立体几何中的轨迹问题
立体几何中的轨迹问题求解策略
立体几何中的轨迹问题求解策略
轨迹问题是一种有趣而又棘手的立体几何问题,它涉及寻找一条从一个点到另一个点的最短路径。
解决轨迹问题的一种策略是使用贪心算法。
贪心算法是一种迭代的搜索算法,它假定每次都可以选择最优的路径,从而最终达到最优解。
贪心算法的基本步骤是:
1. 首先,找出所有可能的路径,并计算每条路径的代价;
2. 然后,选择代价最小的路径;
3. 接下来,重复步骤2,直到达到目标点为止。
另一种策略是使用动态规划来求解轨迹问题。
动态规划是一种分析问题的技术,它通过拆分大问题,将其转换为许多小问题,从而得到最优解。
动态规划的基本步骤是:
1. 首先,对于每个状态,确定可能的动作;
2. 然后,计算每个动作的代价;
3. 接下来,选择代价最小的动作;
4. 最后,重复步骤2和3,直到达到目标点为止。
谈立体几何中动点轨迹问题的解题策略
立体几何中的动点轨迹问题是一个常见的问题类型,它涉及到空间几何中的点、线、面等元素的运动和变化。
解决这类问题的关键在于理解运动和变化的过程,并能够通过数学模型进行描述。
解题策略主要包括以下几个方面:
1. **建立空间坐标系**:为了更好地描述空间几何元素的位置和运动,需要建立一个适当的空间坐标系。
坐标系的建立应依据问题的具体情境和需求,通常选择一个固定点作为原点,并确定三个互相垂直的轴。
2. **确定动点的坐标**:在确定了坐标系之后,需要确定动点的坐标。
这可以通过设定动点的坐标变量来实现,例如设动点的坐标为$(x, y, z)$。
3. **分析运动过程**:在确定了动点的坐标后,需要分析动点的运动过程。
这包括了解动点的运动方向、速度、加速度等参数,以及这些参数与坐标变量的关系。
4. **建立数学模型**:通过分析运动过程,可以建立描述动点运动的数学模型。
这通常涉及到物理、几何、代数等多个方面的知识,需要根据具体问题进行选择和应用。
5. **求解数学模型**:建立了数学模型后,需要求解该模型以得到动点的轨迹方程。
这可能涉及到微积分、线性代数、解析几何等多个数学领域的知识,需要根据问题的复杂程度和要求进行选择和应用。
6. **验证答案**:最后,需要对得到的答案进行验证,以确保其正确性和有效性。
这可以通过将答案代入原问题中进行检验,或者通过与其他已知的答案进行比较来进行验证。
综上所述,解决立体几何中的动点轨迹问题需要综合运用空间几何、物理、数学等多个领域的知识,并能够根据具体问题进行选择和应用。
同时,还需要有一定的逻辑思维和分析能力,以更好地理解和解决这类问题。
例谈立体几何中轨迹问题
3根据截面图形求轨迹 . 例 3 正方体AB D— l E、 C A BCD ,
盼 别是A 、C的 中点 ,是 C 。 的 A, C P C上 动点 ( 括端点 )过E、 P 包 , D、 作正 方体
的截面 , 若截面 为四边形 , 点P 则 的轨
迹为( ) .
A直线 .
算题 , ) 略
2 3 5, × = . + = 2 3 6
解. 近年来 高考 中常见的题 型有 以下几类.
1利 用 圆锥 曲线 定 义 求轨 迹 . 点评 : 圆锥 曲 线 的 统 一 定 义 为 : 定 点 的距 离与 到 到
学思 想 与方法 , 综合性 强 , 能力 要求高 , 教师可集 中讲 定直线的距 离比为常数 的点的轨迹 , 该常数 叫做 圆锥 曲 线的 离心 率 , 表 示. < < 时 , 用e 当0 e l 为椭 圆; = 时, 当e l 为
点 评 : 面 图形确 定后 , 点 的轨 迹 也 是 确 定 的 , 截 动 此 4 立 函 数模 型 求 函数 解 析式 建
的轨迹是以c点 为焦点 , C 以B 为准线 的抛 物线 ( 在侧 面 线 与D 平 行 , E 由此 得 , 与c 当P 重合时 , 面过B 。 中 截 B的 点评 : 点在平 面 内运动的轨迹有 直线、 圆和 圆锥 曲 而 当截面过c时 , 。 截面也是四边形. 故选C .
抛 物 线 ; > 时 . 双 曲 线. 当e l 为
例 1 如 图 ,在 正 方 体A C B D— ABCD 中 , 侧 面 BB C 内一 动 1 P是 1C 点 ,若P 到直线B 与直线 CD的距离 C 。 相等 ,则动点J p 的轨迹所在 的曲线是
( ) . d
2025年新人教版高考数学一轮复习讲义 第七章 §7.10 立体几何中的动态、轨迹问题
所以 V=2ab≤a2+b2=1,当且仅当 a=b= 22时,等号成立.
如图,设AC,BD相交于点O,
因为BO⊥AC,BO⊥AA1,AC∩AA1=A,AC,AA1⊂平面A1ACC1, 所以 BO⊥平面 A1ACC1,因为直线 BP 与平面 A1ACC1
2π 则在此过程中动点M形成的轨迹长度为___8___.
如 图 , 设 AC 的 中 点 为 M0 , △ADE 沿 DE 翻 折 90°,此时平面A′DE⊥平面ABCD,取CD中 点P,CE中点Q,PQ中点N, 连接PQ,MP,MQ,MN,M0P,M0Q,M0N. MP=M0P=12AD=12,MQ=M0Q=12AE=12,PQ=12DE= 22,△MPQ 和△M0PQ 是等腰直角三角形,
1 2 3 4 5 6 7 8 9 10
知BP⊥平面ACN,CN⊂平面ACN,所以BP⊥CN, 所以动点Q的轨迹为线段CN, 在Rt△ABN,Rt△RAB中,∠BAN=∠ARB, 所以Rt△ABN∽Rt△RAB,
则BANB=ARBA,得 BN=12, 易得 CN= BN2+BC2=
212+12=
5 2.
题型一 平行、垂直中的动态轨迹问题
例1 如图,在棱长为a的正方体ABCD-A1B1C1D1 中,E,F,G,H,N分别是CC1,C1D1,DD1,CD, BC的中点,M在四边形EFGH边上及其内部运动,
若MN∥平面A1BD,则点M轨迹的长度是
A. 3a
B. 2a
3a C. 2
√D.
2a 2
连接HN,GN(图略), ∵在棱长为a的正方体ABCD-A1B1C1D1中,E,F,G,H,N分别是 CC1,C1D1,DD1,CD,BC的中点,则GH∥BA1,HN∥BD, 又GH⊄平面A1BD,BA1⊂平面A1BD, ∴GH∥平面A1BD, 同理可证得NH∥平面A1BD, 又GH∩HN=H,GH,HN⊂平面GHN,
立体几何中地轨迹问题
例析空间中点的轨迹问题的转化求空间图形中点的轨迹既是中学数学学习中的一个难点,又是近几年高考的一个热点,这是一类立体几何与解析几何的交汇题,既考查空间想象能力,同时又考查如何将空间几何的轨迹问题转化为平面的轨迹问题来处理的基本思想。
一.轨迹为点例1已知平面βα||,直线α⊂l ,点P l ∈,平面βα,之间的距离为8,则在β内到P 点的距离为10且到直线l 的距离为9的点的轨迹是 ( )A .一个圆 B.两条直线 C.两个点 D.四个点解析:设Q 为β内一动点,点P 在β内射影为O ,过O, l 的平面与β的交线为l ', PQ=10,∴OQ==-228106点Q 在以O 为圆心6为半径圆上,过Q 作QM l '⊥于M ,又 点Q 到直线l 的距离为9∴QM=178922=-则点Q 在以l '平行距离为17的两条平行线上 两条平行线与圆有四个交点∴这样的点Q 有四个,故答案选D 。
点评:本题以空间图形为背景,把立体几何问题转化到平面上,再用平面几何知识解决,要熟记一些平面几何点的轨迹。
二. 轨迹为线段例2. 如图,正方体1111ABCD A BC D -中,点P 在侧面11BCC B及其边界上运动,并且总保持1AP BD ⊥,则动点P 的轨迹是( )。
βαlMOQPA. 线段1B CB.线段1BCC. 1BB 中点与1CC 中点连成的线段D. BC 中点与11B C 中点连成的线段解:连结11,,AB AC B C ,易知111BD A AB ⊥所以11111,,AB BD AC BD B C BD ⊥⊥⊥,所以1BD ⊥面1ABC ,若P ∈1B C ,则AP ⊂平面1ABC ,于是1BD AP ⊥,因此动点P 的轨迹是线段1B C 。
评注:本题是由线面垂直的性质从而求出点P 的轨迹。
例3 已知圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周),若MP AM ⊥,则点P 的轨迹是________。
立体几何中的轨迹问题(总结+讲义+练习)
立体几何中的轨迹问题在立体几何中,某些点、线、面依一定的规则运动,构成各式各样的轨迹,探求空间轨迹与求平面轨迹类似,应注意几何条件,善于基本轨迹转化.对于较为复杂的轨迹,常常要分段考虑,注意特定情况下的动点的位置,然后对任意情形加以分析判定,也可转化为平面问题.对每一道轨迹命题必须特别注意轨迹的纯粹性与完备性.立体几何中的最值问题一般是指有关距离的最值、角的最值或面积的最值的问题.其一般方法有: 1、 几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值;2、 代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数的单调性、有界性,以及不等式的均值定理等,求出最值.轨迹问题【例1】 如图,在正四棱锥S -ABCD 中,E 是BC 的中点,P 点在侧面△SCD 内及其边界上运动,并且总是保持PE ⊥AC .则动点P 的轨迹与△SCD 组成的相关图形最有可能的是 ( )解析:如图,分别取CD 、SC 的中点F 、G ,连结EF 、EG 、FG 、BD .设AC 与BD 的交点为O ,连结SO ,则动点P 的轨迹是△SCD 的中位线FG .由正四棱锥可得SB ⊥AC ,EF ⊥AC .又∵EG ∥SB∴EG ⊥AC∴AC ⊥平面EFG ,∵P ∈FG ,E ∈平面EFG , ∴AC ⊥PE .另解:本题可用排除法快速求解.B 中P 在D 点这个特殊位置,显然不满足PE ⊥AC ;C 中P 点所在的轨迹与CD 平行,它与CF 成π4角,显然不满足PE ⊥AC ;D 于中P 点所在的轨迹与CD 平行,它与CF 所成的角为锐角,显然也不满足PE ⊥AC .评析:动点轨迹问题是较为新颖的一种创新命题形式,它重点体现了在解析几何与立体几何的知识交汇处设计图形.不但考查了立体几何点线面之间的位置关系,而且又能巧妙地考查求轨迹的基本方法,是表现最为活跃的一种创新题型.这类立体几何中的相关轨迹问题,如“线线垂直”问题,很在程度上是找与定直线垂直的平面,而平面间的交线往往就是动点轨迹.【例2】 (1)如图,在正四棱柱ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是CC 1、C 1D 1、DD 1、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足 时,有MN ∥平面B 1BDD 1.(2) 正方体ABCD —A 1B 1C 1D 1中,P 在侧面BCC 1B 1及其边界上运动,且总保持AP ⊥BD 1,则动点P 的轨迹是 线段B 1C .(3) 正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是棱A 1B 1,BC 上的动点,且A 1E =BF ,P 为EF 的中点,则点P 的轨迹是 线段MN (M 、N 分别为前右两面的中心).(4) 已知正方体ABCD —A 1B 1C 1D 1的棱长为1,在正方体的侧面BCC 1B 1上到点A 距离为233的点的集合形成一条曲线,那么这条曲线的形状是 ,它的长度是 .若将“在正方体的侧面BCC 1B 1上到点A 距离为23 3 的点的集合”改为“在正方体表面上与点A 距离为233的点的集合” 那么这条曲线的形状又是 ,它的长度又是 .1AC C 1AEC C 1A AB1A 1(1)(2)(3)(4)DDA .B .C .D . A【例3】 (1)(04北京)在正方体ABCD -A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是 ( D )A . A 直线B .圆C .双曲线D .抛物线 变式:若将“P 到直线BC 与直线C 1D 1的距离相等”改为“P 到直线BC 与直线C 1D 1的距离之比为1:2(或2:1)”, 则动点P 的轨迹所在的曲线是 椭圆 (双曲线). (2)(06北京)平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是 (A )A .一条直线B .一个圆C .一个椭圆D .双曲线的一支解:设l 与l 是其中的两条任意的直线,则这两条直线确定一个平面,且斜线AB 垂直这个平面,由过平面外一点有且只有一个平面与已知直线垂直可知过定点A 与AB 垂直所有直线都在这个平面内,故动点C 都在这个平面与平面α的交线上,故选A . (3)已知正方体ABCD —A 1B 1C 1D 1的棱长为1,M 在棱AB 上,且AM =13,点P 到直线A 1D 1的距离与点P 到点M 的距离的平方差为1,则点P 的轨迹为 抛物线 .(4)已知正方体ABCD —A 1B 1C 1D 1的棱长为3,长为2的线段MN 点一个端点M 在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与正方体的面所围成的几何体的体积为 π6. 【例4】 (04重庆)若三棱锥A -BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与△ABC 组成图形可能是:( D )【例5】 四棱锥P -ABCD ,AD ⊥面P AB ,BC ⊥面P AB ,底面ABCD 为梯形,AD =4,BC =8,AB =6,∠APD =∠CPB ,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分 分析:∵AD ⊥面P AB ,BC ⊥平面P AB ∴AD ∥BC 且AD ⊥P A ,CB ⊥PB ∵∠APD =∠CPB ∴tanAPD =tanCPB∴AD P A =CB PB ∴PB =2P A在平面APB 内,以AB 的中点为原点,AB 所在直线为x 轴建立平面直角坐标系,则A (-3,0)、B (3,0),设P (x ,y )(y ≠0),则(x -3)2+y 2=4[(x +3)2+y 2](y ≠0)即(x +5)2+y 2=16(y ≠0) ∴P 的轨迹是(B )BABCDA3P A BC D立体几何中的轨迹问题(教师版)1.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 与到直线B 1C 1的距离相等,则动点P 所在曲线的形状为(D ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分 简析 本题主要考查点到直线距离的概念,线面垂直及抛物线的定义.因为B 1C 1⊥面AB 1,所以PB 1就是P 到直线B 1C 1的距离,故由抛物线的定义知:动点的轨迹为抛物线的一段,从而选D .2.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为2:1,则动点P 所在曲线的形状为(B ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分3.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为1:2,则动点P 所在曲线的形状为(C ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分4.在正方体ABCD-A 1B 1C 1D 1中,E 为AA 1的中点,点P 在其对角面BB 1D 1D 内运动,若EP 总与直线AC 成等角,则点P 的轨迹有可能是(A ).A .圆或圆的一部分B .抛物线或其一部分C .双曲线或其一部分D .椭圆或其一部分 简析 由条件易知:AC 是平面BB 1D 1D 的法向量,所以EP 与直线AC 成等角,得到EP 与平面BB 1D 1D 所成的角都相等,故点P 的轨迹有可能是圆或圆的一部分.5.已知正方体ABCD A B C D -1111的棱长为a ,定点M 在棱AB 上(但不在端点A ,B 上),点P 是平面ABCD 内的动点,且点P 到直线A D 11的距离与点P 到点M 的距离的平方差为a 2,则点P 的轨迹所在曲线为(A ). A .