湖南省长沙市2019年中考数学一模试卷及答案解析

合集下载

2019-2020长沙市数学中考一模试题(及答案)

2019-2020长沙市数学中考一模试题(及答案)
n2+ n+1(n 为正整数)”是解题的关键.
9.A
解析:A 【解析】 【分析】 把点(3,1)代入直线 y=kx﹣2,得出 k 值,然后逐个点代入,找出满足条件的答案. 【详解】 把点(3,1)代入直线 y=kx﹣2,得 1=3k﹣2, 解得 k=1, ∴y=x﹣2, 把(2,0),(0,2),(1,3),(3,﹣1)代入 y=x﹣2 中,只有(2,0)满足条 件. 故选 A. 【点睛】 本题考查了一次函数图象上点的坐标特点,熟悉一次函数图象上点的特点是解此题的关
∴ AD 1 , BG 3
∵BG=12, ∴AD=BC=4, ∵AD∥BG, ∴△OAD∽△OBG,
∴ OA 1 OB 3
∴ 0A 1 4 OA 3
解得:OA=2, ∴OB=6, ∴C 点坐标为:( 6,4), 故选 A. 【点睛】 此题主要考查了位似变换以及相似三角形的判定与性质,正确得出 AO 的长是解题关键.
20.若式子 x 3 在实数范围内有意义,则 x 的取值范围是_____. 三、解答题
21.如图,AB 是⊙O 的直径,点 C 是 的中点,连接 AC 并延长至点 D,使 CD=AC,
点 E 是 OB 上一点,且 连接 BH.
,CE 的延长线交 DB 的延长线于点 F,AF 交⊙O 于点 H,
(1)求证:BD 是⊙O 的切线;(2)当 OB=2 时,求 BH 的长.
C.(4,4)
2.如图是某个几何体的三视图,该几何体是()
D.(8,4)
A.三棱柱
B.三棱锥
C.圆柱
D.圆锥
3.地球与月球的平均距离为 384 000km,将 384 000 这个数用科学记数法表示为( ) A.3.84×103 B.3.84×104 C.3.84×105 D.3.84×106

湖南长沙市2019年九年级数学中考模拟试卷(含答案)【含答案及解析】

湖南长沙市2019年九年级数学中考模拟试卷(含答案)【含答案及解析】

湖南长沙市 2019年九年级数学中考模拟试卷(含答案)【含答案及解析】姓名___________ 班级____________ 分数__________题号一二三四五总分得分一、单选题1. 若|x|=7,|y|=5,且x+y>0,那么x-y的值是()A. 2或12B. -2或12C. 2或-12D. -2或-12二、选择题2. 在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为( )A. 1.94×1010B. 0.194×1010C. 19.4×109D. 1.94×109三、单选题3. 下列各式计算正确的是()A. 2a2+3a2=5a4B. (﹣2ab)3=﹣6ab3C. (3a+b)(3a﹣b)=9a2﹣b2D. a3?(﹣2a)=﹣2a34. 下列四个图形分别是四届国际数学家大会的会标,其中不属于中心对称图形的是()A. B. C. D.5. 已知一个样本中,50个数据分别落在5个组内,第一、二、三、四、五组数据的个数分别为2、8、15、20、5,则第四组的频率为()A. 0.1;B. 0.2;C. 0.3;D. 0.4;6. 如图,几何体上半部为三棱柱,下半部为圆柱,其俯视图是()A. B. C. D.7. 如图,已知矩形OABC,A(4,0),C(0,3),动点P从点A出发,沿A﹣B﹣C﹣O的路线勻速运动,设动点P的运动时间为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是()A. B. C. D.8. 如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为()A. 0.5B. 1C. 3.5D. 7四、填空题9. 16的平方根等于_________.10. 分解因式:(a-b)2-4b2= _______________________11. 函数f(x)= 的定义域是________.平分线交于点E,则∠AEC的度数为_____°.12. 如图,已知AB∥CD,∠CAB、∠ACD13. 在一个不透明的布袋中有除颜色外其它都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在35%和55%,则口袋中可能有黄球___________个.14. 在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,位似比为2:1将△EFO缩小,则点E的对应点E′的坐标是________.15. 甲、乙两人进行射击测试,每人20次射击成绩的平均数都是8.5环,方差分别是:S 甲2=3,S乙2=2.5,则射击成绩较稳定的是_____(填“甲”或“乙”).16. 如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1 ,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2 ,交x轴于A2;将C2绕A2旋转180°得到C3 ,交x轴于A3;…如此进行下去,直至得到C6 ,若点P(11,m)在第6段抛物线C6上,则m=________.五、解答题17. 计算:﹣(﹣2016)0+|﹣3|﹣4cos45°.18. 解不等式组:,并在数轴上表示不等式组的解集.19. 已知一次函数y=-x-1与反比例函数y=kx-1的图象都过点A(m,1).(1)求m的值,并求反比例函数的解析式;(2)求正比例函数与反比例函数的另一个交点B的坐标;(3)求△AOB的面积。

【附5套中考模拟试卷】湖南省长沙市2019-2020学年中考数学一模试卷含解析

【附5套中考模拟试卷】湖南省长沙市2019-2020学年中考数学一模试卷含解析

湖南省长沙市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列各数中,最小的数是( ) A .3-B .()2--C .0D .14-2.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是( ) 动时间(小时) 3 3.5 4 4.5 人数1121A .中位数是4,平均数是3.75B .众数是4,平均数是3.75C .中位数是4,平均数是3.8D .众数是2,平均数是3.83.已知关于x 的方程x 2﹣4x+c+1=0有两个相等的实数根,则常数c 的值为( ) A .﹣1B .0C .1D .34.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+15.如图所示的几何体的俯视图是( )A .B .C .D .6.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示: 成绩/m 1.501.601.651.701.751.80人数232341则这些运动员成绩的中位数、众数分别为( ) A .1.65、1.70B .1.65、1.75C .1.70、1.75D .1.70、1.707.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:弧①是以O 为圆心,任意长为半径所画的弧;弧②是以P 为圆心,任意长为半径所画的弧;弧③是以A 为圆心,任意长为半径所画的弧;弧④是以P 为圆心,任意长为半径所画的弧; 其中正确说法的个数为( ) A .4B .3C .2D .18.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m ,这个数用科学记数法表示正确的是( ) A .3.4×10-9mB .0.34×10-9mC .3.4×10-10mD .3.4×10-11m9.如图,一张半径为1的圆形纸片在边长为4的正方形内任意移动,则在该正方形内,这张圆形纸片“能接触到的部分”的面积是( )A .4π-B .πC .12π+D .π154+10.要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是( )A .两点之间的所有连线中,线段最短B .经过两点有一条直线,并且只有一条直线C .直线外一点与直线上各点连接的所有线段中,垂线段最短D .经过一点有且只有一条直线与已知直线垂直 11.-2的倒数是( ) A .-2B .12-C .12D .212.如图,小明从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应是( )A.右转80°B.左转80°C.右转100°D.左转100°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=_________.14.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。

湖南省长沙市2019-2020学年中考一诊数学试题含解析

湖南省长沙市2019-2020学年中考一诊数学试题含解析

湖南省长沙市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm2.一元二次方程210x x--=的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断3.如图,该图形经过折叠可以围成一个正方体,折好以后与“静”字相对的字是()A.着B.沉C.应D.冷4.如图,已知////AB CD EF,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD=C.CD BCEF BE=D.CD ADEF AF=5.13-的相反数是()A.13B.13-C.3 D.-36.下列图形中既是中心对称图形又是轴对称图形的是A.B.C.D.7.如图,点M是正方形ABCD边CD上一点,连接MM,作DE⊥AM于点E,BF⊥AM于点F,连接BE,若AF=1,四边形ABED的面积为6,则∠EBF的余弦值是()A .21313B .31313C .23D .13138.一元二次方程(x+2017)2=1的解为( ) A .﹣2016,﹣2018 B .﹣2016C .﹣2018D .﹣20179.如图,在ABC V 中,90ACB ∠=︒,分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若34B ∠=︒,则BDC ∠的度数是( )A .68︒B .112︒C .124︒D .146︒10.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A .19B .16C .13D .2311.下列计算正确的是( ) A .2a 2﹣a 2=1B .(ab )2=ab 2C .a 2+a 3=a 5D .(a 2)3=a 612.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是( ) 学生数(人) 5 8 14 19 4 时间(小时) 6 78910 A .14,9B .9,9C .9,8D .8,9二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,将△ABC 绕点A 逆时针旋转100°,得到△ADE.若点D 在线段BC 的延长线上,则B Ð的大小为________.14.如图,A、B是双曲线y=kx上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若D为OB的中点,△ADO的面积为3,则k的值为_____.15.如图,圆锥底面圆心为O,半径OA=1,顶点为P,将圆锥置于平面上,若保持顶点P位置不变,将圆锥顺时针滚动三周后点A恰好回到原处,则圆锥的高OP=_____.16.已知关于x的一元二次方程20x mx n++=的两个实数根分别是x1=-2,x2=4,则+m n的值为________.17.如图,在正方形ABCD中,AD=5,点E,F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为__________.18.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知抛物线y=﹣x2﹣4x+c经过点A(2,0).(1)求抛物线的解析式和顶点坐标;(2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C.①若B、C都在抛物线上,求m的值;②若点C在第四象限,当AC2的值最小时,求m的值.20.(6分)济南国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:m)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.滑行时间x/s 0 1 2 3 …滑行距离y/m 0 4 12 24 …(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约840m,他需要多少时间才能到达终点?将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后的函数表达式.21.(6分)某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台电冰箱的进价比每台空调的进价多300元,商场用9000元购进电冰箱的数量与用7200元购进空调数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售利润为Y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于16200元,请分析合理的方案共有多少种?(3)实际进货时,厂家对电冰箱出厂价下调K(0<K<150)元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案.22.(8分)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.求证:△AFE≌△CDF;若AB=4,BC=8,求图中阴影部分的面积.23.(8分)某学校为了解学生的课余活动情况,抽样调查了部分学生,将所得数据处理后,制成折线统计图(部分)和扇形统计图(部分)如图:(1)在这次研究中,一共调查了学生,并请补全折线统计图;(2)该校共有2200名学生,估计该校爱好阅读和爱好体育的学生一共有多少人?24.(10分)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.25.(10分)已知抛物线y=a(x-1)2+3(a≠0)与y轴交于点A(0,2),顶点为B,且对称轴l1与x轴交于点M(1)求a的值,并写出点B的坐标;(2)将此抛物线向右平移所得新的抛物线与原抛物线交于点C,且新抛物线的对称轴l2与x轴交于点N,过点C做DE∥x轴,分别交l1、l2于点D、E,若四边形MDEN是正方形,求平移后抛物线的解析式.26.(12分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=kx交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.求双曲线的解析式;求点C的坐标,并直接写出y1<y2时x的取值范围.27.(12分)如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M 的坐标;(2)若将该二次函数图象向下平移m (m >0)个单位,使平移后得到的二次函数图象的顶点落在△ABC 的内部(不包括△ABC 的边界),求m 的取值范围;(3)点P 是直线AC 上的动点,若点P ,点C ,点M 所构成的三角形与△BCD 相似,请直接写出所有点P 的坐标(直接写出结果,不必写解答过程).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】试题分析:已知,△ABE 向右平移2cm 得到△DCF ,根据平移的性质得到EF=AD=2cm ,AE=DF ,又因△ABE 的周长为16cm ,所以AB+BC+AC=16cm ,则四边形ABFD 的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm .故答案选C . 考点:平移的性质. 2.A 【解析】 【分析】把a=1,b=-1,c=-1,代入24b ac ∆=-,然后计算∆,最后根据计算结果判断方程根的情况. 【详解】21,1,14145a b c b ac ==-=-∴∆-=+=Q∴方程有两个不相等的实数根.本题考查根的判别式,把a=1,b=-1,c=-1,代入24b ac ∆=-计算是解题的突破口. 3.A 【解析】 【分析】正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答 【详解】这是一个正方体的平面展开图,共有六个面,其中面“沉”与面“考”相对,面“着”与面“静”相对,“冷”与面“应”相对. 故选:A 【点睛】本题主要考查了利用正方体及其表面展开图的特点解题,明确正方体的展开图的特征是解决此题的关键 4.A 【解析】 【分析】已知AB ∥CD ∥EF ,根据平行线分线段成比例定理,对各项进行分析即可. 【详解】∵AB ∥CD ∥EF , ∴AD BCDF CE=. 故选A . 【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案. 5.B 【解析】先求13-的绝对值,再求其相反数:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点13-到原点的距离是13,所以13-的绝对值是13;相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.因此13的相反数是13-.故选B . 6.B根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合. 【详解】A 、是轴对称图形,不是中心对称图形,不符合题意;B 、是轴对称图形,也是中心对称图形,符合题意;C 、是轴对称图形,不是中心对称图形,不符合题意;D 、不是轴对称图形,是中心对称图形,不符合题意. 故选B . 7.B 【解析】 【分析】首先证明△ABF ≌△DEA 得到BF=AE ;设AE=x ,则BF=x ,DE=AF=1,利用四边形ABED 的面积等于△ABE 的面积与△ADE 的面积之和得到12•x•x+•x×1=6,解方程求出x 得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE ,最后利用余弦的定义求解. 【详解】∵四边形ABCD 为正方形, ∴BA =AD ,∠BAD =90°,∵DE ⊥AM 于点E ,BF ⊥AM 于点F , ∴∠AFB =90°,∠DEA =90°,∵∠ABF+∠BAF =90°,∠EAD+∠BAF =90°, ∴∠ABF =∠EAD , 在△ABF 和△DEA 中BFA DEA ABF EAD AB DA ∠=∠⎧⎪∠=⎨⎪=⎩∴△ABF ≌△DEA (AAS ), ∴BF =AE ;设AE =x ,则BF =x ,DE =AF =1, ∵四边形ABED 的面积为6, ∴111622x x x ⋅⋅+⋅⨯=,解得x 1=3,x 2=﹣4(舍去),∴EF =x ﹣1=2,在Rt △BEF 中,BE ==∴cos13BF EBF BE ∠===. 故选B . 【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形. 8.A 【解析】 【分析】利用直接开平方法解方程. 【详解】 (x+2017)2=1 x+2017=±1,所以x 1=-2018,x 2=-1. 故选A . 【点睛】本题考查了解一元二次方程-直接开平方法:形如x 2=p 或(nx+m )2=p (p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程. 9.B 【解析】 【分析】根据题意可知DE 是AC 的垂直平分线,CD=DA .即可得到∠DCE=∠A ,而∠A 和∠B 互余可求出∠A ,由三角形外角性质即可求出∠CDA 的度数. 【详解】解:∵DE 是AC 的垂直平分线, ∴DA=DC , ∴∠DCE=∠A ,∵∠ACB=90°,∠B=34°, ∴∠A=56°,∴∠CDA=∠DCE+∠A=112°, 故选B .【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.10.C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为31 = 93.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.11.D【解析】【分析】根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案. 【详解】A、2a2﹣a2=a2,故A错误;B、(ab)2=a2b2,故B错误;C、a2与a3不是同类项,不能合并,故C错误;D、(a2)3=a6,故D正确,故选D.【点睛】本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键.12.C【解析】【详解】解:观察、分析表格中的数据可得:∵课外阅读时间为1小时的人数最多为11人,∴众数为1.∵将这组数据按照从小到大的顺序排列,第25个和第26个数据的均为2,∴中位数为2.故选C.【点睛】本题考查(1)众数是一组数据中出现次数最多的数;(2)中位数的确定要分两种情况:①当数据组中数据的总个数为奇数时,把所有数据按从小到大的顺序排列,中间的那个数就是中位数;②当数据组中数据的总个数为偶数时,把所有数据按从小到大的顺序排列,中间的两个数的平均数是这组数据的中位数. 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.40°【解析】【分析】根据旋转的性质可得出AB=AD、∠BAD=100°,再根据等腰三角形的性质可求出∠B的度数,此题得解.【详解】根据旋转的性质,可得:AB=AD,∠BAD=100°,∴∠B=∠ADB=12×(180°−100°)=40°.故填:40°.【点睛】本题考查了旋转的性质以及等腰三角形的性质,根据旋转的性质结合等腰三角形的性质求出∠B的度数是解题的关键.14.1.【解析】过点B作BE⊥x轴于点E,根据D为OB的中点可知CD是△OBE的中位线,即CD=BE,设A(x,),则B(2x,),故CD=,AD=﹣,再由△ADO的面积为1求出k的值即可得出结论.解:如图所示,过点B作BE⊥x轴于点E,∵D为OB的中点,∴CD是△OBE的中位线,即CD=BE.设A(x,),则B(2x,),CD=,AD=﹣,∵△ADO的面积为1,∴AD•OC=3,(﹣)•x=3,解得k=1,故答案为1.15.【解析】【分析】先利用圆的周长公式计算出PA的长,然后利用勾股定理计算PO的长.【详解】解:根据题意得2π×PA=3×2π×1,所以PA=3,所以圆锥的高OP=故答案为.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.-10【解析】【分析】根据根与系数的关系得出-2+4=-m,-2×4=n,求出即可.【详解】∵关于x的一元二次方程20x mx n++=的两个实数根分别为x1=-2,x2=4,∴−2+4=−m,−2×4=n,解得:m=−2,n=−8,∴m+n=−10,故答案为:-10【点睛】此题考查根与系数的关系,掌握运算法则是解题关键17.2【解析】分析:延长AE交DF于G,再根据全等三角形的判定得出△AGD与△ABE 全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根据勾股定理得出EF的长.详解:延长AE交DF于G,如图,∵AB=5,AE=3,BE=4,∴△ABE是直角三角形,同理可得△DFC是直角三角形,可得△AGD是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE.在△AGD和△BAE中,∵EAB GDAAD ABABE DAG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AGD≌△BAE(ASA),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=22112+=.故答案为2.点睛:本题考查了正方形的性质,关键是根据全等三角形的判定和性质得出EG=FG=1,再利用勾股定理计算.18.1.【解析】试题分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是直角三角形求斜边的问题,根据勾股定理可求出葛藤长为=1(尺).故答案为1.考点:平面展开最短路径问题三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)抛物线解析式为y=﹣x2﹣4x+12,顶点坐标为(﹣2,16);(2)①m=23或m=﹣23;②m的值为462--.【解析】分析:(1)把点A(2,0)代入抛物线y=﹣x2﹣4x+c中求得c的值,即可得抛物线的解析式,根据抛物线的解析式求得抛物线的顶点坐标即可;(2)①由B(m,n)在抛物线上可得﹣m2﹣4m+12=n,再由点B关于原点的对称点为C,可得点C的坐标为(﹣m,﹣n),又因C落在抛物线上,可得﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,所以﹣m2+4m+12=m2﹣4m﹣12,解方程求得m的值即可;②已知点C(﹣m,﹣n)在第四象限,可得﹣m>0,﹣n<0,即m<0,n>0,再由抛物线顶点坐标为(﹣2,16),即可得0<n≤16,因为点B在抛物线上,所以﹣m2﹣4m+12=n,可得m2+4m=﹣n+12,由A(2,0),C(﹣m,﹣n),可得AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,所以当n=时,AC2有最小值,即﹣m2﹣4m+12=,解方程求得m的值,再由m<0即可确定m的值.详解:(1)∵抛物线y=﹣x2﹣4x+c经过点A(2,0),∴﹣4﹣8+c=0,即c=12,∴抛物线解析式为y=﹣x2﹣4x+12=﹣(x+2)2+16,则顶点坐标为(﹣2,16);(2)①由B(m,n)在抛物线上可得:﹣m2﹣4m+12=n,∵点B关于原点的对称点为C,∴C(﹣m,﹣n),∵C落在抛物线上,∴﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,解得:﹣m2+4m+12=m2﹣4m﹣12,解得:m=2或m=﹣2;②∵点C(﹣m,﹣n)在第四象限,∴﹣m>0,﹣n<0,即m<0,n>0,∵抛物线顶点坐标为(﹣2,16),∴0<n≤16,∵点B 在抛物线上,∴﹣m 2﹣4m+12=n ,∴m 2+4m=﹣n+12,∵A (2,0),C (﹣m ,﹣n ),∴AC 2=(﹣m ﹣2)2+(﹣n )2=m 2+4m+4+n 2=n 2﹣n+16=(n ﹣)2+,当n=时,AC 2有最小值,∴﹣m 2﹣4m+12=,解得:m=, ∵m <0,∴m=不合题意,舍去, 则m 的值为. 点睛:本题是二次函数综合题,第(1)问较为简单,第(2)问根据点B (m ,n )关于原点的对称点C (-m ,-n )均在二次函数的图象上,代入后即可求出m 的值即可;(3)确定出AC 2与n 之间的函数关系式,利用二次函数的性质求得当n=12时,AC 2有最小值,在解方程求得m 的值即可. 20.(1)20s ;(2)2511222y x ⎛⎫=+- ⎪⎝⎭ 【解析】【分析】(1)利用待定系数法求出函数解析式,再求出y =840时x 的值即可得;(2)根据“上加下减,左加右减”的原则进行解答即可.【详解】解:(1)∵该抛物线过点(0,0),∴设抛物线解析式为y =ax 2+bx ,将(1,4)、(2,12)代入,得:44212a b a b +=⎧⎨+=⎩, 解得:22a b =⎧⎨=⎩, 所以抛物线的解析式为y =2x 2+2x ,当y=840时,2x2+2x=840,解得:x=20(负值舍去),即他需要20s才能到达终点;(2)∵y=2x2+2x=2(x+12)2﹣12,∴向左平移2个单位,再向下平移5个单位后函数解析式为y=2(x+2+12)2﹣12﹣5=2(x+52)2﹣112.【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式及函数图象平移的规律.21.(1)每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)共有5种方案;(3)当100<k<150时,购进电冰箱38台,空调62台,总利润最大;当0<k<100时,购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为20000元.【解析】【分析】(1)用“用9000元购进电冰箱的数量与用7200元购进空调数量相等”建立方程即可;(2)建立不等式组求出x的范围,代入即可得出结论;(3)建立y1=(k﹣100)x+20000,分三种情况讨论即可.【详解】(1)设每台空调的进价为m元,则每台电冰箱的进价(m+300)元,由题意得,90007200300m m=+,∴m=1200,经检验,m=1200是原分式方程的解,也符合题意,∴m+300=1500元,答:每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)由题意,y=(1600﹣1500)x+(1400﹣1200)(100﹣x)=﹣100x+20000,∵10020000162001002xx-+≥⎧⎨-≤⎩,∴3313≤x≤38,∵x为正整数,∴x=34,35,36,37,38,即:共有5种方案;(3)设厂家对电冰箱出厂价下调k(0<k<150)元后,这100台家电的销售总利润为y1元,∴y1=(1600﹣1500+k)x+(1400﹣1200)(100﹣x)=(k﹣100)x+20000,当100<k<150时,y1随x的最大而增大,∴x=38时,y1取得最大值,即:购进电冰箱38台,空调62台,总利润最大,当0<k<100时,y1随x的最大而减小,∴x=34时,y1取得最大值,即:购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为20000元.【点睛】本题考查了一次函数的应用,分式方程的应用,不等式组的应用,根据题意找出等量关系是解题的关键.22.(1)证明见解析;(2)1.【解析】试题分析:(1)根据矩形的性质得到AB=CD,∠B=∠D=90°,根据折叠的性质得到∠E=∠B,AB=AE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论.试题解析:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B落在点E处,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF与△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S△ACE﹣S△AEF=12×4×8﹣12×4×3=1.点睛:本题考查了翻折变换﹣折叠的性质,熟练掌握折叠的性质是解题的关键.23.(1)200名;折线图见解析;(2)1210人.【解析】【分析】(1)由“其他”的人数和所占百分数,求出全部调查人数;先由“体育”所占百分数和全部调查人数求出体育的人数,进一步求出阅读的人数,补全折线统计图;(2)利用样本估计总体的方法计算即可解答.【详解】(1)调查学生总人数为40÷20%=200(人),体育人数为:200×30%=60(人),阅读人数为:200﹣(60+30+20+40)=200﹣150=50(人).补全折线统计图如下:.(2)2200×5060200+=1210(人). 答:估计该校学生中爱好阅读和爱好体育的人数大约是1210人.【点睛】本题考查了统计知识的应用,试题以图表为载体,要求学生能从中提取信息来解题,与实际生活息息相关,符合新课标的理念.24.证明见解析.【解析】【分析】过点B 作BF ⊥CE 于F ,根据同角的余角相等求出∠BCF=∠D ,再利用“角角边”证明△BCF 和△CDE 全等,根据全等三角形对应边相等可得BF=CE ,再证明四边形AEFB 是矩形,根据矩形的对边相等可得AE=BF ,从而得证.【详解】证明:如图,过点B 作BF ⊥CE 于F ,∵CE ⊥AD ,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°∴∠BCF=∠D ,在△BCF 和△CDE 中,90BCF D CED BFC BC CD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△BCF≌△CDE(AAS),∴BF=CE,又∵∠A=90°,CE⊥AD,BF⊥CE,∴四边形AEFB是矩形,∴AE=BF,∴AE=CE.25.(1)a=-1,B坐标为(1,3);(2)y=-(x-3)2+3,或y=-(x-7)2+3.【解析】【分析】(1)利用待定系数法即可解决问题;(2)如图,设抛物线向右平移后的解析式为y=-(x-m)2+3,再用m表示点C的坐标,需分两种情况讨论,用待定系数法即可解决问题.【详解】(1)把点A(0,2)代入抛物线的解析式可得,2=a+3,∴a=-1,∴抛物线的解析式为y=-(x-1)2+3,顶点为(1,3)(2)如图,设抛物线向右平移后的解析式为y=-(x-m)2+3,由()()22133y xy x m⎧=--+⎪⎨=--+⎪⎩解得x=12+m∴点C的横坐标为1 2 + m∵MN=m-1,四边形MDEN是正方形,∴C(12+m,m-1)把C点代入y=-(x-1)2+3,得m-1=-2 (1)4m-+3,解得m=3或-5(舍去)∴平移后的解析式为y=-(x-3)2+3,当点C在x轴的下方时,C(12+m,1-m)把C点代入y=-(x-1)2+3,得1-m=-2 (1)4m-+3,解得m=7或-1(舍去)∴平移后的解析式为y=-(x-7)2+3综上:平移后的解析式为y=-(x-3)2+3,或y=-(x-7)2+3.【点睛】此题主要考查二次函数的综合问题,解题的关键是熟知正方形的性质与函数结合进行求解.26.(1)24yx=;(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.【解析】【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.【详解】(1)∵点A在直线y1=1x﹣1上,∴设A(x,1x﹣1),过A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=12OB=OC,∴x=1x﹣1,x=1,∴A(1,1),∴k=1×1=4,∴24yx =;(1)∵224y xyx=-⎧⎪⎨=⎪⎩,解得:1122xy=⎧⎨=⎩,2214xy=-⎧⎨=-⎩,∴C(﹣1,﹣4),由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.27.(1)y=﹣x 2+2x+4;M (1,5);(2)2<m <4;(3)P 1(311,31),P 2(313,31 ),P 3(3,1),P 4(﹣3,7).【解析】试题分析:(1)将点A 、点C 的坐标代入函数解析式,即可求出b 、c 的值,通过配方法得到点M 的坐标;(2)点M 是沿着对称轴直线x=1向下平移的,可先求出直线AC 的解析式,将x=1代入求出点M 在向下平移时与AC 、AB 相交时y 的值,即可得到m 的取值范围;(3)由题意分析可得∠MCP=90°,则若△PCM 与△BCD 相似,则要进行分类讨论,分成△PCM ∽△BDC 或△PCM ∽△CDB 两种,然后利用边的对应比值求出点坐标.试题解析:(1)把点A (3,1),点C (0,4)代入二次函数y=﹣x 2+bx+c 得, 解得 ∴二次函数解析式为y=﹣x 2+2x+4, 配方得y=﹣(x ﹣1)2+5,∴点M 的坐标为(1,5);(2)设直线AC 解析式为y=kx+b ,把点A (3,1),C (0,4)代入得, 解得: ∴直线AC 的解析式为y=﹣x+4,如图所示,对称轴直线x=1与△ABC 两边分别交于点E 、点F 把x=1代入直线AC 解析式y=﹣x+4解得y=3,则点E 坐标为(1,3),点F 坐标为(1,1)∴1<5﹣m <3,解得2<m <4;(3)连接MC ,作MG ⊥y 轴并延长交AC 于点N ,则点G 坐标为(0,5) ∵MG=1,GC=5﹣4=1 ∴MC==, 把y=5代入y=﹣x+4解得x=﹣1,则点N 坐标为(﹣1,5), ∵NG=GC ,GM=GC , ∴∠NCG=∠GCM=45°, ∴∠NCM=90°,由此可知,若点P 在AC 上,则∠MCP=90°,则点D 与点C 必为相似三角形对应点①若有△PCM ∽△BDC ,则有∵BD=1,CD=3, ∴CP===, ∵CD=DA=3, ∴∠DCA=45°,若点P 在y 轴右侧,作PH ⊥y 轴, ∵∠PCH=45°,CP=∴PH==把x=代入y=﹣x+4,解得y=,∴P1();同理可得,若点P在y轴左侧,则把x=﹣代入y=﹣x+4,解得y=∴P2();②若有△PCM∽△CDB,则有∴CP==3∴PH=3÷=3,若点P在y轴右侧,把x=3代入y=﹣x+4,解得y=1;若点P在y轴左侧,把x=﹣3代入y=﹣x+4,解得y=7∴P3(3,1);P4(﹣3,7).∴所有符合题意得点P坐标有4个,分别为P1(),P2(),P3(3,1),P4(﹣3,7).考点:二次函数综合题。

