最新微波技术基础课程学习知识要点
微波技术基础复习大纲.
![微波技术基础复习大纲.](https://img.taocdn.com/s3/m/4e0d91146c85ec3a87c2c550.png)
微波技术基础1 绪论1、微波的频率(P1),微波的波段(P2)2 传输线理论2.1 传输线方程的解1、长线理论和相关概念2、长线方程(或传输线方程)的导出3、解长线方程得到电压波和电流波的表达式,三种边界条件会得到不同的表达形式 2.2 长线的参量1、长线的特性参数(特性参数指由长线的结构、尺寸、填充的媒质及工作频率决定的参量,和负载无关的参数)1)特性阻抗0Z (P15):0U U Z I I +-+-==-=≈2)传播常数γ(P13):j γαβ=+,通常情况下衰减常数0α=,则j γβ=。
3)相速度p v 和相波长p λ(P14):通常2p p v fπλλβ===根据相速度的定义2p f v ωπββ==,而β=(P13),因此p v = 在这里出现了波的色散特性的描述。
2、长线的工作参数1)输入阻抗in Z :()()()()000tan tan L in L U z Z jZ z Z Z I z Z jZ z ββ+==+这个公式有多种变形: ① ()()()000tan tan Z z jZ dZ z d Z Z jZ z dββ++=+当2d n λ=*时,()()Z z d Z z +=,均匀无耗线具有2λ的周期性。
当24d n λλ=*-时,()()20Z z d Z z Z +*=,均匀无耗线具有4λ的阻抗变换特性。
(感性↔容性,开路↔短路,大于0Z ↔小于0Z ) 当终端0L Z Z =时,任意位置的输入阻抗都为0Z 。
② 输入导纳()()()()000tan 1tan L in L inI z Y jY z Y Y U z Y jY z Z ββ+===+,其中001Y Z =,1L L Y Z =(P20) 2)反射系数()z Γ(这里反射系统通常指电压反射系数):()()()200j zL L U z Z Z z eU z Z Z β--+-Γ==+(反射系数是一个复数) (电流反射系数()()()()200j zL i L I z Z Z z e z I z Z Z β--+-Γ===-Γ+)由于0L j L L L L Z Z e Z Z φ-Γ==Γ+,因此()()2L j z L z e βφ--Γ=Γ(P21)输入阻抗和反射系数之间的关系:()()()011z Z z Z z +Γ=-Γ,()()()0Z z Z z Z z Z -Γ=+。
微波技术基础
![微波技术基础](https://img.taocdn.com/s3/m/65912b814028915f804dc2ea.png)
Chap. 3 微带传输线
优点:
体积小、重量轻、频带宽、便于与微波集成电路相连接
缺点:
损耗大、Q值低、难以承受较大的功率(目前只适用于中小功率范围)
基本结构形式:
-对称微带线(带状线,stripline)
-不对称微带线(标准微带线或简称微带线,microstrip)
§5
§
§
α
⎦
⎣⎦
§
第2、3章小结
矩形波导
圆波导平行双线同轴线微带线介绍了多种传输线(波导)
带状线
二、一般规则波导中导行波的波型(模、模式)和传输特性
¾依据E z 和H z 存在的情形,可分为三类:
TEM波、TM波、TE波
波型(模式)是指每一种能够单独地在规则波导中存在的电磁场的一种分布状态(场结构)
¾依据色散特性可分为:
非色散波型(TEM波)与色散波型(TE波、TM波) 单导体所构成的空心金属波导管内不可能传输TEM 波型。
双导体或多导体,则可以传输TEM 波型
六、微带传输线
1、带状线
•TEM 模
•主要特性参数:Z
c 、衰减等
•尺寸选择•准TEM 模
•主要特性参数:Z
c 、衰减、等效相对介电常数等
•色散特性与尺寸选择2、微带线。
微波专业理论基础知识
![微波专业理论基础知识](https://img.taocdn.com/s3/m/0cec0aacf524ccbff12184fb.png)
长途
误码秒 ES
本地
严重误码秒 SES
残余误码 率
RBER
误码秒 ES
严重误码 秒
SES
残余误码率 RBER
2.2×10-6
1.1×10-7
4.125×10-6 1.1×10-7
1.1×10-8 1.1×10-8
2.4×10-5 4.5×10-5
1.2×10-6 1.2×10-7 1.2×10-6 1.2×10-7
>55~160 >160~3500
6000~20000 15000~30000
8.8×10-6 待定
1.1×10-7 1.0×10-7
1.1×10-8 5.5×10-9
9.6×10-5 待定
1.2×10-6 1.2×10-7 1.2×10-6 6.0×10-8
23
衰落概率指标分配: 数字微波传输信道是以高误码率作为设计指标的,所
Pfd +sd
=
Pfd I sd
=
Pmf I fd ⋅ Isd
30
•
【例1】现有一数字微波通信系统,某中继段
d=50km,处在C型端面,f=5GHz,自由空间收信电平
