第三章 时间响应分析2

控制系统时间响应分析”实验报告

控制系统时间响应分析”实验报告

实验一、“控制系统时间响应分析”实验报告 一、实验类型 验证性实验 二、实验目的 1、 求系统在时间常数τ不同取值时的单位脉冲、单位阶跃响应和任意输入响应,熟悉系统时间响应的定义和图形曲线 2、 求系统的上升时间、峰值时间、最大超调量和调整时间等性能指标,熟悉系统瞬态性能指标的定义。 三、实验仪器与设备(或工具软件) 计算机,MATLAB 软件 四、实验内容、实验方法与步骤 已知系统传递函数 50 )1(05.050)(2+++=s s s G τ 1、求系统在时间常数τ不同取值时的单位脉冲、单位阶跃响应和任意输入 响应。 应用impulse 函数,可以得到τ=0,τ=0.0125、τ=0.025时系统单位脉冲响 应;应用step 函数,同样可以得到τ=0,τ=0.0125、τ=0.025时系统单位阶跃响应。 2、求系统的瞬态性能指标 五、实验结果 1、系统在时间常数τ不同取值时的单位脉冲、单位阶跃响应和任意输入响 t=[0:0.01:0.8];%仿真时间区段 nG=[50]; tao=0; dG=[0.05 1+50*tao 50]; G1=tf(nG,dG); tao=0.0125; dG=[0.05 1+50*tao 50]; G2=tf(nG,dG); tao=0.025; dG=[0.05 1+50*tao 50]; G3=tf(nG,dG);%三种τ值下,系统的传递函数模型 [y1,T]=impulse(G1,t);[y1a,T]=step(G1,t); [y2,T]=impulse(G2,t);[y2a,T]=step(G2,t);

控制系统时间响应分析”实验报告

实验一、“控制系统时间响应分析”实验报告 一、实验类型 验证性实验 二、实验目的 1、 求系统在时间常数τ不同取值时的单位脉冲、单位阶跃响应和任意输入响应,熟悉系统时间响应的定义和图形曲线 2、 求系统的上升时间、峰值时间、最大超调量和调整时间等性能指标,熟悉系统瞬态性能指标的定义。 三、实验仪器与设备(或工具软件) 计算机,MATLAB 软件 四、实验内容、实验方法与步骤 已知系统传递函数 50 )1(05.050)(2+++=s s s G τ 1、求系统在时间常数τ不同取值时的单位脉冲、单位阶跃响应和任意输入响应。 应用impulse 函数,可以得到τ=0,τ=0.0125、τ=0.025时系统单位脉冲响应;应用step 函数,同样可以得到τ=0,τ=0.0125、τ=0.025时系统单位阶跃响应。 2、求系统的瞬态性能指标 五、实验结果 1、系统在时间常数τ不同取值时的单位脉冲、单位阶跃响应和任意输入响 t=[0:0.01:0.8];%仿真时间区段 nG=[50]; tao=0; dG=[0.05 1+50*tao 50]; G1=tf(nG ,dG); tao=0.0125; dG=[0.05 1+50*tao 50]; G2=tf(nG ,dG); tao=0.025; dG=[0.05 1+50*tao 50]; G3=tf(nG,dG);%三种τ值下,系统的传递函数模型 [y1,T]=impulse(G1,t);[y1a,T]=step(G1,t); [y2,T]=impulse(G2,t);[y2a,T]=step(G2,t); [y3,T]=impulse(G3,t);[y3a,T]=step(G3,t);%系统响应 subplot(131),plot(T,y1,'--',T,y2,'-.',T,y3,'-') legend('tao=0','tao=0.0125','tao=0.025') xlabel('t(sec)'),ylabel('x(t)');grid on; subplot(132),plot(T,y1a,'--',T,y2a,'-.',T,y3a,'-') legend('tao=0','tao=0.0125','tao=0.025') grid on;xlabel('t(sec)'),ylabel('x(t)');%产生图形 t=[0:0.01:1];u=sin(2*pi*t);% 仿真时间区段和输入 Tao=0.025;