抛物线B .双曲线C .直线D .圆简析在正方体ABCD A B C D -1111中,过P 作PF ⊥AD ,过F 作FE ⊥A 1D 1,垂足分别为F 、E ,连结PE .则PE 2=a 2+PF 2,又PE 2-PM 2=a 2,所以PM 2=PF 2,从而PM =PF ,故点P 到直线AD 与到点M 的距离相等,故点P 的轨迹是以M 为焦点,AD 为准线的抛物线.6.在正方体ABCD A B C D -1111中,点P 在侧面BCC 1B 1及其边界上运动,总有AP ⊥BD 1,则动点P 的轨迹为__________. 简析 在解题中,我们要找到运动变化中的不变因素,通常将动点聚焦到某一个平面.易证BD 1⊥面ACB 1,所以满足BD 1⊥AP 的所有点P 都在一个平面ACB 1上.而已知条件中的点P 是在侧面BCC 1B 1及其边界上运动,因此,符合条件的点P 在平面ACB 1与平面BCC 1B 1交线上,故所求的轨迹为线段B 1C .本题的解题基本思路是:利用升维,化“动”为“静”,即先找出所有点的轨迹,然后缩小到符合条件的点的轨迹.7.在正四棱锥S-ABCD 中,E 是BC 的中点,点P 在侧面∆SCD 内及其边界上运动,总有PE ⊥AC ,则动点P 的轨迹为_______________.答案 线段MN (M 、N 分别为SC 、CD 的中点)8.若A 、B 为平面α的两个定点,点P 在α外,PB ⊥α,动点C (不同于A 、B )在α内,且PC ⊥AC ,则动点C 在平面内的轨迹是________.(除去两点的圆) 9.若三棱锥A —BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与∆ABC 组成的图形可能是:(D )A A AP PP PB C B C B C B C A B C D简析 动点P 在侧面ABC 内,若点P 到AB 的距离等于到棱BC 的距离,则点P 在∠ABC 的内角平分线上.现在P 到平面BCD 的距离等于到棱AB 的距离,而P 到棱BC 的距离大于P 到底面BCD 的距离,于是,P 到棱AB 的距离小于P 到棱BC 的距离,故动点P 只能在∠ABC 的内角平分线与AB 之间的区域内.只能选D . 10.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是(B ). A .圆 B .椭圆 C .双曲线 D .抛物线解题的要领就是化空间问题为平面问题,把一些重要元素集中在某一个平面内,利 用相关的知识去解答,象平面几何知识、解析几何知识等.11.已知正方体ABCD A B C D -1111的棱长为1,在正方体的侧面BCC B 11上到点A 距离为233的点的轨迹形成一条曲线,那么这条曲线的形状是_________,它的长度为__________. 简析以B 为圆心,半径为33且圆心角为π2的圆弧,长度为36π. 12.已知长方体ABCD A B C D -1111中,AB BC ==63,,在线段BD 、A C 11上各有一点P 、Q ,PQ 上有一点M ,且PM MQ =2,则M 点轨迹图形的面积是 . 提示轨迹的图形是一个平行四边形.13.已知棱长为3的正方体ABCD A B C D -1111中,长为2的线段MN 的一个端点在DD 1上运动,另一个端点N 在底面ABCD 上运动,求MN 中点P 的轨迹与正方体的面所围成的几何体的体积.简析 由于M 、N 都是运动的,所以求的轨迹必须化“动”为“静”,结合动点P 的几何性质,连结DP ,因为MN=2,所以PD=1,因此点P 的轨迹是一个以D 为球心,1为半径的球面在正方体内的部分,所以点P 的轨迹与正方体的表面所围成的几何体的体积为球的体积的18,即1843163⨯⨯=ππ. 14.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( ) 简析:如图,设点P 在平面β内的射影是O ,则OP 是α、β的公垂线,OP=4.在β内到点P 的距离等于5的点到O 的距离等于3,可知所求点的轨迹是β内在以O 为圆心,3为半径的圆上.又在β内到直线l 的距离等于29的点的集合是两条平行直线m 、n ,它们到点O 的距离都等于32174)29(22<=-,所以直线m 、n 与这个圆均相交,共有四个交点.因此所求点的轨迹是四个点,故选C .16.在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分简析:因为⊥AD 面PAB ,⊥BC 面PAB ,所以AD//BC ,且︒=∠=∠90CBP DAP . 又8BC ,4AD ,CPB APD ==∠=∠,可得CPB tan PB CB PA AD APD tan ∠===∠,即得2ADCBPA PB == 在平面PAB 内,以AB 所在直线为x 轴,AB 中点O 为坐标原点,建立平面直角坐标系,则A (-3,0)、B(3,0).设点P (x ,y ),则有2y )3x (y )3x (|PA ||PB |2222=+++-=,整理得09x 10y x 22=+++由于点P 不在直线AB 上,故此轨迹为一个不完整的圆,选B .17.如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点.且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点简析:因为PC AC ⊥,且PC 在α内的射影为BC ,所以BC AC ⊥,即︒=∠90ACB .所以点C 的轨迹是以AB 为直径的圆且去掉A 、B 两点,故选B .18.如图,在正方体1111D C B A ABCD -中,P 是侧面1BC 内一动点,若P 到直线BC 与直线11D C 的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C .双曲线D .抛物线简析:因为P 到11D C 的距离即为P 到1C 的距离,所以在面1BC 内,P 到定点1C 的距离与P 到定直线BC 的距离相等.由圆锥曲线的定义知动点P 的轨迹为抛物线,故选D .19.已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A .抛物线B .双曲线C .椭圆D .直线简析:如图4,以A 为原点,AB 为x 轴、AD 为y 轴,建立平面直角坐标系.设P (x ,y ),作AD PE ⊥于E 、11D A PF ⊥于F ,连结EF ,易知1x |EF ||PE ||PF |2222+=+=又作CD PN ⊥于N ,则|1y ||PN |-=.依题意|PN ||PF |=, 即|1y |1x 2-=+,化简得0y 2y x 22=+- 故动点P 的轨迹为双曲线,选B .20.如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得△ABP的面积为定值,则动点P的轨迹是()(A)圆(B)椭圆(C)一条直线(D)两条平行直线分析:由于线段AB是定长线段,而△ABP的面积为定值,所以动点P到线段AB 的距离也是定值.由此可知空间点P在以AB为轴的圆柱侧面上.又P在平面内运动,所以这个问题相当于一个平面去斜切一个圆柱(AB是平面的斜线段),得到的切痕是椭圆.P的轨迹就是圆柱侧面与平面a的交线.21.如图,动点P在正方体1111ABCD A B C D-的对角线1BD上.过点P作垂直于平面11BB D D的直线,与正方体表面相交于M N,.设BP x=,MN y=,则函数()y f x=的图象大致是()分析:将线段MN投影到平面ABCD内,易得y为x一次函数.22.已知异面直线a,b成︒60角,公垂线段MN的长等于2,线段AB两个端点A、B分别在a,b上移动,且线段AB长等于4,求线段AB中点的轨迹方程.图5简析:如图5,易知线段AB的中点P在公垂线段MN的中垂面α上,直线'a、'b为平面α内过MN的中点O分别平行于a、b的直线,'a'AA⊥于'A,'b'BB⊥于'B,则P'B'AAB=⋂,且P也为'B'A的中点.由已知MN=2,AB=4,易知,2AP,1'AA==得32'B'A=.则问题转化为求长等于32的线段'B'A的两个端点'A、'B分别在'a、'b上移动时其中点P的轨迹.现以'OB'A∠的角平分线为x轴,O为原点建立如图6所示的平面直角坐标系.A BCDMNPA1 B1C1D1yxOyxOyxOyxO图6设)y ,x (P ,n |'OB |,m |'OA |==, 则)n 21,n 23('B ),m 21,m 23('A - )n m (41y ),n m (43x -=+=222)32()n m (41)n m (43=++- 消去m 、n ,得线段AB 的中点P 的轨迹为椭圆,其方程为1y 9x 22=+.点评:例5和例6分别将立体几何与解析几何中的双曲线与椭圆巧妙地整合在一起,相互交汇和渗透,有利于培养运用多学科知识解决问题的能力.立体几何中的轨迹问题1.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 与到直线B 1C 1的距离相等,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分2.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为2:1,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分3.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为1:2,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分4.在正方体ABCD-A 1B 1C 1D 1中,E 为AA 1的中点,点P 在其对角面BB 1D 1D 内运动,若EP 总与直线AC 成等角,则点P 的轨迹有可能是 ( ) A .圆或圆的一部分 B .抛物线或其一部分 C .双曲线或其一部分 D .椭圆或其一部分 5.已知正方体ABCD A B C D -1111的棱长为a ,定点M 在棱AB 上(但不在端点A ,B 上),点P 是平面ABCD 内的动点,且点P 到直线A D 11的距离与点P 到点M 的距离的平方差为a 2,则点P 的轨迹所在曲线为( ) A .抛物线B .双曲线C .直线D .圆6.若三棱锥A —BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与∆ABC 组成的图形可能是 ( ) A A AP PP PB C B C B C B CA B C DA B C D 7.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是 ( )A .圆B .椭圆C .双曲线D .抛物线8.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( )A .一个圆B .两条平行直线C .四个点D .两个点9.在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( ) A .圆 B .不完整的圆 C .抛物线 D .抛物线的一部分 10.如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点.且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点11.已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A .抛物线B .双曲线C .椭圆D .直线12.如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )A .圆B .椭圆C .一条直线D .两条平行直线 13.如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.设BP x =,MN y =,则函数()y f x =的图象大致是( )14.在正方体ABCD A B C D -1111中,点P 在侧面BCC 1B 1及其边界上运动,总有AP ⊥BD 1,则动点P 的轨迹为________.15.在正四棱锥S-ABCD 中,E 是BC 的中点,点P 在侧面∆SCD 内及其边界上运动,总有PE ⊥AC ,则动点P 的轨迹为_______________.16.若A 、B 为平面α的两个定点,点P 在α外,PB ⊥α,动点C (不同于A 、B )在α内,且PC ⊥AC ,则动点C 在平面内的轨迹是________.17.已知正方体ABCD A B C D -1111的棱长为1,在正方体的侧面BCC B 11上到点A 距离为233的点的轨迹形成一条曲线,那么这条曲线的形状是_________,它的长度为__________.18.已知长方体ABCD A B C D -1111中,AB BC ==63,,在线段BD 、A C 11上各有一点P 、Q ,PQ 上有一点M ,且PM MQ =2,则M 点轨迹图形的面积是 .19.已知棱长为3的正方体ABCD A B C D -1111中,长为2的线段MN 的一个端点在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 中点P 的轨迹与正方体的面所围成的几何体的体积是 .20.已知异面直线a ,b 成︒60角,公垂线段MN 的长等于2,线段AB 两个端点A 、B 分别在a ,b 上移动,且线段AB 长等于4,求线段AB 中点的轨迹方程.ABC D MNP A 1B 1C 1D 1 yxOyxOyxOyx O。
立体几何中轨迹问题
立体几何中的轨迹问题立体几何是考查学生空间想象能力和转化能力,在立体几何中出现了一些轨迹问题,本人将这些问题作了如下归类,以供参考。
一、轨迹是抛物线例1.2004年高考北京卷(文),如图,在正方体abcd-a1b1c1d1中,p是侧面bb1c1c内一动点,若点p到直线bc与直线c1d1的距离相等,则动点p的轨迹所在的曲线是()a.直线b.圆c.双曲线d.抛物线解:连接pc1,∵d1c1⊥面bb1c1c,又pc?奂面bb1c1c,∴d1c1⊥pc1,即可得线段pc1长为点p到c1d1的距离,原题意可转化为:在平面bb1c1c中,动点p到定点c1的距离与点p到定直线bc(点c1不在直线bc上)的距离相等.由抛物线定义可知:点p的轨迹所在的曲线是抛物线.例2.2004年高考北京卷(理),正方体abcd-a1b1c1d1的棱长为1,点m在棱ab上,且am=,点p是平面abcd上的动点,且点p到直线a1d1的距离与到点m的距离的平方差为1,则点p的轨迹是()a.抛物线b.双曲线c.直线d.以上都不对解:在正方形add1a1中过点e作ef⊥a1d1交ad于f,连接pf,pe,pm. ∵pe为点p到a1d1的距离∴pe⊥a1d1∴a1d1⊥efp面,又ad∥a1d1∴pf⊥ad即pf为点p到直线ad的距离.由条件和所作不难知ef⊥fp.pe2-pm2=ef2+pf2-pm2=1+pf2-pm2=1即:pf=pm,同样由抛物线定义可知:点p的轨迹所在的曲线是抛物线.二、轨迹是椭圆例3.由2004年高考北京卷,(文4)得变题1,在正方体abcd-a1b1c1d1中,p是侧面bb1c1c内一动点,若点p到直线bc的距离是点p到直线c1d1的距离2倍,则动点p的轨迹是()a.线段b.椭圆的一部分c.双曲线的一部分d.抛物线的一部分解:变为在平面bb1c1c中,动点p到定点c1的距离与点p到定直线bc(点c1不在直线bc上)的距离之比为1∶2.由椭圆第二定义可知:点p的轨迹所在的曲线是椭圆(在正方形bb1c1c内),且离心率为.故本题选b.三、轨迹是双曲线例4.变题2,在正方体abcd-a1b1c1d1中,p是侧面bb1c1c内一动点,若点p到直线bc的距离是点p到直线c1d1的距离一半,则动点p的轨迹是双曲线的一部分,且离心率为2.四、轨迹是线段例5.变题3,如图,在正方体abcd-a1b1c1d1中,p是侧面bb1c1c 内一动点,且始终满足ap⊥d1b,则动点p的轨迹所在的曲线是() a.线段 b.椭圆的一部分c.双曲线的一部分d.抛物线的一部分解:连接ac,ab1,b1c,易证bd1⊥面ab1c,∴点p在线段b1c动,才能满足ap⊥d1b.故本题选a.例6.(2005年5月苏州市高三教学调研测试)如图,△adp为正三角形,四边形abcd为正方形,平面pad⊥平面abcd.m为平面abcd内的一动点,且满足mp=mc.点m在正方形abcd内的轨迹为(o为正方形abcd的中心)()解:空间中到p、c两点距离相等的点应在过线段pc中点且垂直于此线段pc的平面α上。