湖南省长沙市南雅2019届中考第一次模拟数学试题(含答案)

湖南省长沙市南雅2019届中考第一次模拟数学试题(含答案)

全真模拟一试卷 初三年级 数学科目命题人:审题人:考生注意:本试卷共三道大题,26 小题,满分 120 分,时量 120 分钟一、选择题(下列各题的四个选项中,只有一项是符合题意的,请在答题卡中填涂符合题 意的选项,本大题共 12 个小题,每小题 3 分,共 36 分) 1. -2 的倒数是()A. 2B. -2C.12 D. -122. 右图是某个几何体的展开图,该几何体是( ) A. 三棱柱 B. 圆锥C. 四棱柱D. 圆柱3. 目前,世界上能制造出的最小晶体管的长度只有 0.00000004 米,将 0.00000004 用科学记 数法表示为()A. 4 ⨯108B. 4 ⨯10-8C. 0.4 ⨯108D. -4 ⨯ 108 4. 若正多边形的一个内角是150︒ ,则该正多边形的边数是( )A. 6B. 12C. 16D. 185. 下列运算不正确的是()A. a 5 + a 5 = 2 a 5B.( -2a 2)3= -2a 6 C. 2a 2 ⋅ a -1 = 2a D. (2a 3 - a 2 ) ÷ a 2 = 2a - 1 6. 一次函数 y = -2x + 1 的图像不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 我市某一周 7 天的最高气温统计如下表:则这组数据的中位数与众数分别是( )A. 27,28B. 27.5,28C. 28,27D. 26.5,27 8. 下列判断错误的是()A. 两组对边分相等的四边形是平行四边形B. 四个内角都相等的四边形是矩形C. 四条边都相等的四边形是菱形最高气温(℃)25262728 天数1123D. 两条对角线垂直且平分的四边形是正方形最大最全最精的教育资源网 9. 三角形的两边长分别为 3 和 6,第三边的长是方程 x 2 - 6x + 8 = 0 的一个根,则这个三角 形的周长是( ) A. 9B. 11C. 13D. 11 或 1310. 如图,从 O 外一点 P 引 O 的两条切线 PA 、 PB ,切点分别为 A 、 B ,如果∠APB = 60︒, PA = 8 ,那么弦 A B 的长是()A. 4B. 43C. 8D. 8311. 如图,为测量一棵与地面垂直的树 O A 的高度,在距离树的底端 30 米的 B 处,测得树顶 A 的仰角 ∠ABO 为α ,则树 O A 的高度为( )A. 30tan α米B. 30 s in α米 C. 30 tan α米 D. 30 cos α米第 10 题图 第 11 题图 12. 如图,平面直角坐标系 x Oy 中,矩形 O ABC 的边 O A 、OC 分别落在 x 、 y 轴上,点 B 坐标为 (6, 4 ) ,反比例函数y =6x的图象与 A B 边交于点 D ,与 B C 边交于点 E ,连结 D E ,将 ∆BDE 沿 D E 翻折至 ∆DEB ' 处,点 B ' 恰好落在正比例函数 y = kx 图象上,则 k 的值是( ) A. 25-B. 121-C.15- D. 124-二、填空题(本题共 6 个小题,每小题 3 分,共 18 分)13. 若21x -有意义,则 x 的取值范围是 . 14. 因式分解 x 3 - 4x = 。

【中考模拟】湖南省长沙市2019年 中考数学模拟试卷 (含答案)

【中考模拟】湖南省长沙市2019年 中考数学模拟试卷 (含答案)

2019年 中考数学模拟试卷一、选择题1.计算(-3)-(-6)的结果等于( )A.3B.-3C.9D.18 2.a 是任意有理数,下面式子中:①>0;②;③;④,一定成立的个数是( )A.1个B.2个C.3个D.4个 3.()()x x x x 335624-÷-+-的结果是( )A.x x x 35223+- B.13523-+x x C.13523++x x D.x x 3523- 4.下列图形是中心对称图形的是5.不等式组的解集在数轴上表示正确的是( )6.如图,是由几个相同的小正方体组成的一个几何体的三视图,这个几何体可能是( )A. B . C. D.7.如图,在△ABC 中,D 、E 分别是BC 上两点,且BD=DE=EC,则图中面积相等的三角形有( )A.4对B.5对C.6对D.7对8.10名学生的身高如下(单位:cm)159、169、163、170、166、165、156、172、165、162,从中任选一名学生,其身高超过165cm的概率是()A.0.5B.0.4C.0.2D.0.19.实数a,b在数轴上对应点的位置如图所示,化简的结果是( )A.-2a+bB.2a-bC.-bD.b10.已知正比例函数y=kx(k≠0),函数值随x的增大而增大,则一次函数y=﹣kx+k的图象大致是( )A. B. C. D.11.如图所示:数轴上点A所表示的数为a,则a的值是()A. +1B.﹣1C.﹣ +1D.﹣﹣112.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个二、填空题13.计算: += .14.八年级(1)班全体学生参加了学校举办的安全知识竞赛,如图是该班学生竞赛成绩的统计图(满分为100分,成绩均为整数),若将成绩不低于90分的评为优秀,则该班这次竞赛成绩达到优秀的人数占全班人数的百分比是_________.15.已知AB ∥x 轴,A 点的坐标为(3,2),并且AB =5,则B 点的坐标为 . 16.甲、乙两人进行乒乓球比赛,比赛规则为3局2胜制.如果两人在每局比赛中获胜的机会均等,且比赛开始后,甲先胜了第1局,那么最后甲获胜的概率是 . 17.已知m 是关于x 的方程x 2﹣2x ﹣3=0的一个根,则2m 2﹣4m= .18.如图,AC 是半圆O 的一条弦,以弦AC 为折线将弧AC 折叠后过圆心O,⊙O 的半径为2,则圆中阴影部分的面积为 .三、解答题19.计算:tan 260°﹣2sin30°﹣cos45°.20.先化简再求值:(a+b)(a-b)+(a+b)2-(3a 3-a)÷a ,其中a=2,b=-31.21.某校八年级共有四个班,各班的人数如图1所示,人数比例如图2所示.(1)试求出该校八年级的学生总人数;(2)请补充条形统计表;(3)在一次数学考试中,1班、2班、3班、4班的平均成绩分别为92分、91分、90分、95分.试求出该校八年级学生在本次数学考试的平均分.22.某校九年级数学兴趣小组为了测得该校地下停车场的限高CD(CD⊥AE),在课外活动时间测得下列数据:如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米,地面B 点(与E点在同一水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)1.2米,试求该校地下停车场的高度AC及限高CD(≈1.73,结果精确到0.1米)23.为了抓住文化艺术节的商机,某商店决定购进A,B两种艺术节纪念品.若购进A种纪念品8件, B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?24.如图,四边形ABCD为矩形,E为BC边中点,以AD为直径的⊙O与AE交于点F.(1)求证:四边形AOCE为平行四边形;(2)求证:CF与⊙O相切;(3)若F为AE的中点,求∠ADF的大小.25.如图,点A是反比例函数y=-2x-1在第二象限内图象上一点,点B是反比例函数y=4x-1在第一象限内图象上一点,直线AB与y轴交于点C,且AC=BC,连接OA、OB,求△AOB的面积.26.在平面直角坐标系中,已知A、B是抛物线y=ax2(a>0)上两个不同的点,其中A在第二象限,B在第一象限.(1)如图1所示,当直线AB与x轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A、B两点的横坐标的乘积;(2)如图2所示,在(1)所求得的抛物线上,当直线AB与x轴不平行,∠AOB仍为90°时,求证:A、B两点横坐标的乘积是一个定值;(3)在(2)的条件下,如果直线AB与x轴、y轴分别交于点P、D,且点B的横坐标为.那么在x轴上是否存在一点Q,使△QDP为等腰三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.答案1.A;2.B3.C4.C.5.A.6.B7.A8.D9.A10.A11.B.12.D13.答案为:214.答案为:0.3.15.答案为:(8,2)或(-2,2).16.答案为:0.75.17.答案为:6.18.解:过点O作OE⊥AC,交AC于D,连接OC,BC,∵OD=DE=0.5OE=0.5OA,∴∠A=30°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠B=60°,∵OB=OC=2,∴△OBC是等边三角形,∴OC=BC,∴弓形OC面积=弓形BC面积,∴阴影部分面积=S△OBC=0.5×2×=.故答案为:19.解:原式=()2﹣2×﹣×=3﹣1﹣1=1.20.原式=-1.21.22.解:连接AC,∵∠ABE=90°,∠E=30°,∴AB=0.5AE=8,∴AC=8﹣1.2=6.8,∴CD=AC•sin∠EAB=6.8×≈5.9,答:地下停车场的高度AC为6.8米,限高CD约为5.9米.23.解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,根据题意得方程组8a+3b=950,5a+6b=800解方程组得a=100,b=50.∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元.(2)设该商店购进A种纪念品x个,则购进B种纪念品有(100-x)∴100x+50(100-x)≥7500,100x+50(100-x)≤7650解得50≤x≤53∵x为正整数,∴共有4种进货方案.(3)因为B种纪念品利润较高,故B种数量越多总利润越高,因此选择购A种50件,B种50件.总利润=50×20+50×30=2500(元)∴当购进A种纪念品50件,B种纪念品50件时,获最大利润是2500元.24.25.26.解:(1)如图1,作BE⊥x轴,∴△AOB是等腰直角三角形,∴BE=OE=AB=1,∴A(﹣1,1),B(1,1),∴A,B两点的横坐标的乘积为﹣1×1=﹣1,∵抛物线y=ax2(a>0)过A,B,∴a=1,∴抛物线y=x2,(2)如图2,作BN⊥x轴,作AM⊥x轴,∴∠AOB=AMO=∠BNO=90°,∴∠MAO=∠BON,∴△AMO∽△ONB,∴,∴AM×BN=OM×ON,设A(x1,y1),B(x2,y2)在抛物线上,∴AM=y1=x12,BN=y2=x22,OM=﹣x1,ON=x2,∴x12×x22=﹣x1×x2,∴x1×x2=﹣1,∴A,B两点横坐标的乘积是一个定值;(3)由(2)得,A,B两点横坐标的乘积是一个定值为﹣1,∵点B的横坐标为,∴点A的横坐标为﹣2,∵A,B在抛物线上,∴A(﹣2,4),B(,),∴直线AB解析式为y=﹣x+1,∴P(,0),D(0,1)设Q(n,0),∴DP2=,PQ2=(n﹣)2,DQ2=n2+1∵△QDP为等腰三角形,∴①DP=PQ,∴DP2=PQ2,∴=(n﹣)2,∴n=,∴Q1(,0),Q2(,0)②DP=DQ,∴DP2=DQ2,∴=n2+1,∴n=(舍)或n=﹣,Q3(﹣,0)③PQ=DQ,∴PQ2=DQ2,∴(n﹣)2=n2+1∴n=﹣,∴Q4(﹣,0),∴存在点Q坐标为Q1(,0),Q2(,0),Q3(﹣,0),Q4(﹣,0),。

2019年湖南省长沙市天心区长郡中学中考数学一模试卷

2019年湖南省长沙市天心区长郡中学中考数学一模试卷

2019年湖南省长沙市天心区长郡中学中考数学一模试卷一、选择题1.在﹣1,﹣,1,0这四个实数中,最小的是()A.﹣1B.﹣C.1D.02.下列计算正确的是()A.(x2)3=x6B.a3•a2=a6C.(ab2)2=ab4D.(x3)2=x53.一个多边形的内角和是540°,那么这个多边形的边数为()A.4B.5C.6D.74.在平面直角坐标系中,有一点M坐标为(﹣4,5),点M向右平移3个单位后的坐标是()A.(﹣4,2)B.(﹣4,8)C.(﹣1,5)D.(﹣7,5)5.若三角形的三边长分别为3,x,8,则x的取值范围是()A.5<x<8B.3<x<8C.3<x<5D.5<x<116.如图,△ABC是⊙O的内接三角形,若∠ABC=70°,则∠AOC的度数等于()A.140°B.130°C.120°D.110°7.如图,在平面直角坐标系中,点A的坐标为(3,4),那么sinα的值是()A.B.C.D.8.某小组5名同学一周内参加家务劳动的时间如表所示,关于劳动时间这组数据,下列说法正确的是()劳动时间(小时)1234人数1121A.众数是2,平均数是2.6B.中位数是3,平均数是2C.众数和中位数都是3D.众数是2,中位数是39.如图,在△ABC和△DEF中,AB=DE,AB∥DE,添加下列条件可以证明△ABC≌△DEF的是()A.∠A=∠D B.AC=EF C.AC=DF D.BC=DF10.“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)()A.3B.5C.4.2D.411.某校九年级毕业时,每一个同学都将自己的相片向全班其他同学各送一张表示留念.全班共送了2550张相片,如果全班有x名学生,根据题意列出方程为()A.x(x﹣1)=2550B.x(x+1)=2550C.2x(x+1)=2550D.=255012.如图,在正方形ABCD中,点E、F分别是BC、DC边上的两点,且∠EAF=45°,AE、AF分别交BD于M、N.下列结论:①BE+DF=EF;②AF平分∠DFE;③AM•AE=AN•AF;④AB2=BN•DM.其中正确的结论是()A.②③④B.①④C.①②③D.①②③④二、填空题(每题3分,满分18分,将答案填在答题纸上)13.二次函数y=﹣x2+2x﹣3图象的顶点坐标是.14.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均成绩都是9.0环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射击成绩最稳定的是(填“甲”或“乙”或“丙”或“丁”).15.二元一次方程组的解为.16.下列图形中,其中是中心对称图形有个.①圆;②平行四边形;③长方形;④等腰三角形.17.如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,交AF于点C,若EC=8cm,则FC=cm.18.已知一个几何体的三视图如图所示,则这个几何体的侧面积是cm2.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分)19.计算:+2•tan60°﹣|﹣2|+(﹣1)201920.先化简,再求代数式÷()的值,其中a=.21.为了解某中学学生课余活动情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计,现从该校随机抽取n名学生作为样本,采用问卷调查的方式收集数据(参与问卷调查的每名学生只能选择其中一项),并据调查得到的数据绘制成了如图所示的两幅不完整的统计图,由图中提供的信息,解答下列问题:(1)n=,直接补全条形统计图;(2)若该校共有学生3200名,试估计该校喜爱看课外书的学生人数;(3)若被调查喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名,请用列表或画树状图的方法求恰好抽到2名男生的概率.22.如图,一勘测人员从山脚B点出发,沿坡度为1:3的坡面BD行至D点处时,他的垂直高度上升了15米;然后再从D点处沿坡角为45°的坡面DA,以20米/分钟的速度到达山顶A点时,用了10分钟.(1)求D点到B点之间的水平距离;(2)求山顶A点处的垂直高度AC是多少米?(≈1.414,结果保留整数)23.如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D,以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D,与AB边的另一个交点为E.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若⊙O的半径为4,∠B=30°.求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.24.某科技有限公司用160万元作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投人生产并进行销售.已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图所示,其中AB为反比例函数图象的一部分,BC为一次函数图象的一部分.设公司销售这种电子产品的年利润为s(万元).(注意:第一年年利润=电子产品销售收人﹣电子产品生产成本﹣研发费用)(1)分别写出图中AB段、BC段y(万件)与x(元/件)之间的函数关系式,并写出自变量的取值范围;(2)求出第一年这种电子产品的年利润s(万元)与x(元/件)之间的函数关系式;(3)求该公司第一年年利润的最大值,并说明利润最大时是盈利还是亏损,盈利或亏损多少万元?25.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)若点N为抛物线上动点,当∠NBA=∠OAC时,求点N的坐标,(3)过点A的直线交直线BC于点M,当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,Q,P为顶点的四边形是平行四边形,求点P的横坐标.26.设等边三角形的内切圆半径为r,外接圆半径为R,平面内任意一点P到等边三角形中心的距离为d,若满足r≤d≤R,则称点P叫做等边三角形的中心关联点.在平面直角坐标系xOy中,等边△ABC的三个顶点的坐标分别为A(0,2),B(﹣,﹣1),C(,﹣1).(1)①等边△ABC中心的坐标为;②已知点D(2,2),E(3,1),F(﹣,﹣1).在D,E,F中,是等边△ABC的中心关联点的是;(2)如图1,过点A作直线交x轴正半轴于M,使∠AMO=30°.①若线段AM上存在等边△ABC的中心关联点P(m,n),求m的取值范围;②将直线AM向下平移得到直线y=kx+b,当b满足什么条件时,直线y=kx+b上总存在等边△ABC的中心关联点;(3)如图2,点Q为直线y=﹣1上一动点,⊙Q的半径为,当Q从点(﹣4,﹣1)出发,以每秒1个单位的速度向右移动,运动时间为t秒.是否存在某一时刻t,使得⊙Q上所有点都是等边△ABC的中心关联点?如果存在,请直接写出所有符合题意的t的值;如果不存在,请说明理由.。

2019年湖南省长沙市天心区长郡中学中考数学一模试卷 (解析版)

2019年湖南省长沙市天心区长郡中学中考数学一模试卷 (解析版)

