2017届高三二诊模拟考试数学(理)试卷(附答案)
2017届高三第二次模拟考试(数学理)(含答案)word版
![2017届高三第二次模拟考试(数学理)(含答案)word版](https://img.taocdn.com/s3/m/705a0ddc9ec3d5bbfd0a747f.png)
绝密★启用前鹰潭市2017届高三第二次模拟考试数学试题(理科)(满分:150分 时间:120分钟)参考公式:几何体体积公式:Sh V =柱;Sh V 31=锥;121()3V S S h =⋅台;球的表面积、体积公式:24S R =π,343V R =π,其中R 为球的半径。
一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. i 是虚数单位。
已知复数413(1)3iZ i i+=++-,则复数Z 对应点落在( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限 2. 已知集合1|24xP x ⎧⎫=≥⎨⎬⎩⎭,{}22|4,,Q y x y x R y R =+=∈∈,则P Q = ( ) A. ∅ B. Q C. {}1,2- D. ()(){}3,1,0,2-3. 设函数()sin()1(0)()6f x x f x πωω'=+->的导数的最大值为3,则)(x f 的图象的一条对称轴的方程是( ) A .9π=x B .6π=x C .3π=x D .2π=x4. 已知正三棱锥S —ABC 的高为3,底面边长为4,在正棱锥内任取一点P ,使得21<-ABC P V ABC S V -的概率是( ) A .43 B .87 C .18D .41 5. 设函数[]x x x f -=)(,其中[]x 为取整记号,如[]22.1-=-,[]12.1=,[]11=.又函数3)(xx g -=,)(x f 在区间)2,0(上零点的个数记为m ,)(x f 与)(x g 图像交点的个数记为n ,则⎰nmdx x g )(的值是( ) A.25-B.34- C.45- D.67- 6. 图1中的阴影部分由底为1,高为1的等腰三角形及高为2和3的两矩形所构成.设函数()(0)S S a a =≥是图1中阴影部分介于平行线0y =及y a =之间的那一部分的面积,则函数()S a 的图象大致为( )7. 已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该几何体的体积是( )A .7B .203C .143D . 1738.下列说法:①命题“存在R x ∈0,使020x ≤”的否定是“对任意的02,>∈xR x ”;y =58.5;②若回归直线方程为ˆy =1.5x+45, x∈{1,5,7,13,19},则③设函数)1ln()(2x x x x f +++=,则对于任意实数a 和b , b a +<0是)()(b f a f +)<0的充要条件;④“若111||<<-⇒<∈x x R x ,则”类比推出“若111||<<-⇒<∈z z C z ,则”其中正确的个数是( )A .1B .2C .3D .49. 已知点P 是双曲线)0,0(12222>>=-b a by a x 右支上一点,12F F 、分别为双曲线的左、 右焦点,I 为△12PF F 的内心,若2121F IF IPF IPF S S S ∆∆∆+=λ成立,则λ的值为( )C.a bD.b a10. 若1)(+=x xx f ,)()(1x f x f =,()[]()*1,2)(N n n x f f x f n n ∈≥=-,则()()++21f f …()()()()1112011201121f f f f +++++=( ) A .1 B .2009 C .2010 D .2011第II 卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2017年高三下学期第二次模拟考试数学(理)试题含答案
![2017年高三下学期第二次模拟考试数学(理)试题含答案](https://img.taocdn.com/s3/m/7c6b9907b7360b4c2e3f64b3.png)