2023年高考数学----轨迹问题规律方法与典型例题讲解
2023年高考数学----轨迹问题规律方法与典型例题讲解【规律方法】解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.【典型例题】例1.(2022·北京·昌平一中高三阶段练习)设正方体1111ABCD A B C D −的棱长为1,E ,F 分别为AB ,1BD 的中点,点M 在正方体的表面上运动,且满足FM DE ⊥,则下列命题:①点M 可以是棱AD 的中点; ②点M 的轨迹是菱形; ③点M 轨迹的长度为2④点M . 其中正确的命题个数为( ) A .1 B .2 C .3 D .4【答案】B【解析】连接,AC BD ,交于O ,则O 为,AC BD 中点,因为F 为1BD 的中点,所以1//FO DD , 由正方体的性质可知1DD ⊥平面ABCD , 所以FO ⊥平面ABCD , 因为DE ⊂平面ABCD , 所以FO DE ⊥,过点O 作PQ DE ⊥,分别交,BC AD 于,P Q ,过点,P Q 分别作11//,//PH BB QG AA ,分别交1111,B C A D 于点,H G ,连接GH , 所以,PQGH 四点共面,且//,GQ PH GQ PH =, 所以,四边形PQGH 为平行四边形, 因为1AA ⊥平面ABCD ,所以PH ⊥平面ABCD ,PQ ⊂平面ABCD , 所以PH PQ ⊥所以,四边形PQGH 为矩形,因为PQ FO O =,,PQ FO ⊂平面PQGH , 所以DE ⊥平面PQGH ,因为点M 在正方体的表面上运动,且满足FM DE ⊥ 所以,当FM ⊂面PQGH 时,始终有FM DE ⊥, 所以,点M 的轨迹是矩形PQGH ,如下图,因为2DQO QDE QDE AED π∠+∠=∠+∠=,所以,DQO AED ∠=∠, 所以,AQO BED ∠=∠, 因为4OAQ EBD π∠=∠=,所以AOQ △∽BDE △,所以AQ AO BE BD =,即12AQ=,即14AQ = 所以14CP AQ ==,PQ =, 所以,点M 不可能是棱AD 的中点,点M 的轨迹是矩形PQGH ,轨迹长度为矩形PQGH的周长212⎫⎪⎪⎝⎭,1 故正确的命题为③④.个数为2个. 故选:B例2.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D −的边长为2,点E ,F 分别为棱CD ,1DD 的中点,点P 为四边形11CDD C 内(包括边界)的一动点,且满足1B P ∥平面BEF ,则点P 的轨迹长为( )A B .2CD .1【答案】A【解析】画出示意图如下:取1CC 中点N ,取11D C 中点M ,连接11,,,B M B N MN ME ,则11,ME B B ME B B =∥,则四边形1MEBB 为平行四边形,所以1B M ∥BE , 连接1D C ,则11,MN D C EF D C ∥∥,故MN ∥EF ,又1B M MN M BE EF E ⋂=⋂=, ,1,B M MN ⊂平面1B MN ,BE EF ⊂平面BEF, 所以平面BEF ∥平面B 1MN ,平面1B MN ∩平面11CDD C =MN ,所以P 点轨迹即为MN ,长度为11||||2MN D C == 证明:因为平面BEF ∥平面1B MN ,P 点是MN 上的动点,故1B P ⊂平面1B MN ,所以1B P ∥平面BEF ,满足题意. 故选:A .例3.(2022·全国·模拟预测(理))如图,在四棱锥P ABCD −中,底面ABCD 是边长为2的正方形,PA ⊥平面ABCD ,且2PA =,点E ,F ,G 分别为棱AB ,AD ,PC 的中点,下列说法错误的是( )A .AG ⊥平面PBDB .直线FG 和直线AC 所成的角为π3C .过点E ,F ,G 的平面截四棱锥P ABCD −所得的截面为五边形D .当点T 在平面ABCD 内运动,且满足AGT △的面积为12时,动点T 的轨迹是圆 【答案】D【解析】可将四棱锥P ABCD −补形成正方体ABCD PB CD ''−,如图①,直线AG 即体对角线AC ',易证AC '⊥平面PDB ,A 选项正确; 如图②,取CD 的中点H ,连接FH ,可知FH AC //,所以GFH ∠ (或其补角)与直线FG 和直线AC 所成的角相同,在FGH 中,FG GH FG ==,所以π3GFH ∠=,B 选项正确;如图③,延长EF 交直线CD 于点H ,交直线BC 于点I ,连接GI 交PB 于点M ,连接GH 交PD 于点N ,则五边形EFNGM 即为平面EFG 截 四棱锥P ABCD −所得的截面,C 选项正确;当12AGT S =△时,因为AG 所以点T 到AG 点T 在以AC 为轴,底面半径r =T 在平面ABCD 上,所以点T 的轨迹是椭圆.D 选项错误. 故选:D例4.(2022·浙江温州·高三开学考试)如图,正方体1AC ,P 为平面11B BD 内一动点,设二面角11A BD P −−的大小为α,直线1A P 与平面11BD A 所成角的大小为β.若cos sin βα=,则点P 的轨迹是( )A .圆B .抛物线C .椭圆D .双曲线【答案】D【解析】连接AC 交BD 于O ,取11B D 中点1O ,连接1OO以O 为原点,分别以OA 、OB 、1OO 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图:令正方体边长为2,则11(,)A C A B ,(0,,)P y z =面11BD A 的一个法向量为1(2,AB =−,面11BB D 的一个法向量为(AC =− 则1(co 1s 2,AC AB −==,故二面角111A BD B −−的大小为π3又二面角11A BD P −−的大小(]0,παÎ,则π3α=或2π3α=由cos sin βα=,,可得π6β=又1(,)y z A P =−1111(1sin 2A P AB A P AB β⋅−===⋅整理得240z z +++= 即3)1y z z =−+,是双曲线. 故选:D例5.(2022·全国·高三专题练习)如图,正方体ABCD A B C D −''''中,M 为BC 边的中点,点P 在底面A B C D ''''和侧面CDD C ''上运动并且使MAC PAC ''∠=∠,那么点P 的轨迹是( )A .两段圆弧B .两段椭圆弧C .两段双曲线弧D .两段抛物线弧【答案】C【解析】由P 点的轨迹实际是一个正圆锥面和两个平面的交线,其中这个正圆锥面的中心轴即为AC ',顶点为A ,顶角的一半即为MAC '∠, 以A 点为坐标原点建立空间直角坐标系,则1(0,0,1),(1,1,0),(,1,1)2AC M ,可得1(1,1,1),(,1,0)2ACAM '=−=,1111cos MAC ⨯+⨯'∠===,设AC '与底面A BC D ''''所成的角为θ,则A C cos AC θ''===>',所以MAC θ'<∠,''''的交线是双曲线弧,所以该正圆锥面和底面A B C D同理可知,P点在平面CDD C''的交线是双曲线弧,故选:C.。
立体几何中专题——轨迹问题
立体几何中专题——轨迹问题 一、 利用空间运动的观点来求轨迹(掌握空间中常见轨迹的形成原理)1、空间两条异面直线m 和n ,动点P 在直线m 上运动,动点Q 在直线n 上运动,求PQ 中点的轨迹。
2、直线PA 是平面M 的一条斜线,且与平面M 成α角,斜足为A ,动直线PB 过点P 且与直线PA 成β角,交平面M 于点B ,求点B 的轨迹。
3、已知直平行六面体1111D C B A ABCD -的各条棱长均为3,︒=∠60BAC ,长为2的线段MN 的一个端点M 在1DD 上运动,另一端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与共一顶点D 的三个面所围成的几何体的体积为( )(A )92π (B )94π (C )3π (D )34π 4、如图,已知AB 是平面α的斜线段,A 为斜足,若点P 在平面α内运动,满足BP AB ⊥,则动点P 的轨迹是( )A 、圆B 、椭圆C 、一条直线D 、两条平行线5、如图,已知AB 是平面α的斜线段,A 为斜足,若点P 在平面α内运动,使得ABP ∆的面积为定值,则动点P 的轨迹是( )A 、圆B 、椭圆C 、一条直线D 、两条平行线6、在正方体1111D C B A ABCD -中,M 是1CC 的中点,若点P 在11ABB A 所在的平面上,满足11PDB MDB ∠=∠,则点P 的轨迹是:( )(A )圆 (B )椭圆 (C )双曲线 (D )抛物线7、在正方体1111D C B A ABCD -,E 是1AA 的中点, 点P 在侧面11B BDD上运动,若EP 总与直线AC 成等角,则点P 的轨迹( )(A )圆或其一部分 (B )椭圆或其一部分(C )双曲线或其一部分 (D )抛物线或其一部分8、在正方体1111D C B A ABCD -中, 点P 在侧面11B BCC 及其边界上运动, 并总是保持1BD AP ⊥, 则动点P 的轨迹( )(A )线段C B 1 (B )线段1BC(C )线段1BB 与1CC 的中点连成的线段(D )线段BC 与11C B 的中点连成的线段9、如图,在正方体1111D C B A ABCD -中,,点M 是棱CD 的中点,点0是侧面D D AA 11的中心,若点P 在侧面11B BCC 及其边界上运动,并且保持OP ⊥AM ,则动点P 的轨迹是( )(A)线段C B 1. (B)线段1BC .(C)线段1BB . (D)线段BC .10、如图,在正方形ABCD 中,E ,F 分别为线段AD ,BC 上的点,∠ABE =20°,∠CDF =30°.将△ABE 绕直线BE 、△CDF绕直线CD 各自独立旋转一周,则在所有旋转过程中,直线AB与直线DF 所成角的最大值为_________.二、 利用解析的方法求空间的轨迹(空间问题平面化) 1、在正方体1111D C B A ABCD -中, 点P 在侧面11B BCC 的一个动点,P 到直线BC 与直线11D C 的距离相等,则动点P 的轨迹所在曲线为( )(A )圆 (B )直线 (C )双曲线 (D )抛物线2、P 是正四面体ABC S -的面SBC 上一点,P 到面ABC 的距离与到点S 距离相等,则点P 的轨迹所在曲线为( )(A )圆 (B )椭圆 (C )双曲线 (D )抛物线3、在正方体1111D C B A ABCD -中, 棱长为1,点P 在平面AC 内的动点,P 到直线11D A 的距离等于P 到CD 的距离,则动点P 的轨迹所在曲线是( )(A )椭圆 (B )直线 (C )双曲线 (D )抛物线若改为P 到直线D A 1的距离等于P 到CD 的距离,则动点P 的轨迹所在曲线呢?4、在梯形ABCD 中,E 、F 分别为底边AB 、CD 的中点,把四边形AEFD 沿直线EF 折起后所在平面记为α,α∈P ,设PB 、PC 与α所成角分别为21θθ=,则点P 的轨迹为( )A 、直线B 、圆C 、椭圆D 、抛物线(第17题)。
最新立体几何中的轨迹问题(总结+讲义+练习)
立体几何中的轨迹问题在立体几何中,某些点、线、面依一定的规则运动,构成各式各样的轨迹,探求空间轨迹与求平面轨迹类似,应注意几何条件,善于基本轨迹转化.对于较为复杂的轨迹,常常要分段考虑,注意特定情况下的动点的位置,然后对任意情形加以分析判定,也可转化为平面问题.对每一道轨迹命题必须特别注意轨迹的纯粹性与完备性.立体几何中的最值问题一般是指有关距离的最值、角的最值或面积的最值的问题.其一般方法有: 1、 几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值;2、 代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数的单调性、有界性,以及不等式的均值定理等,求出最值.轨迹问题【例1】 如图,在正四棱锥S -ABCD 中,E 是BC 的中点,P 点在侧面△SCD 内及其边界上运动,并且总是保持PE ⊥AC .则动点P 的轨迹与△SCD 组成的相关图形最有可能的是 ( )解析:如图,分别取CD 、SC 的中点F 、G ,连结EF 、EG 、FG 、BD .设AC 与BD 的交点为O ,连结SO ,则动点P 的轨迹是△SCD 的中位线FG .由正四棱锥可得SB ⊥AC ,EF ⊥AC .又∵EG ∥SB∴EG ⊥AC∴AC ⊥平面EFG ,∵P ∈FG ,E ∈平面EFG , ∴AC ⊥PE .另解:本题可用排除法快速求解.B 中P 在D 点这个特殊位置,显然不满足PE ⊥AC ;C 中P 点所在的轨迹与CD 平行,它与CF 成π4角,显然不满足PE ⊥AC ;D 于中P 点所在的轨迹与CD 平行,它与CF 所成的角为锐角,显然也不满足PE ⊥AC .评析:动点轨迹问题是较为新颖的一种创新命题形式,它重点体现了在解析几何与立体几何的知识交汇处设计图形.不但考查了立体几何点线面之间的位置关系,而且又能巧妙地考查求轨迹的基本方法,是表现最为活跃的一种创新题型.这类立体几何中的相关轨迹问题,如“线线垂直”问题,很在程度上是找与定直线垂直的平面,而平面间的交线往往就是动点轨迹.【例2】 (1)如图,在正四棱柱ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是CC 1、C 1D 1、DD 1、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足 时,有MN ∥平面B 1BDD 1.(2) 正方体ABCD —A 1B 1C 1D 1中,P 在侧面BCC 1B 1及其边界上运动,且总保持AP ⊥BD 1,则动点P 的轨迹是 线段B 1C .(3) 正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是棱A 1B 1,BC 上的动点,且A 1E =BF ,P 为EF 的中点,则点P 的轨迹是 线段MN (M 、N 分别为前右两面的中心).(4) 已知正方体ABCD —A 1B 1C 1D 1的棱长为1,在正方体的侧面BCC 1B 1上到点A 距离为233的点的集合形成一条曲线,那么这条曲线的形状是 ,它的长度是 .若将“在正方体的侧面BCC 1B 1上到点A 距离为23 3 的点的集合”改为“在正方体表面上与点A 距离为233的点的集合” 那么这条曲线的形状又是 ,它的长度又是 .1AC C 1AEC C 1A AB1A 1(1)(2)(3)(4)DDA .B .C .D . A【例3】 (1)(04北京)在正方体ABCD -A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是 ( D )A . A 直线B .圆C .双曲线D .抛物线 变式:若将“P 到直线BC 与直线C 1D 1的距离相等”改为“P 到直线BC 与直线C 1D 1的距离之比为1:2(或2:1)”, 则动点P 的轨迹所在的曲线是 椭圆 (双曲线). (2)(06北京)平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是 (A )A .一条直线B .一个圆C .一个椭圆D .