位移大小为:ΔS=S1-S2。
则:W T=W F=FΔS=F(S1-S2)=Fh(1/sinα-1/sinβ).二:用动能定理来求解我们知道,动能定理的内容:外力对物体所做的功等于物体动能的增量。
如果我们研究物体所受的外力中只有一个是变力,其他力都是恒力,而且这些力做功比较容易求,就可以用动能定理来求变力做功。
例题2:如图2所示,质量为2kg的物体从A点沿半径为R的粗糙半球内表面以10m/s 的速度开始下滑,到达B点时的速度变为2m/s,求物体从A点运动到B点的过程中,摩擦力所做的功是多少?分析及解答:物体从A点运动到B点的过程中,受到重力G、弹力N和摩擦力f三个力作用,在运动过程中,摩擦力f的方向和大小都发生改变,因此摩擦力f是变力,是变力做功问题。
物体从A点运动到B点的过程中,弹力N不做功,重力G做功为零。
物体所受的三个力中摩擦力在物体从A点运动到B点的过程中对物体所做的功,就等于物体动能的变化量,则W外=W f=ΔE k=1/2mV B2-1/2mV A2=-96(J).三:用机械能守恒定律来求解我们知道,物体只受重力和弹力作用或只有重力和弹力做功时,系统的机械能守恒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变力做功的计算公式适用于恒力功的计算,对于变力做功的计算,一般有以下几种方法。
一、微元法对于变力做功,不能直接用进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F是恒力,用求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。
这种处理问题的方法称为微元法,这种方法具有普遍的适用性。
但在高中阶段主要用于解决大小不变、方向总与运动方向相同或相反的变力的做功问题。
例1. 用水平拉力,拉着滑块沿半径为R的水平圆轨道运动一周,如图1所示,已知物块的质量为m,物块与轨道间的动摩擦因数为。
求此过程中摩擦力所做的功。
图1思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小不变,方向时刻变化,是变力,不能直接用求解;但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果。
图2正确解答:把圆轨道分成无穷多个微元段,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别为,,…,,摩擦力在一周内所做的功。
误点警示:对于此题,若不加分析死套功的公式,误认为位移s=0,得到W=0,这是错误的。
必须注意本题中的F是变力。
小结点评:对于变力做功,一般不能用功的公式直接进行计算,但有时可以根据变力的特点变通使用功的公式。
如力的大小不变而方向总与运动方向相同或相反时,可用计算该力的功,但式子中的s不是物体运动的位移,而是物体运动的路程。
[发散演习]如图3所示,某个力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向任何时刻与作用点处的切线方向保持一致。
则转动半圆,这个力F做功多少?图3答案:31.4J。
二、图象法在直角坐标系中,用纵坐标表示作用在物体上的力F,横坐标表示物体在力的方向上的位移s。
如果作用在物体上的力是恒力,则其F-s图象如图4所示。
经过一段时间物体发生的位移为s0,则图线与坐标轴所围成的面积(阴影面积)在数值上等于力对物体做的功W =Fs,s轴上方的面积表示力对物体做正功(如图4(a)所示),s轴下方的面积表示力对物体做负功(如图4(b)所示)。
图4如果F-s图象是一条曲线(如图5所示),表示力的大小随位移不断变化,在曲线下方作阶梯形折线,则折线下方每个小矩形面积分别表示相应恒力做的功。
当阶梯折线越分越密时,这些小矩形的总面积越趋近于曲线下方的总面积,可见曲线与坐标轴所围成的面积在数值上等于变力所做的功。