第三章 系的时间响应分析

第三章 系统的时间响应 3-1 什么是时间响应? 答:时间响应是指系统的 响应(输出)在时域上的表现形式或系统的动力学方程在一定初始条件下的解。 3.2 时间响应由哪两部分组成?各部分的定义是什么? 答:按分类的原则不同,时间响应有初始状态为零时,由系统的输入引起的响应;零输入响应,即系统的 输入为零时,由初始状态引起的响应。 按响应的性质分为强迫响应和自由响应。 对于稳定的系统,其时间响应又可分为瞬态响应和稳态响应。 3.3时间响应的瞬态响应反映哪方面的性能?而稳态响应反映哪方面的性能? 答:瞬态响应反映了系统的稳定性和响应的快速性两方面的性能;稳态响应反映了系统响应的准确性。 3.4 设系统的单位脉冲响应函数如下,试求这些系统的传递函数. 1.25(1)()0.0125;t w t e -= (2)()510sin(44 w t t t =++); );t -3(3)w(t)=0.1(1-e (4)()0.01w t t = 解:(1) 11()()()()()00 w t x t L X s L G s X s i --????===???? ()1X s i = (),()()G s G s L w t =???????? -1w(t)=L 所以,0.01251.251)()()0.0125 1.25 t G s L w t L e s -??===???? ??+??( (2)()()G s L w t =???? 5510sin(4)sin 4cos422L t t t s s = ++=++???????? 5452()2222161616 s s s s s s = ++=++++

第三章 系统时间响应习题及解答

第三章 线性系统的时域分析与校正 习题及答案 3-3 一阶系统结构图如图所示。要求系统闭环增益2=ΦK ,调节时间4.0≤s t s ,试确定参数21,K K 的值。 解 由结构图写出闭环系统传递函数 111)(212211211 +=+=+ =ΦK K s K K K s K s K K s K s 令闭环增益21 2 == ΦK K , 得:5.02=K 令调节时间4.03 32 1≤==K K T t s ,得:151≥K 。 3-2 单位反馈系统的开环传递函数) 5(4 )(+= s s s G ,求单位阶跃响应)(t h 和调节时间 t s 。 解:依题,系统闭环传递函数 )1)(1(4) 4)(1(4 454)(2 12 T s T s s s s s s ++ =++=++= Φ ?? ?==25 .01 21T T 4 1)4)(1(4 )()()(210++++=++= Φ=s C s C s C s s s s R s s C 1) 4)(1(4 lim )()(lim 00 0=++=Φ=→→s s s R s s C s s 3 4 )4(4lim )()()1(lim 0 1 1-=+=Φ+=→-→s s s R s s C s s

3 1 )1(4lim )()()4(lim 0 4 2=+=Φ+=→-→s s s R s s C s s t t e e t h 43 1 341)(--+-= 421 =T T , ∴3.33.3111==??? ? ??=T T T t t s s 。 159.075.40''<''==T t s 3-3 机器人控制系统结构图如图所示。试确定参数 21,K K 值,使系统阶跃响应的峰值时间5.0=p t s ,超调 量%2%=σ。 解 依题,系统传递函数为 2 22 12121211 2)1()1()1(1) 1()(n n n s s K K s K K s K s s s K K s s K s ωξωωΦΦ++=+++=+++ += 由 ?? ???=-=≤=--5 .0102.0212n p o o t e ωξπσξπξ 联立求解得 ?? ?==10 78 .0n ωξ 比较)(s Φ分母系数得 ?? ? ??=-===146.0121001221K K K n n ξωω 3-4 某典型二阶系统的单位阶跃响应如图所示。试确定系统的闭环传递函数。

第三章控制系统的时域分析法知识点

第三章 控制系统的时域分析法 一、知识点总结 1.掌握典型输入信号(单位脉冲、单位阶跃、单位速度、单位加速度、正弦信号)的拉氏变换表达式。 2.掌握系统动态响应的概念,能够从系统的响应中分离出稳态响应分量和瞬态响应分量;掌握系统动态响应的性能评价指标的概念及计算方法(对于典型二阶系统可以直接应用公式求解,非典型二阶系统则应按定义求解)。 解释:若将系统的响应表达成拉普拉氏变换结果(即S 域表达式),将响应表达式进行部分分式展开,与系统输入信号极点相同的分式对应稳态响应;与传递函数极点相同的分式对应系统的瞬态响应。将稳态响应和瞬态响应分式分别进行拉氏逆变换即获得各自的时域表达式。 性能指标:延迟时间、上升时间、峰值时间、调节时间、超调量 3.掌握一阶系统的传递函数形式,在典型输入信号下的时域响应及其响应特征;掌握典型二阶系统的传递函数形式,掌握欠阻尼系统的阶跃响应时域表达及其性能指标的计算公式和计算方法;了解高阶系统的性能分析方法,熟悉主导极点的概念,定性了解高阶系统非主导极点和零点对系统性能的影响。 tr tp ts td