双曲线的一支解:设l 与l 是其中的两条任意的直线,则这两条直线确定一个平面,且斜线AB 垂直这个平面,由过平面外一点有且只有一个平面与已知直线垂直可知过定点A 与AB 垂直所有直线都在这个平面内,故动点C 都在这个平面与平面α的交线上,故选A . (3)已知正方体ABCD —A 1B 1C 1D 1的棱长为1,M 在棱AB 上,且AM =13,点P 到直线A 1D 1的距离与点P 到点M 的距离的平方差为1,则点P 的轨迹为 抛物线 .(4)已知正方体ABCD —A 1B 1C 1D 1的棱长为3,长为2的线段MN 点一个端点M 在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与正方体的面所围成的几何体的体积为 π6. 【例4】 (04重庆)若三棱锥A -BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与△ABC 组成图形可能是:( D )【例5】 四棱锥P -ABCD ,AD ⊥面P AB ,BC ⊥面P AB ,底面ABCD 为梯形,AD =4,BC =8,AB =6,∠APD =∠CPB ,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分 分析:∵AD ⊥面P AB ,BC ⊥平面P AB ∴AD ∥BC 且AD ⊥P A ,CB ⊥PB ∵∠APD =∠CPB ∴tanAPD =tanCPB∴AD P A =CB PB ∴PB =2P A在平面APB 内,以AB 的中点为原点,AB 所在直线为x 轴建立平面直角坐标系,则A (-3,0)、B (3,0),设P (x ,y )(y ≠0),则(x -3)2+y 2=4[(x +3)2+y 2](y ≠0)即(x +5)2+y 2=16(y ≠0) ∴P 的轨迹是(B )BABCDAB1A lAB Cα A B CD D 1 C 1B 1A 1 M PABCDD 1 C 1 B 1 A 1 M N3 323P A BC D立体几何中的轨迹问题(教师版)1.在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB与到直线B1C1的距离相等,则动点P所在曲线的形状为(D).2.在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB的距离与到直线B1C1的距离之比为2:1,则动点P所在曲线的形状为(B).A.线段B.一段椭圆弧C.双曲线的一部分D.抛物线的一部分3.在正方体ABCD-A1B1C1D1的侧面AB1内有一点P到直线AB的距离与到直线B1C1的距离之比为1:2,则动点P所在曲线的形状为(C).A.线段B.一段椭圆弧C.双曲线的一部分D.抛物线的一部分4.在正方体ABCD-A1B1C1D1中,E为AA1的中点,点P在其对角面BB1D1D内运动,若EP总与直线AC成等角,则点P的轨迹有可能是(A).A.圆或圆的一部分B.抛物线或其一部分C.双曲线或其一部分D.椭圆或其一部分简析由条件易知:AC是平面BB1D1D的法向量,所以EP与直线AC成等角,得到EP与平面BB1D1D 所成的角都相等,故点P的轨迹有可能是圆或圆的一部分.5a,定点M在棱AB上(但不在端点A,B上),点P是平面ABCD内的动点,且点P P到点M的距离的平方差为a2,则点P的轨迹所在曲线为(A).A.抛物线B.双曲线C.直线D.圆连结PE.则PE2=a2+PF2,又PE2-PM2=a2,所以PM2=PF2,从而PM=PF,故点P到直线AD与到点M的距离相等,故点P的轨迹是以M为焦点,AD为准线的抛物线.6P在侧面BCC1B1及其边界上运动,总有1,则动点P的轨迹为的轨迹为_______________.答案线段MN(M、N分别为SC、CD8.若A、B P C(不同于A、B,则动点C在平面内的轨迹是________.(除去两点的圆)A—BCD的侧面ABC内一动点P到底面BCD的距离与到棱AB的距离相等,则动点P的轨迹与组成的图形可能是:(D)A A AP PP PB C B C B C B C A B C D简析 动点P 在侧面ABC 内,若点P 到AB 的距离等于到棱BC 的距离,则点P 在∠ABC 的内角平分线上.现在P 到平面BCD 的距离等于到棱AB 的距离,而P 到棱BC 的距离大于P 到底面BCD 的距离,于是,P 到棱AB 的距离小于P 到棱BC 的距离,故动点P 只能在∠ABC 的内角平分线与AB 之间的区域内.只能选D . 10.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是(B ). A .圆 B .椭圆 C .双曲线 D .抛物线解题的要领就是化空间问题为平面问题,把一些重要元素集中在某一个平面内,利 用相关的知识去解答,象平面几何知识、解析几何知识等.11.已知正方体ABCD A B C D -1111的棱长为1,在正方体的侧面BCC B 11上到点A 距离为233的点的轨迹形成一条曲线,那么这条曲线的形状是_________,它的长度为__________. 简析以B 为圆心,半径为33且圆心角为π2的圆弧,长度为36π. 12.已知长方体ABCD A B C D -1111中,AB BC ==63,,在线段BD 、A C 11上各有一点P 、Q ,PQ 上有一点M ,且PM MQ =2,则M 点轨迹图形的面积是 . 提示轨迹的图形是一个平行四边形.13.已知棱长为3的正方体ABCD A B C D -1111中,长为2的线段MN 的一个端点在DD 1上运动,另一个端点N 在底面ABCD 上运动,求MN 中点P 的轨迹与正方体的面所围成的几何体的体积.简析 由于M 、N 都是运动的,所以求的轨迹必须化“动”为“静”,结合动点P 的几何性质,连结DP ,因为MN=2,所以PD=1,因此点P 的轨迹是一个以D 为球心,1为半径的球面在正方体内的部分,所以点P 的轨迹与正方体的表面所围成的几何体的体积为球的体积的18,即1843163⨯⨯=ππ.14.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( ) 简析:如图,设点P 在平面β内的射影是O ,则OP 是α、β的公垂线,OP=4.在β内到点P 的距离等于5的点到O 的距离等于3,可知所求点的轨迹是β内在以O 为圆心,3为半径的圆上.又在β内到直线l 的距离等于29的点的集合是两条平行直线m 、n ,它们到点O 的距离都等于32174)29(22<=-,所以直线m 、n 与这个圆均相交,共有四个交点.因此所求点的轨迹是四个点,故选C .16.在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分简析:因为⊥AD 面PAB ,⊥BC 面PAB ,所以AD//BC ,且︒=∠=∠90CBP DAP . 又8BC ,4AD ,CPB APD ==∠=∠,可得CPB tan PB CB PA AD APD tan ∠===∠,即得2ADCBPA PB == 在平面PAB 内,以AB 所在直线为x 轴,AB 中点O 为坐标原点,建立平面直角坐标系,则A (-3,0)、B(3,0).设点P (x ,y ),则有2y )3x (y )3x (|PA ||PB |2222=+++-=,整理得09x 10y x 22=+++由于点P 不在直线AB 上,故此轨迹为一个不完整的圆,选B .17.如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点.且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点简析:因为PC AC ⊥,且PC 在α内的射影为BC ,所以BC AC ⊥,即︒=∠90ACB .所以点C 的轨迹是以AB 为直径的圆且去掉A 、B 两点,故选B .18.如图,在正方体1111D C B A ABCD -中,P 是侧面1BC 内一动点,若P 到直线BC 与直线11D C 的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C .双曲线D .抛物线简析:因为P 到11D C 的距离即为P 到1C 的距离,所以在面1BC 内,P 到定点1C 的距离与P 到定直线BC 的距离相等.由圆锥曲线的定义知动点P 的轨迹为抛物线,故选D .19.已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A .抛物线B .双曲线C .椭圆D .直线简析:如图4,以A 为原点,AB 为x 轴、AD 为y 轴,建立平面直角坐标系.设P (x ,y ),作AD PE ⊥于E 、11D A PF ⊥于F ,连结EF ,易知1x |EF ||PE ||PF |2222+=+=又作CD PN ⊥于N ,则|1y ||PN |-=.依题意|PN ||PF |=,即|1y|1x2-=+,化简得0y2yx22=+-故动点P的轨迹为双曲线,选B.20.如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得△ABP的面积为定值,则动点P的轨迹是()(A)圆(B)椭圆(C)一条直线(D)两条平行直线分析:由于线段AB是定长线段,而△ABP的面积为定值,所以动点P到线段AB的距离也是定值.由此可知空间点P在以AB为轴的圆柱侧面上.又P在平面内运动,所以这个问题相当于一个平面去斜切一个圆柱(AB是平面的斜线段),得到的切痕是椭圆.P的轨迹就是圆柱侧面与平面a的交线.21.如图,动点P在正方体1111ABCD A B C D-的对角线1BD上.过点P作垂直于平面11BB D D的直线,与正方体表面相交于M N,.设BP x=,MN y=,则函数()y f x=的图象大致是()分析:将线段MN投影到平面ABCD内,易得y为x一次函数.22.已知异面直线a,b成︒60角,公垂线段MN的长等于2,线段AB两个端点A、B分别在a,b上移动,且线段AB长等于4,求线段AB中点的轨迹方程.图5简析:如图5,易知线段AB的中点P在公垂线段MN的中垂面α上,直线'a、'b为平面α内过MN的中点O分别平行于a、b的直线,'a'AA⊥于'A,'b'BB⊥于'B,则P'B'AAB=⋂,且P也为'B'A的中点.由已知MN=2,AB=4,易知,2AP,1'AA==得32'B'A=.则问题转化为求长等于32的线段'B'A的两个端点'A、'B分别在'a、'b上移动时其中点P的轨迹.现以'OB'A∠的角平分线为x轴,O为原点建立如图6所示的平面直角坐标系.A BCDMNPA1 B1C1D1yxOyxOyxOyxO图6设)y ,x (P ,n |'OB |,m |'OA |==, 则)n 21,n 23('B ),m 21,m 23('A - )n m (41y ),n m (43x -=+=222)32()n m (41)n m (43=++- 消去m 、n ,得线段AB 的中点P 的轨迹为椭圆,其方程为1y 9x 22=+.点评:例5和例6分别将立体几何与解析几何中的双曲线与椭圆巧妙地整合在一起,相互交汇和渗透,有利于培养运用多学科知识解决问题的能力.立体几何中的轨迹问题1.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 与到直线B 1C 1的距离相等,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分2.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为2:1,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分3.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为1:2,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分4.在正方体ABCD-A 1B 1C 1D 1中,E 为AA 1的中点,点P 在其对角面BB 1D 1D 内运动,若EP 总与直线AC 成等角,则点P 的轨迹有可能是 ( ) A .圆或圆的一部分 B .抛物线或其一部分 C .双曲线或其一部分 D .椭圆或其一部分5a ,定点M 在棱AB 上(但不在端点A ,B 上),点P 是平面ABCD内的动点,且点P P 到点M 的距离的平方差为a 2,则点P 的轨迹所在曲线为( ) A .抛物线 B .双曲线 C .直线 D .圆A —BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与组成的图形可能是( )A A AB C B C B C B CA B C DA B C D 7.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是 ( )A .圆B .椭圆C .双曲线D .抛物线8.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( )A .一个圆B .两条平行直线C .四个点D .两个点9.在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( ) A .圆 B .不完整的圆 C .抛物线 D .抛物线的一部分10.如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点.且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点11.已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A .抛物线B .双曲线C .椭圆D .直线12.如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )A .圆B .椭圆C .一条直线D .两条平行直线 13.如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.设BP x =,MN y =,则函数()y f x =的图象大致是( )14.在正方体ABCD A B C D -1111中,点P 在侧面BCC 1B 1及其边界上运动,总有AP ⊥BD 1,则动点P 的轨迹为________.15.在正四棱锥S-ABCD 中,E 是BC 的中点,点P 在侧面∆SCD 内及其边界上运动,总有PE ⊥AC ,则动点P 的轨迹为_______________.16.若A 、B 为平面α的两个定点,点P 在α外,PB ⊥α,动点C (不同于A 、B )在α内,且PC ⊥AC ,则动点C 在平面内的轨迹是________.17.已知正方体ABCD A B C D -1111的棱长为1,在正方体的侧面BCC B 11上到点A 距离为233的点的轨迹形成一条曲线,那么这条曲线的形状是_________,它的长度为__________.18.已知长方体ABCD A B C D -1111中,AB BC ==63,,在线段BD 、A C 11上各有一点P 、Q ,PQ 上有一点M ,且PM MQ =2,则M 点轨迹图形的面积是 .A BC D MNP A 1B 1C 1D 1 yxOyOxOyx O19.已知棱长为3的正方体ABCD A B C D -1111中,长为2的线段MN 的一个端点在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 中点P 的轨迹与正方体的面所围成的几何体的体积是 .20.已知异面直线a ,b 成︒60角,公垂线段MN 的长等于2,线段AB 两个端点A 、B 分别在a ,b 上移动,且线段AB 长等于4,求线段AB 中点的轨迹方程.。
与立体几何有关的轨迹问题
如 图 5 ,已 知 正 方 体
: 二 :
A B C D
AB D- A B C D 的棱 长 为 1 点 M C - ,
B
在 A上且 M -Q 平 棱 l ,a= ̄ 是 面 B ,
A C 内 的 动 点 , 点 Q 到 直 线 B D 若
A。 的 距 离 与 点 Q 到 点 M 的 距 离 D 的平 方 差 为 l ,则 点 Q 的 轨 迹 为( ) . A. 物 线 抛 B 双 曲 线 . C 椭 圆 .