由于F-s图象可以计算功,因此F-s图象又称为示功图。
图5例2. 子弹以速度射入墙壁,入射深度为h。
若子弹在墙中受到的阻力与深度成正比,欲使子弹的入射深度为2h,求子弹的速度应增大到多少?思路点拨:阻力随深度的变化图象如图6所示,由图象求出子弹克服阻力做的功,再由动能进行求解。
图6正确解答:解法一:设射入深度为h时,子弹克服阻力做功W1;射入深度为2h时,子弹克服阻力做功W2。
由图6可知①根据动能定理,子弹减少的动能用于克服阻力做功,有②③①②③联立求解得。
解法二:设阻力与深度间的比例系数为k,F f=ks。
由于F f随位移是线性变化的,所以F f的平均值为。
根据动能定理,有①②①②联立求解得。
小结点评:若力随位移按一次方函数关系变化时,求功时可用平均作用力来代替这个变力,用恒力功的公式求功,也可用F-s图象求功;若力随位移的变化不是一次函数关系,则可用图象求功,而不能用平均值求功。
[发散练习]1. 如图7所示,有一劲度系数k=500N/m的轻弹簧,左端固定在墙壁上,右端紧靠一质量m=2kg的物块,物块与水平面间的动摩擦因数,弹簧处于自然状态。
现缓慢推动物块使弹簧从B到A处压缩10cm,然后由静止释放物块,求(1)弹簧恢复原长时,物块的动能为多大?(2)在弹簧恢复原长的过程中,物块的最大动能为多大?图7答案:(1)1.7J;(2)1.764J。
提示:(1)从A到B的过程,对物体应用动能定理得,其中。
W弹可利用示功图求出,画出弹簧弹力随位移变化的图象(如图8所示)F1=kx1,弹力做功的值等于△OAB的面积,即,所以。
图8(2)放开物体后,物体做的是加速度越来越小的加速运动,当弹簧的弹力等于摩擦力时,物体有最大的动能。
设此时弹簧的压缩量为。
由得。
物体的位移。
在这一过程中弹力的功在数值上等于图8中梯形OADC的面积,即,所以物块的最大动能为。
2. 用质量为5kg的均匀铁索从10m深的井中吊起一质量为20kg的物体,在这个过程中至少要做多少功?(g取10m/s2)答案:2250J提示:作用在物体和铁索上的力至少应等于物体和铁索的重力,但在拉起铁索的过程中,铁索长度逐渐缩短,因此拉力也逐渐减小,即拉力是一个随距离变化的变力。
从物体在井底开始算起,拉力随深度h的变化关系是(0≤h≤10),作出F-h图线如图9所示,利用示功图求解拉力的功(可用图中梯形面积表示),得出。
图93. 一辆汽车质量为1×105kg,从静止开始运动,其阻力为车重的0.05倍。
其牵引力的大小与车前进的距离是线性关系,且,是车所受阻力,当该车前进100m 时,牵引力做了多少功?答案:1×107J。
提示:阻力。
则牵引力为。
作出F-s图象如图10所示,图中梯形OABD的面积表示牵引力的功,所以。
图10三、利用W=Pt求变力做功这是一种等效代换的观点,用W=Pt计算功时,必须满足变力的功率是一定的。
例3. 汽车的质量为m,输出功率恒为P,沿平直公路前进距离s的过程中,其速度由v1增至最大速度。
假定汽车在运动过程中所受阻力恒定,则汽车通过距离s所用的时间为_____________。
思路点拨:汽车以恒定的功率P加速时,由P=Fv可知,牵引力逐渐减小,汽车做加速度逐渐减小的加速运动,当F=F f时,加速度减小到零,速度达到最大,然后以最大的速度做匀速直线运动。
正确解答:当F=F f时,汽车的速度达到最大v2,由可得①对汽车,根据动能定理,有②①②两式联立得。
误点警示:有同学可能这样解:平均速度,时间。
这样解是错误的,因为汽车的运动不是匀加速运动,不能用求平均速度。
小结点评:汽车以恒定的功率起动时,牵引力是变力,牵引力的功不能用W=Fs计算,但可以用W=Pt计算;若用求牵引力的功也是错误的,因为牵引力随位移的变化不是线性关系,不能用求平均牵引力。