Pr0 = -43.6dBm,接收机实际门限电平Pr门= 74.8dBm(BER≤10-3),实际门限载噪比(C实/N固) =23.1dB,系统采用6:1波道备份和二重空间分集接收
=0.3×10(-3)+ 0 .4×10(-3) =0 .7×10(-3)
33
(3)求 6:1 波道备份后的衰落概率
若波道间隔 Δf =40MHz,工作频率 f=5000MHz,
Mfc=31.2dB,取 G= 0.4,先利用公司式计算 6:1 波道备份后的等效频率间隔:
精选微波技术基础知识
![精选微波技术基础知识](https://img.taocdn.com/s3/m/29be9538a517866fb84ae45c3b3567ec102ddcb0.png)
1、第三章、微波集成传输线常用集成传输线的种类和主要特点2、第四章介质波导和光波导
1、传播条件和波型2、特性阻抗3、波长,相速4、功率容量5、衰减
了解
微波集成传输线
微波集成传输线的最大特点是 平面化
五种重要的传输线:带状线(Stripline)微带线(Microstrip line)槽线(Slotline)鳍线(Finline)共面线(Coplanar line)
式中
微波集成传输线-带状线
带状线—优缺点和应用
1、改变线宽一个参数就改变电路参数(特性阻抗)。2、在馈线、功分器,耦合器,滤波器,混频器,开关的设计中,体积小,重量轻,大批量生产的重复性好。3、立体电路的设计,适用于多层微波电路,LTCC等,辐射小。4、封闭的电路,调试难。5、电路需要同轴或波导馈入,引入不连续性,需要在设计时补偿。6、在多层电路设计中,存在不同节点常数的介质之间的连接,介质与金属导体的连接,分析方法非常复杂,尤其对3D电路,尚缺少各种不连续性的模型和相关设计公式,采用全波分析法或者准静态场分析。
毫米波鳍线混频器
介质波导和光波导
当毫米波波段→亚毫米波段→太赫兹波段时普通的微带线将出现一系列新问题1)高次模的出现使微带的设计和使用复杂2)金属波导的单模工作条件限制了其横向尺寸不能超过大约一个波长的范围。这在厘米波段和毫米波低频段不成问题。但到毫米波高频段,单模波导的尺寸就显得太小,不仅制造工艺困难,而且随着工作频率的提高,功率容量越来越小,壁上损耗越来越大,衰减大到不能容忍的地步。因此,对毫米波段的高端及来说,封闭的金属波导已不再适用。于是,适合于毫米波高频段、亚毫米波的传输线 —— 介质波导等非封闭式的传输线(或称开波导)便应运而生
微波集成传输线-微带线
微 波 技 术 基 础
![微 波 技 术 基 础](https://img.taocdn.com/s3/m/735a058fec3a87c24028c467.png)
U - UL 其中 += L ,IL =IL Z0 Z0
两个行波之和不一定是行波!
§1.3 长线的参量
一. 特性参量
指由长线的结构、尺寸、填充的媒质及工作频率决定 的参量。(和负载无关)
特性阻抗Z0
传播常数γ
相速Vp与波长λ
§1.3 长线的参量
1. 特性阻抗Z0
将传输线上行波电压与行波电流之比定义为传输线的 特性阻抗,亦即入射波电压与电流复量之比或反射波电 压与电流复量之比的负值,用 Z 来表示, 其倒数称为 0 特性导纳, 用 Y0 来表示。根据定义有:
第一章 传输线的基本理论
在微波技术的研究中,传输线理论具有基础性和 极大的重要性。传输线是能量和信息的载体及传 播工具,而且是构成各种微波元件和电路的基础。
低频下,电路尺寸远小于波长,因此可认为稳定状态的电 压和电流是在电路各处同时建立起来的,元件参量既不依 赖于时间、也不依赖于空间——“集总”电路分析观点。 基尔霍夫定律能圆满的解决实际问题。 微波电路的特点是波长短,与电路尺寸在同一量级,这意 味着电路一点到另一点电效应的传播时间与微波信号的振 荡周期可比拟,元件的性质也不再认为是集总的,必须该 用与器件有关的电场与磁场来进行分析。
三. 分析方法
1.场的方法:以E、H为研究对象,从麦克斯韦尔方程出发, 解满足边界条件的波动方程, 得出传输线上电场和磁场 的解, 进而研究传输特性的横向分布及纵向传输特性。 该方法较为严格, 但数学上比较繁琐。
2. 路的方法:在一定的条件下,以U、I为对象,从传输线 方程出发, 求出满足边界条件的电压、 电流波动方程的 解, 分析电压波和电流波随时间和空间的变化规律,即用 电路理论来研究纵向传输特性。本质上是化场为路。该 方法有足够的精度, 数学上较为简便, 因此被广泛采用。 长线理论就是研究TEM波传输线的分布参数的电路理论。
微波技术基础复习大纲分析
![微波技术基础复习大纲分析](https://img.taocdn.com/s3/m/7487d3d72b160b4e777fcf76.png)
微波技术基础1 绪论1、微波的频率(P1),微波的波段(P2)2 传输线理论2.1 传输线方程的解1、长线理论和相关概念2、长线方程(或传输线方程)的导出3、解长线方程得到电压波和电流波的表达式,三种边界条件会得到不同的表达形式 2.2 长线的参量1、长线的特性参数(特性参数指由长线的结构、尺寸、填充的媒质及工作频率决定的参量,和负载无关的参数)1)特性阻抗0Z (P15):0U U R j L LZ I I G j C Cωω+-+-+==-=≈+2)传播常数γ(P13):j γαβ=+,通常情况下衰减常数0α=,则j γβ=。