・
名师专题讲座
21年 期 0 第1 2
与 立体 几 何 有 关 的轨 迹 问题
■ 唐 建 明
近几 年 的 高考 题 中 现 了一 些 与 立 体 几 何 有 关 的轨 迹 问 题 . 些 问题 大 致 可 分 为 两 大 类 : 体 几 何 中 的 轨 迹 问题 与 以 这 立
空 间 图形 为 载 体 的 圆锥 曲线 问题 .
何 中点 、 、 的 基 本 知 识 , 要 掌 握 有 关 的 轨 迹 问 题 : 1 空 线 面 还 () 间 中到 两 定 点 的 距 离 相 等 点 的轨 迹 是 以这 两 个 点 为 端 点 的 线
二、 以空 间 图 形 为 载体 的 圆锥 曲线 问题
解 决 这 类 问 题 , 了 要 熟 练 掌 握 立 体 几 何 中 点 、 、 的 除 线 丽
一
中学鸯数理亿 . 学饼版
解: 连接 E 易知△E A, AF为直 角 i角形 , P 则 A一÷ E F
一
.ห้องสมุดไป่ตู้
故 点 P 到 定 点 A 的距 离 为 定 值 , 由球 面 的 定 义 Ⅻ , 选
、
立体 几 何 中的 轨 迹 问 题
微专题19 立体几何中的动点及其轨迹问题
微专题19立体几何中的动点及其轨迹问题求空间图形中点的轨迹既是中学数学学习中的一个难点,也是近几年高考的一个热点,是立体几何与解析几何相交汇的问题,既考查空间想象能力,同时又考查如何将空间几何的轨迹问题转化为平面几何的轨迹问题来处理的数学思想,常用方法主要有:(1)定义法(如圆锥曲线定义);(2)解析法;(3)交轨法.类型一定性的研究动点的轨迹立体几何中与动点轨迹有关的问题归根还是利用线面的平行、垂直关系,在此类问题中要么容易看出动点符合什么样的轨迹(定义),要么通过计算(建系)求出具体的轨迹表达式.例1 (1)如图,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P 满足∠P AB=30°,则点P的轨迹是()A.直线B.抛物线C.椭圆D.双曲线的一支(2)(多选)(2022·济南质检)已知正方体ABCD-A1B1C1D1的棱长为4,M为DD1的中点,N为ABCD所在平面上一动点,则下列命题正确的是()A.若MN与平面ABCD所成的角为π4,则点N的轨迹为圆B.若MN=4,则MN的中点P的轨迹所围成图形的面积为2πC.若点N到直线BB1与直线DC的距离相等,则点N的轨迹为抛物线D.若D1N与AB所成的角为π3,则点N的轨迹为双曲线答案(1)C(2)ACD解析(1)由题可知,当P点运动时,在空间中,满足条件的AP绕AB旋转形成一个圆锥,用一个与圆锥高成60°角的平面截圆锥,所得图形为椭圆.(2)如图所示,对于A,根据正方体的性质可知,MD⊥平面ABCD,所以∠MND为MN与平面ABCD所成的角,所以∠MND=π4,所以DN=DM=12DD1=12×4=2,所以点N的轨迹为以D为圆心,2为半径的圆,故A正确;对于B,在Rt△MDN中,DN=MN2-MD2=42-22=23,取MD的中点E,因为P为MN的中点,所以PE∥DN,且PE=12DN=3,DN⊥ED,所以PE⊥ED,即点P在过点E且与DD1垂直的平面内,又PE=3,所以点P的轨迹为以3为半径的圆,其面积为π·(3)2=3π,故B 不正确; 对于C ,连接NB ,因为BB 1⊥平面ABCD , 所以BB 1⊥NB ,所以点N 到直线BB 1的距离为NB ,所以点N 到点B 的距离等于点N 到定直线CD 的距离, 又B 不在直线CD 上,所以点N 的轨迹为以B 为焦点,CD 为准线的抛物线,故C 正确;对于D ,以D 为原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,则A (4,0,0),B (4,4,0),D 1(0,0,4),设N (x ,y ,0), 则AB →=(0,4,0),D 1N →=(x ,y ,-4), 因为D 1N 与AB 所成的角为π3, 所以|cos 〈AB →,D 1N →〉|=cos π3, 所以|4y |4x 2+y 2+16=12,整理得3y 216-x 216=1,所以点N 的轨迹为双曲线,故D 正确.训练1 (1)如图,AB 是平面α的斜线段,A 为斜足,若点P 在平面α内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )A.圆B.椭圆C.一条直线D.两条平行直线(2)已知在平行六面体ABCD -A 1B 1C 1D 1中,AA 1与底面A 1B 1C 1D 1垂直,且AD =AB ,E 为CC 1的中点,P 在对角面BB 1D 1D 内运动,若EP 与AC 成30°角,则点P的轨迹为()A.圆B.抛物线C.双曲线D.椭圆答案(1)B(2)A解析(1)由题意知,点P到线段AB的距离为定值,则点P为在以AB为旋转轴的圆柱表面上一点,故平面α斜截圆柱,所得图形为椭圆.(2)因为在平行六面体ABCD-A1B1C1D1中,AA1与底面A1B1C1D1垂直,且AD=AB,所以该平行六面体ABCD-A1B1C1D1是一个底面为菱形的直四棱柱,所以对角面BB1D1D⊥底面ABCD,AC⊥对角面BB1D1D.取AA1的中点F,连接EF,则EF∥AC.因为EP与AC成30°角,所以EP与EF成30°角.设EF与对角面BB1D1D的交点为O,则EO⊥对角面BB1D1D,所以点P的轨迹是以EO为轴的一个圆锥的底面圆周,故选A.类型二定量的研究动点的轨迹当涉及动点轨迹的长度、图形的面积和图形的体积以及体积的最值,一般要用未知变量表示轨迹,然后借助于函数的性质求解.例2 (1)在棱长为22的正方体ABCD-A1B1C1D1中,E,F分别为棱AB,AD的中点,P为线段C1D上的动点,则直线A1P与平面D1EF的交点Q的轨迹长度为()A.2153 B.433C.2133 D.423(2)(多选)(2022·南京质检)如图,在正方体ABCD -A 1B 1C 1D 1中,P 为线段A 1B 上的动点(不包含端点),若正方体棱长为1,则下列结论正确的有( )A.直线D 1P 与AC 所成角的取值范围是⎣⎢⎡⎦⎥⎤π6,π2B.存在P 点,使得平面APD 1∥平面C 1BDC.三棱锥D 1-CDP 的体积为16D.平面APD 1截正方体所得的截面可能是直角三角形 答案 (1)C (2)BC解析 (1)如图,连接B 1D 1,因为E ,F 分别为棱AB ,AD 的中点, 所以B 1D 1∥EF ,则B 1,D 1,E ,F 四点共面.连接A 1C 1,A 1D ,设A 1C 1∩B 1D 1=M ,A 1D ∩D 1F =N ,连接MN , 则点Q 的轨迹为线段MN , 易得A 1D =A 1D 21+DD 21=4,△A 1ND 1∽△DNF ,且A 1D 1FD =2,所以A 1N =23A 1D =83. 易知A 1C 1=C 1D =A 1D =4,所以∠C 1A 1D =60°,又A 1M =2,所以在△A 1MN 中,由余弦定理可得MN 2=A 1N 2+A 1M 2-2A 1N ·A 1M cos ∠MA 1N =529,所以MN =2133,即点Q 的轨迹长度为2133.(2)对于A 选项,如图①,连接AC ,D 1P ,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D -xyz ,则A (1,0,0),B (1,1,0),A 1(1,0,1),D (0,0,0),D 1(0,0,1),C (0,1,0).则有AC →=(-1,1,0),D 1P →=D 1A 1→+λA 1B →=(1,0,0)+λ(0,1,-1)=(1,λ,-λ),λ∈(0,1), 所以|cos 〈AC →,D 1P →〉|=|-1+λ|2·2λ2+1=(1-λ)24λ2+2.令f (λ)=(1-λ)24λ2+2,λ∈(0,1), f ′(λ)=8λ2-4λ-4(4λ2+2)2=4(2λ+1)(λ-1)(4λ2+2)2<0,所以f (λ)=(1-λ)24λ2+2在(0,1)上单调递减.因为f (0)=12,f (1)=0,所以0<|cos 〈AC →,D 1P →〉|<22,又〈AC →,D 1P →〉∈⎣⎢⎡⎦⎥⎤0,π2, 故〈AC →,D 1P →〉∈⎝ ⎛⎭⎪⎫π4,π2,故A 选项错误.图①对于B选项,当P为A1B的中点时,有AP∥C1D,AD1∥C1B,易证平面APD1∥平面C1BD,故B选项正确.对于C选项,三棱锥D1-CDP的体积VD1-CDP=VP-CDD1=13×S△CDD1×AD=1 3×12×1×1×1=16,故C选项正确.对于D选项,设A1B的中点为O,连接AP,AD1,D1P.当P点在线段OB(不包含端点)上时,此时平面APD1截正方体所得的截面为梯形AEFD1,如图②;当P点在O点时,此时平面APD1截正方体所得的截面为正三角形AB1D1;当P点在线段OA1(不包含端点)上时,此时平面APD1截正方体所得的截面为等腰三角形AD1G,如图③,且AG2+D1G2≠AD21,所以该三角形不可能为直角三角形,故D选项错误.故选BC.训练2 (1)如图所示,正方体ABCD-A1B1C1D1的棱长为2,E,F为AA1,AB的中点,点M是正方形ABB1A1内的动点,若C1M∥平面CD1E,则点M的轨迹长度为()A.22 B.1C. 2D.3(2)(多选)(2022·重庆诊断)如图,点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列四个结论中,正确的结论是()A.三棱锥A-D1PC的体积不变B.A1P与平面ACD1所成的角大小不变C.DP⊥BC1D.DB1⊥A1P答案(1)C(2)ABD解析(1)如图所示,取A1B1的中点H,B1B的中点G,连接EF,FC,GH,C1H,C1G,EG,HF可得四边形EGC1D1是平行四边形,∴C1G∥D1E,又D1E⊂平面CD1E,C1G⊄平面CD1E,∴C1G∥平面CD1E,同理可得C1H∥CF,又CF⊂平面CD1E,C1H⊄平面CD1E,∴C1H∥平面CD1E,又C1H∩C1G=C1,∴平面C1GH∥平面CD1E,又M点是正方形ABB1A1内的动点,若C1M∥平面CD1E,∴点M在线段GH上,∴M点轨迹的长度GH=12+12= 2.(2)如图,因为BC1∥AD1,AD1⊂平面D1AC,BC1⊄平面D1AC,所以BC1∥平面D1AC,故点P在BC1上运动时,点P到平面D1AC的距离d是定值,所以V A-D1PC =V P-AD1C=13S△AD1C×d是定值,A项正确.连接A1B,A1C1,如图所示.易知平面A1BC1∥平面ACD1,A1P⊂平面A1BC1,所以A1P∥平面ACD1,故A1P与平面ACD1所成的角大小不变,B项正确.易知DP在平面BCC1B1内的射影是CP,若DP⊥BC1,则CP⊥BC1,故点P在BC1上运动时,不一定有DP⊥BC1,C项错误.易知DB1⊥平面A1BC1,而A1P⊂平面A1BC1,所以DB1⊥A1P,D项正确.故选ABD.一、基本技能练1.如图,在正方体ABCD-A1B1C1D1中,P是侧面BB1C1C内一动点,若P到直线BC与到直线C1D1的距离相等,则动点P的轨迹为()A.直线B.圆C.双曲线D.抛物线答案D解析点P到直线C1D1的距离即为点P到点C1的距离,所以在平面BB1C1C中,点P到定点C1的距离与到定直线BC的距离相等,由抛物线的定义可知,动点P的轨迹为抛物线,故选D.2.如图,正方体ABCD-A1B1C1D1中,P为底面ABCD上的动点.PE⊥A1C于E,且P A=PE,则点P的轨迹是()A.线段B.圆弧C.椭圆的一部分D.抛物线的一部分答案A解析由题意知,△A1AP≌△A1EP,则点P为在线段AE的中垂面上运动,从而与底面ABCD 的交线为线段.3.如图,圆锥的底面直径AB =2,母线VA =3,点C 在母线VB 上,且VC =1,有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是( )A.13B.7C.433D.332答案 B解析 在圆锥侧面的展开图中,AA ′=2π,所以∠AVA ′=AA ′︵VA =23π, 所以∠AVB =12∠AVA ′=π3,由余弦定理得AC 2=VA 2+VC 2-2VA ·VC ·cos ∠AVB =32+12-2×3×1×12=7, 所以AC =7.所以这只蚂蚁爬行的最短距离是7,故选B.4.如图所示,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,长为2的线段MN 的一个端点M 在棱DD 1上运动,另一端点N 在正方形ABCD 内运动,则MN 中点轨迹的面积为( )A.4πB.2πC.πD.