4.熟悉两种改善二阶系统性能的方法和结构形式(比例微分和测速反馈),了解两种方法改善系统性能的特点。 5.掌握系统稳定性分析方法:劳斯判据的判断系统稳定性的判据及劳斯判据表特殊情况的构建方法(首列元素出现0,首列出现无穷大,某一行全为0);掌握应用劳斯判据解决系统稳定裕度问题的方法。了解赫尔维茨稳定性判据。 6.掌握稳态误差的概念和计算方法;掌握根据系统型别和静态误差系数计算典型输入下的稳态误差的方法(可直接应用公式);了解消除稳态误差和干扰误差的方法;了解动态误差系数法。 二、相关知识点例题 例1. 已知某系统的方块图如下图1所示,若要求系统的性能指标为: δδ%=2222%,tt pp=1111,试确定K和τ的值,并计算系统单位阶跃输入下的特征响应量:tt,tt。 图1 解:系统闭环传递函数为:Φ(s)=CC(ss)RR(ss)=KK ss2+(1+KKKK)ss+KK 因此,ωnn=√KK,ζζ=1+KKKK2√KK, δ%=e?ππππ?1?ππ2?ζζ=0.46, t pp=ππωωdd=1ss?ωdd=ωnn?1?ζζ2=3.14 ?ωnn=3.54 K=ωnn2=12.53,τ=2ζζωnn?1KK=0.18 t ss=3ζζωωnn=1.84ss

第三章 时域响应

第三章线性系统的时域分析法 线性系统的时域分析法 本章主要内容: 时域分析的提法(概念,时域性能指标) 一阶系统的分析(稳定性分析稳态分析动态分析) 二阶系统的分析(稳定性分析稳态分析动态分析) 控制系统的一般分析(稳定性分析稳态分析动态分析) 3.1 时域分析的提法 3.1.1 时域分析的基本思想 时域分析法是控制系统常用的一种分析方法。该方法直观,容易理解。 3.1.2 时域分析问题的提法 时域分析问题是指在时间域内对系统的性能进行分析,是通过系统在典型信号作用下的时域响应,来建立系统的结构、参数与系统的性能的定量关系。 稳定稳定性能 系统的分析包括三个方面:稳态稳态性能 动态动态性能

线性控制系统稳定性的定义:若线性控制系统在初始扰动的影响下,其过渡过程随着时间的推移逐渐衰减并趋向于零,则称该系统为渐近稳定,简称稳定。反之,若在初始扰动的影响下,系统的过渡过程随时间的推移而发散,则称该系统为不稳定。 在时域分析法中,控制系统的稳态性能是指:时间t趋于无穷大时,系统输出的状态,称为系统的的稳态响应。 反映系统动态过程的性能称为系统的动态性能。描述系统动态性能的指标称为动态指标。 3.1.3 系统的时域响应 ?系统的数学模型是微分方程描述时 ?系统的数学模型是传递函数描 ?当系统的数学模型是别的形式是,可转化为上面两种形式求解。上面的两种形式是时域分析中常用的形式。 3.1.4性能指标的时域描述(性能指标,性能指标的定量化) 3.1. 4.1 稳定性描述 控制系统的稳定性,是控制系统能正常工作的必要条件