2019年湖南省长沙市天心区长郡中学中考数学一模试卷一、选择题(共12小题).1.在﹣1,﹣,1,0这四个实数中,最小的是()A.﹣1B.﹣C.1D.02.下列计算正确的是()A.(x2)3=x6B.a3•a2=a6C.(ab2)2=ab4D.(x3)2=x5 3.一个多边形的内角和是540°,那么这个多边形的边数为()A.4B.5C.6D.74.在平面直角坐标系中,有一点M坐标为(﹣4,5),点M向右平移3个单位后的坐标是()A.(﹣4,2)B.(﹣4,8)C.(﹣1,5)D.(﹣7,5)5.若三角形的三边长分别为3,x,8,则x的取值范围是()A.5<x<8B.3<x<8C.3<x<5D.5<x<116.如图,△ABC是⊙O的内接三角形,若∠ABC=70°,则∠AOC的度数等于()A.140°B.130°C.120°D.110°7.如图,在平面直角坐标系中,点A的坐标为(3,4),那么sinα的值是()A.B.C.D.8.某小组5名同学一周内参加家务劳动的时间如表所示,关于劳动时间这组数据,下列说法正确的是()劳动时间(小时)1234人数1121 A.众数是2,平均数是2.6B.中位数是3,平均数是2C.众数和中位数都是3D.众数是2,中位数是39.如图,在△ABC和△DEF中,AB=DE,AB∥DE,添加下列条件可以证明△ABC≌△DEF的是()A.∠A=∠D B.AC=EF C.AC=DF D.BC=DF 10.“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)()A.3B.5C.4.2D.411.某校九年级毕业时,每一个同学都将自己的相片向全班其他同学各送一张表示留念.全班共送了2550张相片,如果全班有x名学生,根据题意列出方程为()A.x(x﹣1)=2550B.x(x+1)=2550C.2x(x+1)=2550D.=255012.如图,在正方形ABCD中,点E、F分别是BC、DC边上的两点,且∠EAF=45°,AE、AF分别交BD于M、N.下列结论:①BE+DF=EF;②AF平分∠DFE;③AM •AE=AN•AF;④AB2=BN•DM.其中正确的结论是()A.②③④B.①④C.①②③D.①②③④二、填空题(每题3分,满分18分,将答案填在答题纸上)13.二次函数y=﹣x2+2x﹣3图象的顶点坐标是.14.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均成绩都是9.0环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射击成绩最稳定的是(填“甲”或“乙”或“丙”或“丁”).15.二元一次方程组的解为.16.下列图形中,其中是中心对称图形有个.①圆;②平行四边形;③长方形;④等腰三角形.17.如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,交AF于点C,若EC=8cm,则FC=cm.18.已知一个几何体的三视图如图所示,则这个几何体的侧面积是cm2.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分)19.计算:+2•tan60°﹣|﹣2|+(﹣1)201920.先化简,再求代数式÷()的值,其中a=.21.为了解某中学学生课余活动情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计,现从该校随机抽取n名学生作为样本,采用问卷调查的方式收集数据(参与问卷调查的每名学生只能选择其中一项),并据调查得到的数据绘制成了如图所示的两幅不完整的统计图,由图中提供的信息,解答下列问题:(1)n=,直接补全条形统计图;(2)若该校共有学生3200名,试估计该校喜爱看课外书的学生人数;(3)若被调查喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名,请用列表或画树状图的方法求恰好抽到2名男生的概率.22.如图,一勘测人员从山脚B点出发,沿坡度为1:3的坡面BD行至D点处时,他的垂直高度上升了15米;然后再从D点处沿坡角为45°的坡面DA,以20米/分钟的速度到达山顶A点时,用了10分钟.(1)求D点到B点之间的水平距离;(2)求山顶A点处的垂直高度AC是多少米?(≈1.414,结果保留整数)23.如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D,以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D,与AB边的另一个交点为E.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若⊙O的半径为4,∠B=30°.求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.24.某科技有限公司用160万元作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投人生产并进行销售.已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图所示,其中AB为反比例函数图象的一部分,BC为一次函数图象的一部分.设公司销售这种电子产品的年利润为s(万元).(注意:第一年年利润=电子产品销售收人﹣电子产品生产成本﹣研发费用)(1)分别写出图中AB段、BC段y(万件)与x(元/件)之间的函数关系式,并写出自变量的取值范围;(2)求出第一年这种电子产品的年利润s(万元)与x(元/件)之间的函数关系式;(3)求该公司第一年年利润的最大值,并说明利润最大时是盈利还是亏损,盈利或亏损多少万元?25.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)若点N为抛物线上动点,当∠NBA=∠OAC时,求点N的坐标,(3)过点A的直线交直线BC于点M,当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,Q,P为顶点的四边形是平行四边形,求点P的横坐标.26.设等边三角形的内切圆半径为r,外接圆半径为R,平面内任意一点P到等边三角形中心的距离为d,若满足r≤d≤R,则称点P叫做等边三角形的中心关联点.在平面直角坐标系xOy中,等边△ABC的三个顶点的坐标分别为A(0,2),B(﹣,﹣1),C(,﹣1).(1)①等边△ABC中心的坐标为;②已知点D(2,2),E(3,1),F(﹣,﹣1).在D,E,F中,是等边△ABC的中心关联点的是;(2)如图1,过点A作直线交x轴正半轴于M,使∠AMO=30°.①若线段AM上存在等边△ABC的中心关联点P(m,n),求m的取值范围;②将直线AM向下平移得到直线y=kx+b,当b满足什么条件时,直线y=kx+b上总存在等边△ABC的中心关联点;(3)如图2,点Q为直线y=﹣1上一动点,⊙Q的半径为,当Q从点(﹣4,﹣1)出发,以每秒1个单位的速度向右移动,运动时间为t秒.是否存在某一时刻t,使得⊙Q 上所有点都是等边△ABC的中心关联点?如果存在,请直接写出所有符合题意的t的值;如果不存在,请说明理由.参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在﹣1,﹣,1,0这四个实数中,最小的是()A.﹣1B.﹣C.1D.0【分析】根据负数都小于0,推出0最大,求出每个负数的绝对值,根据绝对值大的反而小,比较即可.解:∵,最小的是﹣,故选:B.2.下列计算正确的是()A.(x2)3=x6B.a3•a2=a6C.(ab2)2=ab4D.(x3)2=x5【分析】直接利用幂的乘方运算法则以及积的乘方运算法则和同底数幂的乘法运算法则分别计算得出答案.解:A、(x2)3=x6,正确;B、a3•a2=a5,故此选项错误;C、(ab2)2=a2b4,故此选项错误;D、(x3)2=x6,故此选项错误;故选:A.3.一个多边形的内角和是540°,那么这个多边形的边数为()A.4B.5C.6D.7【分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:B.4.在平面直角坐标系中,有一点M坐标为(﹣4,5),点M向右平移3个单位后的坐标是()A.(﹣4,2)B.(﹣4,8)C.(﹣1,5)D.(﹣7,5)【分析】根据平面直角坐标系内点的坐标的平移规律求解可得.解:将点M(﹣4,5)向右平移3个单位后的坐标是(﹣4+3,5),即(﹣1,5),故选:C.5.若三角形的三边长分别为3,x,8,则x的取值范围是()A.5<x<8B.3<x<8C.3<x<5D.5<x<11【分析】根据三角形的三边关系定理得出8﹣3<x<3+8,求出即可.解:∵三角形的三边长分别为3,x,8,∴8﹣3<x<3+8,即5<x<11,故选:D.6.如图,△ABC是⊙O的内接三角形,若∠ABC=70°,则∠AOC的度数等于()A.140°B.130°C.120°D.110°【分析】欲求∠AOC,又已知一圆周角,可利用圆周角与圆心角的关系求解.解:∵∠AOC和∠ABC是同弧所对的圆心角和圆周角,∴∠AOC=2∠ABC=140°;故选:A.7.如图,在平面直角坐标系中,点A的坐标为(3,4),那么sinα的值是()A.B.C.D.【分析】作AB⊥x轴于B,如图,先利用勾股定理计算出OA=5,然后在Rt△AOB中利用正弦的定义求解.解:作AB⊥x轴于B,如图,∵点A的坐标为(3,4),∴OB=3,AB=4,∴OA==5,在Rt△AOB中,sinα==.故选:C.8.某小组5名同学一周内参加家务劳动的时间如表所示,关于劳动时间这组数据,下列说法正确的是()劳动时间(小时)1234人数1121 A.众数是2,平均数是2.6B.中位数是3,平均数是2C.众数和中位数都是3D.众数是2,中位数是3【分析】根据众数、平均数和中位数的概念求解.解:这组数据中3出现的次数最多,众数为3,∵共有5个人,∴第3个人的劳动时间为中位数,故中位数为:3,平均数为:=2.6.故选:C.9.如图,在△ABC和△DEF中,AB=DE,AB∥DE,添加下列条件可以证明△ABC≌△DEF的是()A.∠A=∠D B.AC=EF C.AC=DF D.BC=DF【分析】先根据平行线的性质得到∠B=∠DEF,加上AB=DE,然后根据全等三角形的判定方法对各选项进行判断.解:∵AB∥DE,∴∠B=∠DEF,而AB=DE,∴当∠A=∠D时,根据“ASA”可判断△ABC≌△DEF;当∠ACB=∠DFE时,根据“AAS”可判断△ABC≌△DEF;当BC=EF(或BE=FC)时,根据“SAS”可判断△ABC≌△DEF.故选:A.10.“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)()A.3B.5C.4.2D.4【分析】根据题意结合勾股定理得出折断处离地面的长度即可.解:设折断处离地面的高度OA是x尺,根据题意可得:x2+42=(10﹣x)2,解得:x=4.2,答:折断处离地面的高度OA是4.2尺.故选:C.11.某校九年级毕业时,每一个同学都将自己的相片向全班其他同学各送一张表示留念.全班共送了2550张相片,如果全班有x名学生,根据题意列出方程为()A.x(x﹣1)=2550B.x(x+1)=2550C.2x(x+1)=2550D.=2550【分析】设全班有x名同学,则每人送出(x﹣1)张相片,共送出x(x﹣1)张相片,进而可列出方程.解:设全班有x名学生,则每人送出(x﹣1)张相片,根据题意得x(x﹣1)=2550,故选:A.12.如图,在正方形ABCD中,点E、F分别是BC、DC边上的两点,且∠EAF=45°,AE、AF分别交BD于M、N.下列结论:①BE+DF=EF;②AF平分∠DFE;③AM •AE=AN•AF;④AB2=BN•DM.其中正确的结论是()A.②③④B.①④C.①②③D.①②③④【分析】证明△ABN∽△ADM,可得结论④正确.把△ABE绕点A逆时针旋转90°,得到△ADH.证明△AEF≌△AHF,推出∠AFH=∠AFE,即AF平分∠DFE.可得②正确.证明△AMN∽△AFE.可得结论③正确.由△AEF≌△AHF,可得EF=FH,可得①正确.解:∵∠BAN=∠BAM+∠MAN=∠BAM+45°,∠AMD=∠ABM+∠BAM=45°+∠BAM,∴∠BAN=∠AMD.又∠ABN=∠ADM=45°,∴△ABN∽△ADM,∴AB:BN=DM:AD.∵AD=AB,∴AB2=BN•DM.故④正确;把△ABE绕点A逆时针旋转90°,得到△ADH.∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°.∴∠EAF=∠HAF.∵AE=AH,AF=AF,∴△AEF≌△AHF(SAS),∴∠AFH=∠AFE,即AF平分∠DFE.故②正确;③∵AB∥CD,∴∠DFA=∠BAN.∵∠AFE=∠AFD,∠BAN=∠AMD,∴∠AFE=∠AMN.又∠MAN=∠FAE,∴△AMN∽△AFE.∴AM:AF=AN:AE,即AM•AE=AN•AF.故③正确;由△AEF≌△AHF,可得EF=FH,得BE+DF=DH+DF=FH=FE.故①正确.故选:D.二、填空题(每题3分,满分18分,将答案填在答题纸上)13.二次函数y=﹣x2+2x﹣3图象的顶点坐标是(1,﹣2).【分析】此题既可以利用y=ax2+bx+c的顶点坐标公式求得顶点坐标,也可以利用配方法求出其顶点的坐标.解:∵y=﹣x2+2x﹣3=﹣(x2﹣2x+1)﹣2=﹣(x﹣1)2﹣2,故顶点的坐标是(1,﹣2).故答案为(1,﹣2).14.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均成绩都是9.0环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射击成绩最稳定的是丁(填“甲”或“乙”或“丙”或“丁”).【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解:∵射击成绩的平均成绩都相同,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S2=0.45,丁∴S甲2>S乙2>S丙2>S丁2,∴射击成绩最稳定的是丁.故答案为:丁.15.二元一次方程组的解为.【分析】方程组利用加减消元法求出解即可.解:,①×8﹣②得:5x=10,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为.故答案为:.16.下列图形中,其中是中心对称图形有3个.①圆;②平行四边形;③长方形;④等腰三角形.【分析】根据中心对称图形的特点进行分析即可.解:①圆;②平行四边形;③长方形是中心对称图形,共3个,故答案为:3.17.如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,交AF于点C,若EC=8cm,则FC=8cm.【分析】根据线段垂直平分线的性质求解.解:由作法得GH垂直平分EF,∴CF=CE=8cm.故答案为8.18.已知一个几何体的三视图如图所示,则这个几何体的侧面积是45cm2.【分析】由图可得底面三角形的三边都为3,正三棱柱的高为5,侧面积等于三个矩形的面积,根据长方形面积公式计算即可求解.解:3×5×3=45(cm2).故这个几何体的侧面积是45cm2.故答案为:45.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分)19.计算:+2•tan60°﹣|﹣2|+(﹣1)2019【分析】分别运用根式运算、绝对值计算、负数指数幂计算解答.解:原式==.20.先化简,再求代数式÷()的值,其中a=.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.解:原式=÷(﹣)=÷=•=,当a=+1时,原式===.21.为了解某中学学生课余活动情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计,现从该校随机抽取n名学生作为样本,采用问卷调查的方式收集数据(参与问卷调查的每名学生只能选择其中一项),并据调查得到的数据绘制成了如图所示的两幅不完整的统计图,由图中提供的信息,解答下列问题:(1)n=50,直接补全条形统计图;(2)若该校共有学生3200名,试估计该校喜爱看课外书的学生人数;(3)若被调查喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名,请用列表或画树状图的方法求恰好抽到2名男生的概率.【分析】(1)先用喜爱社会实践的人数除以它所占的百分比计算出调查的总人数,再计算出看电视的人数,然后补全条形统计图;(2)用3200乘以样本中喜爱看课外书人数的百分比可估计该校喜爱看课外书的学人数;(3)画树状图展示所有12种等可能的结果数,再找出恰好抽到2名男的结果数,然后根据概率公式计算.解:(1)调查的总人数n=5÷10%=50(人),所以看电视的人数为50﹣15﹣20﹣5=10(人),补全条形统计图为:故答案为:50;(人),所以估计该校喜爱看课外书的学生人数为960人.(3)画树状图:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率为.22.如图,一勘测人员从山脚B点出发,沿坡度为1:3的坡面BD行至D点处时,他的垂直高度上升了15米;然后再从D点处沿坡角为45°的坡面DA,以20米/分钟的速度到达山顶A点时,用了10分钟.(1)求D点到B点之间的水平距离;(2)求山顶A点处的垂直高度AC是多少米?(≈1.414,结果保留整数)【分析】(1)过D点作DF⊥BC,根据坡度的概念求出BF;(2)根据正弦的定义求出AE,结合图形计算,得到答案.解:(1)过D点作DF⊥BC于点F,∵BD的坡度为1:3,∴=,即=,解得,BF=45,即D点到B点之间的水平距离为45米,答:D点到B点之间的水平距离为45米;(2)由题意得,AD=20×10=200,在Rt△ADE中,∠ADE=45°,∴AE=AD•sin∠ADE=200×=100,∴AC=AE+EC=100+15≈156,答:山顶A点处的垂直高度约为156米.23.如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D,以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D,与AB边的另一个交点为E.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若⊙O的半径为4,∠B=30°.求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.【分析】(1)连接OD,根据平行线判定推出OD∥AC,推出OD⊥BC,根据切线的判定推出即可;(2)根据S阴影=S△BOD﹣S扇形DOE求得即可.解:(1)直线BC与⊙O相切;连结OD,∵OA=OD,∴∠OAD=∠ODA,∵∠BAC的角平分线AD交BC边于D,∴∠CAD=∠OAD,∴∠CAD=∠ODA,∴OD∥AC,∴∠ODB=∠C=90°,即OD⊥BC.又∵直线BC过半径OD的外端,∴直线BC与⊙O相切.(2)连接OD,在Rt△ACB中,∠B=30°,∴∠BOD=60°.∴.∵∠B=30°,OD⊥BC,∴OB=2OD,∴AB=3OD,∵AB=2AC,∴OD=4,BD=4,S△BOD=×OD•BD=8,∴所求图形面积为8.24.某科技有限公司用160万元作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投人生产并进行销售.已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图所示,其中AB为反比例函数图象的一部分,BC为一次函数图象的一部分.设公司销售这种电子产品的年利润为s(万元).(注意:第一年年利润=电子产品销售收人﹣电子产品生产成本﹣研发费用)(1)分别写出图中AB段、BC段y(万件)与x(元/件)之间的函数关系式,并写出自变量的取值范围;(2)求出第一年这种电子产品的年利润s(万元)与x(元/件)之间的函数关系式;(3)求该公司第一年年利润的最大值,并说明利润最大时是盈利还是亏损,盈利或亏损多少万元?【分析】(1)依据待定系数法,即可求出y(万件)与x(元/件)之间的函数关系式;(2)分两种情况进行讨论,根据题意得到函数关系式即可;(3)当4≤x≤8时,当x=8时,当8<x≤28时,根据题意健即可得到结论.解:(1)当4≤x≤8时,设y=,将A(4,40)代入得k=4×40=160,∴y与x之间的函数关系式为y=;当8<x≤28时,设y=k'x+b,将B(8,20),C(28,0)代入得,,解得,∴y与x之间的函数关系式为y=﹣x+28,综上所述,y=;(2)当4≤x≤8时,当8<x≤28时,s=(x﹣4)y﹣160=(x﹣4)(﹣x+28)﹣160=﹣(x﹣16)2﹣16.(3)当4≤x≤8时,,s随着x的增大而增大,∴当x=8时,;当8<x≤28时,s=﹣(x﹣16)2﹣16,∴当x=16时,S max=﹣16;∵﹣16>﹣80,∴当每件的销售价格定为16元时,第一年年利润的最大值为﹣16万元,此时亏损16万元.25.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)若点N为抛物线上动点,当∠NBA=∠OAC时,求点N的坐标,(3)过点A的直线交直线BC于点M,当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,Q,P为顶点的四边形是平行四边形,求点P的横坐标.【分析】(1)求出C(0,﹣5),B(5,0),代入y=ax2+6x+c得a、c的值,即可得出结果;(2)求出A(1,0),得出OA=1,OC=5.过抛物线上任意一点N作NH⊥x轴于点H,连接AC、BN,由∠OAC是锐角,则N点的横坐标小于5,易证△NBH~△CAO,得出==5,设N的坐标为(n,﹣n2+6n﹣5),则NH=|﹣n2+6n﹣5|,BH=|5﹣n|,得出=5,求出n的值即可得出结果;(3)证明△OCB和△AMB都为等腰直角三角形,则AM=AB=2,由平行四边形的性质得出AM∥PQ,PQ=AM=2,推出PQ⊥BC,作PD⊥x轴交直线BC于D,由平行线的性质得出∠PDQ=∠OCB=45°,则△DPQ是等腰直角三角形,得出PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当点P在直线BC上方时,PD=﹣m2+5m=4,解方程即可;当点P在直线BC下方时,PD=m2﹣5m=4,解方程即可得出结果.解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得:x=5,∴B(5,0),把B(5,0),C(0,﹣5)代入y=ax2+6x+c得:,解得:,∴抛物线解析式为y=﹣x2+6x﹣5;(2)令﹣x2+6x﹣5=0,解得:x1=1,x2=5,∴A(1,0),∵C(0,﹣5),∴OA=1,OC=5.过抛物线上任意一点N作NH⊥x轴于点H,连接AC、BN,如图1所示:∵∠OAC是锐角,∴N点的横坐标小于5,∵∠NBA=∠OAC,∠NHB=90°=∠AOC,∴△NBH~△CAO,∴==5,设N的坐标为(n,﹣n2+6n﹣5),则NH=|﹣n2+6n﹣5|,BH=|5﹣n|,∴==5,∴=5或=﹣5,当=5时,解得:n1=5(舍去),n2=6(舍去).当=﹣5时,解得:n1=5(舍去),n2=﹣4,当n=﹣4时,﹣n2+6n﹣5=﹣45,∴N为(﹣4,﹣45).综上所述,N的坐标为(﹣4,﹣45);(3)∵A(1,0),B(5,0),C(0,﹣5),∴AB=4,△OCB为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM⊥BC,∴△AMB为等腰直角三角形,∴AM=AB=×4=2,∵以点A,M,Q,P为顶点的四边形是平行四边形,∴AM∥PQ,PQ=AM=2,∴PQ⊥BC,作PD⊥x轴交直线BC于D,如图2所示:则∠PDQ=∠OCB=45°,∴△DPQ是等腰直角三角形,∴PD=PQ=×2=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当点P在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1(舍去),m2=4,当点P在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得:m1=,m2=,综上所述,点P的横坐标为4或或.26.设等边三角形的内切圆半径为r,外接圆半径为R,平面内任意一点P到等边三角形中心的距离为d,若满足r≤d≤R,则称点P叫做等边三角形的中心关联点.在平面直角坐标系xOy中,等边△ABC的三个顶点的坐标分别为A(0,2),B(﹣,﹣1),C(,﹣1).(1)①等边△ABC中心的坐标为(0,0);②已知点D(2,2),E(3,1),F(﹣,﹣1).在D,E,F中,是等边△ABC 的中心关联点的是E,F;(2)如图1,过点A作直线交x轴正半轴于M,使∠AMO=30°.①若线段AM上存在等边△ABC的中心关联点P(m,n),求m的取值范围;②将直线AM向下平移得到直线y=kx+b,当b满足什么条件时,直线y=kx+b上总存在等边△ABC的中心关联点;(3)如图2,点Q为直线y=﹣1上一动点,⊙Q的半径为,当Q从点(﹣4,﹣1)出发,以每秒1个单位的速度向右移动,运动时间为t秒.是否存在某一时刻t,使得⊙Q 上所有点都是等边△ABC的中心关联点?如果存在,请直接写出所有符合题意的t的值;如果不存在,请说明理由.【分析】(1)①根据等边三角形的性质以及平面直角坐标系的点的坐标计算即可;②根据中心关联点的定义,求出R、r、d即可判断;(2)①由题意可知,点E在直线AM上,当点P在AE上时,点P都是等边△ABC的中心关联点;②如图1﹣1中,设平移后的直线交y轴于G,作这条直线的垂线垂足为H.当OH=2时,求出OG即可判断;(3)存在.理由:如图2中,设Q(m,﹣1).由题意当OQ=时,⊙Q上所有点都是等边△ABC的中心关联点,理由两点间距离公式即可求解.解:(1)①如图1,AD=,∵OA=2,∴等边△ABC中心的坐标为(0,0);②由题意R=2,r=1,点O是△ABC的中心,∵,∴点E、F是△ABC的中心关联点,故答案为①(0,0);E,F.(2)①如图1﹣1中,由题意.可求得直线AM的解析式为,经验证E在直线AM上.因为OE=OA=2,∠MAO=60°,所以△OAE为等边三角形,所以AE边上的高长为.当点P在AE上时,.所以当点P在AE上时,点P都是等边△ABC的中心关联点.所以.②如图1﹣2中,设平移后的直线交y轴于点G,过点O作这条直线的垂线,垂足为H.当OH=2时,在Rt△OHG中,∵OH=2,∠HOG=30°,∴,∴,∴满足条件的b的值为.(3)存在.理由:如图2中,设Q(s,﹣1),由题意当时,⊙Q上所有点都是等边△ABC的中心关联点,,解得,∴或.。