π2答案 D解析 易知DD 1⊥平面ABCD ,∠MDN =90°,取线段MN 的中点P ,则DP =12MN =1,所以点P 的轨迹是以D 为球心,1为半径的18球面,故S =18×4π×12=π2. 5.已知MN 是长方体外接球的一条直径,点P 在长方体表面上运动,长方体的棱长分别是1,1,2,则PM →·PN →的取值范围为( )A.⎣⎢⎡⎦⎥⎤-12,0B.⎣⎢⎡⎦⎥⎤-34,0 C.⎣⎢⎡⎦⎥⎤-12,1 D.⎣⎢⎡⎦⎥⎤-34,1 答案 B解析 根据题意,以D 为坐标原点,DA →为x 轴正方向,DC →为y 轴正方向,DD 1→为z 轴正方向,建立空间直角坐标系,如图所示.设长方体外接球球心为O , 则DB 1为外接球的一条直径,设O 为DB 1的中点,不妨设M 与D 重合,N 与B 1重合. 则外接球的直径长为12+12+(2)2=2,所以半径r =1,所以PM →·PN →=(PO →+OM →)·(PO →+ON →)=(PO →+OM →)·(PO →-OM →)=|PO →|2-|OM →|2=|PO →|2-1,由P 在长方体表面上运动,所以|PO →|∈⎣⎢⎡⎦⎥⎤12,1,即|PO →|2∈⎣⎢⎡⎦⎥⎤14,1,所以|PO→|2-1∈⎣⎢⎡⎦⎥⎤-34,0, 即PM →·PN →∈⎣⎢⎡⎦⎥⎤-34,0.6.点P 为棱长是25的正方体ABCD -A 1B 1C 1D 1的内切球O 球面上的动点,点M 为B 1C 1的中点,若满足DP ⊥BM ,则动点P 的轨迹的长度为( ) A.π B.2π C.4π D.25π答案 C解析 根据题意知,该正方体的内切球半径为r =5, 如图,取BB 1的中点N ,连接CN ,则CN ⊥BM , 在正方体ABCD -A 1B 1C 1D 1中,CN 为DP 在平面B 1C 1CB 中的射影,∴点P 的轨迹为过D ,C ,N 的平面与内切球的交线, ∵正方体ABCD -A 1B 1C 1D 1的棱长为25, ∴O 到过D ,C ,N 的平面的距离为1, ∴截面圆的半径为(5)2-1=2,∴点P 的轨迹的长度为2π×2=4π.7.(2022·北京卷)已知正三棱锥P -ABC 的六条棱长均为6,S 是△ABC 及其内部的点构成的集合.设集合T ={Q ∈S |PQ ≤5},则T 表示的区域的面积为( ) A.3π4 B.π C.2π D.3π答案 B解析 设顶点P 在底面上的投影为O ,连接BO ,则O 为△ABC 的中心, 且BO =23×6×32=23, 故PO =36-12=2 6.因为PQ =5,故OQ =1,故Q 的轨迹为以O 为圆心,1为半径的圆,而△ABC 内切圆的圆心为O ,半径为2×34×363×6=3>1,故Q 的轨迹圆在△ABC 内部, 故其面积为π.8.如图,三角形P AB 所在的平面α和四边形ABCD 所在的平面β垂直,且AD ⊥α,BC ⊥α,AD =4,BC =8,AB =6,∠APD =∠CPB ,则点P 在平面α内的轨迹是( )A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案 A解析 由条件易得AD ∥BC ,且∠APD =∠CPB ,AD =4,BC =8, 可得tan ∠APD =AD P A =CBPB =tan ∠CPB , 即PB P A =CBAD =2,在平面P AB 内以AB 所在的直线为x 轴,AB 的中点O 为坐标原点,建立直角坐标系(图略),则A (-3,0),B (3,0), 设P (x ,y ),则有PBP A =(x -3)2+y 2(x +3)2+y2=2, 整理可得x 2+y 2+10x +9=0(x ≠0). 由于点P 不在直线AB 上,故此轨迹为圆的一部分,故答案选A.9.已知正方体ABCD -A ′B ′C ′D ′的棱长为1,点M ,N 分别为线段AB ′,AC 上的动点,点T 在平面BCC ′B ′内,则MT +NT 的最小值是( ) A. 2 B.233 C.62 D.1答案 B解析 A 点关于BC 的对称点为E ,M 关于BB ′的对称点为M ′,记d 为直线EB ′与AC 之间的距离,则MT +NT =M ′T +NT ≥M ′N ≥d ,由B ′E ∥D ′C ,d 为E 到平面ACD ′的距离,因为V D ′-ACE =13×1×S △ACE =13×1×1=13,而V D ′-ACE =V E -ACD ′=13×d ×34×(2)2=36d =13,故d =233.10.如图,长方体ABCD -A ′B ′C ′D ′中,AB =BC =2,AA ′=3,上底面A ′B ′C ′D ′的中心为O ′,当点E 在线段CC ′上从C 移动到C ′时,点O ′在平面BDE 上的射影G 的轨迹长度为( )A.2π3B.3π3C.π3D.3π6答案 B解析 如图,以CA ,CC ′分别为x 轴,y 轴正方向建立平面直角坐标系,则有C (0,0),O (1,0),O ′(1,3),设G (x ,y ), 由O ′G ⊥OG ,可得y x -1·y -3x -1=-1,整理可得⎝⎛⎭⎪⎫y -322+(x -1)2=34,所以点O ′在平面BDE 上的射影G 的轨迹是以F ⎝ ⎛⎭⎪⎫1,32为圆心,半径为32的OG ︵.因为tan ∠GOF =O ′C ′OO ′=33, 所以O ′G =O ′O ·sin ∠GOF =32, 所以△O ′GF 是等边三角形, 即∠GFO =2π3,所以圆弧OG 的长l =2π3×32=3π3.11.如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD (只要填写一个你认为是正确的条件即可).答案 DM ⊥PC (或BM ⊥PC )解析 连接AC ,BD ,则AC ⊥BD ,因为P A ⊥底面ABCD ,BD ⊂平面ABCD ,所以P A ⊥BD .又P A ∩AC =A ,所以BD ⊥平面P AC ,PC ⊂平面P AC , 所以BD ⊥PC ,所以当DM ⊥PC (或BM ⊥PC )时,有PC ⊥平面MBD ,PC ⊂平面PCD ,所以平面MBD⊥平面PCD.12.如图,P是棱长为1的正方体ABCD-A1B1C1D1表面上的动点,且AP=2,则动点P的轨迹的长度为________.答案3π2解析由已知AC=AB1=AD1=2,在平面BC1,平面A1C1中,BP=A1P=DP=1,所以动点P的轨迹是在平面BC1,平面A1C1,平面DC1内分别以B,D,A1为圆心,1为半径的三段圆弧,且长度相等,故轨迹长度和为π2×3=3π2.二、创新拓展练13.在棱长为3的正方体ABCD-A1B1C1D1中,E是AA1的中点,P是底面ABCD 所在平面内一动点,设PD1,PE与底面ABCD所成的角分别为θ1,θ2(θ1,θ2均不为0),若θ1=θ2,则三棱锥P-BB1C1体积的最小值是()A.92 B.52C.32 D.54答案C解析以D为坐标原点建立如图所示空间直角坐标系,因为正方体的棱长为3, 则E ⎝ ⎛⎭⎪⎫3,0,32,D 1(0,0,3),设P (x ,y ,0)(x ≥0,y ≥0),则PE →=⎝ ⎛⎭⎪⎫3-x ,-y ,32,PD 1→=(-x ,-y ,3). 因为θ1=θ2,平面ABCD 的一个法向量z =(0,0,1), 所以|PE →·z ||PE →|·|z |=|PD 1→·z ||PD 1→|·|z |,得32(3-x )2+y 2+94=3x 2+y 2+9,整理得x 2+y 2-8x +12=0, 即(x -4)2+y 2=4(0≤y ≤2), 则动点P 的轨迹为圆的一部分, 所以点P 到平面BB 1C 1的最小距离为1,所以三棱锥P -BB 1C 1体积的最小值是13×12×3×3×1=32.14.(多选)(2022·武汉模拟)如图,设正方体ABCD -A 1B 1C 1D 1的棱长为2,E 为A 1D 1的中点,F 为CC 1上的一个动点,设由点A ,E ,F 构成的平面为α,则( )A.平面α截正方体的截面可能是三角形B.当点F 与点C 1重合时,平面α截正方体的截面面积为26C.当点D 到平面α的距离的最大值为263D.当F 为CC 1的中点时,平面α截正方体的截面为五边形 答案 BCD解析 如图,建立空间直角坐标系,延长AE 与z 轴交于点P ,连接PF 并延长与y 轴交于点M , 则平面α由平面AEF 扩展为平面APM . 由此模型可知A 错误.当点F 与点C 1重合时,截面是一个边长为5的菱形,该菱形的两条对角线长度分别AC 1=22+22+22=23和22+22=22,则此时截面的面积为12×23×22=2 6.当F 为CC 1的中点时,平面α截正方体的截面为五边形,B ,D 正确.D (0,0,0),A (2,0,0),P (0,0,4),设点M 的坐标为(0,t ,0)(t ∈[2,4]), DA →=(2,0,0),AM →=(-2,t ,0),P A →=(2,0,-4), 则可知点P 到直线AM 的距离为d =|P A →|2-⎪⎪⎪⎪⎪⎪⎪⎪P A →·AM →|AM →|2=20t 2+644+t2, S △APM =12t 2+4·d =5t 2+16.S △P AD =12×2×4=4, 设点D 到平面α的距离为h ,利用等体积法V D -APM =V M -P AD ,即13·S △APM ·h =13·S △P AD ·t ,可得h =4t 5t 2+16,则h =45+16t 2, 由h =45+16t 2在t ∈[2,4]上单调递增,所以当t =4时,h 取到最大值为263.故选BCD.15.已知面积为23的菱形ABCD 如图①所示,其中AC =2,E 是线段AD 的中点.现沿AC 折起,使得点D 到达点S 的位置,此时二面角S -AC -B 的大小为120°,连接SB ,得到三棱锥S -ABC 如图②所示,则三棱锥S -ABC 的体积为________;若点F 在三棱锥的表面运动,且始终保持EF ⊥AC ,则点F 的轨迹长度为________.答案 32 3+32解析 依题意,12AC ·BD =BD =23,点S 到平面ABC 的距离为3sin 60°=32,△ABC 的面积为12×23=3,则三棱锥S-ABC的体积为13×3×32=32.如图,取AC边上靠近点A的四等分点G,取BA的中点为H,连接EH,EG,GH,故点F的轨迹长度即为△EHG的周长,又EG=GH=32,EH=12SB=32,故点F的轨迹长度为3+32.16.如图,三棱锥S-ABC的所有棱长均为1,SH⊥底面ABC,点M,N在直线SH上,且MN=33,若动点P在底面ABC内,且△PMN的面积为212,则动点P的轨迹长度为________.答案6π12解析设P到直线MN的距离为d,由题易得d=6 6,易知H为△ABC的中心,又MN⊥平面ABC,当点P在平面ABC内时,其轨迹是以H为圆心,66为半径的圆.∵△ABC内切圆的半径为3 6,∴圆H的一部分位于△ABC外,结合题意得,点P的轨迹为圆H位于底面△ABC 内的三段相等的圆弧(利用正三角形的性质判断出圆H有一部分在△ABC外,才能正确得到点P的轨迹),如图,过点H作HO⊥AC,垂足为O,则HO=36,记圆H与线段OC的交点为K,连接HK,可得HK=66,∴cos∠OHK=OHHK=3666=22,∴∠OHK=π4,∴点P的轨迹长度为圆H周长的14(利用圆及正三角形的对称性分析求解),∴点P的轨迹长度为14×2π×66=6π12.。
2023高考一轮热题---立体几何中的轨迹问题