控制系统在实际工况中,总会受到内部和外界一部分因素的扰动。例如负载或能源的波动、系统参数的的变化、环境条件的改变等。对于不稳定的系统,当其受到这些扰动,即使这些扰动很弱,持续时间很短,照样会使系统中的各物理量偏离其原来的平衡点,并随时间的增加而发散,以至在扰动消失后,系统也不会再恢复到原来的工作点,显然不稳定系统是无法工作的。 为了使控制系统受到扰动后仍能稳定工作,需要分析并找出保证系统稳定工作的条件。(这本身是系统分析的一个重要稳态) 例子:摆的平衡点(稳定的平衡点、不稳定的平衡点、稳定区域) 单摆和小球运动的这种稳定概念,可以推广于控制系统。假如系统具有一个平衡的稳定工作状态,如果系统受到有界扰动偏离了原平衡状态,无论扰动引起的偏差有多大,当扰动消除后,看系统是否能回到原来的平衡状态,若能,则认为系统是稳定的,否则系统是不稳定的。 在分析线性系统稳定性时,我们关心的是系统运动的稳定性,即系统方程在不受任何外界输入下,方程的解在时的渐近行为。或者系统在某一给定输入下,按一种方式运动,不受干扰的影响,既便有些偏离运动状态,当干扰消除后,终能回到原运动状态。在数学上,这种性质表现为系统微分方程的齐次解,其通解称为微分方程的一个运动。 平衡点的稳定与运动状态的稳定严格的的说是有区别的,但可以证明,在线性系统中,它们是等价的。 线性系统稳定性的定义,常采用俄国学者李亚普诺夫在1892年给的定义。线性控制系统稳定性的定义: 若线性控制系统在初始扰动的影响下,其过渡过程随着时间的推移逐渐 衰减并趋向于零,则称该系统为渐近稳定,简称稳定。反之,若在初始扰动 的影响下,系统的过渡过程随时间的推移而发散,则称该系统为不稳定。

第三章系统的时间响应分析机械工程控制基础教案

Chp.3 时间响应分析 基本要求 (1) 了解系统时间响应的组成;初步掌握系统特征根的实部和虚部对系统自由响应项的影响情况,掌握系统稳定性与特征根实部之间的关系。 (2 ) 了解控制系统时间响应分析中的常用的典型输入信号及其特点。 (3) 掌握一阶系统的定义和基本参数,能够求解一阶系统的单位脉冲响应、单位阶跃响应及单位斜坡响应;掌握一阶系统时间响应曲线的基本形状及意义。掌握线性系统中,存在微分关系的输入,其输出也存在微分关系的基本结论。 (4) 掌握二阶系统的定义和基本参数;掌握二阶系统单位脉冲响应曲线、单位阶跃响应曲线的基本形状及其振荡情况与系统阻尼比之间的对应关系;掌握二阶系统性能指标的定义及其与系统特征参数之间的关系。 (5) 了解主导极点的定义及作用; (6) 掌握系统误差的定义,掌握系统误差与系统偏差的关系,掌握误差及稳态误差的求法;能够分析系统的输入、系统的结构和参数以及干扰对系统偏差的影响。 (7) 了解单位脉冲响应函数与系统传递函数之间的关系。 重点与难点 重点 (1) 系统稳定性与特征根实部的关系。 (2) 一阶系统的定义和基本参数,一阶系统的单位脉冲响应、单位阶跃响应及单位斜坡响应曲线的基本形状及意义。 (3) 二阶系统的定义和基本参数;二阶系统单位脉冲响应曲线、单位阶跃响应曲线的基本形状及其振荡情况与系统阻尼比之间的对应关系;二阶系统性能指标的定义及其与系统特征参数之间的关系。 (4) 系统误差的定义,系统误差与系统偏差的关系,误差及稳态误差的求法;系统的输入、系统的结构和参数以及干扰对系统偏差的影响。 难点 (1) 二阶系统单位脉冲响应曲线、单位阶跃响应曲线的基本形状及其振荡情况与系统阻尼比之间的对应关系;二阶系统性能指标的定义及其与系统特征参数之间的关系。 (2) 系统的输入、系统的结构和参数以及干扰对系统偏差的影响。 建立数学模型后进一步分析、计算和研究控制系统所具有的各种性能。 时域分析法利用L 变换对系统数学模型求解,可以导出各种时域性能指标。 § 1 时间响应及组成 1、响应:古典控制理论中响应即输出,一般都能测量观察到;现代控制理论中,状态变量不一定都 能观察到。能直接观察到的响应叫输出。 2、时间响应:系统在输入信号作用下,其输出随时间变化的规律。 若系统稳定,时间响应由瞬态响应和稳态响应组成。 3、瞬态响应:系统在达到稳态响应前的时间响应。 4、稳态响应:当t fg时的时间响应。