2019年湖南长沙中考数学试题(解析版)_最新修正版

2019年湖南长沙中考数学试题(解析版)_最新修正版

{来源}2019年湖南长沙中考数学试卷 {适用范围:3. 九年级}{标题}2019年湖南省长沙市中考数学试卷考试时间:120分钟 满分:120分{题型:1-选择题}一、选择题:本大题共12小题,每小题3分,合计36分. {题目}1.(2019年长沙T1)下列各数中,比﹣3小的数是( )A .﹣5B .﹣1C .0D .1{答案}A{解析}本题考查了有理数的大小比较,正数>0>负数,两个负数比较大小,绝对值大的反而小,由于135--->>,所以﹣5<﹣3<﹣1,因此本题选A .{分值}3{章节:[1-1-2-4]绝对值} {考点:有理数的大小比较} {类别:常考题} {难度:1-最简单}{题目}2.(2019年长沙T2)根据《长沙市电网供电能力提升三年行动计划》,明确到2020年,长沙电网建设改造投资规模达到150****0000确保安全供用电需求数据150****0000科学记数法表示为( )A .15×109B .1.5×109C .1.5×1010D .0.15×1011{答案}C{解析}本题考查了用科学记数法表示一个绝对值较大的数,科学记数法就是把一个数写成a ×10n 的形式(其中1≤a <10,n 为整数),其具体步骤是:(1)确定a ,a 是整数位数只有一位的数;(2)确定n ;当原数的绝对值≥10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值<1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).150****0000=1.5×1010,因此本题选C . {分值}3{章节: [1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法} {类别:常考题} {难度:1-最简单}{题目}3.(2019年长沙T3)下列计算正确的是( )A .3a +2b =5abB .(a 3)2=a 6C .a 6÷a 3=a 2D .(a +b )2=a 2+b 2{答案}B{解析}本题考查了整式的运算,A 选项是整式的加法,其实质是合并同类项,3a 与2b 不是同类项,故不能相加;B 选项是幂的乘方,底数不变,指数相乘,故正确;C 选项是同底数幂的除法,底数不变,指数相减,故正确结果为a 4;D 选项是和的完全平方公式,展开口诀为:“首平方,尾平方,积的2倍夹中间”故正确结果为a 2+2ab +b 2.因此本题选B . {分值}3{章节: [1-14-2]乘法公式} {考点:整式加减} {考点:幂的乘方}{考点:同底数幂的除法}{考点:完全平方公式}{类别:常考题}{难度:1-最简单}{题目}4.(2019年长沙T4)下列事件中,是必然事件的是( )A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°{答案}D{解析}本题考查了事件的分类,A、B、C选项都是随机事件;D选项是必然事件;因此本题选D.{分值}3{章节: [1-25-1-1]随机事件}{考点:事件的类型}{类别:常考题}{难度:1-最简单}{题目}5.(2019年长沙T5)如图,平行线AB,CD被直线AE所截,∠1=80°,则∠2的度数是( )A.80°B.90°C.100°D.110°{答案}C{解析}本题考查了考查了对顶角的定义,平行线的性质,由对顶角的定义可得∠AED=∠1=80°,又因为AB∥CD,所以由两直线平行同旁内角互补可得:∠2=180°-∠AED=100°,因此本题选C.{分值}3{章节:[1-5-3]平行线的性质}{考点:对顶角、邻补角}{考点:两直线平行同旁内角互补}{类别:常考题}{难度:1-最简单}{题目}6.(2019年长沙T6)某个几何体的三视图如图所示,该几何体是( ){答案}D{解析}本题考查了由三视图判断几何体,从正面看和侧面看都是三角形的只要D 选项,因此本题选D . {分值}3{章节: [1-29-2]三视图} {考点:由三视图判断几何体} {类别:常考题} {难度:1-最简单}{题目}7.(2019年长沙T7)在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( )A .平均数B .中位数C .众数D .方差{答案}B{解析}本题考查了中位数,中位数反映的是一组数据中等水平,要判断11名参赛同学中的小明是否进入前5名,只需比较自己的成绩与第6名的成绩即可.因此本题选B . {分值}3{章节: [1-20-1-2]中位数和众数} {考点:中位数} {类别:常考题} {难度:1-最简单}{题目}8.(2019年长沙T8)一个扇形的半径为6,圆心角为120°,则该扇形的面积是( )A .2πB .4πC .12πD .24π{答案}C{解析}本题考查了扇形的面积,由扇形的面积公式S =36061202⨯π=π12,因此本题选C .{分值}3{章节: [1-24-4]弧长和扇形面积} {考点:扇形的面积} {{类别:常考题} {难度:1-最简单}{题目}9.(2019年长沙T9)如图,Rt △ABC 中,∠C =90°,∠B =30°,分别以点A 和点B 为圆心,大于21AB 的长为半径作弧,两弧相交于M 、N 两点,作直线MN ,交BC 于点D ,连接AD ,则∠CAD的度数是( )A.20°B.30°C.45°D.60°{答案}B{解析}本题考查了垂直平分线的性质,等边对等角,三角形的外角,直角三角形两锐角互余,由垂直平分线的性质可知:AD=BD即由等边对等角得:∠DAB=∠B=30°,再由三角形的外角性质得∠ADC=∠DAB+∠B=60°,在Rt△ADC中,∠C=90°所以∠CAD=90°-∠ADC =90°-60°=30°,因此本题选B.{分值}3{章节:[1-13-2-1]等腰三角形}{考点:直角三角形两锐角互余}{考点:三角形的外角}{考点:垂直平分线的性质}{考点:等边对等角}{类别:常考题}{难度:2-简单}{题目}10.(2019年长沙T10)如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60n mile 的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是( )A.303n mile B.60 n mile C.120 n mile D.(30+303)n mile{答案}D{解析}本题考查了与方位角有关的解直角三角形,如图,在Rt△ACD中,由题意可知:AC=60,∠ACD =30°,∠ADC =90°,所以AD =21AC =30,CD =ACcos30°=60×23=303,在Rt△BCD 中,由题意可知:∠BCD =45°,∠BDC =90°,所以BD =CD =303,所以AB =30+303,因此本题选D .{分值}3{章节:[1-28-1-2]解直角三角形} {考点:解直角三角形-方位角} {类别:常考题}{难度:3-中等难度}{题目}11.(2019年长沙T11)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( )A .⎩⎨⎧-=+=15.05.4x y x yB .⎩⎨⎧-=+=125.4x y x yC .⎩⎨⎧+=-=15.05.4x y x yD .⎩⎨⎧-=-=125.4x y x y{答案}A{解析}本题考查了从实际问题中抽象二元一次方程组模型,根据题意发现等量关系是解题的关键,由“用一根绳子去量一根木头的长,绳子还剩余4.5尺”可列方程为y =x +4.5,由“将绳子对折再量木头,则木头还剩余1尺”可列方程为0.5y =x -1,因此本题选A . {分值}3{章节:[1-8-3]实际问题与一元一次方程组} {考点:简单的列二元一次方程组应用题} {类别:数学文化}{类别:常考题} {难度:3-中等难度}{题目}12.(2019年长沙T12)如图,△ABC 中,AB =AC =10,tanA =2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,则CD +55BD 的最小值是( ) A .25B .45C .53D .10{答案}B{解析}本题考查了垂线的性质、正切、勾股定理,过点D 作DF ⊥AB 于点F ,由同角的余角相等得:∠BDF =∠A ,所以tan ∠BDF =tan ∠A =2即2=DFBF,∴55=BD DF 即DF =55BD ,∴CD +55BD =CD +DF ,由“垂线段最短”可知:当C 、D 、F 三点共线且CF ⊥AB 时,CD +DF 值最小,最小值即为CF 的长度.此时2=AFCF,设AF =x ,则CF =2x ,又因为AC =10,所以由勾股定理得x 2+4x 2=100,解得x =25,所以CF =45.{分值}3{章节:[1-28-3]锐角三角函数} {考点:垂线的性质} {考点:勾股定理} {考点:正切}{考点:几何选择压轴} {类别:常考题} {难度:4-较高难度}{题型:2-填空题}二、填空题:本大题共6小题,每小题3分,合计18分.{题目}13.(2019年长沙T13)式子5-x 在实数范围内有意义,则实数x 的取值范围是 .{答案}x≥5{解析}本题考查了二次根式有意义的条件,由二次根式有意义的条件可知:x -5≥0即x ≥5. {分值}3{章节:[1-16-1]二次根式}{考点:二次根式的有意义的条件} {类别:常考题}{难度:1-最简单}{题目}14.(2019年长沙T14)分解因式:am 2-9a = .{答案}a (m -3)(m +3){解析}本题考查了提公因式法因式分解和平方差因式分解,对一个多项式因式分解时,先观察式子特点,如果有公因式先提取公因式后利用公式进行因式分解,特别要注意:因式分解一定要彻底,分解到每一个多项式都不能再分解为止. {分值}3{章节:[1-14-3]因式分解} {考点:因式分解-提公因式法} {考点:因式分解-平方差} {类别:常考题} {难度:1-最简单}{题目}15.(2019年长沙T15)不等式组⎩⎨⎧≥+06301<-x x 的解集是 .{答案}﹣1≤x <2{解析}本题考查了一元一次不等式组的解法,先分别解每一个不等式,再取每个不等式解集的公共部分.不等式组解集的确定方法:①借助数轴;②利用口诀“同大取大,同小取小,大小小大中间取,大大小小无解集”.解不等式x +1≥0得x ≥﹣1,解不等式3x -6<0得x <2,所以不等式组的解集为﹣1≤x <2. {分值}3{章节:[1-9-3]一元一次不等式组} {考点:解一元一次不等式组} {类别:常考题} {难度:2-简单}{题目}16.(2019年长沙T16)在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:根据试验所得数据,估计“摸出黑球”的概率是 .{答案}0.4{解析}本题考查了用频率估计概率,当大量重复做某一试验时,某一事件发生的频率就会在某一数值附近摆动,这个数值就是概率.大量重复试验时,可以用频率估计概率. {分值}3{章节:[1-25-3]用频率估计概率} {考点:利用频率估计概率} {类别:常考题} {难度:2-简单}{题目}17.(2019年长沙T17)如图,要测量池塘两岸相对的A ,B 两点间的距离,可以在池塘外选一点C ,连接AC ,BC ,分别取AC ,BC 的中点D ,E ,测得DE =50m ,则AB 的长是 m .{答案}100{解析}本题考查了三角形中位线的性质,三角形的中位线平行于第三边且等于第三边的一半,所以AB =2DE =100(m). {分值}3{章节:[1-27-1-2]相似三角形的性质} {考点:三角形中位线} {类别:常考题} {难度:2-简单}{题目}18.(2019年长沙T18)如图,函数y =xk(k 为常数,k>0)的图象与过原点的O 的直线相交于A ,B 两点,点M 是第一象限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴,y 轴于C ,D 两点,连接BM 分别交x 轴,y 轴于点E ,F .现有以下四个结论:①△ODM 与△OCA 的面积相等;②若BM ⊥AM 于点M ,则∠MBA =30°;③若M 点的横坐标为1,△OAM 是等边三角形,则k =2+3;④若MF =52MB ,则MD =2MA .其中正确的结论的序号是(只填序号){答案}①③④{解析}本题考查了,,因此本题选. {分值}3{章节:[1-26-1]反比例函数的图像和性质} {考点:反比例函数与一次函数的综合} {考点:代数填空压轴} {类别:常考题} {难度:5-高难度}{题型:4-解答题}三、解答题:本大题共8个小题,合计66分.{题目}19.(2019年长沙T19)计算:︒-÷-⎪⎭⎫⎝⎛+--60cos 2362121{解析}本题考查了绝对值的意义、负指数的定义、二次根式的除法、特殊角的三角函数值.{答案}解: 原式=2+2-2-1=1 {分值}6{章节:[1-28-3]锐角三角函数} {难度:2-简单} {类别:常考题}{考点:绝对值的意义} {考点:负指数的定义}{考点:二次根式的除法法则} {考点:特殊角的三角函数值}{题目}20.(2019年长沙T20)先化简,再求值:a a a a a a a -++÷⎪⎭⎫ ⎝⎛---+22441113,其中a =3. {解析}本题考查了分式的混合运算,按照运算顺序依次计算,若有括号时,先算括号里的. {答案}解: 原式=()()22112+-⨯-+a a a a a =2+a a ,当a =3时,原式=233+=53. {分值}6{章节:[1-15-2-2]分式的加减} {难度:3-中等难度} {类别:易错题}{考点:因式分解-提公因式法} {考点:因式分解-完全平方式} {考点:约分} {考点:通分}{考点:两个分式的加减} {考点:分式的混合运算}{题目}21.(2019年长沙T21)某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动.为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查,将他们的得分按优秀、良好、合格、待合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.根据以上信息,解答下列问题:(1)本次调查随机抽取了名学生,表中m=,n=;(2)补全条形统计图;(3)若全校有2000名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有多少人.{解析}本题考查了.{答案}解: (1)50;20;12;(2)(3)2000×(42%+40%)=1640(人),答:该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有1640人.{分值}8{章节:[1-10-1]统计调查}{难度:2-简单}{类别:常考题}{考点:频数与频率}{考点:统计表}{考点:条形统计图}{考点:用样本估计总体}{题目}22.(2019年长沙T22)如图,正方形ABCD,点E,F分别在边AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.{解析}本题考查了正方形的性质、全等三角形的判定SAS 、勾股定理、相似三角形的判定(两角相等)、相似三角形的性质.证明两条线段相等的问题,通常考虑这两条线段所在的三角形全等;求线段长度的问题,通常考虑由“相似(或勾股定理、锐角三角函数)”建立方程解之,体现了方程思想.{答案}解: (1)∵四边形ABCD 是正方形,DE =CF ,∴AB =AD =CD ,∠BAE =∠ADF =90°,AE =DF ,在△ABE 和△DAF 中,AB =AD ,∠BAE =∠ADF ,AE =DF ,∴△ABE ≌△DAF , ∴BE =AF .(2)∵AB =4,DE =1,∴AE =3,在Rt △BAE 中,由勾股定理得:BE =5,∵△ABE ≌△DAF ,∴∠EAG =∠EBA ,∵∠BAE =90°,∴∠EBA +∠AEB =90°,∴∠EAG +∠AEB =90°,即∠AGE =90°, 在△ABE 和△GAE 中,∠BAE =∠AGE =90°,∠BEA =∠AEG ,∴△ABE ∽△GAE , ∴BE AE AB AG =即534=AG , ∴AG =512. {分值}{章节:[1-18-2-3] 正方形}{难度:3-中等难度}{类别:思想方法}{类别:常考题}{考点:正方形的性质}{考点:全等三角形的判定SAS}{考点:勾股定理}{考点:相似三角形的判定(两角相等)}{考点:相似三角形的性质}{题目}23.(2019年长沙T23)近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》,鼓励教师与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?{解析}本题考查了一元二次方程的实际应用——增长率,增长率问题只要通过审题弄清楚基础量a ,最终量b ,变化次数,套公式a(1+x)n =b 即可解决.{答案}解:(1)设增长率为x由题意得:2(1+x)2=2.42解得:x 1=0.1=10%,x 2=﹣2.1(舍)答:增长率为10%(2)2.42×(1+10%)=2.662(万人)答:按照这个增长率,预计第四批公益课受益学生将达到2.662万人次{分值}{章节:[1-21-4]实际问题与一元二次方程}{难度:3-中等难度}{类别:常考题}}{考点:一元二次方程的应用—增长率问题}{题目}24.(2019年长沙T24)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①四条边成比例的两个凸四边形相似;( 命题)②三个角分别相等的两个凸四边形相似;( 命题)③两个大小不同的正方形相似.( 命题)(2)如图1,在四边形ABCD 和四边形A 1B 1C 1D 1中,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1, 111111D C CD C B BC B A AB ==.求证:四边形ABCD 与四边形A 1B 1C 1D 1相似. (3)如图2,四边形ABCD 中,AB ∥CD ,AC 与BD 相交于点O ,过点O 作EF ∥AB 分别交AD ,BC 于点E ,F .记四边形ABFE 的面积为S 1,四边形EFCD 的面积为S 2,若四边形ABFE 与四边形EFCD 相似,求12s s 的值. {解析}本题考查了命题真假的判断、相似三角形的判定(两边夹角)、相似三角形的性质、平行线分线段成比例.判断两个四边形是否相似,紧扣定义,分别证明四个角都相等,四条边都成比例.{答案}解:(1)假;假;真;(2)如图,分别连接BD 、B 1D 1,∵∠BCD =∠B 1C 1D 1,1111D C CD C B BC =,∴△BCD ∽△B 1C 1D 1,∴∠CBD =∠C 1B 1D 1,∠CDB =∠C 1D 1B 1,1111D B BD C B BC =, 又∵∠ABC =∠A 1B 1C 1,1111C B BC B A AB =∴∠AB D =∠A 1B 1D 1,1111D B BD B A AB =, ∴1111D A AD B A AB =,∠A D B =∠A 1D 1B 1,∠D AB =∠D 1A 1B 1, ∴11111111D A AD D C CD C B BC B A AB ===,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1,∠A D C =∠A 1D 1C 1,∠D AB =∠D 1A 1B 1,∴四边形ABCD 与四边形A 1B 1C 1D 1相似.(3)∵四边形ABFE 与四边形EFCD 相似, ∴ABEF AE DE =, ∵EF =OE +OF ,∴AB OF OE AE DE +=, ∵EF ∥AB ∥CD , ∴AB OE AD DE =,ABOF AB OC AD DE ==, ∴ABOF AB OE AD DE AD DE +=+, ∴AE DF AD DE =2, ∵AD =DE +AE , ∴AEAE DE 12=+, ∴2AE =DE +AE ,即AE =DE , ∴121=S S {分值}{章节:[1-27-3]图形的相似}{难度:4-较高难度}{类别:易错题}{类别:新定义}{考点:平行线分线段成比例}{考点:相似三角形的判定(两边夹角)}{考点:相似三角形的性质}{考点:相似三角形的应用}{考点:相似多边形的性质}{题目}25.(2019年长沙T25)已知抛物线y =﹣2x 2+(b -2)x +(c -2020)(b ,c 为常数).(1)若抛物线的顶点坐标为(1,1),求b ,c 的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c 的取值范围;(3)在(1)的条件下,存在正实数m ,n(m<n),当m ≤x ≤n 时,恰好有122112+≤+≤+n n y m m ,求m ,n 的值.{解析}本题考查了抛物线与一元二次方程的关系、解一元二次方程.{答案}解:(1)由题可设:y =﹣2(x -1)2+1去括号得:y =﹣2x 2+4x -1∴⎩⎨⎧-=-=-1202042c b ,解得⎩⎨⎧==20196c b(2)设抛物线上关于原点对称且不重合的两点坐标分别为(x 0,y 0),(﹣x 0,﹣y 0),代入解析式可得:()()()()⎩⎨⎧-+---=--+-+-=20202220202202000200c x b x y c x b x y ,∴两式相加可得:﹣4x 02+2(c -2020)=0,∴c =2x 02+2020,∴c ≥2020(3) 由(1)可知抛物线y =﹣2x 2+4x -1=﹣2(x -1)2+1,∴y ≤1,∵0<m <n ,当m ≤x ≤n 时,恰好有122112+≤+≤+n ny m m , ∴m y n 11≤≤, ∴11≤m 即m ≥1,∴1≤m ≤n ,∵抛物线对称轴x =1,开口向下,∴当m ≤x ≤n 时,y 随x 增大而减小,∴当x =m 时,y max =﹣2m 2+4m -1,当x =n 时,y max =﹣2n 2+4n -1, 又∵m y n 11≤≤ ∴⎪⎩⎪⎨⎧=-+-=-+-②①m m m nn n 1142114222,将①整理得:2n 3-4n 2+n +1=0,∴变形得:(2n 3-2n 2)-(2n 2-n -1)=0,即2n 2(n -1)-(2n +1)(n -1)=0,∴(n -1)(2n 2-2n -1)=0,∵n >1,∴2n 2-2n -1=0,∴n 1=231-(舍去),n 2=231+,同理整理②得:(m -1)(2m 2-2m -1)=0,∵1≤m <n ,∴m 1=1,m 2=231-(舍去),m 3=231+(舍去), ∴综上所述:m =1,n =231+. {分值}{章节:[1-22-2]二次函数与一元二次方程}{难度:5-高难度}{类别:高度原创}{类别:常考题}{考点:二次函数y =a(x +h)2的图象}{考点:抛物线与一元二次方程的关系}{考点:灵活选用合适的方法解一元二次方程}{考点:其他二次函数综合题}{题目}26.(2019年长沙T26)如图,抛物线y =ax 2+6ax (a 为常数,a >0)与x 轴交于O ,A 两点,点B 为抛物线的顶点,点D 的坐标为(t ,0)(﹣3<t<0),连接BD 并延长与过O ,A ,B 三点的⊙P 相交于点C .(1)求点A 的坐标;(2)过点C 作⊙P 的切线CE 交x 轴于点E .①如图1,求证CE =DE ,②如图2,连接AC ,BE ,BO ,当a =33,∠CAE =∠OBE 时,求OEOD 11-的值.{解析}本题考查了一元二次方程的解法、切线的判定、切割线定理、等角对等边,是一道二次函数与圆的综合性问题.{答案}解: (1)令ax 2+6ax =0,∴ax (x +6)=0,所以A(﹣6,0),(2)连接PC ,连接PB 延长交x 轴于点M ,∵⊙P 过O 、A 、B 三点,B 为顶点,∴PM ⊥OA ,∠PBC +∠BOM =90°,又∵PC =PB ,∴∠PCB =∠PBC ,∴CE 为切线,∴∠PCB +∠ECD =90°,又∵∠BDP =∠CDE ,∴∠ECD =∠CDE ,∴CE =DE(3)解:设OE =m ,即E(m ,0)由切割定理:CE 2=OE·AE(m -t)2=m(m +6)推出m =tt 262+① ∵∠CAE =∠CBD ,已知∠CAE =∠OBE ,∠CBO =∠EBO , 由角平分线定理:OE DO BE BD =即()()mt m t -=++++27327322推出m =66--t t ② 由①②得t t 262+=66--t t 推出t 2+18t +36=0, ∴t 2=﹣18t ﹣36,∴616311112=+-=--=-t t m t OE OD {分值}{章节:[1-24-2-2]直线和圆的位置关系} {难度:5-高难度}{类别:高度原创}{类别:易错题}{考点:灵活选用合适的方法解一元二次方程} {考点:切线的判定}{考点:切割线定理}{考点:等角对等边}{考点:二次函数与圆的综合}。

2019届湖南长沙市中考模拟数学试卷(三)【含答案及解析】

2019届湖南长沙市中考模拟数学试卷(三)【含答案及解析】

2019 届湖南长沙市中考模拟数学试卷(三)【含答案及解析】姓名________ 班级_________ 分数_______1. ﹣4的相反数().A. 4 B .﹣4 C .D2. 下列图形中,是中心对称但不是轴对称图形的为()3. 下列运算正确的是().A. B .C.3x﹣2x=1 D .4. 如图所示是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是()A.5. 下列各式从左到右的变形中,为因式分解的是().A.x(a﹣b)=ax﹣bxB.C.﹣1=(y+1 )(y﹣1)D.ax+by+c=x(a+b)+c6. 甲、乙、丙、丁四人进行射击测试,每人10 次射击成绩的平均数都是9.3 环,方差分别为=0.56,=0.60,=0.50,=0.45 ,则成绩最稳定的是().A.甲B.乙C.丙D.丁7. 反比例函数y= 的图象在().A.第一、二象限B .第二、三象限C.第一、三象限D .第二、四象限8. 一次函数y=﹣x+4 的图象与两坐标轴所围成的三角形的面积为().A. 2 B . 4 C . 6 D .89. 在半径为 6 的⊙O 中,60 °圆心角所对的扇形的面积为().A.6π B .4πC .2π D .π10. 如图,以两条直线,的交点坐标为解的方程组是()11. 如图,小山岗的斜坡AC的坡角α =45°,在与山脚C距离200 米的D处,测得山顶A26.6°,小山岗的高AB约为(). (结果取整数,参考数据:sin26.6 ° =0.45,cos26.6 ° =0.89,tan26.6 ° =0.50)A.164m B .178m C .200m D .1618m12. 如图,四边形EFGH是矩形ABCD的内接矩形,且EF:FG=3:1 ,AB:BC=2:1,则tan ∠ AHE的值为().13. 一次函数y=3x+6 中,y 的值随x 的增大而.14. 不等式组的解集是.15. 若∠ A=45° 30 ′,那么∠A 的余角是.16. 已知一组数据3,4,4,2,5,这组数据的中位数为.17. 如图,在⊙O中,圆心角∠AOB=100°,点P是上任意一点(不与A、B重合,点在AP的延长线上),则∠BPC= .18. 在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45 °,再作出旋转后的点关于原点的对称点,这称为一次变换,已知点A的坐标为(﹣1,0),则点A经过连续2016次这样的变换得到的点的坐标是.三、计算题19. 计算:.四、解答题20. 先化简再求值:,其中x= .21. 今年 5 月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:(1)求全班学生人数和m的值.(2)直接写出该班学生的中考体育成绩的中位数落在哪个分数段.(3)该班中考体育成绩满分共有 3 人,其中男生 2 人,女生1 人,现需从这 3 人中随机选取 2 人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.22. 分组分数段(分)频数A36≤ x< 412B41 ≤ x< 465C46 ≤ x< 5115D51 ≤ x<56mE56≤ x<6110td23. 如图,点E、 F 分别是等边△AB中 C AC、AB边上的中点,以AE为边向外作等边△ADE.(1)求证:四边形AFED是菱形;(2)连接DC,若BC=10,求四边形ABCD的面积.24. 为了促进营业额不断增长,某大型超市决定购进甲、乙两种商品,已知甲种商品每件进价为150 元,售价为168 元;乙种商品每件进价为120 元,售价为140 元,该超市用42000 元购进甲、乙两种商品,销售完后共获利5600 元.( 1)该超市购进甲、乙两种商品各多少件?( 2)超市第二次以原价购进甲、乙两种商品共 400 件,且购进甲种商品的件数多于乙种商品的件数,要使第二次经营活动的获利不少于 7580 元,共有几种进货方案?写出利润最大的进货方案.25. 如图,已知 AB 为⊙O 的直径, F 为⊙O 上一点, AC 平分∠ BAF 且交⊙O 于点 C ,过点 C作 CD ⊥ AF 于点 D ,延长 AB 、 DC 交于点 E ,连接 BC 、 CF . ( 1)求证: CD 是⊙O 的切线;( 2)若 AD=6, DE=8,求 BE 的长;( 3)求证: AF+2DF=A .B26. ( 2016? 长沙模拟)已知二次函数 y= ( k 是常数).( 1)若该函数的图象与 x 轴有两个不同的交点,试求 k 的取值范围;( 2)若点( 1 , k )在某反比例函数图象上,要使该反比例函数和二次函数 y=都是 y 随 x 的增大而增大,求k 应满足的条件及 x 的取值范围;3)若抛物线 y= 与 x 轴交于 A ( , 0)、 B ( , 0)两点,且< , =34,若与 y 轴不平行的直线y=ax+b 经过点 P ( 1, 3),且与抛物线交于 (, 27. ( 2016? 长沙模拟)已知直线 y= x+3 与两坐标轴分别相交于 A 、 B 两点,若点 P 、 Q分别是线段 AB 、 OB 上的动点,且点 P 不与 A 、 B重合,点)、 ( , )两点,试探究 是否为定值,并写出探究过程.Q不与O、B重合.(1)若OP⊥ AB于点P,△OPQ为等腰三角形,这时满足条件的点Q有几个?请直接写出相应的OQ的长;(2)当点P是AB的中点时,若△OPQ与△ABO 相似,这时满足条件的点Q有几个?请分别求出相应的OQ的长;(3)试探究是否存在以点P 为直角顶点的Rt△ OPQ?若存在,求出相应的OQ的范围,并求出OQ取最小值时点P 的坐标;若不存在,请说明理由.参考答案及解析 第 1 题 【答案】 第 2 题 【答案】 第 3 题【答案】第 4 题【答案】第 5 题【答案】第 6 题【答案】第7 题【答案】第8 题【答案】第9 题【答案】第10 题【答案】第11 题【答案】第12 题【答案】第13 题【答案】第14 题【答案】第15 题【答案】第16 题【答案】第17 题【答案】第18 题【答案】第19 题【答案】第20 题【答案】第21 题【答案】第22 题【答案】⑴证明详见解析5(2)仝S .2【解析】螃分析:(D由等边三角形的性质得出AFNXAE=DE=AI,由四边相等的四边形是菱形:即可得出结1■仑;《猛镰橘歇/疆葡展髀性庙和三角函黝求出血在求出AD的长,证出四胡招ABCD是梯形试题解析:⑴...△ABC、AADE是等边三角形,.'.AF=EP=AE=DE=AD, ZACB=ZDAE=600 ,,四边形AFED是菱形5(2)解:作AM1BC于此如图所示:,••△ABC是等边三角形,.\AC=BC=10, ZB=CO" ,.'.AM=AB-sin60° =10 乂叵=5也,2「E是纪的中点".\AE=AD=— AC=5 ;2,/ZACB=ZDAE=60d ,/.AD// BC,.二四边形ABCD是梯形,・二四边形ABCD的面积=L (AD+BC> XAN=- <5+10> X 54=仝叵.2 2 2第23 题【答案】第24 题【答案】(1)证明详见解析;(2) 1 ; (3)证明详见解析.【解析】B分析:(1)连度见工由地为⑨9g单径,得到Nac曰:/史谒N ACB=N D,根境隼平分线的性质ZBAC=ZCAIb蒯相以三角形傅到之ABC:/ACD,等量代短悔乳/8B=/ACD,策出/0CD=90。