19立体几何中的轨迹问题【题型一】由动点保持平行性求轨迹【典例分析】如图,在边长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 、N 分别是CC 1、C 1D 1、DD 1、CD 、BC 的中点,M 在四边形EFGH 边上及其内部运动,若MN ∥面A 1BD ,则点M 轨迹的长度是( )AB C D【提分秘籍】基本规律1.线面平行转化为面面平行得轨迹2.平行时可利用法向量垂直关系求轨迹【变式演练】1.在三棱台111A B C ABC −中,点D 在11A B 上,且1//AA BD ,点M 是三角形111A B C 内(含边界)的一个动点,且有平面//BDM 平面11A ACC ,则动点M 的轨迹是( )A .三角形111ABC 边界的一部分 B .一个点C .线段的一部分D .圆的一部分2.已知正方体1111ABCD A B C D −的棱长为2,E 、F 分别是棱1AA 、11A D 的中点,点P 为底面ABCD 内(包括边界)的一动点,若直线1D P 与平面BEF 无公共点,则点P 的轨迹长度为( )A 1BC D3.在棱长为2的正方体1111ABCD A B C D −中,点E ,F 分别是棱11C D ,11B C 的中点,P 是上底面1111D C B A 内一点(含边界),若//AP 平面BDEF ,则Р点的轨迹长为( )A .1BC .2D .【题型二】动点保持垂直性求轨迹【典例分析】在正方体1111ABCD A B C D −中,Q 是正方形11B BCC 内的动点,11A Q BC ⊥,则Q 点的轨迹是( )A .点1B B .线段1BC C .线段11B CD .平面11B BCC【提分秘籍】基本规律1.可利用线线线面垂直,转化为面面垂直,得交线求轨迹2.利用空间坐标运算求轨迹3.利用垂直关系转化为平行关系求轨迹【变式演练】1.在正方体1111ABCD A B C D −中,点P 在侧面11BCC B 及其边界上运动,且保持1AP BD ⊥,则动点P 的轨迹为 A .线段1CBB .线段1BC C .1BB 的中点与1CC 的中点连成的线段D .BC 的中点与11B C 的中点连成的线段2.在棱长为1的正方体1111ABCD A B C D −中,M ,N 分别为1BD ,11B C 的中点,点P 在正方体的表面上运动,且满足MP CN ⊥.给出下列说法:①点P 可以是棱1BB 的中点;②线段MP 的最大值为34; ③点P 的轨迹是正方形;④点P 轨迹的长度为2其中所有正确说法的序号是________.3.如图,在正方体1111ABCD A B C D −中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1A F 与平面1D AE 的垂线垂直,则下列说法不正确的是( )A .1A F 与1D E 不可能平行B .1A F 与BE 是异面直线C .点F 的轨迹是一条线段D .三棱锥1F ABD −的体积为定值【题型三】由动点保持等距(或者定距)求轨迹【典例分析】已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为底面ABCD 内一点,若P 到棱CD ,A 1D 1距离相等的点,则点P 的轨迹是( )A .直线B .椭圆C .抛物线D .双曲线【提分秘籍】基本规律1.距离,可转化为在一个平面内的距离关系,借助于圆锥曲线定义或者球和圆的定义等知识求解轨迹2.利用空间坐标计算求轨迹【变式演练】1.如图,在四棱锥P ABCD −中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为正方形ABCD 内(包括边界)的一个动点,且满足MP MC =.则点M 在正方形ABCD 内的轨迹为( )A .B .C .D .2.如图,在棱长为4的正方体ABCD A B C D ''''−中,E 、F 分别是AD 、A D ''的中点,长为2的线段MN 的一个端点M 在线段EF 上运动,另一个端点N 在底面A B C D ''''上运动,则线段MN 的中点P 的轨迹(曲面)与正方体(各个面)所围成的几何体的体积为( )A .43π B .23π C .6π D .3π 3.四棱锥P ﹣OABC 中,底面OABC 是正方形,OP ⊥OA ,OA =OP =a .D 是棱OP 上的一动点,E 是正方形OABC 内一动点,DE 的中点为Q ,当DE =a 时,Q 的轨迹是球面的一部分,其表面积为3π,则a 的值是( )A .B .C .D .6【题型四】由动点保持等角(或定角)求轨迹【典例分析】正方体1111ABCD A B C D −中,M ,N 分别为AB ,11A B 的中点,P 是边11C D 上的一个点(包括端点),Q 是平面1PMB 上一动点,满足直线MN 与直线AN 夹角与直线MN 与直线NQ 的夹角相等,则点Q 所在轨迹为( )A .椭圆B .双曲线C .抛物线D .抛物线或双曲线【提分秘籍】基本规律1. 直线与面成定角,可能是圆锥侧面。
立体几何中轨迹问题的探索
D
设 MN 为 、 的公 垂线 段 , 则 MN 与
两两垂直. 如图 3 , 以 N
点为 原点 , 直线 为 z轴 , 直
C
线 NM 为 z轴 , 以 过 点 N 所
体 AB C D— A1 B l C 1 D1中 , 点 P
在 侧 面 BC C B 及 其 边 界上 运
1 , 点 M 在 棱 AB 上 , 且 AM 一
1
D
C
.
的圆上 . 故 P 点 的轨 迹 是 MN 的 垂 直 平 分 面 内 的一
个 圆.
C
÷, 点 P是平 面 AB C D 内 的动
’ )
总之 , 立体 几何 中的轨迹 问题 对 学生 的能 力要 求
较高, 一 是 空 间想 像 能力 要 丰 富 , 二 是 平 面 图形 的定 义 要非 常清 晰 、 准确 , 平 面 与空 间 之 间 的转 化要 熟 练. 将 此类 问题 掌握 好 , 可 以培养 学 生 用 运动 的观 点看 待
觅处 , 得来 全不 费工 夫之 感.
■ ■ ’,
例 3 一 定长 线 段 AB 的 2个 端 点 A、 B 沿互 相 类型1 聚焦轨迹平面 , 寻 找 线 面关 系在 空 间 的
垂 直 的 2条 异 面直线 、 运 动 , 求 它 的 中点 的轨迹 .
析
、
某 个点 或 某些 点运 动 的前 提 下 , 要论 证 或 判 定某 些 位 置关 系 , 一 般 要 找 到 运 动 变 化 中 的不 变 因 素 , 通 常 将 动点 聚焦 到 某 一 平 面 , 再利用线面 、 面 面 平 行 或 垂 直 的有关 性 质加 以证 明或 作 出判 定.
立体几何中的轨迹问题(微专题)
目录
• 轨迹问题的定义与类型 • 轨迹问题的解题思路 • 常见轨迹问题及解法 • 轨迹问题的应用与拓展
01
轨迹问题的定义与类型
定义
• 轨迹问题是指根据已知条件,求一个或多个几何元素在空间中 按照一定规律运动的轨迹。这些轨迹可以是点的轨迹、线的轨 迹或面的轨迹。
类型
01
02
03
点的轨迹
研究一个点在空间中按照 一定规律运动的路径。
线的轨迹
研究一条线段或射线在空 间中按照一定规律运动的 路径。
面的轨迹
研究一个平面或曲面在空 间中按照一定规律运动的 路径。
02
轨迹问题的解题思路
确定动点轨迹的条件
确定动点的运动条件
01
动点在运动过程中受到的约束条件,如速度、加速度、力等。
保其准确性和稳定性。例如,汽车发动机的活塞运动轨迹、数控机床的
刀具运动轨迹等。
02
航天科技
在航天科技领域,轨迹问题对于卫星、火箭和空间站的发射、运行和对
接至关重要。例如,通过计算卫星的轨道参数,可以预测其运行轨迹和
位置。
03
物理实验
在物理实验中,轨迹问题常用于描述物体运动的状态和规律。例如,通
过研究抛物线轨迹、圆周运动轨迹等,可以验证物理定理和定律。
拓展与提高
复杂轨迹问题
对于更复杂的轨迹问题,可能需要运用更高级的数学工具 和方法进行求解。例如,运用微分几何、变分法等理论来 研究更一般的曲线和曲面运动。
实际应用案例
通过研究实际应用案例,可以深入了解轨迹问题的具体应 用和解决技巧。例如,研究卫星轨道、行星运动等天文学 领域的经典案例。
数学建模
通过数学建模,可以将现实生活中的问题抽象为数学模型, 运用轨迹理论进行求解。这有助于提高解决实际问题的能 力,培养数学建模思维。
立体几何中的轨迹问题汇总
立体几何中的轨迹问题汇总例析空间中点的轨迹问题的转化求空间图形中点的轨迹既是中学数学学习中的一个难点,又是近几年高考的一个热点,这是一类立体几何与解析几何的交汇题,既考查空间想象能力,同时又考查如何将空间几何的轨迹问题转化为平面的轨迹问题来处理的基本思想。
一.轨迹为点例1已知平面βα||,直线α⊂l ,点P l ∈,平面βα,之间的距离为8,则在β内到P 点的距离为10且到直线l 的距离为9的点的轨迹是 ( )A .一个圆 B.两条直线 C.两个点 D.四个点解析:设Q 为β内一动点,点P 在β内射影为O ,过O, l 的平面与β的交线为l ',ΘPQ=10,∴OQ==-228106点Q 在以O 为圆心6为半径圆上,过Q 作QM l '⊥于M ,又Θ点Q 到直线l 的距离为9∴QM=178922=-则点Q 在以l '平行距离为17的两条平行线上Θ两条平行线与圆有四个交点∴这样的点Q 有四个,故答案选D 。
点评:本题以空间图形为背景,把立体几何问题转化到平面上,再用平面几何知识解决,要熟记一些平面几何点的轨迹。
二. 轨迹为线段例2. 如图,正方体1111ABCD A B C D -中,点P 在侧面11BCC B 及其边界上运动,并且总保持1AP BD ⊥,则动点P 的轨迹是( )。
βαlMOQPA. 线段1B CB.线段1BCC. 1BB 中点与1CC 中点连成的线段D. BC 中点与11B C 中点连成的线段解:连结11,,AB AC B C ,易知111BD A AB ⊥所以11111,,AB BD AC BD B C BD ⊥⊥⊥,所以1BD ⊥面1AB C ,若P ∈1B C ,则AP ⊂平面1AB C ,于是1BD AP ⊥,因此动点P 的轨迹是线段1B C 。
评注:本题是由线面垂直的性质从而求出点P 的轨迹。
例3 已知圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周),若MP AM ⊥,则点P 的轨迹是________。
立体几何中的轨迹问题(详细版)
立体几何中的轨迹问题高考数学有一类学科内的综合题,它们的新颖性、综合性,值得我们重视,在知识网络交汇点处设计试题是高考命题改革的一个方向,以空间问题为为背景的轨迹问题作为解析几何与立体几何的交汇点,由于知识点多,数学思想和方法考查充分,求解比较困难。
通常要求学生有较强的空间想象能力,以及能够把空间问题转化到平面上,再结合解析几何方法求解,以下精选几个问题来对这一问题进行探讨,旨在探索题型规律,揭示解题方法。
一、用空间运动的观点来得到点的轨迹。
例1:直线PA 是平面M 的一条斜线,斜足为A ,动直线PB 过点P 且与直线PB 垂直,且交平面M 于点B ,求动点B 的轨迹。
解:先探讨直线PB 的运动轨迹,由于直线PB 始终与PA 垂直,可知PB 的运动轨迹应是直线PA 的垂直平面N 。
再结合点B 一定在平面M 内,所以点B 的轨迹应该是两个平面的交线,所以点B 的轨迹是一条直线。
针对以上解法,我们对这一问题作一深层次的探讨:若直线PA 与平面M 成α角,直线PB 始终与直线PA 成β角,再来求点B 的轨迹。
由上述解法可知,我们只要得到直线PB 的空间轨迹,再来考察该轨迹与平面M 的交线即可。
由简单的模型模拟即可知,直线PB 的轨迹是一个圆锥面,再用一个平面截圆锥面,这一知识在平面解析几何中圆锥曲线的来历中有提到,即所得曲线可能是圆、椭圆、抛物线、双曲线。
因此,我们在以下命题:直线PA 是平面M 的一条斜线,且与平面M 成α角,斜足为A ,动直线PB 过点P 且与直线PB 成β角,交平面M 于点B ,求动点B 的轨迹。
结论: (1)若α=90°,β≠90°,则动点B 的轨迹是一个圆; (2)若α≠90°,β=90°,动点B 的轨迹是一条直线;(3)若α≠90°,β≠90°,则①若90°>α>β,则轨迹是椭圆; ②若α=β,则轨迹是抛物线; ③若α<β,则轨迹是双曲线。
立体几何中轨迹问题的求解方法
2007 年第6 期
立体 几 何 中轨 迹 问题 的求解 方 法
浙江师范大学数理学院数学系 (3 100 ) 夏 锦 2 4
立体几何中的轨迹问题, 0 4 年高考北 在20 京卷、 天津卷和重庆卷中 闪亮登场”成为高考 “ , 命题的一个创新点. 这类题型立意新颖、 构思巧 妙, 注重多元联系和多元应用, 集知识的交汇 性、 综合性, 方法的灵活性, 能力的迁移性于一 体, 极富思考性和挑战性, 因此学生求解起来颇 感困 考试时经常弃而不答, 难, 令人惋惜! 本文 通过实例来说明立体几何中 轨迹问题求解的常
招(tl + tZ ) 刃则x 二
弓
, y
奥尹 ,尸 轨 故 点迹
目 望 - J n 匕 __2
方 是 招, 誓), 1 , g 程 (2 )2+(V J 一2 肺 r
__ _ 2
,
’ 一工 y ’
0
忿
1 0
x
I 0
x
} O
x
(A )
(B)
(C)
(D)
所以点P 轨迹是在五 , 下 的中垂面上以0 为中 心, 长轴长为6, 短轴长为2 的椭圆. 点评: ( 1 若把条件中“ ) 异面直线 a , 成 b 0 角” 6 。 改成“ 异面直线 a , 成 9 。 , 尸点 b 0 角”则
1 ‘ , 。,一 ‘ ~ 。~ AM 二青,‘尸是平面月 — 点 13(刃 ‘ r‘ 3 ’ 、‘ ~ ’阴 ‘ “ ‘ , 一
分析:过 尸作尸 土A刀及尸 土面 B。〕 Q H
40
内的动点, 且满足尸到直线AIDI 平方差为1, 则尸点的轨迹
为( ).