2017年高三下学期第二次模拟考试数学(理)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,考试时间120分钟,满分150分.第Ⅰ卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U =R ,集合A ={x |x <2},B ={x |lg(x -1)>0},则A ∩(∁U B )=( )A.{x |1<x <2} B .{x |1≤x <2} C.{x |x <2} D .{x |x ≤1}答案 C解析 B ={x |x >2},∴∁U B ={x |x ≤2},∴A ∩(∁U B )={x |x <2},故选C.2.定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,则符合条件⎪⎪⎪⎪⎪⎪⎪⎪z 1+i -i 2i =0的复数z 的共轭复数z 在复平面内对应的点在( )A.第一象限 B .第二象限 C.第三象限 D .第四象限答案 B解析 由题意得,2z i -[-i(1+i)]=0,则z =-i (1+i )2i =-12-i2,∴z =-12+i2,其在复平面内对应的点在第二象限,故选B.3.下列说法中,不正确的是( )A.已知a ,b ,m ∈R ,命题:“若am 2<bm 2,则a <b ”为真命题B.命题:“∃x 0∈R ,x 20-x 0>0”的否定是:“∀x ∈R ,x 2-x ≤0”C.命题“p 或q ”为真命题,则命题p 和命题q 均为真命题D.“x >3”是“x >2”的充分不必要条件答案 C解析 本题考查命题真假的判断.命题“p 或q ”为真命题,则命题p 和命题q 中至少有一个为真命题,C 错误,故选C.4.将2名女教师,4名男教师分成2个小组,分别安排到甲、乙两所学校轮岗支教,每个小组由1名女教师和2名男教师组成,则不同的安排方案共有( )A.24种 B .12种 C.10种 D .9种答案 B解析 第一步,为甲校选1名女教师,有C 12=2种选法;第二步,为甲校选2名男教师,有C 24=6种选法;第三步,为乙校选1名女教师和2名男教师,有1种选法,故不同的安排方案共有2×6×1=12种,选B.5.sin2α=2425,0<α<π2,则2cos ⎝ ⎛⎭⎪⎫π4-α的值为( )A.-15 B.15 C.-75 D.75答案 D 解析2cos ⎝ ⎛⎭⎪⎫π4-α=2⎝ ⎛⎭⎪⎫22cos α+22sin α=sin α+cos α,又∵(sin α+cos α)2=1+2sin αcos α=1+sin2α=4925,0<α<π2,∴sin α+cos α=75,故选D.6. 执行如图所示的程序框图,若输入t 的值为5,则输出的s 的值为( )A.916 B.54 C.2116 D.118答案 D解析 依题意,当输入t 的值是5时,执行题中的程序框图,s =1,k =2<5,s =1+12,k =3<5,s =1+12-122,k =4<5,s =1+12-122+123,k =5≥5,此时结束循环,输出的s =1+12-122+123=118,选D.7.某几何体的三视图如图所示,则该几何体的体积是( )A .2π-23 B .2π-43 C.5π3 D .2π-2答案 A解析 本题考查几何体的三视图和体积.由三视图得该几何体为底面半径为1,高为2的圆柱体挖去一个底面边长为2的正方形,高为1的正四棱锥后剩余的部分,则其体积为2×π×12-13×(2)2×1=2π-23,故选A.8.将函数f (x )=sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2的图象向右平移π12个单位后的图象关于y 轴对称,则函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最小值为( )A.0 B .-1 C.-12 D .-32答案 D解析 f (x )=sin(2x +φ)的图象向右平移π12个单位后得到g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12+φ=sin ⎝ ⎛⎭⎪⎫2x -π6+φ的图象,又g (x )的图象关于y 轴对称, ∴g (0)=sin ⎝⎛⎭⎪⎫-π6+φ=±1,∴-π6+φ=π2+k π(k ∈Z ), ∴φ=2π3+k π(k ∈Z ),又|φ|<π2,∴φ=-π3,∴f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,又x ∈⎣⎢⎡⎦⎥⎤0,π2, ∴2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,∴f (x )min =-32.9.