【3套试卷】长沙市中考第一次模拟考试数学精选含答案

【3套试卷】长沙市中考第一次模拟考试数学精选含答案

中考模拟考试数学试题含答案一、选择题(本大题共12小题,共36.0分)1.2019的倒数是()A. 2019B.C.D.2.要使二次根式在实数范围内有意义,则实数x的取值范围是()A. B. C. D.3.如图,由三个相同小正方体组成的立体图形的左视图是()A. B. C. D.4.2018年10月24日港珠澳大桥全线通车,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,大桥总长度55000米.数字55000用科学记数法表示为()A. B. C. D.5.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是()A. B. C. D.6.如图,△ABC与△DEF关于y轴对称,已知A(-4,6),B(-6,2),E(2,1),则点D的坐标为()A. B. C. D.7.分式方程=的解是()A. B. C. D. 或8.若反比例函数y=的图象经过点(3,1),则它的图象也一定经过的点是()A. B. C. D.9.不等式组的解集是()A. B. C. D. 或10.如图,△ABC中,AC=8,BC=5,AB的垂直平分线MN交AC于点D,则△DBC的周长为()A. 13B. 12C. 10D. 911.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,已知BD=6,CD=2,则AD的长为()A. B. C. 3 D.12.如图,△ABC的三条中线AD,BE,CF交于同一点G,若S△ABC=12,则图中阴影部分面积是()A. 3B. 4C. 5D. 6二、填空题(本大题共4小题,共16.0分)13.因式分解3x2-3y2=______.14.小燕和小敏在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中,搅匀后再轮到下一个人摸球.她们两人摸到的球颜色不相同的概率是______.15.如图,AB为⊙O的直径,CD是⊙O的弦,∠ACD=25°,则∠BAD=______°.16.如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是______.三、计算题(本大题共1小题,共12.0分)17.计算:(1)4×(-)+|-|-+;(2)化简:(a+2b)2-a(a+b);四、解答题(本大题共5小题,共56.0分)18.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元,该店在“五一”节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元,求铅笔、圆珠笔各卖出多少支?19.中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:(1)a=______,b=______;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在______分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?20.在社会实践课上,小聪所在小组要测量一条小河的宽度,如图9,河岸EF∥MN,小聪在河岸MN上的点A处测得河对岸小树C位于东北方向,然后向东沿河岸走了30米,到达B处测得河对岸小树D位于北偏东30°的方向,又有同学测得CD=10米(1)∠EAC=______度,∠DBN=______度;(2)求小河的宽度AE.(结果精确到0.1米,参考数据:≈1.414,≈1.732)21.如图,在正方形ABCD中,点E、F分别在边BC和CD上,且BE=CF,连接AE、BF,其相交于点G,将△BCF沿BF翻折得到△BC′F,延长FC′交BA延长线于点H.(1)①求证:AE=BF;②猜想AE与BF的位置关系,并证明你的结论;(2)若AB=3,EC=2BE,求BH的长.22.如图,已知抛物线y=x2+bx+c与x轴相交于点A(1,0)和点B,与y轴交于点C(0,-3)顶点为D(1)求抛物线的函数关系式;(2)判断△BCD的形状,并说明理由;(3)点P在抛物线上,点Q在直线y=x上,是否存在点P、Q 使以点P、Q、C、O为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:2019的倒数是:.故选:C.直接利用倒数的定义:乘积是1的两数互为倒数,进而得出答案.此题主要考查了倒数,正确把握相关定义是解题关键.2.【答案】D【解析】解:∵二次根式在实数范围内有意义,∴x+2≥0,解得:x≥-2,则实数x的取值范围是:x≥-2.故选:D.直接利用二次根式的概念.形如(a≥0)的式子叫做二次根式,进而得出答案.此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.3.【答案】D【解析】解:从左边看竖直叠放2个正方形.故选:D.细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.本题主要考查了几何体的三种视图和学生的空间想象能力,难度适中.4.【答案】B【解析】解:数字55000用科学记数法表示为5.5×104.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【答案】D【解析】解:如图,∵直线a∥b,∴∠3=∠1=60°.∵AC⊥AB,∴∠3+∠2=90°,∴∠2=90°-∠3=90°-60°=30°,故选:D.根据平行线的性质,可得∠3与∠1的关系,根据两直线垂直,可得所成的角是90°,根据角的和差,可得答案.本题考查了平行线的性质,利用了平行线的性质,垂线的性质,角的和差.6.【答案】B【解析】解:∵△ABC与△DEF关于y轴对称,A(-4,6),∴D(4,6).故选:B.根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(-x,y),进而得出答案.此题主要考查了关于y轴对称点的性质,准确记忆横纵坐标的关系是解题关键.7.【答案】C【解析】解:在方程两边同乘x-2得:2x-5=-3,解得:x=1,检验:当x=1时,x-2≠0,∴分式方程的解为:x=1.故选:C.根据解分式方程的步骤,最后一定进行检验即可解答.本题考查了分式方程的解,解决本题的关键是解分式方程.8.【答案】D【解析】解:∵反比例函数y=的图象经过点(3,1),∴y=,把点一一代入,发现只有(-1,-3)符合.故选:D.由反比例函数y=的图象经过点(3,1),可求反比例函数解析式,把点代入解析式即可求解.本题运用了待定系数法求反比例函数解析式的知识点,然后判断点是否在反比例函数的图象上.9.【答案】C【解析】解:,解①得x>-1,解②得x<5,所以不等式组的解集为-1<x<5.故选:C.分别解两个不等式得到x>-1和x<5,然后根据大于小的小于大的取中间确定不等式组的解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.10.【答案】A【解析】解:∵DM垂直平分AB,∴DA=DB,∴△DBC的周长=DC+DB+BC=DC+DA+BC=AC+BC=8+5=13.故选:A.根据线段垂直平分线的性质得到DA=DB,然后利用等线段代换得到△DBC的周长=AC+BC.本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.11.【答案】A【解析】解:由射影定理得,AD2=BD•CD=6×2=12,解得,AD=2,故选:A.根据射影定理计算即可.本题考查的是射影定理,直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.12.【答案】B【解析】解:方法1:∵△ABC的三条中线AD、BE,CF交于点G,∴S△CGE=S△AGE=S△ACF,S△BGF=S△BGD=S△BCF,∵S△ACF=S△BCF=S△ABC=×12=6,∴S△CGE=S△ACF=×6=2,S△BGF=S△BCF=×6=2,∴S阴影=S△CGE+S△BGF=4.设△AFG,△BFG,△BDG,△CDG,△CEG,△AEG的面积分别为S1,S2,S3,S4,S5,S6,根据中线平分三角形面积可得:S1=S2,S3=S4,S5=S6,S1+S2+S3=S4+S5+S6①,S2+S3+S4=S1+S5+S6②,由①-②可得S1=S4,所以S1=S2=S3=S4=S5=S6=2,故阴影部分的面积为4.故选:B.根据三角形的中线把三角形的面积分成相等的两部分,知△ABC的面积即为阴影部分的面积的3倍.考查了三角形的重心,三角形的面积,根据三角形的中线把三角形的面积分成相等的两部分,该图中,△BGF的面积=△BGD的面积=△CGD的面积,△AGF的面积=△AGE的面积=△CGE的面积.13.【答案】3(x+y)(x-y)【解析】解:3x2-3y2=3(x2-y2)=3(x+y)(x-y).故答案为:3(x+y)(x-y).先提取公因式3,再对余下的多项式利用平方差公式继续分解.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.【答案】解:由题意可得,树状图如下图所示,她们两人摸到的球颜色不相同的概率是:,故答案为:.根据题意可以画出相应的树状图,从而可以求得相应的概率,本题得以解决.本题考查列表法与树状图法,解答本题的关键是明确题意,画出相应的树状图,求出相应的概率.15.【答案】65【解析】解:∵∠ACD=25°,∴∠ABD=∠ACD=25°,∵AB为⊙O的直径,∴∠ADB=90°,则∠DAB=90°-∠ABD=65°,故答案为:65.由圆周角定理得出∠ABD=∠ACD=25°,再根据AB为⊙O的直径知∠ADB=90°,由∠DAB=90°-∠ABD可得答案.本题考查了圆周角定理,解答本题的关键是掌握圆周角定理中在同圆或等圆中,同弧或等弧所对的圆周角相等.16.【答案】+1【解析】解:如图,连接AM,由题意得:CA=CM,∠ACM=60°,∴△ACM为等边三角形,∴AM=CM,∠MAC=∠MCA=∠AMC=60°;∵∠ABC=90°,AB=BC=,∴AC=2=CM=2,∵AB=BC,CM=AM,∴BM垂直平分AC,∴BO=AC=1,OM=CM•sin60°=,∴BM=BO+OM=1+,故答案为:1+.如图,连接AM,由题意得:CA=CM,∠ACM=60°,得到△ACM为等边三角形根据AB=BC,CM=AM,得出BM垂直平分AC,于是求出BO=AC=1,OM=CM•sin60°=,最终得到答案BM=BO+OM=1+.本题考查了图形的变换-旋转,等腰直角三角形的性质,等边三角形的判定和性质,线段的垂直平分线的性质,准确把握旋转的性质是解题的关键.17.【答案】解:(1)4×(-)+|-|-+=-2+-2+2=-;(2)(a+2b)2-a(a+b)=a2+4ab+4b2-a2-ab=3a+4b2.【解析】(1)先算负整数指数幂,二次根式的化简,绝对值,再算加减法即可求解;(2)先算完全平方公式、单项式乘多项式,再去括号、合并同类项即可求解.考查了负整数指数幂,二次根式,绝对值,完全平方公式,单项式乘多项式,合并同类项,关键是熟练掌握计算法则正确进行计算.18.【答案】解:设铅笔卖出x支,圆珠笔卖出y支,依题意,得:,解得:.答:铅笔卖出25支,圆珠笔卖出35支.【解析】设铅笔卖出x支,圆珠笔卖出y支,根据两种笔共卖出60支且卖得金额87元,即可得出关于x,y的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.19.【答案】60 0.15 80≤x<90【解析】解:(1)样本容量是:10÷0.05=200,a=200×0.30=60,b=30÷200=0.15;(2)补全频数分布直方图,如下:(3)一共有200个数据,按照从小到大的顺序排列后,第100个与第101个数据都落在第四个分数段,所以这次比赛成绩的中位数会落在80≤x<90分数段;(4)3000×0.40=1200(人).即该校参加这次比赛的3000名学生中成绩“优”等的大约有1200人.故答案为60,0.15;80≤x<90;1200.(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得a的值,用第三组频数除以数据总数可得b的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可.本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.20.【答案】45 60【解析】解:(1)由题意得:∠BAC=∠EAC=45°,∠DBN=90°-30°=60°;故答案为:45,60;(2)如图,作BH⊥EF于H,CK⊥MN于K,垂足分别为H、K,则四边形BHCK是矩形,AE=HB,设CK=HB=x,∵∠CKA=90°,∠CAK=45°,∴∠CAK=∠ACK=45°,∴AK=CK=x,BK=HC=AK-AB=x-30,∴HD=x-30+10=x-20,在Rt△BHD中,∵∠BHD=90°,∠HBD=30°,∴tan30°=,∴=,解得x=30+10≈47.3,∴AE=HB≈47.3米;答:河的宽度AE约为47.3米.(1)由题意即可得出结果;(2)作BH⊥EF,CK⊥MN,垂足分别为H、K,则四边形BHCK是矩形,设CK=HB=x,根据tan30°=列出方程,即可解决问题.本题考查解直角三角形的应用、方向角、三角函数等知识,解题的关键是添加辅助线构造直角三角形,学会利用三角函数的定义,列出方程解决问题,属于中考常考题型.21.【答案】(1)①证明:∵四边形ABCD是正方形,∴BA=BC,∠ABC=∠BCD=90°,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴AE=BF;②解:AE⊥BF,理由如下:∵△ABE≌△BCF,∴∠BAE=∠CBF,∵∠ABE=90°,∴∠BAE+∠AEB=90°,∴∠CBF+∠AEB=90°,即AE⊥BF;(2)解:∵BC=AB=3,EC=2BE,∴EC=2,BE=1,∴C′F=CF=1,由折叠的性质可知,∠C′BF=∠CBF,∠BC′F=∠BCF=90°,∵∠C′FB+∠C′BF=90°,∠HBF+∠FBC=90°,∴∠C′FB=∠HBF,∴HB=HF,∴HC′=HF-C′F=HB-C′F=3+AH-1=2+AH,在Rt△HBC′中,HB2=C′B2+C′H2,即(3+AH)2=32+(2+AH)2,解得,AH=2,∴BH=AH+AB=5.【解析】(1)①根据正方形的性质得到BA=BC,∠ABC=∠BCD=90°,利用SAS定理证明△ABE≌△BCF,根据全等三角形的性质证明结论;②根据全等三角形的性质得到∠BAE=∠CBF,根据垂直的定义证明;(2)根据折叠的性质得到∠C′BF=∠CBF,∠BC′F=∠BCF=90°,证明HB=HF,根据勾股定理列式计算即可.本题考查的是正方形的性质、全等三角形的判定和性质、折叠的性质、勾股定理的应用,掌握全等三角形的判定定理和性质定理、正方形的性质定理是解题的关键.22.【答案】解:(1)把点A、C坐标代入抛物线表达式得:,解得:,抛物线的表达式为:y=x2+2x-3,顶点D的坐标为(-1,-4);(2)y=x2+2x-3,令y=0,则x=1或-3,故点B(-3,0),而C、D的坐标分别为:(0,-3)、(-1,-4),则BD=,CD=,BC=,故:BD2=CD2+BC2,故△BCD为直角三角形;(3)存在,理由:①当OC是平行四边形的一条边时,设:点P(m,m2+2m-3),点Q(m,m),则PQ=OC=3,PQ=|m2+2m-3-m|=3,解得:m=-1或2或0或-3(舍去0、-3),故m=-1或2;②当CO是平行四边形的对角线时,设点P(m,m2+2m-3),点Q(n,n),由中线定理得:,解得:m=0或-1(舍去0);故m=-1或2,则点P(-1,4)或(2,5).【解析】(1)把点A、C坐标代入抛物线表达式,即可求解;(2)BD=,CD=,BC=,即可求解;(3)分OC是平行四边形的一条边、CO是平行四边形的对角线两种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、勾股定理运用等,其中(3),要主要分类求解,避免遗漏.中考一模数学试卷及答案一.选择题1.气温由﹣2℃上升了3℃时的气温是()A.﹣1℃B.1℃C.5℃D.﹣5℃【考点】19:有理数的加法.【专题】511:实数;66:运算能力.【分析】根据题意列出算式,计算即可求出值.【解答】解:根据题意得:﹣2+3=1,则气温由﹣2℃上升了3℃时的气温是1℃,故选:B.2.若代数式在实数范围内有意义,则实数x的取值范围是()A.x>﹣1 B.x=﹣1 C.x≠0 D.x≠﹣1 【考点】62:分式有意义的条件.【专题】513:分式.【分析】先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:由题意得x+1≠0,解得x≠﹣1,故选:D.3.下列运算计算正确的是()A.2x•x2=2x2B.6x6÷2x2=3x3C.3x2﹣2x2=x2D.2x+3x=5x2【考点】4I:整式的混合运算.【专题】512:整式;66:运算能力.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2x3,不符合题意;B、原式=3x4,不符合题意;C、原式=x2,符合题意;D、原式=5x,不符合题意,故选:C.4.下表记录了一名球员在罚球线上投篮的结果,这么球员投篮一次,投中的概率约是()10 50 100 150 200 250 300 500投篮次数4 35 60 78 104 123 152 251投中次数0.40 0.70 0.60 0.52 0.52 0.49 0.51 0.50投中频率A.0.7 B.0.6 C.0.5 D.0.4【考点】X8:利用频率估计概率.【专题】54:统计与概率.【分析】计算出所有投篮的次数,再计算出总的命中数,继而可估计出这名球员投篮一次,投中的概率.【解答】解:根据频率估计概率的规律,当实验次数越来越大时,频率接近概率,故这名球员投篮一次,投中的概率约为:0.5.故选:C.5.计算(a﹣2)2的结果是()A.a2﹣4 B.a2﹣2a+4 C.a2﹣4a+4 D.a2+4【考点】4C:完全平方公式.【分析】利用完全平方公式判断即可.【解答】解:(a﹣2)2=a2﹣4a+4.故选:C.6.以原点为中心,把点A(1,2)顺时针旋转90°得到的点B的坐标是()A.(﹣2,1)B.(1,﹣2)C.(2,﹣1)D.(﹣1,2)【考点】R7:坐标与图形变化﹣旋转.【专题】531:平面直角坐标系;64:几何直观.【分析】根据点A的坐标为(1,2),然后根据旋转变换只改变图形的位置,不改变图形的形状与大小,可得OD=AC=2,BD=OC=1,据此求出点B的坐标即可.【解答】解:如图,过点A作AC⊥x轴于点C,过B作BD⊥x轴于点D,∵点A(1,2),∴AC=2,OC=1,∵点A(1,2)绕着原点顺时针旋转90°得到点B,∴OD=AC=2,BD=OC=1,∴点B的坐标是(2,﹣1).故选:C.7.下列哪个几何体,它的主视图、左视图、俯视图都相同()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据几何体的三视图,可得答案.【解答】解:A主视图、左视图都是矩形,俯视图是三角形,故A不符合题意;B、主视图、左视图、俯视图都是圆,故B符合题意;C、主视图、左视图是三角形,俯视图是圆,故C不符合题意;D、主视图俯视图都是矩形,左视图是正方形,故D不符合题意;故选:B.8.某车间20名工人日加工零件数如表所示:这些工人日加工零件数的众数、中位数分别是()日加工零件数 4 5 6 7 8人数 2 x 5 6 4 A.7、5.5 B.6、5 C.7、6 D.7、6.5【考点】W4:中位数;W5:众数.【专题】541:数据的收集与整理;542:统计的应用;65:数据分析观念;69:应用意识.【分析】根据样本容量可求出x的值,根据众数的意义,求出加工零件的件数出现次数最多的数即为众数,从小到大排列后,计算第10、11位的两个数的平均数即为中位数,计算后作出选择即可.【解答】解:x=20﹣2﹣5﹣6﹣4=3工人日加工零件数出现最多是7件,因此,众数是7件;处在第10、11位的两个数的平均数为:(6+7)÷2=6.5件,因此中位数是6.5件,故选:D.9.如图,在正方形ABCD所在的平面内找一点P,使其与正方形中的每一边所构成的三角形均是等腰三角形,这样的点共有()A.9个B.8个C.7个D.5个【考点】KI:等腰三角形的判定;LE:正方形的性质.【专题】556:矩形菱形正方形;64:几何直观.【分析】先画出图形,点P1符合P1D=DC=P1A=AB,P1B=P1C,同理得出P2、P3、P4点;点P5符合P5A=P5D=DC=AB,P5B=P5C,同理可求出P6,P7,P8点,连接AC和BD的交点也符合.【解答】解:P点有9处,如图,以正方形的各边为边向正方形的内或外作等边三角形,则这些等边三角形的顶点为所作的P点,还有正方形的对角线的交点也满足条件.故选:A.10.如图,在△ABC中,AB=12,AC=9,点D是BC边上的一点,AD=BD=2DC.设△ABD与△ACD的内切圆半径分别为r1、r2,则r1:r2的值为()A.2 B.C.D.【考点】MI:三角形的内切圆与内心.【专题】55C:与圆有关的计算;66:运算能力;67:推理能力.【分析】根据切线长定理可得AE=AG,BE=BF,DG=DF,根据已知条件可得AE=AG=BE =BF=6,再根据三角形的面积即可求解.【解答】解:如图,设⊙O与△ABD内切于E、F、G.∵DA=DB,DG=DF,∴BF=AG=BE=AE,∵AB=12,∴AE=BE=BF=AG=6,设DF=DG=m,∵AD=2DC,∴CD=(m+6),∵S△ABD:S△ADC=BD:DC=2:1,∴(24+2m)•r1 :(18+m)•r2=2:1,∴r1:r2=3:2故选:B.二.填空题11.计算2﹣(+)的结果是﹣.【考点】78:二次根式的加减法.【专题】514:二次根式;62:符号意识.【分析】直接利用二次根式的加减运算法则计算得出答案.【解答】解:原式=2﹣﹣=﹣.故答案为:﹣.12.计算+的结果是﹣x﹣1 .【考点】6B:分式的加减法.【专题】513:分式;66:运算能力.【分析】首先通分,然后根据同分母分式加减法法则计算即可.【解答】解:+=﹣==﹣x﹣1故答案为:﹣x﹣1.13.一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是.【考点】X6:列表法与树状图法.【专题】11:计算题.【分析】先画树状图展示所有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.【解答】解:如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,所有两次摸出的小球标号的和等于4的概率=.故答案为:.14.如图,在四边形ABCD中,AD∥BC,AC、BD交于点E.若AB=AC,且BC=BE=EA,则∠ADB的度数为36°.【考点】JA:平行线的性质;KH:等腰三角形的性质.【专题】554:等腰三角形与直角三角形;67:推理能力.【分析】根据等腰三角形的性质求得∠EBC的度数,然后利用平行线的性质求得∠ADB 的度数即可.【解答】解:设∠BAC=x°,∵AE=BE,∴∠ABE=∠BAE=x°,∴∠BEC=2∠BAE=2x°,∵BE=BC,∴∠ACB=∠BEC=2x°,∵AB=AC,∴∠ABC=∠ACB=2x°,∴x+2x+2x=180,解得:x=36,∴∠ABC=2x=72°,∴∠EBC=36°,∵AD∥BC,∴∠ADB=∠EBC=36°,故答案为:36°.15.以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是b≥.【考点】H4:二次函数图象与系数的关系.【专题】535:二次函数图象及其性质;66:运算能力.【分析】当△≤0,抛物线在x轴下方无点,此时满足题意;当△>0时,必须同时满足当x=0时,y>0,对称轴x=b﹣2>0,才能满足题意,此时b无解.【解答】解:当△≤0,4(b﹣2)2﹣4(b2﹣1)≤0,∴b≥,此时抛物线在x轴下方无点,∴当b≥时,图象不经过第三象限;当△>0时,4(b﹣2)2﹣4(b2﹣1)>0,∴b<,当x=0时,y>0,∴b2﹣1>0,∴b>1或b<﹣1,对称轴x=b﹣2>0,∴b>2,∴此时b无解;故答案为b≥.16.如图,在矩形ABCD中,AB=8cm,AD=9cm,动点M从点C出发,在CB边上以每秒1cm的速度向点B匀速运动,同时动点N从点C出发,在CD边上以每秒1cm的速度向点D 匀速运动.设运动时间为t秒(0<t<8),若∠MAN=45°,则t的值为 5 .【考点】LB:矩形的性质;S9:相似三角形的判定与性质.【专题】556:矩形菱形正方形;55D:图形的相似;69:应用意识.【分析】作GN⊥AN交AM的延长线于点G,过点G作GF⊥DC,GE⊥BC,则△ADN≌△NFG,推出GF=DN=EC=8﹣t,EG=CF=9﹣t,ME=2t﹣8,证明△MEG∽△MBA,利用相似三角形的性质构建方程即可解决问题.【解答】解:作GN⊥AN交AM的延长线于点G,过点G作GF⊥DC,GE⊥BC,则△ADN≌△NFG,∴GF=DN=EC=8﹣t,EG=CF=9﹣t,∴ME=2t﹣8,∵△MEG∽△MBA,∴,∴,∴t=5.故答案为5.三.解答题17.解方程组.【考点】98:解二元一次方程组.【分析】两个方程组利用加减消元法即可求出x和y的值.【解答】解:,②﹣①得3x=﹣9,解得x=﹣3,把x=﹣3代入x+y=1中,求出y=4,即方程组的解为.18.如图,点B、E、C、F在一条直线上,AB=DF,∠B=∠F,BE=FC,求证:AC∥ED.【考点】KD:全等三角形的判定与性质.【专题】553:图形的全等;67:推理能力.【分析】由“SAS”可证△ABC≌△DFE,可得∠ACB=∠DEF,可证AC∥DE.【解答】证明:∵BE=CF,∴BC=EF,且∠B=∠F,AB=DF,∴△ABC≌△DFE(SAS),∴∠ACB=∠DEF,∴AC∥DE.19.秋季新学期开学时,某校对七年级新生掌握“中学生日常规范”的情况进行了知识测试,测试成绩全部合格.现学校随机选取了部分学生的成绩,整理并制作成如下的图表(注:A组成绩为60≤x<70,B组成绩70≤x<80,C组成绩为80≤x<90,D组成绩为90≤x ≤100).请根据上述统计图表,解答下列问题:(1)本次调查共抽查了90 名学生,在扇形统计图中,成绩为“90≤x≤100”所在扇形的圆心角是72 度.(2)如果测试成绩不低于80分为“优秀”等次,请估计全校七年级的800名学生中“优秀”等次的学生约有多少人?(3)请估计选取的七年级学生测试成绩的平均成绩.【考点】V2:全面调查与抽样调查;V5:用样本估计总体;V8:频数(率)分布直方图;VB:扇形统计图;W2:加权平均数.【专题】542:统计的应用;69:应用意识.【分析】(1)根据表格中的数据可以求得抽查的学生数,从而求得成绩为“90≤x≤100”所在扇形的圆心角;(2)根据表格中的数据可以求得“优秀”等次的学生数;(3)根据平均数的定义和表格中的数据可以求得七年级学生的平均成绩.【解答】解:(1)抽查的学生数:36÷0.4=90,成绩为“90≤x≤100”所在扇形的圆心角是360°×=72°,故答案为:90,72;(2)800×=800×0.5=400,即“优秀”等次的学生约有400人;(3)=81,即七年级学生的平均成绩是81分.20.某学校要印刷一批艺术节的宣传资料,在需要支付制版费60元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别对学生提出了不同的优惠方案:甲印刷厂提出:需支付制版费,长期客户活动免付版费,所有资料的印刷费按9折收费;乙印刷厂提出:所有资料的印刷费按8折收费.(1)在没有任何优惠方案的情况下,求该学生付费300元可印刷资料多少份?(2)在有优惠方案的情况下,应该选择哪家印刷厂比较优惠?【考点】32:列代数式.【专题】512:整式;66:运算能力.【分析】(1)根据可印刷资料的份数=(印刷费﹣制版费)÷印制每份资料的印刷费,即可求出结论;(2)设该单位需要印刷资料x份,根据甲、乙两家印刷厂的优惠政策,可用含x的代数式表示出需支付的印刷费,比较后即可得出结论.【解答】解:(1)(300﹣60)÷0.3=800(张).答:在没有任何优惠方案的情况下,求该学生付费300元可印刷资料800份.(2)设该单位需要印刷资料x份,选择甲印刷厂需支付费用为60+0.3×0.9x=(0.27x+60)元,选择乙印刷厂需支付费用为0.3×0.8x=0.24x元.∵0.24<0.27,∴无论x为何值,选择乙印刷厂比较优惠.答:选择乙印刷厂比较优惠.21.已知△ABC的外角∠EAC的平分线AD交其外接圆⊙O于点D,连接DB,DC.(1)如图1,求证BD=CD;(2)如图2,若AC是⊙O的直径,sin∠BDC=,求tan∠DBA的值.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质;M5:圆周角定理;MA:三角形的外接圆与外心;T7:解直角三角形.【专题】559:圆的有关概念及性质.【分析】(1)根据圆周角定理可证∠DAC=∠DBC,根据圆内接四边形的性质可证∠EAD=∠DCB,又已知∠EAD=∠DAC,即∠DCB=∠DBC得证,进而证明即可;(2)如图2,连接DO并延长交BC于F,连接OB,根据圆周角定理得到∠ABC=90°,求得sin∠BAC==,设BC=3a,AC=5a,则AB=4a,推出OD是BC的垂直平分线,得到BF=CF=a,根据三角形中位线定理得到OF=AB=2a,求得DF=DO+OF=a+2a =a,根据三角函数的定义即可得到结论.【解答】(1)证明:∵AD是∠EAC的平分线,∴∠EAD=∠DAC,∵∠EAD是圆内接四边形ABCD的外角,∴∠EAD=∠DCB(圆内接四边形外角等于内对角),又∵∠DAC=∠DBC,∴∠DCB=∠DBC,∴DB=DC;(2)如图2,连接DO并延长交BC于F,连接OB,∵AC是⊙O的直径,∴∠ABC=90°,∵∠BDC=∠BAC,sin∠BDC=,∴sin∠BAC==,设BC=3a,AC=5a,则AB=4a,∵OB=OC,BD=CD,∴OD是BC的垂直平分线,∴BF=CF=a,∵AO=CO,∴OF是△ABC的垂直平分线,∴BF=CF=a,∵AO=CO,∴OF是△ABC的中位线,∴OF=AB=2a,∴DF=DO+OF=a+2a=a,∵∠DBA=∠ACD,OD=OC,∴∠ACD=∠FDC,∴∠DBA=∠FDC,∴tan∠DBA=tan∠FDC===.22.如图,已知:A(0,2)、B(4,0)(1)①画出线段AB关于x轴对称的线段A1B,并写出直线A1B的解析式;②若反比例函数y=(k<0)的图象与直线A1B有两个不同的公共点M、N,作ME⊥x轴于E,NF⊥x轴于F,求k的取值范围及ME+NF的值;(2)将线段AB绕点P旋转180°得到线段CD(点C与点A对应),且点C、D在反比例函数y=的图象上,直接写出所有符合条件的点C所在图象的函数解析式.【考点】GB:反比例函数综合题.【专题】151:代数综合题;67:推理能力.【分析】(1)①∵线段AB关于x轴对称的线段A1B,得到A1(0.﹣2),设A1B的解析式为:y=kx+b,解方程组即可得到结论;。