解.
丫 夕, 尸 Z+P “ 知1+xZ 二 1干 由 M G =2, +y“2, 所以 求 轨 是 位圆xZ+少=1 所 的迹 单 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例析空间中点的轨迹问题的转化求空间图形中点的轨迹既是中学数学学习中的一个难点,又是近几年高考的一个热点,这是一类立体几何与解析几何的交汇题,既考查空间想象能力,同时又考查如何将空间几何的轨迹问题转化为平面的轨迹问题来处理的基本思想。
一. 轨迹为点例1已知平面:■ || 1,直线I :•,点P l,平面之间的距离为8,则在[内到P点的距离为10且到直线I的距离为9的点的轨迹是( )A .一个圆 B.两条直线C.两个点D.四个点解析:设Q为1内一动点,点P在1内射影为0,过O, I的平面与1的父线为I,: PQ=10, • 0Q= , 10 -8 - 6点Q在以O为圆心6为半径圆上,过Q作QM 于M ,又;点Q到直线I的距离为9 QM= , 92-82「17则点Q在以I 平行距离为-.17的两条平行线上两条平行线与圆有四个交点•这样的点Q有四个,故答案选D。
点评:本题以空间图形为背景,把立体几何问题转化到平面上,再用平面几何知识解决,要熟记一些平面几何点的轨迹。
二. 轨迹为线段例2.如图,正方体ABCD -A1EGD1中,点P在侧面BCC1B1及其边界上运动,并且总保持AP — BD1,则动点P的轨迹是()。
A.线段B i CB.线段BC iC. BB i中点与CC i中点连成的线段D. BC中点与BG中点连成的线段解:连结AB1, AC, B1C,易知AB— A^BD1所以AB— BD「AC _ BD^BQ _ BD1, 所以BD j _面AB1C,若P B1C,贝S AP 平面AB1C,于是BD^ AP,因此动点P的轨迹是线段B i C。
评注:本题是由线面垂直的性质从而求出点P的轨迹。
例3 已知圆锥的轴截面SAB是边长为2的等边三角形,0为底面中心,M为SO的中点,动点P在圆锥底面内(包括圆周),若AM — MP,则点P的轨迹是________ 。
形成的轨迹的长度为___________ 。
解析:在平面SAB中,过M作AM的垂线交AB于C,在底面上,过C作AB的垂线分别交底面圆于D,E两点,则AM _面MDEQE即为点P的轨迹,又AO=1,MO= ,AM=弓,从而AC# ,0C二弓,所以DE=2.1- 32 V.所以填上线段;—三. 轨迹为直线例4 (北京高考题)如图,AB是平面〉的斜线段,A为斜足,过点B 作直线I与AB垂直,则直线I与平面〉交点的轨迹是()A .圆 B.椭圆 C.一条直线 D.两条平行直线解析:由题意可知直线I的轨迹应是过点B且与AB垂直的平面,该平面与平面「交点为一条直线,故答案选 C.四•轨迹为圆弧例5 如图,P是棱长为1的正方体ABCD — AB i CP表面上的动点,且AP二J2,则动点P的轨迹的长度为 ________ 。
A.X解析:由已知AC=AB 1=AD 1^2 ,在面BC i,面A i C i,昙BP=A i P=DP=1,所以动点P的轨迹是在面BC i,面A i C i,面DC i内分别以B,D,A i为圆心,1为半径的三段圆弧,且长度相等,故轨迹长度和为-3 =与。
五•轨迹为平面例6•不共面的四个定点到平面:的距离都相等,这样的平面:个数为( )A .3B .4解析:以不共面的四个定点为顶点构造四面体,则满足条件的平面 : 可分两类。
第一类是中截面所在的平面有4个;第二类是和一组对棱平行且经过其它各棱中点的平面有3个,故满足条件的平面:个数为4 + 3 = 7 .故答案选D .评注:本题关键在于构造空间四边形,利用四面体的性质去求解。
六.轨迹为圆例7,如图,三角形PAB所在的平面〉和四边形ABCD所在的平面1 垂直,且AD _ : , BC _ :, AD=4 , BC=8 , AB=6 , APD = CPB,贝S点P在平面〉内的轨迹是()A .圆的一部分 B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分解析:由条件易得AD||BC,且.APD - CPB , AD=4 , BC=8,可得ta n. APD =^=CB = ta n. CPB,即閉二鬻=2,在平面PAB内以AB所在的直线为x轴,AB的中点0为坐标原点,建立直角坐标系,则 A (-3, 0),B (3, 0),设P(x,y),则有裟二晋汙=2,整理可得一个圆的方程即x2 y2• 10x • 9 = 0 x = 0。
由于点P不在直线AB上,故此轨迹为圆的一部分故答案选A.点评:本题主要考查空间轨迹问题,是在立体几何与解析几何的交汇处命制的创新题,既考查了空间想象能力,又考查了代数方法(坐标法)研究几何轨迹的基本思想。
七•轨迹为抛物线例8•如图,正方体ABCD -ABQQ的棱长为1,点M在棱AB 上,且AM= 3,点P是平面ABCD上的动点,且动点P到直线A1D1的距离与动点P到点M的距离的平方差为1,则动点P的轨迹是().A.圆B.抛物线分析:动点的轨迹问题是解析几何中常见的问题,因此我们可以把立体关系转化到平面上去,利用解析几何的知识将问题解决。
解:设PF—AP于点F,过点P作PE —AD于点E,连结EF,则AD —平面PEF,二AD丄EF,即EF//AA1。
因为|PF『- PM『=1,且PF2-1 = p岸-E F|= |P2所以|PE = PM|。
由抛物线定义知点P的轨迹是以点M为焦点,AD为准线的抛物线,故应选B.评注:从立体转化到平面,从平面到直线,显然是在逐级降维,平面比立体简单,直线又比平面简单,这是复杂向简单的转化。
八•轨迹为椭圆例9,(浙江高考题)如图,AB是平面〉的斜线段,A为斜足,若点P 在平面:内运动,使得厶ABP的面积为定值,则动点P的轨迹是() BA .圆 B.椭圆A pC. 一条直线D.两条平行直线解析:由题意可知■ ABP的面积为定值.点P到AB的距离也为定值,点P在空间中的轨迹应是以AB为旋转轴的圆柱面,又点P在平面〉内运动,所以动点P的轨迹应该是圆柱面被平面:所截出的椭圆。
故答案选B。
点评:本题主要考查轨迹问题,注意交轨法的应用。
九•轨迹为双曲线例10.(2010年重庆高考题)到两条互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是( )A.椭圆B.抛物线C.双曲线D.直线解析:构造正方体模型,在边长为a的正方体ABCD -ABGD i中,DC与A i D i是两条相互垂直的异面直线,平面ABCD过直线DC且平行于A i D i,以D为原点,分别以DA,DC为x轴,y轴建立平面直角坐标系,设点P(x,y)在平面ABCD内且到DC与AQ i之间的距离相等,所以 x| =Jy 2 +a 2,二 X 2 — y 2 =a 2。
故答案选 C点评:本题以空间图形为背景,把立体几何问题转化到平面上,再用 解析几何法求解,实现从立体几何到解析几何的过渡, 这里用解析几 何的知识解决立体几何中的计算问题,恰好是当今高考的命题方向。
本题考查立体几何,解析几何知识,考查学生的空间想象能力,灵活 运用知识解决问题的能力和创新意识, 构造正方体模型,简化了思维 难度。
十.轨迹为球例11.如图,在棱长为6的正方体ABCD -A i BiGD i 中,长度为4的线段 MN 的一个端点N 在DD i 上运动,另一个端点M 在底面ABCD 上运 动,贝S MN 的中点P 的轨迹与其顶点D 的正方体的三个面所围成的几何体的体积是 _____________ 。
解析:由ND _平面ABCD = ND _ DM 在Rt NDM中,P 为斜边MN 的中点, 则DP 詔MN =2故点P 的轨迹是以D 为球心,2为半径的球面,与其 顶点D 的正方体的三个面所围成的几何体是八分之一球体。
因此点评:本题主要考查空间想象能力和推理能力以及球的体积计算,确 定点P 的轨迹是关键A BC含两个变量的不等式化归和构造策略近几年在高考试题的函数压轴题中,经常出现含有两个变量的不等式证明问题,面对两个变量学生会感觉无从下手,造成找不到解题的突破点;下边通过几道例题,让大家感受化归和构造的策略。
策略一:当两个变量可以分离时,根据其两边结构构造函数,利用单调性证明不等式。
例1 (2010年辽宁文科21)已知函数f (x) = (a 1)ln x • ax2• 1.(I)讨论函数f(x)的单调性;(H)设 a _-2,证明:对任意捲必(0,二),| f (x1^ f (x2) 4 | x1 - x2 |。
2解:(I ) f(X)的定义域为(0,+ ::), f (x)=「2ax 二壘□.x x当a>0时,f(x)>0,故f(x)在(0,+ ::)单调增加;当a<- 1时,f (x)v0,故f(x)在(0,+ ::)单调减少;当—1v a v0 时,令 f (x) = 0,解得x^ -a 1.当x€ (0, . -a 1)时, V 2a V 2a1「X2解: (1) f(x)的定义域为(0,::)。
(x -1)(x 1 -a) 2 分x(i)若 a -1 =1 即 a = 2,则f'(x)二故 f (x)在(0, •::)单调增加。
X .(ii)若a-11,而 a 1,故 1 :: a : 2,则当x (a -1,1)时,f'(x) ::: 0 ;当x (0,a -1)及x・(1,::)时,f'(x) 0f(x) > 0; x € (J —葺,+0 时,厂(x) v 0,故 f(x)在(0,卜葺)单 调增加,在(J -旦_1, +°° )单调减少.\ 2a(H )不妨假设X 1 >X 2.由于a < — 2,故 亦)在(0, +::)单调减少. 所以 |f(x)- f (y )色 4x - y 等价于 f(X 1)-f(X 2)> 4X 1 — 4X 2,即 f(X 2)+24X 2>f(X 1)+ 4X 1.令 g(x)=f(x)+4x,贝卩 g (x)=^^ 2ax +4 =型 4x a 1 .X X故f(x)在(a-1,1)单调减少,在(0,a-1),(1,::)单调增加。
(iii)若a-1 1 ,即a 2 ,同理可得f(x)在(1,a-1)单调减少,在 (o,1a“ t 单调增加. (II)考虑函数 g(x^ f (x) x — x 2 -ax + (a T)ln x + x贝H g "(x) =x —(a T) + ~~ 二2J x ~~ -(a T) =1 -( Ja T T)2于是g (x) < 22Fx +4xT _(2x _1) v 0从而g(x)在(0, +::)单调减少,故g(xd <g(x2),即f(xj+ 4x i < f(X2)+ 4x2 ,故对任意X i,X2 € (0,+ ::),f (xj - f(X2)| >4 X i —X2 .当e<x<e1 2时,1 —In x<0,例2 (2009年辽宁理科21)已知函数f(x)= l x2—ax+(a—1)lnx, a 1。