3)相速度p v 和相波长p λ(P14):通常2p p v fπλλβ===根据相速度的定义2p f v ωπββ==,而LC β=(P13),因此p v LC= 在这里出现了波的色散特性的描述。
2、长线的工作参数1)输入阻抗in Z :()()()()000tan tan L in L U z Z jZ z Z Z I z Z jZ z ββ+==+这个公式有多种变形: ① ()()()000tan tan Z z jZ dZ z d Z Z jZ z dββ++=+当2d n λ=*时,()()Z z d Z z +=,均匀无耗线具有2λ的周期性。
当24d n λλ=*-时,()()20Z z d Z z Z +*=,均匀无耗线具有4λ的阻抗变换特性。
(感性↔容性,开路↔短路,大于0Z ↔小于0Z ) 当终端0L Z Z =时,任意位置的输入阻抗都为0Z 。
② 输入导纳()()()()000tan 1tan L in L inI z Y jY z Y Y U z Y jY z Z ββ+===+,其中001Y Z =,1L L Y Z =(P20) 2)反射系数()z Γ(这里反射系统通常指电压反射系数):()()()200j zL L U z Z Z z eU z Z Z β--+-Γ==+(反射系数是一个复数) (电流反射系数()()()()200j zL i L I z Z Z z e z I z Z Z β--+-Γ===-Γ+)由于0L j L L L L Z Z e Z Z φ-Γ==Γ+,因此()()2L j z L z e βφ--Γ=Γ(P21)输入阻抗和反射系数之间的关系:()()()011z Z z Z z +Γ=-Γ,()()()0Z z Z z Z z Z -Γ=+。
微波技术基础复习重点
![微波技术基础复习重点](https://img.taocdn.com/s3/m/11cfce5b852458fb770b5635.png)
第一章引论微波是指频率从300MHz到3000GHz范围内的电磁波,相应的波长从1m到0.1mm。
包括分米波(300MHz到3000MHz)、厘米波(3G到30G)、毫米波(30G 到300G)和亚毫米波(300G到3000G)。
微波这段电磁谱具有以下重要特点:似光性和似声性、穿透性、信息性和非电离性。
微波的传统应用是雷达和通信。
这是作为信息载体的应用。
微波具有频率高、频带宽和信息量大等特点。
强功率—微波加热弱功率—各种电量和非电量的测量导行系统:用以约束或者引导电磁波能量定向传输的结构导行系统的种类可以按传输的导行波划分为:(1)TEM(transversal Electromagnetic,横电磁波)或准TEM传输线(2)封闭金属波导(矩形或圆形,甚至椭圆或加脊波导)(3)表面波波导(或称开波导)导行波:沿导行系统定向传输的电磁波,简称导波微带、带状线,同轴线传输的导行波的电磁能量约束或限制在导体之间沿轴向传播。
是横电磁波(TEM)或准TEM波即电场或磁场沿即传播方向具有纵向电磁场分量。
开波导将电磁能量约束在波导结构的周围(波导内和波导表面附近)沿轴向传播,其导波为表面波。
导模(guided mode ):即导波的模式,又称为传输模或正规模,是能够沿导行系统独立存在的场型。
特点:(1)在导行系统横截面上的电磁场呈驻波分布,且是完全确定的,与频率以及导行系统上横截面的位置无关。
(2)模是离散的,当工作频率一定时,每个导模具有唯一的传播常数。
(3)导模之间相互正交,互不耦合。
(4)具有截止频率,截止频率和截止波长因导行系统和模式而异。
无纵向磁场的导波(即只有横向截面有磁场分量),称为横磁(TM)波或E波。
无纵向电场的导波(即只有横向截面有电场分量),称为横电(TE)波或H波。
TEM波的电场和磁场均分布在与导波传播方向垂直的横截面内。
第二章传输线理论传输线是以TEM模为导模的方式传递电磁能量或信号的导行系统,其特点是横向尺寸远小于其电磁波的工作波长。
微波技术与天线 必考知识点 复习
![微波技术与天线 必考知识点 复习](https://img.taocdn.com/s3/m/5119f0ce51e79b89680226c3.png)
微波必考知识点复习1、微波是一般指频率从300M至3000GHz范围内的电磁波,其相应的波长从1m 至0.1mm。
从电子学和物理学的观点看,微波有似光性、似声性、穿透性、非电离性、信息性等重要特点。
2、导行波的模式,简称导模,是指能够沿导行系统独立存在的场型,其特点是:(1)在导行系统横截面上的电磁波呈驻波分布,且是完全确定的。
这一分布与频率无关,并与横截面在导行系统上的位置无关;(2)导模是离散的,具有离散谱;当工作频率一定时,每个导模具有唯一的传播常数;(3)导模之间相互正交,彼此独立,互不耦合;(4)具有截止特性,截止条件和截止波长因导行系统和因模式而异。
3、广义地讲,凡是能够导引电磁波沿一定的方向传播的导体、介质或由它们组成的导波系统,都可以称为传输线。