精编2019级长沙市中考数学模拟试卷(有标准答案)(word版)

精编2019级长沙市中考数学模拟试卷(有标准答案)(word版)

湖南省长沙市中考数学试卷一、选择题(在下列各题的四个选项中,只有一项是符合要求的,请在答题卡中填涂符合题意的选项,本大题共12个小题,每小题3分,共36分)1.(3.00分)﹣2的相反数是()A.﹣2 B.﹣C.2 D.2.(3.00分)据统计,2017年长沙市地区生产总值约为10200亿元,经济总量迈入“万亿俱乐部”,数据10200用科学记数法表示为()A.0.102×105B.10.2×103C.1.02×104D.1.02×1033.(3.00分)下列计算正确的是()A.a2+a3=a5 B.3C.(x2)3=x5D.m5÷m3=m24.(3.00分)下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm5.(3.00分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.(3.00分)不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(3.00分)将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A. B. C. D.8.(3.00分)下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件9.(3.00分)估计+1的值是()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间10.(3.00分)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min11.(3.00分)我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为()A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米12.(3.00分)若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x2﹣16),则符合条件的点P()A.有且只有1个B.有且只有2个C.有且只有3个D.有无穷多个二、填空题(本大题共6个小题,每小题3分,共18分)13.(3.00分)化简:= .14.(3.00分)某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为度.15.(3.00分)在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是.16.(3.00分)掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是.17.(3.00分)已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为.18.(3.00分)如图,点A,B,D在⊙O上,∠A=20°,BC是⊙O的切线,B为切点,OD的延长线交BC于点C,则∠OCB= 度.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第22、23题每小题6分,第25、26题每小题6分,共66分。

2019年长沙市中考数学模拟试题及参考答案

2019年长沙市中考数学模拟试题及参考答案

2019年长沙市中考模拟试题数学试卷第Ⅰ卷(选择题)一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.2个 B.3个 C.4个 D.5个2.(3分)下列运算中,正确的是()A.2x+5x=10x B.(ab2)3=a3b6C.2m(m+1)=2m2+1 D .=±23.(3分)我国“神七”在2008年9月26日顺利升空,宇航员在27日下午4点30分在距离地球表面423公里的太空中完成了太空行走,这是我国航天事业的又一历史性时刻.将423公里用科学记数法表示应为()米.A.42.3×104B.4.23×102C.4.23×105D.4.23×1064.(3分)下图中是中心对称图形而不是轴对称图形的共有()A.1个 B.2个 C.3个 D.4个5.(3分)如图,OB、OC是∠ABC、∠ACB的角平分线,∠BOC=120°,则∠A=()A.60°B.120°C.110° D.40°6.(3分)下列说法正确的是()①了解某市学生的视力情况需要采用普查的方式;②甲、乙两个样本中,S甲2=0.5,S乙2=0.3,则甲的波动比乙大;③50个人中可能有两个人生日相同,但可能性较小;④连续抛掷两枚质地均匀的硬币,会出现“两枚正面朝上”,“两枚反面朝上”,“一枚正面朝上,一枚反面朝上”三个事件.A.①②B.②③C.②④D.③④7.(3分)如图是某几何体的三视图,则该几何体的全面积等于()A.112 B.136 C.124 D.848.(3分)定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论,其中不正确的是()A.当m=﹣3时,函数图象的顶点坐标是()B.当m>0时,函数图象截x 轴所得的线段长度大于C.当m≠0时,函数图象经过同一个点D.当m<0时,函数在x时,y随x的增大而减小9.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④10.(3分)如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为()A.20°B.25°C.30°D.35°11.(3分)如图,小明将一个正方形纸剪出一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,如果两次剪下的长条面积正好相等,那么每一个长条面积为()A.16cm2B.20cm2C.80cm2D.160cm212.(3分)如图,将∠BAC沿DE向∠BAC内折叠,使AD与A′D重合,A′E与AE 重合,若∠A=30°,则∠1+∠2=()A.50°B.60°C.45°D.以上都不对二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:ma2+2mab+mb2=.14.(3分)已知等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立,则A=,B=.15.(3分)半圆形纸片的半径为1cm,用如图所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O重合,则折痕CD的长为cm.16.(3分)如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC 与△DEF位似,原点O是位似中心.若AB=1.5,则DE=.17.(3分)一台机床生产一种零件,5天内出现次品的件数为:1,0,1,2,1.则出现次品的方差为.18.(3分)如图,点A、B在反比例函数y=(k>0,x>0)的图象上(点A 在点B的左侧),直线AB分别交x轴,y轴于点D,C,AE⊥x轴于点E,BF⊥x 轴于点F,连结AO,BE,已知AB=2BD,△AOC与△BDF的面积之和是△ABE的面积的k倍,则k的值是.三、解答题(本大题共8小题,共66分) 19.(6分)计算:﹣14+(2016﹣π)0﹣(﹣)﹣1+|1﹣|﹣2sin60°.20.(6分)解不等式组:,并把解集在数轴上表示出来.21.(8分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图. 类别 频数(人数)频率 小说 0.5戏剧 4 散文 10 0.25其他 6 合计1根据图表提供的信息,解答下列问题: (1)八年级一班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.22.(8分)超速行驶是一种十分危险的违法驾驶行为,在一条笔直的高速公路MN 上,小型车限速为每小时120千米,设置在公路旁的超速监测点C ,现测得一辆小型车在监测点C 的南偏西30°方向的A 处,7秒后,测得其在监测点C 的南偏东45°方向的B 处,已知BC=200米,B 在A 的北偏东75°方向,请问:这辆车超速了吗?通过计算说明理由.(参考数据:≈1.41,≈1.73)23.(9分)如图,AB 是⊙O 的直径,点C 是BA 延长线上一点,CD 切⊙O 于点D ,弦DE ∥CB ,Q 是AB 上的一点,CA=1,CD=OA .(1)求⊙O的半径R;(2)求图中阴影部分的面积.24.(9分)某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商城准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润.25.(10分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M (1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.26.(10分)如图1,在平面直角坐标系xOy中,直线l :与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.2个 B.3个 C.4个 D.5个【解答】解:①=10,故说法错误;②数轴上的点与实数成一一对应关系,故说法正确;③﹣2是的平方根,故说法正确;④任何实数不是有理数就是无理数,故说法正确;⑤两个无理数的和还是无理数,如与﹣的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②③④⑥共4个.故选C.2.(3分)下列运算中,正确的是()A.2x+5x=10x B.(ab2)3=a3b6C.2m(m+1)=2m2+1 D .=±2【解答】解:A、2x+5x=7x,故本选项错误;B、(ab2)3=a3b6,故本选项正确;C、2m(m+1)=2m2+2m,故本选项错误;D 、=2,故本选项错误.故选B.3.(3分)我国“神七”在2008年9月26日顺利升空,宇航员在27日下午4点30分在距离地球表面423公里的太空中完成了太空行走,这是我国航天事业的又一历史性时刻.将423公里用科学记数法表示应为()米.A.42.3×104B.4.23×102C.4.23×105D.4.23×106【解答】解:423公里=423 000米=4.23×105米.故选C.4.(3分)下图中是中心对称图形而不是轴对称图形的共有()A.1个 B.2个 C.3个 D.4个【解答】解:第一个图形,既是中心对称图形,又是轴对称图形,故错误;第二个图形,是轴对称图形,不是中心对称图形,故错误;第三个图形,是轴对称图形,不是中心对称图形,故错误;第四、五个是中心对称图形而不是轴对称图形,故正确.故选B.5.(3分)如图,OB、OC是∠ABC、∠ACB的角平分线,∠BOC=120°,则∠A=()A.60°B.120°C.110° D.40°【解答】解:因为OB、OC是∠ABC、∠ACB的角平分线,所以∠ABO=∠CBO,∠ACO=∠BCO,所以∠ABO+∠ACO=∠CBO+∠BCO=180°﹣120°=60°,所以∠ABC+∠ACB=60°×2=120°,于是∠A=180°﹣120°=60°.故选(A).6.(3分)下列说法正确的是()①了解某市学生的视力情况需要采用普查的方式;②甲、乙两个样本中,S甲2=0.5,S乙2=0.3,则甲的波动比乙大;③50个人中可能有两个人生日相同,但可能性较小;④连续抛掷两枚质地均匀的硬币,会出现“两枚正面朝上”,“两枚反面朝上”,“一枚正面朝上,一枚反面朝上”三个事件.A.①②B.②③C.②④D.③④【解答】解:①了解某市学生的视力情况需要采用抽查的方式,错误;②甲、乙两个样本中,S甲2=0.5,S乙2=0.3,则甲的波动比乙大,正确;③50个人中可能有两个人生日相同,可能性较大,错误;④连续抛掷两枚质地均匀的硬币,会出现“两枚正面朝上”,“两枚反面朝上”,“一枚正面朝上,一枚反面朝上”三个事件,正确;故选C.7.(3分)如图是某几何体的三视图,则该几何体的全面积等于()A.112 B.136 C.124 D.84【解答】解:如图:由勾股定理=3,3×2=6,6×4÷2×2+5×7×2+6×7=24+70+42=136.故该几何体的全面积等于136.8.(3分)定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论,其中不正确的是()A.当m=﹣3时,函数图象的顶点坐标是()B.当m>0时,函数图象截x 轴所得的线段长度大于C.当m≠0时,函数图象经过同一个点D.当m<0时,函数在x时,y随x的增大而减小【解答】解:因为函数y=ax2+bx+c的特征数为[2m,1﹣m,﹣1﹣m];A、当m=﹣3时,y=﹣6x2+4x+2=﹣6(x ﹣)2+,顶点坐标是(,);此结论正确;B、当m>0时,令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得:x1=1,x2=﹣﹣,|x2﹣x1|=+>,所以当m>0时,函数图象截x 轴所得的线段长度大于,此结论正确;C、当x=1时,y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)=0 即对任意m,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x轴上一个定点此结论正确.D、当m<0时,y=2mx2+(1﹣m)x+(﹣1﹣m)是一个开口向下的抛物线,其对称轴是:直线x=,在对称轴的右边y随x的增大而减小.因为当m<0时,=﹣>,即对称轴在x=右边,因此函数在x=右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选D.9.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.10.(3分)如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为()A.20°B.25°C.30°D.35°【解答】解:∵AD∥BC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC﹣∠ADE=30°.故选C.11.(3分)如图,小明将一个正方形纸剪出一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,如果两次剪下的长条面积正好相等,那么每一个长条面积为()A.16cm2B.20cm2C.80cm2D.160cm2【解答】解:设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是4cm,第二次剪下的长条的长是x﹣4cm,宽是5cm,则4x=5(x﹣4),去括号,可得:4x=5x﹣20,移项,可得:5x﹣4x=20,解得x=2020×4=80(cm2)答:每一个长条面积为80cm2.故选:C.12.(3分)如图,将∠BAC沿DE向∠BAC内折叠,使AD与A′D重合,A′E与AE 重合,若∠A=30°,则∠1+∠2=()A.50°B.60°C.45°D.以上都不对【解答】解:∵∠1=180﹣2∠ADE;∠2=180﹣2∠AED.∴∠1+∠2=360°﹣2(∠ADE+∠AED)=360°﹣2(180°﹣30°)=60°.故选B.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:ma2+2mab+mb2=m(a+b)2.【解答】解:原式=m(a2+2ab+b2)=m(a+b)2,故答案为:m(a+b)214.(3分)已知等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立,则A=,B=.【解答】解:由于等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立,所以,有解得.故答案为:,﹣.15.(3分)半圆形纸片的半径为1cm,用如图所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O重合,则折痕CD的长为cm.【解答】解:作MO交CD于E,则MO⊥CD,连接CO,对折后半圆弧的中点M与圆心O重合,则ME=OE=OC ,在直角三角形COE中,CE==,折痕CD的长为2×=(cm).16.(3分)如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC 与△DEF位似,原点O是位似中心.若AB=1.5,则DE= 4.5.【解答】解:∵△ABC与DEF是位似图形,它们的位似中心恰好为原点,已知A 点坐标为(1,0),D点坐标为(3,0),∴AO=1,DO=3,∴==,∵AB=1.5,∴DE=4.5.故答案为:4.5.17.(3分)一台机床生产一种零件,5天内出现次品的件数为:1,0,1,2,1.则出现次品的方差为0.4.【解答】解:5天内出现次品的件数为:1,0,1,2,1;则其平均数为(1+1+2+1)=1,故出现次品的方差S2=[(1﹣1)2+(0﹣1)2+(1﹣1)2+(2﹣1)2+(1﹣1)2]=0.4.故填0.4.18.(3分)如图,点A、B在反比例函数y=(k>0,x>0)的图象上(点A 在点B的左侧),直线AB分别交x轴,y轴于点D,C,AE⊥x轴于点E,BF⊥x 轴于点F,连结AO,BE,已知AB=2BD,△AOC与△BDF的面积之和是△ABE的面积的k倍,则k的值是.【解答】解:设A(a ,),B(b ,),则b>a,∵AB=2BD,∴,sin∠ADE=,∴=,即=,=,b=3a,∴OF=3a,OE=a,FD=a,∴设BF=y,则AE=3y,∴OC=4y,∵S△AOC+S△BDF=kS△ABE,∴OC•OE+DF•BF=k(S△COD﹣S△AOC﹣S△AOF﹣S△BDE),•4y•a +•a•y=k(•4a•4y ﹣•a•4y ﹣•3y•a ﹣•3a•y),4ya+ya=k(16ya﹣4ya﹣3ya﹣3ya),k=,故答案为:.三、解答题(本大题共8小题,共66分)19.(6分)计算:﹣14+(2016﹣π)0﹣(﹣)﹣1+|1﹣|﹣2sin60°.【解答】解:原式=﹣1+1﹣(﹣2)+﹣1﹣2×=﹣1+1+2+﹣1﹣=1.20.(6分)解不等式组:,并把解集在数轴上表示出来.【解答】解:由①得x≥4,由②得x<1,∴原不等式组无解,21.(8分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图. 类别 频数(人数)频率 小说 0.5戏剧 4 散文 10 0.25其他 6 合计1根据图表提供的信息,解答下列问题: (1)八年级一班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.【解答】解:(1)∵喜欢散文的有10人,频率为0.25, ∴总人数=10÷0.25=40(人);(2)在扇形统计图中,“其他”类所占的百分比为×100%=15%,故答案为:15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P (丙和乙)==.22.(8分)超速行驶是一种十分危险的违法驾驶行为,在一条笔直的高速公路MN 上,小型车限速为每小时120千米,设置在公路旁的超速监测点C ,现测得一辆小型车在监测点C 的南偏西30°方向的A 处,7秒后,测得其在监测点C 的南偏东45°方向的B 处,已知BC=200米,B 在A 的北偏东75°方向,请问:这辆车超速了吗?通过计算说明理由.(参考数据:≈1.41,≈1.73)【解答】解:这辆汽车超速了, 理由:过点C 作CF ⊥AB 于点F ,由题意可得:∠BCF=30°,∠ACF=45°,∠CAF=30°,则∠BCF=30°,∠CBF=60°, ∵BC=200m , ∴BF=BC=100m , ∴FC=100m , 故AF=100m ,故AB=AF+BF=100(+1)≈273(m),∴≈39(m/s),∵每小时120千米=≈33.3(m/s),∵39>33.3,∴这辆车已经超速.23.(9分)如图,AB是⊙O的直径,点C是BA延长线上一点,CD切⊙O于点D,弦DE∥CB,Q是AB上的一点,CA=1,CD=OA.(1)求⊙O的半径R;(2)求图中阴影部分的面积.【解答】解:(1)连接OD.∵CD切⊙O于点D,∴OD⊥CD,即∠CDO=90°,∴CD2+OD2=(CA+OA)2,∵CA=1,CD=OA,OD=OA,∴OA=1,即R=1;(2)连接OE.∵DE∥CB,∴S△ODE=S△QDE;∴S阴影=S扇形ODE;由(1)知,∠CDO=90°,R=1,∴DO:CO=1:2,∴∠DCO=30°,∴∠COD=60°,∴∠ODE=60°,∴△ODE是等边三角形;∴S阴影=S扇形ODE=.24.(9分)某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商城准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润.【解答】解:(1)设每台空调的进价为m元,则每台电冰箱的进价为(m+400)元,根据题意得:=,解得:m=1600经检验,m=1600是原方程的解,m+400=1600+400=2000,答:每台空调的进价为1600元,则每台电冰箱的进价为2000元.(2)设购进电冰箱x台(x为正整数),这100台家电的销售总利润为y元,则y=(2100﹣2000)x+(1750﹣1600)(100﹣x)=﹣50x+15000,根据题意得:,解得:33≤x≤40,∵x为正整数,∴x=34,35,36,37,38,39,40,∴合理的方案共有7种,即①电冰箱34台,空调66台;②电冰箱35台,空调65台;③电冰箱36台,空调64台;④电冰箱37台,空调63台;⑤电冰箱38台,空调62台;⑥电冰箱39台,空调61台;⑦电冰箱40台,空调60台;∵y=﹣50x+15000,k=﹣50<0,∴y随x的增大而减小,∴当x=34时,y有最大值,最大值为:﹣50×34+15000=13300(元),答:当购进电冰箱34台,空调66台获利最大,最大利润为13300元.25.(10分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M (1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x +)2﹣,∴抛物线顶点D 的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x ﹣1)(ax +2a ﹣2)=0, 解得x=1或x=﹣2,∴N 点坐标为(﹣2,﹣6), ∵a <b ,即a <﹣2a , ∴a <0,如图1,设抛物线对称轴交直线于点E , ∵抛物线对称轴为x=﹣=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6), 设△DMN 的面积为S , ∴S=S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=,(3)当a=﹣1时,抛物线的解析式为:y=﹣x 2﹣x +2=﹣(x ﹣)2+, 有,﹣x 2﹣x +2=﹣2x , 解得:x 1=2,x 2=﹣1, ∴G (﹣1,2),∵点G 、H 关于原点对称, ∴H (1,﹣2),设直线GH 平移后的解析式为:y=﹣2x +t , ﹣x 2﹣x +2=﹣2x +t , x 2﹣x ﹣2+t=0, △=1﹣4(t ﹣2)=0,t=,当点H 平移后落在抛物线上时,坐标为(1,0), 把(1,0)代入y=﹣2x +t , t=2,∴当线段GH 与抛物线有两个不同的公共点,t 的取值范围是2≤t <.26.(10分)如图1,在平面直角坐标系xOy 中,直线l :与x 轴、y 轴分别交于点A 和点B (0,﹣1),抛物线经过点B ,且与直线l 的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.【解答】解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,∴抛物线的解析式为y=x2﹣x﹣1;(2)令y=0,则x﹣1=0,解得x=,∴点A 的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t ,t2﹣t﹣1),E(t ,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴当t=2时,p 有最大值;(3)∵△AOB绕点M沿逆时针方向旋转90°,∴A1O1∥y轴时,B1O1∥x轴,设点A1的横坐标为x,①如图1,点O1、B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1,解得x=,②如图2,点A1、B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1的纵坐标大,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1+,解得x=﹣,综上所述,点A1的横坐标为或﹣.。

2019年湖南省长沙市中考数学试卷答案解析版

2019年湖南省长沙市中考数学试卷答案解析版

{ 15.
不等式组
������ + 1
3������−6
≥0
<
0的解集是______.
16. 在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸 出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断
重复上述过程.以下是利用计算机模拟的摸球试验统计表:
摸球实验次数
第 2 页,共 22 页
A. 30 3������������������������������ C. 120nmile
B. 60nmile D. (30 + 30 3)������������������������������
11. 《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不 知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是: 用一根绳子去量一根木头的长、绳子还剩余 4.5 尺;将绳子对折再量木头,则木头 还剩余 1 尺,问木头长多少尺?可设木头长为 x 尺,绳子长为 y 尺,则所列方程组 正确的是( )
������ = 2������−1
12. 如图,△ABC 中,AB=AC=10,tanA=2,BE⊥AC 于点 E,D 是线段 BE 上的一个动点,则 CD+ 5BD 的最小
5
值是( )
A. 2 5 B. 4 5 C. 5 3 D. 10
二、填空题(本大题共 6 小题,共 18.0 分)
13. 式子 ������−5在实数范围内有意义,则实数 x 的取值范围是______. 14. 分解因式:am2-9a=______.
A. 15 × 109
B. 1.5 × 109
C. 1.5 × 1010

长沙市2019年中考数学试卷及答案(Word解析版)

长沙市2019年中考数学试卷及答案(Word解析版)