设不等式组⎩⎪⎨⎪⎧x +y ≤2,x -y ≥-2y ≥0,所表示的区域为M ,函数y =1-x 2的图象与x 轴所围成的区域为N ,向M 内随机投一个点,则该点落在N 内的概率为( )A.2π B.π4 C.π8 D.π16答案 B解析 本题考查不等式组表示的平面区域、几何概型.在平面直角坐标系内画出题中的不等式组表示的平面区域为以(2,0),(-2,0),(0,2)为顶点的三角形区域,函数y =1-x 2的图象与x 轴围成的区域如图中的阴影部分所示,则所求概率为12π×1212×22×2=π4,故选B.10. 如图,在正六边形ABCDEF 中,点P 是△CDE 内(包括边界)的一个动点,设=λ+μ(λ,μ∈R ),则λ+μ的取值范围是( )A.⎣⎢⎡⎦⎥⎤32,4 B .[3,4]C.⎣⎢⎡⎦⎥⎤32,52 D.⎣⎢⎡⎦⎥⎤34,2 答案 B解析 本题考查平面向量的运算、线性规划的应用.以A 为原点,分别以AB ,AE 所在的直线为x ,y 轴建立平面直角坐标系,设正六边形的边长为1,则A (0,0),B (1,0),C ⎝ ⎛⎭⎪⎫32,32,D (1,3),E (0,3),F ⎝ ⎛⎭⎪⎫-12,32,设点P (x ,y ),则=(x ,y ),=⎝ ⎛⎭⎪⎫-12,32,=(1,0),则由=λ+μ得⎩⎨⎧ x =-12λ+μ,y =32λ解得⎩⎨⎧λ=233y ,μ=x +33y ,则λ+μ=x +3y ,又因为点P 在△CDE 内,所以当点P 与点D 重合时,λ+μ取得最大值1+3×3=4,当点P 在线段CE 上时,λ+μ取得最小值3,所以λ+μ的取值范围为[3,4],故选B.11.在平面直角坐标系xOy 中,点P 为椭圆C :y 2a 2+x 2b 2=1(a >b >0)的下顶点,M ,N 在椭圆上,若四边形OPMN 为平行四边形,α为直线ON 的倾斜角,α∈⎝ ⎛⎦⎥⎤π6,π4,则椭圆C 的离心率的取值范围为( )A.⎝ ⎛⎦⎥⎤0,63B.⎝ ⎛⎦⎥⎤0,32C.⎣⎢⎡⎦⎥⎤63,32D.⎣⎢⎡⎦⎥⎤63,223 答案 A解析 因为OP 在y 轴上,在平行四边形OPMN 中,MN ∥OP ,因此M ,N 的横坐标相等,纵坐标互为相反数,即M ,N 关于x 轴对称,|MN |=|OP |=a ,可设M (x ,-y 0),N (x ,y 0).由k ON =k PM 得y 0=a2.把点N 的坐标代入椭圆方程得|x |=32b ,点N ⎝ ⎛⎭⎪⎫32b ,a 2.因为α是直线ON 的倾斜角,因此tan α=a 2÷32b =a 3b.又α∈⎝ ⎛⎦⎥⎤π6,π4,因此33<tan α≤1,33<a 3b ≤1,33≤b a <1,13≤b 2a 2<1,e =1-⎝ ⎛⎭⎪⎫b a 2∈⎝⎛⎦⎥⎤0,63,选A.12.定义在R 上的偶函数f (x )的导函数为f ′(x ),若对任意的实数x ,都有2f (x )+xf ′(x )<2恒成立,则使x 2f (x )-f (1)<x 2-1成立的实数x 的取值范围为( )A.{x |x ≠±1} B .(-∞,-1)∪(1,+∞) C.(-1,1) D .(-1,0)∪(0,1)答案 B解析 令g (x )=x 2f (x )-x 2,则g ′(x )=2xf (x )+x 2f ′(x )-2x =x [2f (x )+xf ′(x )-2],当x >0时,g ′(x )<0,g (x )单调递减.又f (x )是偶函数,则g (-x )=x 2f (-x )-x 2=x 2f (x )-x 2=g (x ),即g (x )是偶函数.不等式x 2f (x )-f (1)<x 2-1可变形为x 2f (x )-x 2<f (1)-1,即g (x )<g (1),g (|x |)<g (1),|x |>1,解得x <-1或x >1,选项B 正确.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22题~第23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分)13.