若按传输线所导引的电磁波波形(或称模、场结构、场分布),可分为三种类型:(1)TEM波传输线,如平行双导线、同轴线、带状线和微带线,他们都是双导线传输系统;(2)TE波和TM波传输线,如矩形、圆形、脊形和椭圆形波导等,他们是由金属管构成的,属于单导体传输系统;(3)表面波传输系统,如介质波导(光波导)、介质镜象线等,电磁波聚集在传输线内部及其表面附近沿轴线方向传播,一般是TE或TM波的叠加。
对传输线的基本要求是:工作频带宽、功率容量大、工作稳定性好、损耗小、易耦合、尺寸小和成本低。
一般地,在米波或分米波段,可采用双导线或同轴线;在厘米波段可采用空心金属波导管及带状线和微带线等;在毫米波段采用空心金属波导管、介质波导、介质镜像线和微带线;在光频波段采用光波导(光纤)。
以上划分主要是从减少损耗和结构工艺等方面考虑。
传输线理论主要包括两方面的内容:一是研究所传输波形的电磁波在传输线横截面内电场和磁场的分布规律(也称场结构、模、波型),称横向问题;二是研究电磁波沿传输线轴向的传播特性和场的分布规律,称为纵向问题。
横向问题要通过求解电磁场的边值问题来解决;各类传输线的纵向问题却有很多共同之处。
微波技术基础
![微波技术基础](https://img.taocdn.com/s3/m/4fef8a10964bcf84b9d57baf.png)
kc
2 2
PT E
1 2
Z TE
s
2 2
Hz
2
dS
1 2
Z TE
kc
kc
2 2
2 2
s
H 0z
2
dS
PT M
1 2
YT M
kc
s
Ez
2
dS
1 2
YT M
s
E0z
2
dS
1.4.2 导波的能量
单位长导波系统中传播波的电能和磁能可由能量密度时 均值积分求得。
0
k
2
kc k
2
p
c
r r
g
2
0 r r
这种导行波的相速小于无界媒质中的波速,而波长小于无 界媒质中的波长,这是一种慢波→可用周期结构实现。
横纵分离后的麦克斯韦方程
1.3.2 TEM波的特性分析
• 场分量 TEM波无纵向场分量,将 与纵向场的关系式有:
z
H 0t tH 2 kc
j E 0t H 0t a z
j H 0t a z E 0t E 0t tH z az 2 j kc TE波的场分量 E 0 t , H 0 t与传播方向 a z 互相垂直,并
H 0t a z
j
a z E 0t a z
j
E 0t
可得:
j E 0t H 0t a z
TEM波的场分量 E 0 t ,H
微波工程基础第1章
![微波工程基础第1章](https://img.taocdn.com/s3/m/a29a2c890408763231126edb6f1aff00bed57025.png)
波动方程的形式
波动方程的一般形式为▽²E + ₀²c²²E
= 0,其中E是电场强度,₀是真空中的
电常数,c是光速。
02
03
波动方程的解
对于特定的边界条件和初始条件,可
以通过求解波动方程得到电磁波的传
播特性。
微波的导波系统
导波系统的定义
导波系统是指能够引导电
磁波在其中传播的系统,
微波新器件的研发
总结词
详细描述
新型微纳加工技术的发展,新型微波器件如
的应用领域,提升微波系统的性能。
平面天线、集成电路、微波传感器等不断涌
现。这些新器件具有体积小、重量轻、功耗
低等优点,可广泛应用于通信、雷达、导航
、电子战等领域,提升系统的整体性能。
微波系统的集成化与小型化
微波工程基础第1章
目录
• 引言
• 微波基础知识
• 微波器件与电路
• 微波系统与应用
• 微波工程展望
01
引言
微波的定义与特性
微波是指频率在300MHz到300GHz
之间的电磁波,具有波长短、频率高
的特点。
微波具有穿透性、反射性、吸收性和
散射性等特性,这些特性使得微波在
通信、雷达、加热等领域具有广泛的
微波的传输线理论
传输线的定义
传输线是指用来传输电磁波的媒介,如同轴线、波导
等。
传输线的分类
根据结构和工作原理,传输线可分为均匀传输线和非
均匀传输线。
传输线的等效电路
传输线可以用等效电路来表示,其中电导和电感代表
能量损失,电容和电感代表波动效应。
微波的波动方程
波动方程的定义
射频微波(知识点)-推荐下载
![射频微波(知识点)-推荐下载](https://img.taocdn.com/s3/m/b2a9cdad6bec0975f565e221.png)
发信时要按下“送话”开关。 送话器
受话器
4、双向全双工通信方式
A
f1 T
双工器
R f2
通信双方可以通信进行发信和收信,这时收信与发信一般采用不同的工作频率,通
过双工器来完成收信和发信的隔离。
送话器
受话器
A
f1 T
双工器
R f2
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
微波技术常考知识点
![微波技术常考知识点](https://img.taocdn.com/s3/m/d0b7f454b80d6c85ec3a87c24028915f814d845d.png)
微波技术常考知识点一、知识概述《微波技术常考知识点》①基本定义:微波就是频率在300MHz - 300GHz之间的电磁波。