湖南省长沙市2019年中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.12的倒数是()A、2B、-2C、1D、-12.下列几何体中,主视图、左视图、俯视图完全相同的是()=4+=6.(3分)(2019•长沙)如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为()AC=43m7.(3分)(2019•长沙)一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()8.(3分)(2019•长沙)如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是().9.(3分)(2019•长沙)下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转..==90=180=7210.(3分)(2019•长沙)函数y=与y=ax2(a≠0)在同一平面直角坐标系中的图象可能是()..y=y=二、填空题(共8小题,每小题3分,共24分)11.(3分)(2019•长沙)如图,直线a∥b,直线c分别与a,b相交,若∠1=70°,则∠2=110度.12.(3分)(2019•长沙)抛物线y=3(x﹣2)2+5的顶点坐标是(2,5).13.(3分)(2019•长沙)如图,A、B、C是⊙O上的三点,∠AOB=100°,则∠ACB=50度.ACB=∠AOB=×14.(3分)(2019•长沙)已知关于x的一元二次方程2x2﹣3kx+4=0的一个根是1,则k=2.15.(3分)(2019•长沙)100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是.件进行检测,抽到不合格产品的概率是:=故答案为:16.(3分)(2019•长沙)如图,在△ABC中,DE∥BC,=,△ADE的面积是8,则△ABC的面积为18.=(=17.(3分)(2019•长沙)如图,点B、E、C、F在一条直线上,AB∥DE,AB=DE,BE=CF,AC=6,则DF=6.18.(3分)(2019•长沙)如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1),在x轴上存在点P到A,B两点的距离之和最小,则P点的坐标是(﹣1,0).的坐标代入得:.三、解答题(共2小题,每小题6分,共12分)19.(6分)(2019•长沙)计算:(﹣1)2019+﹣()﹣1+sin45°.20.(6分)(2019•长沙)先简化,再求值:(1+)+,其中x=3.••=.四、解答题(共2小题,每小题8分,共16分)21.(8分)(2019•长沙)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的长沙﹣我最喜爱的长沙小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图:请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若全校有2000名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A、B、C、D,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“A”的概率.××.22.(8分)(2019•长沙)如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E 处,CE与AD相交于点O.(1)求证:△AOE≌△COD;(2)若∠OCD=30°,AB=,求△AOC的面积.,÷=2=××=五、解答题(共2小题,每小题9分,共18分)23.(9分)(2019•长沙)为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买一中树苗的金额,至少应购买甲种树苗多少棵?24.(9分)(2019•长沙)如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC 的中点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若AB=3DE,求tan∠ACB的值.x=ACB=六、解答题(共2小题,每小题10分,共20分)25.(10分)(2019•长沙)在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“梦之点”,例如点(﹣1,﹣1),(0,0),(,),…都是“梦之点”,显然,这样的“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s﹣1(k,s是常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标;若不存在,请说明理由;(3)若二次函数y=ax2+bx+1(a,b是常数,a>0)的图象上存在两个不同的“梦之点”A(x1,x1),B(x2,x2),且满足﹣2<x1<2,|x1﹣x2|=2,令t=b2﹣2b+,试求出t的取值范围.y=,,则(=42b+=.<,进而求出(y=≠x=,,时,,)k=,,(===.<>=,>26.(10分)(2019•长沙)如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(,)两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0,2).(1)求a,b,c的值;(2)求证:在点P运动的过程中,⊙P始终与x轴相交;(3)设⊙P与x轴相交于M(x1,0),N(x2,0)(x1<x2)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.,进而与,±,x,,x r=r=>a PA=,PM=PN=PH=aAM=,,=时,=4a;=4(负数舍去)a2或2。

湖南省长沙市明德中学2019届中考数学一模试卷(含答案)

湖南省长沙市明德中学2019届中考数学一模试卷(含答案)

湖南省长沙市明德中学2019届中考数学一模试卷一.选择题(满分36分,每小题3分)1.实数中﹣2,0,4,,﹣π,无理数的个数有()A.2个B.3个C.4个D.5个2.下列计算正确的是()A.a2•a3=a6B.3a2﹣a2=2 C.a6÷a2=a3D.(﹣2a)2=4a2 3.2019年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为()A.55×105B.5.5×104C.0.55×105D.5.5×1054.下列说法正确的是()A.“打开电视,正在播放南阳新闻联播”是必然事件B.对某批次手机放水功能的调查适合用全面调查(普查)方式C.某种彩票的中奖率是8%是指买8张必有一张中奖D.对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式5.若反比例函数的图象经过点(﹣5,2),则k的值为()A.10 B.﹣10 C.﹣7 D.76.将不等式组的解集在数轴上表示出来,应是()A.B.C.D.7.如图,点F是矩形A BCD的边CD上一点,射线BF交AD的延长线于点E,则下列结论错误的是()A.=B.=C.=D.=8.如图,四边形ABCD内接于圆O,AD∥BC,∠DAB=48°,则∠AOC的度数是()A.48°B.96°C.114°D.132°9.小华在整理平行四边形、矩形、菱形、正方形的性质时,发现它们的对角线都具有同一性质是()A.相等B.互相垂直C.互相平分D.平分一组对角10.如图,DE∥BC,CD与BE相交于点O,若,则的值为()A.B.C.D.11.如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ABC∽△ADE的是()A.∠B=∠D B.∠C=∠AED C.=D.=12.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤二.填空题(满分18分,每小题3分)13.分解因式:2x2﹣2=.14.在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=.15.一个扇形的半径长为12cm,面积为24πcm2,则这个扇形的圆心角为度.16.已知关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是.17.如图,⊙O的半径OA与弦BC交于点D.若OD=3,AD=2,BD=CD,则BC的长为.18.如图,点A在双曲线y=(x>0)上,点B在双曲线y=(x>0)上,且AB∥x轴,BC∥y轴,点C在x轴上,则△ABC的面积为.三.解答题(共8小题,满分46分)19.(6分)计算:(π﹣3.14)0+(﹣)﹣2﹣|﹣5|+20.(6分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.21.(8分)“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解,C.基本了解,D.不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.请结合图中所给信息解答下列问题:(1)本次共调查名学生;扇形统计图中C所对应扇形的圆心角度数是;(2)补全条形统计图;(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.22.(8分)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且=.(1)求证:△ADF∽△ACG;(2)若=,求的值.23.(9分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.24.(9分)如图,AB是半圆O的直径,半径OC⊥AB,OB=4,D是OB的中点,点E是弧BC 上的动点,连接AE,DE.(1)当点E是弧BC的中点时,求△ADE的面积;(2)若tan∠AED=,求AE的长;(3)点F是半径OC上一动点,设点E到直线OC的距离为m,①当△DEF是等腰直角三角形时,求m的值;②延长DF交半圆弧于点G,若弧AG=弧EG,AG∥DE,直接写出DE的长.25.如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,经过A,D两点的圆的圆心F恰好在y轴上,⊙F与边BC相切于点E,与x轴交于点M,与y轴相交于另一点G,连接AE.(1)求证:AE平分∠BAC;(2)若点A ,D 的坐标分别为(0,﹣1),(2,0),求⊙F ;(3)求经过三点M ,F ,D 的抛物线的解析式.26.如图1,抛物线y =ax 2+(a +2)x +2(a ≠0)与x 轴交于点A (4,0),与y 轴交于点B ,在x 轴上有一动点P (m ,0)(0<m <4),过点P 作x 轴的垂线交直线AB 于点N ,交抛物线于点M .(1)求a 的值;(2)若PN :MN =1:3,求m 的值;(3)如图2,在(2)的条件下,设动点P 对应的位置是P 1,将线段OP 1绕点O 逆时针旋转得到OP 2,旋转角为α(0°<α<90°),连接AP 2、BP 2,求AP 2+BP 2的最小值.参考答案一.选择题1.解:,﹣π是无理数,故选:A.2.解:A、a2•a3=a5,故此选项错误;B、3a2﹣a2=2a2,故此选项错误;C、a6÷a2=a4,故此选项错误;D、(﹣2a)2=4a2,正确.故选:D.3.解:将数据55000用科学记数法表示为5.5×104.故选:B.4.解:A、“打开电视,正在播放南阳新闻联播”是随机事件,不符合题意;B、对某批次手机放水功能的调查适合用抽样调查方式,不符合题意;C、某种彩票的中奖率是8%是指买8张可能一张中奖,不符合题意;D、对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式,符合题意,故选:D.5.解:将点(﹣5,2)代入,得k=﹣5×2=﹣10,故选:B.6.解:不等式组的解集为:1≤x≤3,故选:A.7.解:∵四边形ABCD为矩形,∴AD∥BC,CD∥AB∵DE∥BC,∴=,=,所以B、选项结论正确,C选项错误;∵DF∥AB,∴=,所以A选项的结论正确;=,而BC=AD,∴=,所以D选项的结论正确.故选:C.8.解:∵AD∥BC,∴∠B=180°﹣∠DAB=132°,∵四边形ABCD内接于圆O,∴∠D=180°﹣∠B=48°,由圆周角定理得,∠AOC=2∠D=96°,故选:B.9.解:因为平行四边形的对角线互相平分、正方形的对角线垂直平分且相等、矩形的对角线互相平分且相等、菱形的对角线互相垂直平分,可知正方形、矩形、菱形都具有的特征是对角线互相平分.故选:C.10.解:∵DE∥BC,∴△DOE∽△COB,∴S△DOE :S△COB=()2=1:4,∴=,∵DE∥BC,∴△ADE∽△ABC,∴==,故选:C.11.解:∵∠BAD=∠CAE,∴∠DAE=∠BAC,∴A,B,D都可判定△ABC∽△ADE选项C中不是夹这两个角的边,所以不相似,故选:C.12.解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.二.填空题(共6小题,满分18分,每小题3分)13.解:2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1).故答案为:2(x+1)(x﹣1).14.解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,根据古典型概率公式知:P(白球)==,解得:n=8,故答案为:8.15.解:设这个扇形的圆心角是n°,∵24π=π×122,∴n=60,∴这个扇形的圆心角为60度.故答案为:60.16.解:∴a =1,b =﹣2,c =k ,方程有两个不相等的实数根,∴△=b 2﹣4ac =12﹣4k >0,∴k <3.故填:k <3.17.解:∵BD =CD ,∴OD ⊥BC ,在Rt △OBD 中,∵OB =5,OD =3,∴BD ==4,∴BC =2BD =8.故答案为8.18.解:作AE ⊥x 轴于E ,BF ⊥x 轴于F ,延长BA 交y 轴于点D ,如图,∵AB ∥x 轴,∴S 矩形AEOD =1,S 矩形BFOD =4,∴S 矩形AEFB =4﹣1=3,∴S △FAB =1.5,∴S △ABC =S △FAB =1.5.故答案为1.5.三.解答题(共8小题,满分46分)19.解:原式=1+4﹣5+3=3.20.解:∵(y ﹣z )2+(x ﹣y )2+(z ﹣x )2=(y +z ﹣2x )2+(z +x ﹣2y )2+(x +y ﹣2z )2. ∴(y ﹣z )2﹣(y +z ﹣2x )2+(x ﹣y )2﹣(x +y ﹣2z )2+(z ﹣x )2﹣(z +x ﹣2y )2=0, ∴(y ﹣z +y +z ﹣2x )(y ﹣z ﹣y ﹣z +2x )+(x ﹣y +x +y ﹣2z )(x ﹣y ﹣x ﹣y +2z )+(z ﹣x +z +x﹣2y)(z﹣x﹣z﹣x+2y)=0,∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴x=y=z.∴==1.21.解:(1)本次调查的学生总人数为24÷40%=60人,扇形统计图中C所对应扇形的圆心角度数是360°×=90°,故答案为:60、90°;(2)D类型人数为60×5%=3,则B类型人数为60﹣(24+15+3)=18,补全条形图如下:(3)估计全校学生中对这些交通法规“非常了解”的有800×40%=320名;(4)画树状图为:共有12种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为2,所以甲和乙两名学生同时被选中的概率为=.22.(1)证明:∵∠AED=∠B,∠DAE=∠CAB,∴∠ADF=∠C.又∵=,∴△ADF∽△ACG.(2)∵△ADF∽△ACG,∴=.∵=,∴=,∴==1.23.解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB =S△AOC+S△BOC=×3×1+×3×4=7.5;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.24.解:(1)如图,作EH⊥AB,连接OE,EB 设DH=a,则HB=2﹣a,OH=2+a∵点E是弧BC中点∴∠COE=∠EOH=45°∴EH=OH=2+a在Rt△AEB中,EH2=AH•BH(2+a)2=(6+a)(2﹣a)解得a=∴a=S=△ADE(2)如图,作DF⊥AE,垂足为F,连接BE设EF=2x,DF=3x∵DF∥BE∴=∴==3∴AF=6x在Rt△AFD中,AF2+DF2=AD2(6x)2+(3x)2=(6)2解得x=AE=8x=(3)①当点D为等腰直角三角形直角顶点时,如图设DH=a可证△ODF≌△EDH∴OD=EH=2在Rt△ABE中,EH2=AH2•BH2(2)2=(6+a)2•(2﹣a)2解得a=±m=当点E为等腰直角三角形直角顶点时,如图可证△EFG≌△EDH设DH=a,则GE=a,EH=CG=2+a在Rt△ABE中,EH2=AH2•BH2(2+a)2=(6+a)2+(2﹣a)2解得a=∴m=当点F为等腰直角三角形直角顶点时,如图可证△EFM≌△ODF设OF=a,则ME=a,MF=OD=2∴EH=a+2在Rt△ABE中,EH2=AH•BH(a+2)2=(4+a)•(4﹣a)解得a=±m=②可证△BDE为等腰三角形BD=BE=2∵△AOF~△ABE∴OF=1在Rt△OFA中,由勾股定理可得AF=GF=3勾股定理可得AG=∵△AOG~△DEB∴=∴DE=25.解:(1)连接FE,∵⊙F与边BC相切于点E,∴∠FEC=90°,∵∠ACB=90°,∴∠FEC+∠ACB=180°,∴FE∥AC,∴∠EAC=∠FEA,∵FA=FE,∴∠FAE=∠FEA,∴∠FAE=∠CAE,∴AE平分∠BAC;(2)连接FD,设⊙F的半径为r,∵A(0,﹣1),D(2,0),∴OA=1,OD=2,在Rt△FOD中,FD2=(AF﹣AO)2+OD2,∴r2=(r﹣1)2+22,解得:r=,∴⊙F的半径为;(3)∵FA=r=,OA=1,FO=,∴F(0,),∵直径AG垂直平分弦MD,点M和点D(2,0)关于y轴对称轴,∴M(﹣2,0),设抛物线解析式为y=a(x+2)(x﹣2),将点F(0,)代入,得:﹣4a=,解得:a=﹣,则抛物线解析式为y=﹣(x+2)(x﹣2)=﹣x2+.26.解:(1)∵A(4,0)在抛物线上,∴0=16a+4(a+2)+2,解得a=﹣;(2)由(1)可知抛物线解析式为y=﹣x2+x+2,令x=0可得y=2,∴OB=2,∵OP=m,∴AP=4﹣m,∵PM⊥x轴,∴△OAB∽△PAN,∴=,即=,∴PN=(4﹣m),∵M在抛物线上,∴PM=﹣m2+m+2,∵PN:MN=1:3,∴PN:PM=1:4,∴﹣m2+m+2=4×(4﹣m),解得m=3或m=4(舍去);(3)在y轴上取一点Q,使=,如图,由(2)可知P 1(3,0),且OB =2, ∴=,且∠P 2OB =∠QOP 2, ∴△P 2OB ∽△QOP 2, ∴=,∴当Q (0,)时QP 2=BP 2, ∴AP 2+BP 2=AP 2+QP 2≥AQ , ∴当A 、P 2、Q 三点在一条线上时,AP 2+QP 2有最小值, ∵A (4,0),Q (0,), ∴AQ ==,即AP 2+BP 2的最小值为.。