连续时间系统的时分析

实验三连续时间系统的时域分析 一实验目的: 1、熟悉和掌握常用的用于信号与系统时域分析的MATLAB 函数; 2、掌握如何利用Matlab 软件求解一个线性时不变连续时间系统的零状态响 应、冲激响应和阶跃响应。 二实验原理: 在信号与线性系统中,LTI(线性时不变)连续时间系统以常系数微分方程描述,系统的零状态响应可以通过求解初始状态为零的微分方程得到。在Matlab 中,控制系统工具箱提供了一个用于求解零初始条件微分方程数值解的函数lsim ,其调用形式为: ),,(t f sys lsim y = 式中,t 表示计算系统响应的抽样点向量,f 是系统输入信号向量(即激励),sys 是LTI 系统模型,用来表示微分方程。在求解微分方程时,微分方程的LTI 系统模型sys 要借助Matlab 中的tf 函数来获得,其调用形式为: ),(a b tf sys = 式中,b 和a 分别为微分方程右端和左端各项的系数向量。例如对于三阶微分方程: )()()()()()()()(01230123t f b t f b t f b t f b t y a t y a t y a t y a +'+''+'''=+'+''+''' 可以用以下命令: b=[b3,b2,b1,b0]; a=[a3,a2,a1,a0]; sys=tf(b, a); 来获得LTI 模型。 系统的LTI 模型建立后,就可以求出系统的冲激响应和阶跃响应。在连续时间LTI 中,冲击响应和阶跃响应是系统特性的描述。输入为单位冲击函数)(t δ所引起的零状态响应称为单位冲击响应,简称冲击响应,用)(t h 表示;输入为单位阶跃函数)(t ε所引起的零状态响应称为单位阶跃响应,简称阶跃响应,用)(t u 表示。求解系统的冲激响应的函数是impulse ,求解系统的阶跃响应可以利用函数step ,其调用形式分别为:

第四章 系统的时间响应分析

习 题 4-1 什么是时间响应? 答:机械工程系统在外加作用(输入)激励下,其输出量随时间变化的函数 关系称之为系统的时间响应,通过对时间响应的分析可揭示系统本身的动态特性。 4-2 时间响应有哪两部分组成?各部分的定义是什么? 答:任一系统的时间响应都是由瞬态响应和稳态响应两部分组成。 瞬态响应: 系统受到外加作用激励后,从初始状态到最终状态的响应过 程称为瞬态响应。 稳态响应: 时间趋于无穷大时,系统的输出状态称为稳态响应。 瞬态响应反映了系统动态性能,而稳态响应偏离系统希望值的程度可用来 衡量系统的精确程度。 4-3 如图所示的电网络,试求其单位阶跃响应、单位脉冲响应和单位斜坡响应,并 画出相应的响应曲线。 解:如图RC 电网络的传递函数为: ()1 1 G s RCs = + T RC = (1)单位阶跃响应: ()11t t RC T C t e e - - =-=- 图(题4-3)

(2)单位脉冲响应: ()11t t RC T C t e e T RC --== (3)单位斜坡响应: ()11t t RC T C t t T e t RC e --????=--=-- ? ?? ??? 4-4 设温度计能在1分钟内指示出响应值的98%,并且假设温度计为一阶系统,求 时间常数。如果将此温度计放在澡盆内,澡盆的温度依10℃/min 的速度线性变化,求温度计示值的误差是多大? ()()()()()() ()()()()() 2 024040.250 41 0.25 11 10.25110 10 0.251 10 2.5 2.5 1010 2.51 2.51 i i t t t i s T T G s Ts s X s s X s G s X s s s X t t e e t X t X t t t e e t e ---=== = ++=== +=-+?? =-=-+-=- ??? →∞ 解:当时 2.5o s C =