已知a =ln 12013-12013,b =ln 12014-12014,c =ln 12015-12015,则a ,b ,c 的大小关系为________.答案 a >b >c解析 令f (x )=ln x -x ,则f ′(x )=1x -1=1-x x . 当0<x <1时,f ′(x )>0, 即函数f (x )在(0,1)上是增函数. ∵1>12013>12014>12015>0,∴a >b >c .14.已知三棱锥P -ABC 的顶点P 、A 、B 、C 在球O 的球面上,△ABC 是边长为3的等边三角形,如果球O 的表面积为36π,那么P 到平面ABC 距离的最大值为________.答案 3+2 2解析 依题意,边长是3的等边△ABC 的外接圆半径r =12·3sin60°=1,∵球O 的表面积为36π=4πR 2,∴球O 的半径R =3,∴球心O 到平面ABC 的距离d =R 2-r 2=22,∴球面上的点P 到平面ABC 距离的最大值为R +d =3+2 2.15.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,如果△ABC 的面积等于8,a =5,tan B =-43,那么a +b +c sin A +sin B +sin C =________.答案 5654解析 △ABC 中,∵tan B =-43,∴sin B =45,cos B =-35,又S △ABC =12ac sin B =2c =8,∴c =4,∴b =a 2+c 2-2ac cos B =65,∴a +b +c sin A +sin B +sin C =b sin B=5654.16.过直线l :x +y =2上任意一点P 向圆C :x 2+y 2=1作两条切线,切点分别为A ,B ,线段AB 的中点为Q ,则点Q 到直线l 的距离的取值范围为________.答案 ⎣⎢⎡⎭⎪⎫22,2 解析 依题意,设点P (x 0,2-x 0),则直线AB 的方程为x 0x +(2-x 0)y =1(注:由圆x 2+y 2=r 2外一点E (x 0,y 0)向该圆引两条切线,切点分别为F ,G ,则直线FG 的方程是x 0x +y 0y =r 2),直线OP 的方程是(2-x 0)x -x 0y =0,其中点Q 是直线AB 与OP 的交点,因此点Q (x ,y )的坐标是方程组⎩⎪⎨⎪⎧x 0x +(2-x 0)y =1,(2-x 0)x -x 0y =0的解.由⎩⎪⎨⎪⎧x 0x +(2-x 0)y =1,(2-x 0)x -x 0y =0得⎩⎨⎧x =x 0(2-x 0)2+x 20,y =2-x0(2-x 0)2+x 20,即点Q ⎝ ⎛ x 0(2-x 0)2+x 20,⎭⎪⎫2-x 0(2-x 0)2+x 20,点Q 到直线l 的距离d =⎪⎪⎪⎪⎪⎪2(2-x 0)2+x 20-22=⎪⎪⎪⎪⎪⎪1x 20-2x 0+2-22.注意到0<1x 20-2x 0+2=1(x 0-1)2+1≤1,-2<1x 20-2x 0+2-2≤-1,1≤⎪⎪⎪⎪⎪⎪1x 20-2x 0+2-2<2,所以22≤⎪⎪⎪⎪⎪⎪1x 20-2x 0+2-22<2,即点Q 到直线l 的距离的取值范围是⎣⎢⎡⎭⎪⎫22,2.三、解答题(解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)已知等比数列{a n }的前n 项和S n 满足:S 3=39,且2a 2是3a 1与a 3的等差中项.(1)求数列{a n }的通项a n ;(2)若数列{a n }为递增数列,b n =1log 3a n ·log 3a n +2,T n =b 1+b 2+…+b n ,问是否存在正整数n 使得T n >12成立?若存在,求出n 的最小值;若不存在,请说明理由.解 (1)设数列{a n }的公比为q . 由S 3=39得a 1(1+q +q 2)=39. ①因为2a 2是3a 1与a 3的等差中项,则3a 1+a 3=4a 2.即q 2-4q +3=0,解得q =1或q =3.代入①式得:当q =1时,a 1=13,{a n }的通项公式为a n =13; 当q =3时,a 1=3,{a n }的通项公式为a n =3×3n -1=3n .