(4份试卷汇总)2019-2020学年湖南省长沙市中考数学一模试卷

(4份试卷汇总)2019-2020学年湖南省长沙市中考数学一模试卷

2019-2020学年数学中考模拟试卷一、选择题1.关于x 的不等式组0233(2)x m x x ->⎧⎨-≥-⎩恰有四个整数解,那么m 的取值范围为( )A.10m -≤<B.10m -<<C.1m ≥-D.0m <2.已知P 是反比例函数8(0)y x x=>图象上一点,点B 的坐标为(1,0),A 是y 轴正半轴上一点,且AP ⊥BP ,AP :BP =1:2,那么四边形AOBP 的面积为( )A.6.5B.8C.10D.73.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,OC 交⊙O 于点D ,若∠ABD =24°,则∠C 的度数是( )A.48°B.42°C.34°D.24°4.如图,点E 在△DBC 的边DB 上,点A 在△DBC 内部,∠DAE=∠BAC=90°,AD=AE ,AB=AC .给出下列结论:①BD=CE ;②∠ABD+∠ECB=45°;③BD ⊥CE ;④BE 2=2(AD 2+AB 2)﹣CD 2.其中正确的是( )A.①③④B.②④C.①②③D.①②③④5.如图,若二次函数y =ax 2+bx+c (a≠0)图象的对称轴为x =1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则:①二次函数的最大值为a+b+c ;②a ﹣b+c <0;③b 2﹣4ac <0;④当y >0时,﹣l <x <3,其中正确的是( )A.①②④B.②④C.①④D.②③6.将抛物线向左平移1个单位,再向下平移3个单位得到的解析式是( ). A.B.C.D.7.如图,点A 是双曲线y=kx上一点,过A 作AB ∥x 轴,交直线y=-x 于点B ,点D 是x 轴上一点,连接BD 交双曲线于点C ,连接AD ,若BC :CD=3:2,△ABD 的面积为114,tan ∠ABD=95,则k 的值为( )A .-34B .-3C .-2D .348.如图,在Rt △ABC 中,∠B=90°,AB=6,BC=8,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是( )A.10B.8C.6D.49.如图,在Rt ABC ∆中,90ACB ∠=︒,3BC =,4AC =,AB 的垂直平分线DE 交BC 的延长线于点E ,则DE 的长为( )A .158B .103C .2512D .12510.在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A.(a+2b )(a ﹣b )=a 2+ab ﹣2b 2B.a 2﹣b 2=(a+b )(a ﹣b )C.(a+b)2=a2+2ab+b2D.(a﹣b)2=a2﹣2ab+b211.2(7﹣2)的值估计在()A.1.6与1.7之间B.1.7与1.8之间C.1.8与1.9之间D.1.9与2.0之间12.如图,AB是半圆O的直径,且AB=12,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是()A.4πB.5πC.6πD.8π二、填空题13.某景区在“春节”假期间,每天接待的游客人数统计如下:(单位:万人)农历十二月三十正月初一正月初二正月初三正月初四正月初五正月初六人数 1.2 2.3 2 2.3 1.2 2.3 0.6表中表示人数的一组数据中,众数和中位数分别是______和_______.14.如图,点P在平行四边形ABCD的边BC上,将△ABP沿直线AP翻折,点B恰好落在边AD的垂直平分线上,如果AB=5,AD=8,tanB=,那么BP的长为_____.15.计算73x x÷的结果等于_____.16.若273a bb a+=-,则ab=_____.17.已知|k+6|+4b-=0,则一次函数y=kx+b的图象与x轴的交点坐标是______.18.如图,在同一平面直角坐标系中,函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是_____.三、解答题19.如图,在平行四边形ABCD中,AB=42BC=8,∠B=60°,将平行四边形ABCD沿EF折叠,点D 恰好落在边AB的中点D′处,折叠后点C的对应点为C′,D′C′交BC于点G,∠BGD′=32°.(1)求∠D′EF的度数;(2)求线段AE 的长.20.(1)计算:025114cos30|32|2723-︒⎛⎫-⎛⎫--+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭(2)化简求值:35222x x x x -⎛⎫÷+- ⎪--⎝⎭,其中23x =-. 21.先化简,再求值:2(3)(2)9x x x -++-,其中3x =-. 22.已知关于x 的方程2(21)(21)10m x m x --++=. (1)求证:不论m 为何值,方程必有实数根;(2)当m 为整数时,方程是否有有理根?若有,求出m 的值;若没有,请说明理由.23.某足球队为了解运动员的年龄情况,作了一次年龄调查,根据足球运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的足球运动员人数为______,图①中m 的值为______; (Ⅱ)求统计的这组足球运动员年龄数据的平均数、众数和中位数. 24.某市居民用水实行以户为单位的三级阶梯收费办法: 第一级:居民每户每月用水18吨以内含18吨,每吨收水费a 元;第二级:居民每户每月用水超过18吨但不超过25吨,未超过18的部分按照第一级标准收费,超过部分每吨收水费b 元;第三级:居民每户每月用水超过25吨,未超过25吨的部分按照第一、二级标准收费,超过部分每吨收水费c 元;设一户居民月用水x 吨,应缴水费y 元,y 与x 之间的函数关系如图所示,(Ⅰ)根据图象直接作答:a =___________,b =_______________,c =_______________; (Ⅱ)求当25x ≥时,y 与x 之间的函数关系式;(Ⅲ)把上述水费阶梯收费办法称为方案①,假设还存在方案②;居民每户月用水一律按照每吨4元的标准缴费.当居民用户月用水超过25吨时,请你根据居民每户月用水量的大小设计出对居民缴费最实惠的方案.25.体育老师要从每班选取一名同学,参加学校的跳绳比赛.小静和小炳是跳绳能手,下面分别是小静、小炳各6次跳绳成绩统计图和成绩分析表小静、小炳各6次跳绳成绩分析表成绩姓名平均数中位数方差小静180 182.5 79.7小炳180 a 33(1)根据统计图的数据,计算成绩分析表中a=;(2)结合以上信息,请你从两个不同角度评价这两位学生的跳绳水平.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 A A B D C C C C B B B C13.3 214.或715.4x16.1 1017.2 (,0) 318.﹣3<x<0或x>2.三、解答题19.(1)∠D'EF=76°;(2)11214231AE-=.【解析】【分析】(1)根据折叠的性质可得:∠D =∠ED'G =60°,∠DEF =∠D'EF ,根据平行线的性质有∠DEF =∠EFB.等量代换得到∠D'EF =∠EFB ,在四边形D EFG '中,根据四边形的内角和即可求解.(2)过点E 作EH ⊥AB 于点H ,设AE =x ,根据平行线的性质有∠HAD =∠B =60°,且EH ⊥AB ,求出13,2AH x HE x ==,根据中点的性质有1'222AD AB ==,根据勾股定理即可求解. 【详解】解:(1)∵四边形ABCD 是平行四边形, ∴∠B =∠D =60°,AD ∥BC , ∴∠DEF =∠EFB.∵将平行四边形ABCD 沿EF 折叠,点D 恰好落在边AB 的中点D′处, ∴∠D =∠ED'G =60°,∠DEF =∠D'EF , ∴∠D'EF =∠EFB , ∵∠BGD′=32° ∴∠D'GF =148°∵∠D'GF+∠EFB+∠D'EF+∠ED'G =360°,14860360D EF D EF ''+∠+∠+=︒o o ,∴∠D'EF =76°;(2)过点E 作EH ⊥AB 于点H ,设AE =x , ∵AD ∥BC ,∴∠HAD =∠B =60°,且EH ⊥AB , ∴13,22AH x HE x ==,∵点D'是AB 中点, ∴1'222AD AB ==, ∵HE 2+D'H 2=D'E 2,∴()2223122842x x x ⎛⎫+- ⎪⎝=⎭, ∴x 112142-∴11214231AE -=.【点睛】考查平行四边形的性质,折叠的性质,勾股定理等,综合性比较强,注意题目中辅助线是作法. 20.(1)8 ;(2)1x 3+ ,2【解析】 【分析】(1)根据,2|=1⎝⎭,221=1313-⎛⎫- ⎪⎝⎭⎛⎫- ⎪⎝⎭=9计算即可. (2)平方差公式:a 2-b 2=(a+b )(a-b ). 【详解】解:(1)02114cos30|2|23-︒⎛⎫⎛⎫-+- ⎪ ⎪ ⎪⎝⎭⎝⎭(+9=8 (2)35222x x x x -⎛⎫÷+- ⎪--⎝⎭=()()222352222x x x x x x x x --⎛⎫-÷+- ⎪----⎝⎭ =23922x x x x ⎛⎫--÷ ⎪--⎝⎭=()()32233x x x x x --⨯--+ =13x +当3x =时 原式【点睛】本题考查了特殊角三角函数值,绝对值,以及整式的运算,解本题的关键是对零指数幂和负整数指数幂牢固掌握. 21.6+【解析】 【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把x 的值代入计算即可求出值. 【详解】解:原式=x 2−6x +9+2x +x 2−9=2x 2−4x ,当x =原式=2x 2−4x =6+.【点睛】此题考查了整式的混合运算−化简求值,熟练掌握运算法则是解本题的关键.22.(1)见解析;(2)当m 为整数时,关于x 的方程2(21)(21)10m x m x --++=没有有理根. 理由见解析. 【解析】 【分析】(1)分两种情况分析,方程可能是一元一次方程或一元二次方程;(2)分情况分析①当210m -=时,12m =(不合题意舍去);②当210m -≠且m 为整数时,假设关于x 的方程2(21)(21)10m x m x --++=有有理根.根据根判别式进行分析即可.【详解】(1)证明:当210m -=,即12m =时,原方程为210x -+=,此方程为一元一次方程,其根为12x =; 当210m -≠,即12m ≠时,22[(21)]4(21)1(21)40m m m ∆=-+--⨯=-+> ∴当12m ≠时,原方程必有两个不相等的实数根, 综上所述,不论m 为何值,方程必有实数根;(2)解:当m 为整数时,关于x 的方程2(21)(21)10m x m x --++=没有有理根.理由如下:①当210m -=时,12m =(不合题意舍去); ②当210m -≠且m 为整数时,假设关于x 的方程2(21)(21)10m x m x --++=有有理根. 则要2(21)4m ∆=-+为完全平方数,设2n ∆=(n 为整数),即22(21)4m n -+=(n 为整数),所以有[(21)][(21)]4n m n m +---=,∵(21)n m +-与(21)n m --的奇偶性相同,并且m 、n 都是整数,∴(21)2(21)2n m n m +-=⎧⎨--=⎩或(21)2(21)2n m n m +-=-⎧⎨--=-⎩,解得12m =(不合题意舍去).综上所述,当m 为整数时,关于x 的方程2(21)(21)10m x m x --++=没有有理根.【点睛】考核知识点:一元二次方程根判别式.23.(Ⅰ)50,24;(Ⅱ)平均数是14.8;众数为15;中位数为15. 【解析】 【分析】(1)频数÷所占百分比=样本容量,m=100-28-20-10-18=24,据此解答即可; (2)根据平均数、众数和中位数的定义求解即可. 【详解】(Ⅰ)9÷18%=50(名) m=100-28-20-10-18=24,故答案为:50,24. (Ⅱ)观察条形统计图,139141215141610175x 14.850⨯+⨯+⨯+⨯+⨯==,∴这组数据的平均数是14.8.∵在这组样本数据中,15出现了14次,出现的次数最多, ∴这组样本数据的众数为15.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,有1515152+=, ∴这组样本数据的中位数为15. 【点睛】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.24.(Ⅰ)346,,;(Ⅱ)668y x =-;(Ⅲ)当2534x <<时,选择缴费方案①更实惠;当34x =时,选择两种缴费方案费用相同;当34x >时,选择缴费方案②更实惠. 【解析】 【分析】(1)根据单价=总价÷数量,即可求出a ,b ,c 的值;(2)观察函数图象,找出点的坐标,利用待定系数法即可求出当x≥25时y 与x 之间的函数关系; (3)由总价=单价×数量可找出选择缴费方案②需交水费y (元)与用水数量x (吨)之间的函数关系式,分别找出当6x-68<4x ,6x-68=4x ,6x-68>4x 时x 的取值范围(x 的值),选择费用低的方案即可得出结论. 【详解】解:(Ⅰ)a=54÷18=3, b=(82-54)÷(25-18)=4. c=(142-82)÷(35-25)=6. 故答案为:3,,4,6;(Ⅱ)设当x≥25时,y 与x 之间的函数关系式为y=mx+n (m≠0), 将(25,82),(35,142)代入y=mx+n ,得:25m n 8235m n 142+=⎧⎨+=⎩,解得:m 6n 68=⎧⎨=-⎩,∴当x 25≥时,y 与x 之间的函数关系式为y 6x 68=-.(Ⅲ)选择缴费方案②需交水费y (元)与用水量x (吨)之间的函数关系式为y 4x =. 当6x 684x -<时,x 34<; 当6x 684x -=时,x 34=; 当6x 684x ->,x 34>.∴当25x 34<<时,选择缴费方案①更实惠;当x 34=时,选择两种缴费方案费用相同;当x 34>时,选择缴费方案②更实惠. 【点睛】本题考查了此题主要考查了一次函数应用、待定系数法求一次函数解析式以及解一元一次不等式(方程),解题的关键是:(1)根据数量之间的关系,列式计算;(2)观察函数图象找出点的坐标,利用待定系数法求出y 与x 之间的函数关系式;(3)通过解不等式(方程),找出费用低的缴费方案. 25.(1)175;(2)见解析 【解析】【分析】(1)根据中位数的概念求解可得;(2)可从各统计量分析求解,合理均可.【详解】解:(1)成绩分析表中a=1781802=175,故答案为:175.(2)从中位数看,小静的中位数大于小炳的中位数,所以小静取得高分可能性较大;从方差看,小炳的方差小于小静的方差,所以小炳成绩更为稳定.【点睛】考查了折线统计图,用一个单位长度表示一定数量,用折线的上升或下降表示数量的多少和增减变化,容易看出数量的增减变化情况2019-2020学年数学中考模拟试卷一、选择题1.如图,有一平行四边形ABCD 与一正方形CEFG ,其中E 点在AD 上.若∠ECD=35°,∠AEF=15°,则∠B 的度数为何?( )A .50B .55C .70D .75 2.下列等式一定成立的是( ) A .a 2+a 3=a 5B .(a+b )2=a 2+b 2C .(2ab 2)3=6a 3b 6D .(x-a )(x-b )=x 2-(a+b )x+ab3.已知二次函数y =ax 2+bx+c (a≠0)的图象如图所示,则下列结论: ① abc <0;② 2a +b =0; ③ b2-4ac <0;④ 9a+3b+c >0; ⑤ c+8a <0.正确的结论有( ).A .1个B .2个C .3个D .4个4.如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),对角线BD 与x 轴平行,若直线y =kx+5+2k (k≠0)与菱形ABCD 有交点,则k 的取值范围是( )A.3243k -≤-… B.223k --剟 C.324k --剟 D.﹣2≤k≤2且k≠05.已知反比例函数2y x =-,下列说法不正确的是( ) A .图像必经过点()1,2- B .y 随着x 的增大而增大C .图像分布在第二,四象限内D .若1x >,则20y -<< 6.如图,CD 是⊙O 的弦,∠ADC=35°,则∠CBA 的度数为( )A .35oB .45oC .55oD .65o7.把一个足球垂直于水平地面向上踢,该足球距离地面的高度h (米)与所经过的时间t (秒)之间的关系为2110(014)2h t t t =-≤≤. 若存在两个不同的t 的值,使足球离地面的高度均为a (米),则a 的取值范围( ) A .042a ≤≤B .050a ≤<C .4250a ≤<D .4250a ≤≤ 8.如图,点E 、F 分别为正方形ABCD 的边BC 、CD 上一点,AC 、BD 交于点O ,且∠EAF =45°,AE ,AF 分别交对角线BD 于点M ,N ,则有以下结论:①△AOM ∽△ADF ;②EF =BE+DF ;③∠AEB =∠AEF =∠ANM ;④S △AEF =2S △AMN ,以上结论中,正确的个数有( )个.A .1B .2C .3D .49.下列命题不正确的是( )A .任何一个成中心对称的四边形是平行四边形B .平行四边形既是轴对称图形又是中心对称图形C .线段、平行四边形、矩形、菱形、正方形都是中心对称图形D .等边三角形、矩形、菱形、正方形都是轴对称图形10.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .11.如图,二次函数2(0)y ax bx c a =++>的图象经过点(1,0),(3,0)A B -.有下列结论:①20a b c ++<; ②当1x >时,随x 的增大而增大;③当0y >时,13x -<<;④当2m x m <<+时,若二次函数的最小值为4a -,则m 的取值范围是11m -<<。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年湖南省长沙市中考数学一模试卷参考答案与试题解析一、选择题(共10题,30分)1.(3分)下列各组数中,互为相反数的是()A.﹣2与2 B.2与2 C.3与 D. 3与|﹣3|分析:利用绝对值的性质,以及只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.解答:解:A、﹣2与2,互为相反数,故本选项正确;B、2与2,不是互为相反数,故本选项错误;C、3与不是互为相反数,故本选项错误;D、3与|﹣3|,不是互为相反数,故本选项错误.故选:A.点评:本题考查了相反数的定义,绝对值的性质,是基础题,熟记概念是解题的关键.2.(3分)下列事件属于必然事件的是()A.明天一定下雨B.购买1张彩票,中奖C.一个袋中装有5个红球,从中摸出一个是红球D.随意翻到一本书的某页,这页的页码是偶数考点:随机事件.分析:根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案.解答:解:A、明天一定下雨说法错误,因为明天下不下雨,属于可能性中的不确定事件,在一定条件下可能发生,也可能不发生的事件,故此选项错误;B、购买一张彩票可能中奖;是随机事件,故此选项错误;C、一个袋中装有5个红球,从中摸出一个是红球,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码既可以是偶数也可以是奇数,是随机事件,故此选项错误.故选:C.点评:此题主要考查了随机事件,必然事件、不可能事件的概念.用到的知识点为:确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.(3分)如图,与∠1是内错角的是()A.∠2 B.∠3 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据内错角的定义找出即可.解答:解:根据内错角的定义,∠1的内错角是∠3.故选B.点评:本题考查了“三线八角”问题,确定三线八角的关键是从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.4.(3分)下列运算正确的是()A.=±2 B.2+=2C.a2•a3=a6 D.(a2)2=a4考点:幂的乘方与积的乘方;实数的运算;同底数幂的乘法.分析:分别进行二次根式的化简、同底数幂的乘法、幂的乘方等运算,然后选择正确答案.解答:解:A、=2,原式错误,故本选项错误;B、2和不是同类项,不等合并,故本选项错误;C、a2•a3=a5,原式计算错误,故本选项错误;D、(a2)2=a4,计算正确,故本选项正确.故选D.点评:本题考查了幂的乘方和积的乘方、二次根式的化简、同底数幂的乘法等运算,掌握运算法则是解答本题的关键.5.(3分)化简的结果是()A.B.C.D. 2x+2考点:分式的乘除法.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=•(x﹣1)=.故选C.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.6.(3分)如图,直角三角形绕直线l旋转一周,得到的立体图形是()A.B.C.D.考点:点、线、面、体.分析:根据题意作出图形,即可进行判断.解答:解:将如图所示的直角三角形绕直线l旋转一周,可得到圆锥,故选:C.点评:此题考查了点、线、面、体,重在体现面动成体:考查学生立体图形的空间想象能力及分析问题,解决问题的能力.7.(3分)若一个多边形的内角和等于720°,则这个多边形的边数是()A. 5 B. 6 C.7 D.8考点:多边形内角与外角.专题:压轴题.分析:利用多边形的内角和公式即可求解.解答:解:因为多边形的内角和公式为(n﹣2)•180°,所以(n﹣2)×180°=720°,解得n=6,所以这个多边形的边数是6.故选B.点评:本题考查了多边形的内角和公式及利用内角和公式列方程解决相关问题.内角和公式可能部分学生会忘记,但是这并不是重点,如果我们在学习这个知识的时候能真正理解,在考试时即使忘记了公式,推导一下这个公式也不会花多少时间,所以,学习数学,理解比记忆更重要.8.(3分)如图,要使平行四边形ABCD成为矩形,需添加的条件是()A.AB=BC B.A C⊥BD C.∠ABC=90°D.∠1=∠2考点:矩形的判定;平行四边形的性质.分析:根据一个角是90度的平行四边形是矩形进行选择即可.解答:解:A、是邻边相等,可判定平行四边形ABCD是菱形;B、是对角线互相垂直,可判定平行四边形ABCD是菱形;C、是一内角等于90°,可判断平行四边形ABCD成为矩形;D、是对角线平分对角,可判定平行四边形ABCD是菱形.故选C.点评:本题主要应用的知识点为:矩形的判定.①对角线相等且相互平分的四边形为矩形.②一个角是90度的平行四边形是矩形.9.(3分)(Rt△ABC中,∠C=90°,AC=8,BC=6,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为()A.πB.πC.πD.π考点:扇形面积的计算;相切两圆的性质.专题:压轴题.分析:已知Rt△ABC中,∠ACB=90°,AC=8,BC=6,则根据勾股定理可知AB=10,两个扇形的面积的圆心角之和为90度,利用扇形面积公式即可求解.解答:解:∵Rt△ABC中,∠ACB=90°,AC=8,BC=6,∴AB==10,∴S阴影部分==.故选A.点评:本题主要考查勾股定理的使用及扇形面积公式的灵活运用.10.(3分)关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m的值是()A.0 B.8 C.4±2D. 0或8考点:根的判别式.专题:计算题.分析:根据一元二次方程根的判别式的意义,由程x2+(m﹣2)x+m+1=0有两个相等的实数根,则有△=0,得到关于m的方程,解方程即可.解答:解:∵一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,∴△=0,即(m﹣2)2﹣4×1×(m+1)=0,整理,得m2﹣8m=0,解得m1=0,m2=8.故选D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.二、填空题(共8题,24分)11.(3分)比较大小:>(填“>”“<”“=”).考点:实数大小比较.分析:因为分母相同所以比较分子的大小即可,可以估算的整数部分,然后根据整数部分即可解决问题.解答:解:∵﹣1>1,∴>.故填空结果为:>.点评:此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.当分母相同时比较分子的大小即可.12.(3分)(如图,在Rt△ABC中,∠C=90°,AB=6,BC=4,则cosB=.考点:锐角三角函数的定义.分析:利用锐角三角函数的定义,余弦=,解答即可.解答:解:在Rt△ABC中,cosB=.故答案为:.点评:本题考查了要求锐角的三角函数值,熟练掌握锐角三角函数的定义是解题关键.13.(3分)若等腰三角形中有一个内角等于70°,则这个等腰三角形的顶角为70或40度.考点:等腰三角形的性质.专题:分类讨论.分析:等腰三角形的一个内角是70°,则该角可能是底角,也可能是顶角,注意分类计算.解答:解:分两种情况:当70°的角是底角时,则顶角度数为40°;当70°的角是顶角时,则顶角为70°.故答案为:70或40.点评:考查了等腰三角形的性质,在解决此类问题的时候,要注意将问题的所有可能的情况找出,分别进行计算.14.(3分)在平面直角坐标系中,若点P(m+3,m﹣1)在第四象限,则m的取值范围为﹣3<m<1.考点:点的坐标.分析:点在第四象限的条件是:横坐标是正数,纵坐标是负数.解答:解:∵点P(m+3,m﹣1)在第四象限,∴可得,解得:﹣3<m<1.故填:﹣3<m<1.点评:本题主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.15.(3分)若反比例函数y=的图象位于第一、三象限,则正整数k的值是1.考点:反比例函数的性质.分析:由反比例函数的性质列出不等式,解出k的范围,在这个范围写出k的整数解则可.解答:解:∵反比例函数的图象在一、三象限,∴2﹣k>0,即k<2.又∵k是正整数,∴k的值是:1.故答案为:1.点评:本题考查了反比例函数的性质:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.16.(3分)(如图,⊙O的半径为5,弦AB=8,OC⊥AB于C,则OC的长等于3.考点:垂径定理;勾股定理.分析:根据垂径定理可知AC的长,再根据勾股定理可将OC的长求出.解答:解:连接OA,∵AB=8,OC⊥AB,∴AC=AB=4,在Rt△OAC中,OC===3.点评:本题综合考查垂径定理和勾股定理的应用.17.(3分)“莫言荣获2019年诺贝尔文学奖”后,全社会掀起了莫言热”.某校文学社在九年级五个班的学生中就“阅读过莫言作品的人数”进行调查,调查结果如下:班级九(1)九(2)九(3)九(4)九(5)阅读过莫言作品的人数38 40 35 45 42则这五个班的学生中阅读过莫言作品的人数的平均数为40.考点:算术平均数.分析:根据算术平均数的计算公式列出算式,再进行计算即可.解答:解:这五个班的学生中阅读过莫言作品的人数的平均数为(38+40+35+45+42)÷5=40(人);故答案为:40.点评:此题考查了算术平均数,掌握算术平均数的计算公式是本题的关键,是一道基础题.18.(3分)如图,在梯形ABCD中,AD∥BC,BD=CD,AD=1,BC=8,∠BDC=90°,则AB的长为5.考点:梯形.分析:作辅助线,先求出DM的长,再求出BN的长,在RT△ANB中运用勾股定理求出AB即可.解答:解:如图,作DM⊥BC交BC于点M,作AN⊥BC交BC于点N,∵BD=CD,BC=8,∠BDC=90°,∴DM=MC=BM=4,∵AD∥BC,AD=1,∴四边形ANMD是矩形,∴NM=1,AN=DM=4,∴BN=8﹣4﹣1=3,∴AB===5,故答案为:5.点评:本题主要考查了梯形及直角三角形的知识,解题的关键是求出DM的长.三、解答题(共8题,66分)19.(6分)计算:(π﹣3.14)0+﹣()﹣1﹣2sin60°.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:根据零指数幂、乘方、负指数幂和特殊角的三角函数值进行计算即可.解答:解:原式=1+2﹣2﹣2×=﹣1.点评:本题考查了实数的运算以及考点有:零指数幂、乘方、负指数幂和特殊角的三角函数值.20.(6分)化简求值:(m+n)2﹣(2m+n)(2m﹣n)+3m(m﹣n),其中m=,n=﹣2.考点:整式的混合运算—化简求值.分析:先算乘法,再合并同类项,最后代入求出即可.解答:解:(m+n)2﹣(2m+n)(2m﹣n)+3m(m﹣n)=m2+2mn+n2﹣4m2+n2+3m2﹣3mn=﹣mn+2n2,当m=,n=﹣2时,原式=﹣×(﹣2)+2×(﹣2)2=9.点评:本题考查了整式的混合运算和求值的应用,主要考查学生的计算和化简能力,题目比较典型,难度适中.21.(8分)为了建设“魅力校园”,某学校准备推广由学生自行设计的礼仪校服.学生会设计了如图1的调查问卷,在全校学生中进行了一次调查,统计整理相关数据并绘制了如下两幅不完整的统计图(图2,图3).请根据图中信息,解答下列问(1)计算扇形统计图3中m=70;(2)该校有1960名学生支持选项A,补全条形统计图2;(3)若要从该校某班支持选项A的50名学生中随机选择一名同学试穿礼仪校服,则该班支持选项A的小美同学被选中的概率是多少?考点:条形统计图;扇形统计图;概率公式.分析:(1)用单位“1”减B,C,D的百分比就是A的百分比求解,(2)用支持B的学生数除以它对应的百分比就是全校学生数,用全校学生数乘支持A的学生百分比就是支持A的学生人数,再利用这个数据补全条形统计图.(3)利用概率的公式求解.解答:解:(1)扇形统计图3中1﹣1%﹣4%﹣25%=m%,解得m=70,故答案为:70.(2)该校支持选项A的学生数为:700÷25%×70%=1960,如图,故答案为:1960.(3)该班支持选项A的小美同学被选中的概率是:.点评:本题主要考查了条形统计图和扇形统计图及概率,解题的关键是能把条形和扇形统计图的数据相结合求解.22.(8分)如图,△ABC中,BC=2,∠C=2∠A=45°,在AC边上取一点O,以点O为圆心,OA为半径的圆与AC边相交于点D,⊙O经过点B.(1)求证:BC是⊙O的切线;(2)求CD的长.考点:切线的判定.专题:证明题.分析:(1)连接OB,由OA=OB得∠A=∠OBA,根据三角形外角性质可得∠BOC=2∠A,由于∠C=2∠A=45°,所以∠BOC=45°,于是得到∠OBC=90°,则可根据切线的判定定理得到BC是⊙O的切线;(2)由∠C=∠BOC=45°,可判断△OBC为等腰直角三角形,根据等腰直角三角形的性质得OB=BC=2,OC=BC=2,所以CD=OC﹣OD=2﹣2.解答:(1)证明:连接OB,如图,∵OA=OB,∴∠A=∠OBA,∴∠BOC=∠A+∠OBA=2∠A,而∠C=2∠A=45°,∴∠BOC=45°,∴∠OBC=90°,∴OB⊥BC,∴BC是⊙O的切线;(2)解:∵∠C=∠BOC=45°,∴△OBC为等腰直角三角形,∴OB=BC=2,OC=BC=2,∴CD=OC﹣OD=2﹣2.点评:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了等腰直角三角形的判定与性质.23.(9分)电子商务的快速发展逐步改变了人们的生活方式,网购已悄然进入千家万户.章女士在某网店花220元买了1只茶壶和10只茶杯,已知茶壶的单价比茶杯的单价的4倍还多10元.(1)求茶壶和茶杯的单价分别是多少元?(2)中秋将至,该网店决定推出优惠酬宾活动:买一只茶壶送一只茶杯,茶杯单价打八折.请你计算此时买1只茶壶和10只茶杯共需多少元?考点:二元一次方程组的应用.分析:(1)设茶壶和茶杯的单价分别为x元,y元,根据买了1只茶壶和10只茶杯共花220元,茶壶的单价比茶杯的单价的4倍还多10元,列方程组求解;(2)根据茶杯打八折,求出买1只茶壶和10只茶杯共需的钱数.解答:解:(1)设茶壶和茶杯的单价分别为x元,y元,由题意得:,解得:,答:茶壶和茶杯的单价分别为70元,15元;(2)共需钱数为:70+0.8×15×9=178(元).答:买1只茶壶和10只茶杯共需178元.点评:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.24.(9分)如图,在▱ABCD中,M,N分别是AD,BC的中点,∠BMC=90°,连接AN,DN,AN与BM交于点O.(1)求证:△ABM≌△CDN;(2)点P在直线BM上,若BM=3,CM=4,求△PND的周长的最小值.考点:平行四边形的性质;全等三角形的判定与性质;轴对称-最短路线问题.分析:(1)利用平行四边形的性质首先得出AB=CD,AM=CN,进而得出△ABM≌△CDN;(2)首先得出平行四边形ABNM为菱形,进而得出当点P位于点M时,NP+DP取到最小值为AD,利用勾股定理求出即可.解答:(1)证明:∵在▱ABCD中,M,N分别是AD,BC的中点,∴AB=CD,在△ABM和△CDN中,,∴△ABM≌△CDN(SAS);(2)解:∵在▱ABCD中,M,N分别是AD,BC的中点,∴AM∥BN,AM=NB,∴四边形ABNM为平行四边形;在Rt△BCM中,N为BC中点,∴MN=BN,∴平行四边形ABNM为菱形.∴BM垂直平分AN,∴点N关于BM的对称点为点A.∴当点P位于点M时,NP+DP取到最小值为AD.在Rt△BCM中,BM=3,CN=4,由勾股定理得BC=AD=5,又由(1)知,BM=DN=3,∴△PND的周长的最小值:5+3=8.点评:此题主要考查了全等三角形的判定与性质以及平行四边形和菱形的性质,得出当点P位于点M时,NP+DP取到最小值为AD是解题关键.25.(10分)设x i(i=1,2,3,…,n)为任意代数式,我们规定:y=max{x1,x2,x3,…,x n}表示x1,x2,…,x n中的最大值,如y=max{1,2}=2(1)求y=max{x,3};(2)借助函数图象,解决以下问题:①解不等式max{x+1,}≥2②若函数y=max{|x﹣1|,x+a,x2﹣4x+3}的最小值为1,求实数a的值.考点:二次函数的性质;一次函数的性质;反比例函数的性质.专题:新定义.分析:(1)根据规定,分x≥3和x<3两种情况求解;(2)①画出函数y=x+1和y=的图象得到交点坐标为(1,2),然后根据规定写出不等式的解集即可;②画出函数y=|x﹣1|,y=x2﹣4x+3的图象,可知最小值为y=x+a与抛物线的交点,令y=1根据抛物线解析式求出x的值,再代入直线解析式求出a的值即可.解答:解:(1)y=;(2)①由图可知,两函数图象交点为(1,2),∴不等式max{x+1,}≥2的解集为x>0;②由图可知,最小值为y=x+a与抛物线y=x2﹣4x+3的交点,∴x2﹣4x+3=1,解得x1=2﹣,x2=2+(舍去),∴×(2﹣)+a=1,解得a=.点评:本题考查了二次函数的性质,一次函数的性质,反比例函数的性质,以及作函数图象,读懂题目信息,理解y=max{x1,x2,x3,…,x n}的意义是解题的关键.26.(10分)如图,顶点为A(1,4)的抛物线与y轴交于点B(0,2),与x轴交于C,D 两点,抛物线上一动点P沿抛物线从点C向点A运动,点P关于抛物线对称轴的对称点为点Q,分别过点P,Q向x轴作垂线,垂足分别为点M,N.抛物线对称轴与x轴相交于点E.(1)求此抛物线的解析式;(2)是否存在点P,使得△ACE与△PMQ相似?若存在,请求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)设此抛物线的解析式为:y=a(x﹣h)2+k,由已知条件可知,h和k的值,再把B的坐标代入求出a的值即可;(2)假设存在点P,使得△ACE与△PMQ相似,不妨设点P(1﹣t,4﹣2t2),由抛物线的对称性可求出点Q的坐标为(1+t,4﹣2t2),再分两种情况△ACE∽△PMQ或△ACE∽△QMP 讨论求出符合题意的t值即可.解答:解:(1)设此抛物线的解析式为:y=a(x﹣h)2+k,∵顶点为A(1,4)∴此抛物线的解析式为:y=a(x﹣1)2+4,将点B(0,2)代入可求得:a=﹣2,∴此抛物线的解析式为:y=﹣2(x﹣1)2+4=﹣2x2+4x+2.(2)假设存在点P,使得△ACE与△PMQ相似,不妨设点P(1﹣t,4﹣2t2),根据对称性可得,点Q的坐标为(1+t,4﹣2t2),令y=4﹣2(x﹣1)2=0,解得到:x=1±,从而有:C(1﹣),D(1+,0)所以:0<t<,由于△ACE与△PMQ相似,则必有:或,当得到,解得t=2﹣或﹣2﹣(舍去)从而得到点P(﹣1,8﹣8).当得到,解得t=或(舍去),从而得到点P(,),故存在这样的点P,坐标为(﹣1,8﹣8)或(,).点评:本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式、相似三角形的判定和性质以及解一元二次方程的问题.在求有关动点问题时要注意分析题意分情况讨论结果.。

相关文档
最新文档