简单说吧,就像咱们手机通信或者微波炉加热用的那种电磁波,不过它的频率范围是特定的这么一段。
②重要程度:在电子信息工程之类的学科里可是相当重要的。
它是现代通信、雷达等多种技术的基础。
就好比盖房子,微波技术就是那些很关键的砖头。
如果不懂这个,好多关于无线技术的东西就理解不了。
③前置知识:你得先掌握基本的电磁学知识,像电场、磁场是咋回事,麦克斯韦方程组(虽然不用精通到能推导,但是大概原理要知道)。
还有就是简单的电路知识,毕竟微波也涉及到能量传输啥的。
④应用价值:实际应用太多了。
微波炉就是很常见的例子,微波在炉子里不断来回反射,让食物的水分子跟着它振动,就把食物加热了。
还有通信方面,像4G、5G网络很多频段都是微波频段,能把咱们手机的信息快速传出去传回来。
二、知识体系①知识图谱:微波技术在整个电子通信相关学科里像是一个枢纽。
它连接着各种无线通信、雷达探测,一边连着基础的电磁理论,一边又关联着很多复杂的系统工程。
②关联知识:和电磁场理论关联可紧密了,很多公式都是从电磁场那些理论推导来的。
还有和电路知识也有关,像微波电路就涉及到传统电路理论的一些延伸。
跟通信原理更是离不开,因为微波就是通信的一种传输载体。
③重难点分析:掌握难度就在于它concept(概念)不容易理解得透彻。
像波导(一个特殊的能让微波传输的部件),概念理解起来有点抽象。
关键点就是要弄清楚微波在各种传输部件中的特性。
④考点分析:在考试里可以说非常重要。
考查方式么,很多都是考微波的特性、传输参数,有时候还会出一些关于微波电路设计的小题目。
比如出个微波某部件的传输损耗相关题目。
三、详细讲解【理论概念类】①概念辨析:比如微波的波长这个概念。
微波波长很短,在毫米到分米这个量级。
它决定了很多微波的特性,像在小尺寸的天线里,短波长的微波就能方便地让天线实现小型化。
微波技术基础-概述(1)
![微波技术基础-概述(1)](https://img.taocdn.com/s3/m/9fe91d0aeff9aef8941e06ee.png)
微波器件——谐振器、功分器、 耦合器等 微波基础理论 传输线理论、史密斯圆图应用 微波网络理论 阻抗变换与阻抗匹配 波导理论(矩形波导、圆波导、同轴线) 器件原理(谐振腔、功分器、耦合器等)
北京邮电大学——《微波技术基础》
31
学习内容
传输线理论和阻抗匹配概念,掌握传输线电路模型、端 接任意负载时传输线的特性,史密斯圆图及其在阻抗匹 配方面的应用,宽带匹配理论的设计实现;(第2、5章) 微波传输线、波导理论,矩形、圆柱形波导中的传输特 性和模式理论,单模传输条件,为“光纤通信”类课程 做基础理论准备; (第3章) 微波网络基础和微波网络矩阵分析法; (第4章) 微波基本元器件(微波谐振器、微波无源器件和微波滤 波器)的分析及其基本工作原理,以及在通信设备中的 应用,为“无线通信”类课程作准备。 (第6、7章)
合成橡胶处理 废物处理 核废料 纤维废料
发展方向 工作频段向高频段发展 小型化、宽带化 自动化、智能化
从频谱认识微波
我国移动通信所用频谱的划分
北京邮电大学——《微波技术基础》
29
学习本课程的作用与意义
北京邮电大学——《微波技术基础》
30
学习什么内容?
围绕信号、功率的传输,学习微波 在器件中传输的基本分析方法,学 习微波器件的基本原理 微波传输——传输线、波导
现象是客观存在的,客观存在的事物一定能表现出 来吗?未必。它的表现与观察者及环境有关。地球是一 个圆球(严格地说是似椭圆球)。但直至麦哲伦发现新 大陆才算最后解决,因为人与地球上的尺寸比太微小 了。现在,宇航员在太空中能够清晰地看到地球是圆 形。 同样,波动性是客观存在的。但是,观察波动性却 与主观性、仪器、尺寸、时间等有关。
北京邮电大学——《微波技术基础》
微波技术中的重要知识点
![微波技术中的重要知识点](https://img.taocdn.com/s3/m/da51692eb52acfc789ebc9c0.png)
——chap3 19
阻抗匹配及匹配元件
阻抗匹配
匹配元件
并联单支节匹配器
串联单支节匹配器
双支节调配器
窄带匹配器
并联单支节匹配器-图解法
——chap3 31
人/2人/4阻抗变换器
研究微波系统的方法
电磁场理论的方法
电压传输系数T
插入衰减L
插入相移
插入驻波比
回波损耗Lr
——chapter 3 35
衰减器与匹配负载的区别
简并
简并波型
对于谐振器内的一对正交简并模,若在边界上加入微扰结构比如开槽、切角、加入小的贴片或内切角等,即可解除简并而使本征值分离,于是就在两个频率上实现耦合谐振
TE10TE20横截面场结构图TE21模的横截面场结构图
——chap2 9
TM波的场结构
TM21TE03TE12TE22
场结构和管壁电流分布
开槽
顺着电流线方向开一窄槽缝,电流不致遭受破坏,场分布也不致发生变化
若要耦合出电场,可用探针,让探针平行于电力线;若要耦合出磁场,则可用小环,让磁力线通过环面。
同轴线衰减常数
同轴线中不产生高次模的最高工作频率
——chap2 7
试定性解释为什么空心金属波导中不能传输TEM波波导一般解
对于可传播TE或TM波的金属柱面波导,为获取导波的传输特性,分析思路和具体方法是什么