(2)因为数列{a n }为递增数列,所以a n =3n ,b n =1log 33n ·log 33n +2=1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2. T n =12⎣⎢⎡⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+… ⎦⎥⎤+⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2. 由T n >12得n 2-n -4>0,即n >1+172.又n ∈N *,所以存在最小正整数n =3,使得T n >12成立. 18.[2015·德阳二诊](本小题满分12分)为了整顿食品的安全卫生,食品监督部门对某食品厂生产的甲、乙两种食品进行了检测调研,检测某种有害微量元素的含量,随机在两种食品中各抽取了10个批次的食品,每个批次各随机地抽取了一件,下表是测量数据的茎叶图(单位:毫克)规定:当食品中的有害微量元素含量在[0,10]时为一等品,在(10,20]时为二等品,20以上为劣质品.(1)用分层抽样的方法在两组数据中各抽取5个数据,再分别从这5个数据中各选取2个.求甲的一等品数与乙的一等品数相等的概率;(2)每生产一件一等品盈利50元,二等品盈利20元,劣质品亏损20元.根据上表统计得到的甲、乙两种食品为一等品、二等品、劣质品的频率分别估计这两种食品为一等品、二等品、劣质品的概率.若分别从甲、乙食品中各抽取1件,设这两件食品给该厂带来的盈利为X,求随机变量X的概率分布和数学期望.解(1)从甲中抽取的5个数据中,一等品有4×510=2个,非一等品有3个;从乙中抽取的5个数据中,一等品有6×510=3个,非一等品有2个;设“从甲中抽取的5个数据中任取2个,一等品个数为i”为事件A i(i=0,1,2),则P(A0)=C23C25=310,P(A1)=C12C13C25=35,P(A2)=C22C25=110.设“从乙中抽取的5个数据中任取2个,一等品个数为i”为事件B i(i=0,1,2),则P(B0)=C22C25=110,P(B1)=C12C13C25=35,P(B2)=C23C25=310.∴甲的一等品数与乙的一等品数相等的概率为:P=P(A2·B2)+P(A1·B1)+P(A0·B0)=110×310+35×35+310×110=2150.(2)由题意,设“从甲中任取一件为一等品”为事件C1,则P(C1)=410=25,设“从甲中任取一件为二等品”为事件C2,则P(C2)=410=25,设“从甲中任取一件为劣质品”为事件C 3,则P (C 3)=210=15.设“从乙中任取一件为一等品”为事件D 1,则P (D 1)=610=35;设“从乙中任取一件为二等品”为事件D 2,则P (D 2)=210=15;设“从乙中任取一件为劣质品”为事件D 3,则P (D 3)=210=15.X 可取-40,0,30,40,70,100.P (X =-40)=P (C 3·D 3)=15×15=125,P (X =0)=P (C 3·D 2+C 2·D 3)=15×15+25×15=325,P (X =30)=P (C 1·D 3+C 3·D 1)=25×15+15×35=15,P (X =40)=P (C 2·D 2)=25×15=225,P (X =70)=P (C 1·D 2+C 2·D 1)=25×15+25×35=825,P (X =100)=P (C 1·D 1)=25×35=625,∴X 的分布列为:E (X )=-40×125+0×325+30×15+40×225+70×825+100×625=54.19. (本小题满分12分)如图,在四棱锥P -ABCD 中,PC ⊥平面ABCD .底面ABCD 是直角梯形,AB ⊥AD ,BA ∥CD ,AB =2,AD =CD =1.E 是线段PB 的中点.(1)求证:AC ⊥平面PBC ;(2)若二面角P -AC -E 的余弦值为33,求直线P A 与平面EAC 所成角的正弦值.解 (1)证明:∵PC ⊥平面ABCD ,AC ⊂平面ABCD ,∴AC ⊥PC .又∵AB =2,AD =CD =1,∴AC =BC =2,由AC 2+BC 2=AB 2得AC ⊥BC .又PC ∩BC =C ,∴AC ⊥平面PBC .(2)解法一:由(1)知AC ⊥PC ,AC ⊥EC ,∴∠PCE 就是二面角P -AC -E 的平面角,即cos ∠PCE =33.设PC =a ,则PB =2+a 2.