[发散演习]质量为m的汽车在平直的公路上从速度v0开始加速行驶,经过一段时间t后,前进了距离s,此时恰好达到其最大速度,设此过程中汽车发动机始终以额定功率P工作,汽车所受的阻力为恒力F f,则这段时间里,发动机所做的功为()A. B.C. D.答案:A、B提示:发动机所做的功即为发动机牵引力做的功,由功率定义可知W=Pt,选项B正确。
汽车以恒定功率起动,当F=F f时,达到最大速度,应有,所以t,选项A正确。
选项C、D均将汽车的运动看作匀变速运动,其中选项C是先求出a,再求出合外力ma的功,选项D是先算出平均速度,然后用表示发动机做的功,显然都是错误的,因为机车的运动是变加速运动而不是匀变速运动。
四、利用功能关系求变力功求变力所做的功,往往根据动能定理、机械能守恒定律和功能关系等规律,用能量的变化量等效代换变力所做的功。
这种方法的优点是不考虑变力做功过程中力的大小及方向的细节,只考虑变力做功的效果��能量变化,解题过程简捷,是求变力功的首选方法。
例4. 如图11所示,质量m=2kg的小球系在轻细橡皮条一端,另一端固定在悬点O 处。
将橡皮条拉直至水平位置OA处(橡皮条无形变)然后将小球由A处静止释放,小球到达O点正下方h=0.5m处的B点时的速度为v=2m/s。
求小球从A运动到B的过程中橡皮条的弹力对小球所做的功。
取g=10m/s2。
图11思路点拨:取小球、橡皮条和地球组成的系统为研究对象,在小球从A运动到B的过程中,只有系统内的重力和弹力做功,机械能守恒。
正确解答:取过B点的水平面为零重力势能参考平面,橡皮条为原长时的弹性势能为零。
设在B时橡皮条的弹性势能为E p2,由机械能守恒定律得则橡皮条的弹性势能增加6J,则小球的机械能必减少6J,故橡皮条的弹力对小球做功-6J。
小结点评:弹簧或橡皮条的弹力是变力,求此类弹力做功可用机械能守恒定律结合弹力做功与弹性势能变化的关系。
[发散演习]1. 将一质量为m的物体以初速度v0竖直向上抛出,落回抛出点时的速度为v,已知空气阻力与速率成正比,则从抛出到落回抛出点的整个过程中,空气阻力做的功为__________。
答案:。
提示:对整个过程应用动能定理。
2. 如图12所示,物体沿曲面从A 点无初速度滑下,滑至曲面的最低点B 时,下滑的高度为5m ,速度为6m/s 。
若物体的质量为1kg 。
则下滑过程中物体克服阻力所做的功为多少?图12答案:根据动能定理可得。
五、利用动能定理求变力功6.质量为m 的小球被系在轻绳的一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。
设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为( )A .41mgR B .21mgR C .31mgR D .mgR5.某消防队员从一平台跳下,下落2m后双脚触地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了0.5m。
在着地过程中,地面对他双腿的平均作用力是他自身重力的()A.2倍; B.5倍; C.8倍; D.10倍4.如图所示,质量为m的物体用细绳经过光滑小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个值F时,转动半径为R,当拉力逐渐减小到时,物体以另一线速度仍做匀速圆周运动,半径为2R,则物体克服外力所做的功是( )A.0B.C.D.2.如图所示,AB为1/4圆弧轨道,BC为水平直轨道,圆弧的半径为R,BC的长度也是R,一质量为m的物体,与两个轨道间的动摩擦因数都为,当它由轨道顶端A从静止开始下落,恰好运动到C处停止,那么物体在AB段克服摩擦力所做的功为()A. B.C. D.1、质量为m的小球从离泥塘高H处由静止落下,不计空气阻力,落在泥塘上又深入泥塘如图所示,求小球在泥塘中运动时所受平均阻力多大? 后停止,训练1.一粒钢球从1 高处自静止状态开始自由下落,然后陷入泥潭后停止运动,若钢球的质量为,空气阻力忽略不计,则钢球克服泥潭的阻力做功_____J。