同轴线、带状线、微带线的单T分支
波导单T和双T分支
微带功分器
微波滤波器
E面T和H面T—分路元件
波导双T
魔T
环形电路
微波阻抗电桥
衰减L
微波滤波器的主要技术指标
滤波器的品质因数Q
对称Y分支
微波技术总结知识点
![微波技术总结知识点](https://img.taocdn.com/s3/m/607cb84902d8ce2f0066f5335a8102d277a26110.png)
微波技术总结知识点微波技术的基本原理微波是电磁波的一种,波长短于毫米级的电磁波称为微波。
微波技术利用微波进行通信和处理信号,主要包括微波通信技术、微波信号处理技术以及微波器件技术。
微波通信技术是指利用微波进行通信的技术,通常采用微波天线和微波谐振器等设备来传送和接收信号。
微波通信技术在军事和民用领域都有着广泛的应用,可以实现远距离、高速率和大容量的数据传输。
微波信号处理技术是指利用微波对信号进行处理的技术,包括微波滤波器、微波放大器、微波混频器等器件。
这些器件可以对信号进行放大、滤波、混频等操作,以满足不同的通信需求。
微波器件技术是指用于处理微波信号的器件技术,主要包括微波天线、微波电路、微波集成电路等。
这些器件可以完成微波信号的发送、接收和处理,是微波技术的重要组成部分。
微波技术的应用领域微波技术已经广泛应用于通信、雷达、医疗、无线电视、卫星通信等领域,使得这些领域的设备更加高效、精密和方便。
下面将分别介绍微波技术在这些领域的应用。
在通信领域,微波技术主要应用于微波通信系统、微波网络和微波设备中。
微波通信系统利用微波进行信号传输,可以实现高速率和大容量的数据传输,适用于长距离通信。
微波网络是指采用微波进行连接的通信网络,可以覆盖大范围的区域,适用于城市和农村的通信需求。
微波设备包括微波发射器、微波接收器和微波天线等设备,可以实现对微波信号的发送、接收和处理。
在雷达领域,微波技术主要应用于雷达系统、雷达信号处理和雷达器件中。
雷达系统利用微波进行目标检测和跟踪,可以实现对目标的远程监测和控制。
雷达信号处理是指对雷达信号进行处理和分析,以获得目标的位置、速度等信息,是雷达系统中的重要环节。
雷达器件包括雷达天线、雷达电路和雷达传感器等器件,可以实现对雷达信号的发送、接收和处理。
在医疗领域,微波技术主要应用于医疗设备、医疗通信和医疗图像处理中。
医疗设备利用微波进行医疗诊断和治疗,可以实现对人体的无损检测和治疗。
微波重要知识点提要 (修复的)
![微波重要知识点提要 (修复的)](https://img.taocdn.com/s3/m/f15e3cd3aef8941ea76e0587.png)
重要知识点绪论1 微波的波长范围和频率范围波长:1m-0.1mm; 频率:300MHZ-3000GHZ ;第一章 传输线理论 1 导行波类型:(1)TEM 波(横电磁波):在导行波传播的方向(纵向)上,没有电磁场分量的电磁波;(2)TE 波(横电波):纵向0z E =,但0z H ≠ (3)TM 波(横磁波):纵向0z H =,但0z E ≠ 2 传输线的分类: (1)双导体传输线;(2)金属波导(矩形波导,圆形波导) (3)介质传输线; 3 传输线方程及其解(1)分析思路:化场为路,使用电阻R 、电导G 、电感L 和电容C 将传输线化为电网络;(2)传输线模型及其坐标系:[注]坐标系以终端为原点,坐标方向从负载至信源; (3)传输线方程的推导和解:理解 4 传输线的特性参数(1)特性阻抗,对于均匀无耗传输线;(2)传播常数j γαβ=+,其中α为衰减常数,β为相移常数;(3)相速p υ与波长λ: p ωυβ=2p f υπλβ== 5 传输线输入阻抗、反射系数和驻波比 输入阻抗000tan tan l in l Z jZ zZ Z Z jZ zββ+=+反射系数()200j zl l Z Z z e Z Z β--=+г反射系数和输入阻抗的关系 ()()11in z Z Z z +=-гг ()00()()in in Z z Z z Z z Z -=+г驻波比 11l lρ+=-гг[注]:证明输入阻抗的/2λ周期性6 无耗传输线的状态分析(1)()0z =г即0l Z Z =处,行波状态; (2)纯驻波状态:1l =±г即0l Z =∞或;(3)行驻波状态:介于行波状态和纯驻波状态之间。
7 Smith 圆图 (1)组成:A 反射系数圆图()j l z e φ=ггB 归一化电阻圆图C 归一化电抗圆图;(2)重要概念A Smith圆图是反射系数圆图,归一化电阻圆图和归一化电抗圆图的合成;B圆图上一点既代表一个归一化阻抗,又代表这个阻抗值对应的反射系数(阻抗和反射系数是一一对应的);λ的周期性,因此在圆图上旋转一圈,即是在传输线C 由归一化阻抗的/2λ的距离;上移动/2D向顺时针方向旋转,相当于从负载端向信源端移动;向逆时针方向旋转,相当于从信源端向负载端移动;E 在旋转时与实轴正半轴交点所对应电阻值为驻波比ρ,与实轴负半轴交点所对应电阻值为1/ρ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《微波技术基础》课程学习知识要点 第一章 学习知识要点1 •微波的定义一 把波长从1米到0.1毫米范围内的电磁波称为微波。