最新第三章系统的时间响应分析机械工程控制基础教案教学文案

Chp.3时间响应分析 基本要求 (1) 了解系统时间响应的组成;初步掌握系统特征根的实部和虚部对系统自由响应项的 影响情况,掌握系统稳定性与特征根实部之间的关系。 (2 ) 了解控制系统时间响应分析中的常用的典型输入信号及其特点。 (3) 掌握一阶系统的定义和基本参数,能够求解一阶系统的单位脉冲响应、单位阶跃响 应及单位斜坡响应;掌握一阶系统时间响应曲线的基本形状及意义。掌握线性系统中,存在微分关系的输入,其输出也存在微分关系的基本结论。 (4) 掌握二阶系统的定义和基本参数;掌握二阶系统单位脉冲响应曲线、单位阶跃响应 曲线的基本形状及其振荡情况与系统阻尼比之间的对应关系;掌握二阶系统性能指标的定义 及其与系统特征参数之间的关系。 (5) 了解主导极点的定义及作用; (6) 掌握系统误差的定义,掌握系统误差与系统偏差的关系,掌握误差及稳态误差的求 法;能够分析系统的输入、系统的结构和参数以及干扰对系统偏差的影响。 (7) 了解单位脉冲响应函数与系统传递函数之间的关系。 重点与难点 重点 (1) 系统稳定性与特征根实部的关系。 (2) 一阶系统的定义和基本参数,一阶系统的单位脉冲响应、单位阶跃响应及单位斜坡响应曲线的基本形状及意义。 (3) 二阶系统的定义和基本参数;二阶系统单位脉冲响应曲线、单位阶跃响应曲线的 基本形状及其振荡情况与系统阻尼比之间的对应关系;二阶系统性能指标的定义及其与系统 特征参数之间的关系。 (4) 系统误差的定义,系统误差与系统偏差的关系,误差及稳态误差的求法;系统的输 入、系统的结构和参数以及干扰对系统偏差的影响。 难点 (1) 二阶系统单位脉冲响应曲线、单位阶跃响应曲线的基本形状及其振荡情况与系统阻 尼比之间的对应关系;二阶系统性能指标的定义及其与系统特征参数之间的关系。 (2) 系统的输入、系统的结构和参数以及干扰对系统偏差的影响。 建立数学模型后进一步分析、计算和研究控制系统所具有的各种性能。 时域分析法利用L变换对系统数学模型求解,可以导出各种时域性能指标。 §1 时间响应及组成 1、响应:古典控制理论中响应即输出,一般都能测量观察到;现代控制理论中,状 态变量不一定都能观察到。能直接观察到的响应叫输出。 2、时间响应:系统在输入信号作用下,其输出随时间变化的规律。 若系统稳定,时间响应由瞬态响应和稳态响应组成。

第三章 线性系统的时域分析

【教学目的】 ※熟悉系统时间响应、性能指标的概念及求法 ※了解稳态误差的相关知识 【教学重点】 ※时间响应的基本概念 ※二阶系统的阶跃响应及欠阻尼状态下的性能指标及参数的求取 ※误差及稳态误差的概念 ※位置误差、速度误差和加速度误差的计算 【教学难点】 ※二阶系统的时间响应 ※干扰作用下的系统误差的计算 【教学方法及手段】 采用板书讲授的方式,将二阶系统在不同阻尼下的时间响应进行对比讲解,并将各种阻尼状态下的极点分布进行比较,画在一个复平面上,通过绘制响应曲线来表明各性能指标在图上的位置,帮助学生对概念的理解。 【学时分配】 8课时 【教学内容】 对于一个实际的系统,在建立数学模型之后,就可以采用不同的方法来分析和研究系统的动态性能。本章的时域分析就是其中一种重要的方法。 时域分析法是直接求解系统的微分方程,即利用拉氏变换和拉氏反变换求解,然后根据响应的表达式及其描述曲线来分析系统的性能。这种方法结果直观,应用范围广。 本章主要介绍系统的时间响应及其组成,并对一阶、二阶系统的典型时间响应进行分析,最后介绍系统的误差与稳态误差的概念。

3-1 时间响应 时间响应的概念 系统在外加作用激励下,其输出量随时间变化的函数关系,称之为系统的时间响应。通过对时间响应的分析可揭示系统本身的动态特性。 任一系统的时间响应都是由瞬态响应和稳态响应两个部分组成。 瞬态响应:系统受到外加作用激励后,从初始状态到最终状态的响应过程。 稳态响应:时间趋于无穷大时,系统的输出状态。 瞬态响应反映了系统动态性能。 稳态响应偏离系统希望值的程度可用来衡量系统的精确程度。 3-2 一阶系统的时间响应 1、一阶系统的数学模型 用一阶微分方程描述的控制系统称为一阶系统。 a 图示的RC 电路,其微分方程为 i(t)+ r(t) + (a ) 电路图 R C )(t r U dt du RC c c =+ )()()(t r t C t C T =+? 其中C(t)为电路输出电压,r(t)为电路输入电压,T=RC 为时间常数。 (b )方块图

相关文档
最新文档