微波波段对应的频率范围 为:3X108H Z 〜3X 1012H Z 。
在整个电磁波谱中,微波处于普通无线电波与红外线之间,是频率最高的 无线电波,它的频带宽度比所有普通无线电波波段总和宽 10000倍。
一般情况下,微波又可划分为 分米波、厘米波、毫米波和亚毫米波四个波段。
2 •微波具有如下四个主要特点:1)似光性、2)频率高、3)能穿透电离层、4)量子特性。
3 •微波技术的主要应用:1)在雷达上的应用、2)在通讯方面的应用、3)在科学研究方面的 应用、4)在生物医学方面的应用、5)微波能的应用。
4•微波技术是研究微波信号的产生、传输、变换、发射、接收和测量的一门学科,它的基本理 论是经典的电磁场理论,研究电磁波沿传输线的传播特性有两种分析方法。
一种是“场”的分析方 法,即从麦克斯韦方程出发,在特定边界条件下解电磁波动方程,求得场量的时空变化规律,分析 电磁波沿线的各种传输特性;另一种是“路”的分析方法,即将传输线作为分布参数电路处理,用 克希霍夫定律建立传输线方程,求得线上电压和电流的时空变化规律,分析电压和电流的各种传输 特性。
第二章学习知识要点1. 传输线可用来传输电磁信号能量和构成各种微波元器件。
微波传输线是一种分布参数电路, 线上的电压和电流是时间和空间位置的二元函数,它们沿线的变化规律可由传输线方程来描述。
传 输线方程是传输线理论中的基本方程。
2. 均匀无耗传输线方程为其解为U Z i= A “e 八 A 2e jZ I Z 丁 Z — A 2e j 'ZZ o 对于均匀无耗传输线,已知终端电压U 2和电流丨2,则:U Z =U 2COS :Z jl 2Z 0sin :zd 2U Z d平2Z dz 2 -:2U Z ]=0 -■21 Z = 0 I Z = l 2 COS :Z jU对于均匀无耗传输线,已知始端电压U 和电流丨1,则:3. 终端接的不同性质的负载,均匀无耗传输线有三种工作状态:(1) 当Z L 二Zo 时,传输线工作于行波状态。
线上只有入射波存在,电压电流振幅不变,相位沿 传播方向滞后;沿线的阻抗均等于特性阻抗;电磁能量全部被负载吸收。
(2) 当ZL =0、:和一 jX 时,传输线工作于驻波状态。
线上入射波和反射波的振幅相等,驻波 的波腹为入射波的两倍,波节为零;电压波腹点的阻抗为无限大,电压波节点的阻抗为零,沿线其 余各点的阻抗均为纯电抗;电压(电流)波腹点和电压(电流)波节点每隔’4交替出现,每隔「2重复出现;没有电磁能量的传输,只有电磁能量的交换。
(3)当Z L = R L jXL 时,传输线工作于行驻波状态。
行驻波的波腹小于两倍入射波,波节不为 零;电压波腹点的阻抗为最大的纯电阻 R max 「之。
,电压波节点的阻抗为最小的纯电阻 R min 二Z0.'; 电压(电流)波腹点和电压(电流)波节点每隔 ’「4交替出现,每隔-2重复出现;电磁能量一部分 被负载吸收,另一部分被负载反射回去。
4. 表征传输线上反射波的大小的参量有反射系数】,驻波比'和行波系数K 。
它们之间的关系 及相关表达式为:一丄 J; z /n z -Z o K 1 一 Z. z Z o 其数值大小和工作状态的关系如下表所示。
工作状态 行波 驻波 行驻波『1o 1 o 4口 <1 P1 OC 1 < P <°° K 1o o<K <1 5•传输线阻抗匹配方法常用 4阻抗变换器和分支匹配器(单分支、双分支和三分支)6.阻抗圆图和导纳圆图是传输线进行阻抗计算和阻抗匹配的重要工具。
其参量为Z o\ z =\1 cos z - jU L o .C o max U | .I min I max I . minU z =U 1coS z - jl 1Z 0sin :zsin :z 1 Z o2 B =— P第三章学习知识要点1. 微波传输线是引导电磁波沿一定方向传输的系统,故又称作导波系统。
被传输的电磁波又称作导行波。
导行波一方面要满足麦克斯韦方程,另一方面又要满足导体或介质的边界条件;也就是说,麦克斯韦方程和边界条件决定了导行波在导波系统中的电磁场分布规律和传播特性。
2. 导波系统中的电磁波按纵向场分量的有无,可分为TE波、TM波和TEM波三种类型。
前两种是色散波,一般只在金属波导管中传输;后一种是非色散波,一般在双导体系统中传输。
只有当电磁波的波长或频率满足条件’;::'c或f • f c时,才能在导波系统中传输,否则被截止。
3. 导波系统中场结构必须满足下列规则:电力线一定与磁力线相互垂直,两者与传播方向满足右手螺旋法则;在导波系统的金属壁上只有电场的法向分量和磁场的切向分量;电力线一定是封闭曲线。
4. 本章主要讨论了矩形波导、圆波导、同轴线、带状线和微带线等常用的微波传输线。
其中矩形波导、圆波导和同轴线易采用场解法来分析其场分布和传输特性;带状线利用传输线理论分析其传输特性;而微带线则采用准静态分析法来分析其传输特性。
5. 各类传输线内传输的主模及其截止波长和单模传输条件列表如下:1、微波系统包括均匀传输线和微波元件两大部分。
均匀传输线可等效为平行双线;微波元件可精品文档 等效为网络。
然后利用微波网络理论,可对任何一个复杂微波系统进行研究。
2、 根据网络外接传输线的路数,来定义微波网络端口的个数。
微波网络按端口个数一般分为: 二端口网络和多端口网络(如三端口网络、四端口网络等)。
本章以二端口网络为重点,介绍了二端 口网络的五种网络参量:阻抗参量、导纳参量、转移参量、散射参量和传输参量,以及基本电路单元的网络参量。
3、 二端口网络参量的性质有:无耗网络:Zij = jX ij , Yj = jB ij 4、 二端口微波网络的组合方式有:级联方式、串联方式和并联方式,可分别用转移矩阵、阻抗 矩阵和导纳矩阵来分析;二端口网络参考面的移动对网络参量的影响,可利用转移矩阵和散射矩阵 来分析。
5、 微波元件的性能可用网络的工作特性参量来描述,网络的工作特性参量和网络参量之间有密 切的关系,可以相互转换。
其工作特性参量与网络参量的关系为:T - S 211 j L =10log A = 10log2 dB S 21v - arg T = arg S 21 = 21,-1 $1-0110、 可逆无耗二端口网络的基本特性有:S 参量只有三个独立参量,它们的相互关系为: S^S 22,S 12 =越-,申仁="2(% +% 土江);若网络的一个端口匹配,另一个端口一定自 动匹配,即若S1 7(或S 22 7),则S 22 =0(或S 11 =0);若网络完全匹配,则网络一定完全传输,即若 S 11 =S 22 =°,贝卩 S 12 = &1 二1第五章 学习知识要点1、 本章采用网络方法对一些常用的微波元件进行了分析和综合。
主要讨论了下列内容:微波系 统中的电抗元件,连接元件、转接元件和终端负载,衰减器和移相器,阻抗变换器,定向耦合器, 波导匹配双T ,微波滤波器,微波谐振器,微波铁氧体元件以及微波集成电路。
2、 对各种连接元件和短路活塞要求有良好的电接触,以保证不产生反射,常采用抗流结构。
匹 配负载和短可逆网络:丫12 =Y21 A ll A 22 — Al2 A 2I =1 S 12 T 11T 22 - 丁伐口 = 1对称网络:Z 11 = Z22 , 丫11 二丫22, A 11 T *(i, j =1,2) [S] [S ]=[1] 6、 电压传输系数: A 11 A 12 A 21 A 227、 插入衰减:8、 插入相移: 9、 输入驻波比:路负载是两种常用的终端元件,它们均属于一端口网络。
衰减器和移相器均属于二端口网络,但两者具有不同的功能。
衰减器的作用是对通过它的微波能量产生衰减;而移相器的作用是对通过它的微波信号产生一定的相移,微波能量可无衰减地通过。
3、阻抗变换器是微波系统中一种常用的阻抗匹配元件,它主要包括单节阻抗变换器、多节阶梯阻抗变换器和渐变线阻抗变换器,其阻抗匹配原理是将原来较大的反射波分成许多振幅较小而相位又能互相抵消的反射波,只要合理选择节数和各段阻抗值,就能得到满意的结果。
4、定向耦合器是一个四端口的网络元件,它具有定向传输的特点。
它的主要指标是耦合度和隔离度(或方向性)。
定向耦合器的种类很多,本章仅讨论了波导双孔耦合的定向耦合器,平行耦合线定向耦合器,分支定向耦合器。
对于波导孔耦合的定向耦合器一般采用耦合波理论进行分析;对于后几种定向耦合器,由于它们结构上都具有对称平面,故易采用奇、偶模参量法进行分析。
无论是哪一种定向耦合器,至少有两种以上的耦合波相互干涉,才能产生定向性。
参加干涉的耦合波个数愈多愈能改善定向耦合器定向性的频率特性,从而增宽频带。
另外还介绍了两种常用微波元件:微带功分器和波导匹配双T (魔T),它们也可看成是一类定向耦合器。
5、##微波滤波器主要功能是分隔频率。
表征滤波器的主要特性是衰减特性。
根据衰减特性分为低通、高通、带通和带阻滤波器,对滤波器的要求是通带内衰减尽可能小,阻带内衰减尽可能大,通带与阻带的过渡区尽可能小,即愈陡愈好。
这些要求是相互矛盾的,解决这些矛盾的最经济和合理的方法是采用网络综合法进行设计。
微波滤波器设计与低频滤波器的设计基本相同,唯一的差别是用分布参数元件代替集中参数元件。
微波滤波器常采用高低阻抗线来构成。
6、微波谐振器是一种储能和选频元件,其作用相当于低频电路中的谐振回路。
本章主要讨论了谐振器的分析方法、基本参量、基本特性及其等效电路。
7、微波谐振器与低频集中参数LC谐振回路的外特性是相同的,因此可以用等效电路来分析,尤其带有耦合装置的谐振器更适宜用等效电路法进行分析。
8、对于传输线型谐振器的场分布的分析,采用使原有传输线的场分布满足两端面的边界条件,即可得到由该传输线组成的谐振器中的场分布。
谐振器中的场分布是呈驻波分布的。
9、各种形式传输线,只要满足谐振条件都可用来构成谐振器。
对于由两端短路或开路的传输线构成的谐振器,其谐振条件为I = n o/2 ;对于由一端短路,另一端开路的传输线构成的谐振器,其谐振条件为I = (2n-1)o/4 ;对于由一端短路,另一端为容性电纳负载的传输线构成的谐振器,其谐振条件为1二’o’^rcctg Z「0C。
式中为构成谐振器的传输线中电磁波的相波长。
10、矩形谐振腔中的主模为TE oi。
圆柱谐振腔中,当K2.1R时,主模为TM io,当l>2.1R 时,主模为TE111。