因为E 是线段PB 的中点,有CE =PE =2+a 22.在△PCE 中,PE 2=PC 2+CE 2-2·PC ·CE ·cos ∠PCE , 即2+a 24=a 2+2+a 24-2·a ·2+a 22·33,解得a =1.由(1)知AC ⊥平面PBC ,AC ⊂平面ACE ,所以平面ACE ⊥平面PBC .过点P 在平面PBC 内作PH ⊥CE ,垂足为点H ,连接AH , 于是PH ⊥平面ACE ,∠P AH 就是直线P A 与平面EAC 所成的角.由cos ∠PCE =33,可得sin ∠PCE =63,于是PH =PC ·sin ∠PCH =63.同时,P A =PC 2+AC 2= 3.在Rt △PHA 中,sin ∠P AH =PH P A =23.故直线P A 与平面EAC 所成角的正弦值为23.解法二:设AB 的中点为F ,连接CF ,则CF ⊥AB ,又AB ∥CD ,所以CF ⊥CD ,以C 为原点,建立如图所示的空间直角坐标系,则C (0,0,0),A (1,1,0),B (1,-1,0).设P (0,0,a )(a >0),则E ⎝ ⎛⎭⎪⎫12,-12,a 2,=(1,1,0),=⎝ ⎛⎭⎪⎫12,-12,a 2. 设n =(x ,y ,z )是平面ACE 的法向量,所以则⎩⎪⎨⎪⎧x +y =0,x -y +az =0, 令x =a ,得y =-a ,z =-2,∴n =(a ,-a ,-2),又由(1)知CB ⊥平面P AC ,即=(1,-1,0)是平面P AC 的法向量.依题意,|cos 〈,n 〉|==2a 2·2a 2+4=33, 解得a =1.于是n =(1,-1,-2),=(1,1,-1).设直线P A 与平面EAC 所成的角为θ,有sin θ==1-1+23×6=23. 故直线P A 与平面EAC 所成角的正弦值为23.20.(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,过点M (1,0)的直线l 交椭圆C 于A ,B 两点,|MA |=λ|MB |,且当直线l 垂直于x 轴时,|AB |= 2.(1)求椭圆C 的方程;(2)若λ∈⎣⎢⎡⎦⎥⎤12,2,求弦长|AB |的取值范围. 解 (1)由已知e =22,得c a =22,又当直线垂直于x 轴时,|AB |=2,所以椭圆过点⎝⎛⎭⎪⎫1,22,代入椭圆方程得1a 2+12b 2=1,∵a 2=b 2+c 2,联立方程可得a 2=2,b 2=1,∴椭圆C 的方程为x 22+y 2=1.(2)当过点M 的直线斜率为0时,点A ,B 分别为椭圆长轴的端点,λ=|MA ||MB |=2+12-1=3+22>2或λ=|MA ||MB |=2-12+1=3-22<12,不符合题意.∴直线的斜率不能为0.设直线方程为x =my +1,A (x 1,y 1),B (x 2,y 2),将直线方程代入椭圆方程得:(m 2+2)y 2+2my -1=0,由根与系数的关系可得,⎩⎨⎧ y 1+y 2=-2m m 2+2, ①y 1y 2=-1m 2+2, ②将①式平方除以②式可得:y 1y 2+y 2y 1+2=-4m 2m 2+2,由已知|MA |=λ|MB |可知,y 1y 2=-λ, ∴-λ-1λ+2=-4m 2m 2+2, 又知λ∈⎣⎢⎡⎦⎥⎤12,2,∴-λ-1λ+2∈⎣⎢⎡⎦⎥⎤-12,0, ∴-12≤-4m 2m 2+2≤0,解得m 2∈⎣⎢⎡⎦⎥⎤0,27. |AB |2=(1+m 2)|y 1-y 2|2=(1+m 2)[(y 1+y 2)2-4y 1y 2]=8⎝ ⎛⎭⎪⎫m 2+1m 2+22=8⎝ ⎛⎭⎪⎫1-1m 2+22,∵m 2∈⎣⎢⎡⎦⎥⎤0,27,∴1m 2+2∈⎣⎢⎡⎦⎥⎤716,12, ∴|AB |∈⎣⎢⎡⎦⎥⎤2,928. 21.[2016·福建质检](本小题满分12分)已知函数f (x )=ln x +a x -1,a ∈R .(1)若函数f (x )的最小值为0,求a 的值;(2)证明:e x +(ln x -1)sin x >0.解 (1)f (x )=ln x +a x -1的定义域为(0,+∞),且f ′(x )=1x -a x 2=x -a x 2.若a ≤0,则f ′(x )>0,于是f (x )在(0,+∞)上单调递增, 故f (x )无最小值,不符合题意.若a >0,则当0<x <a 时,f ′(x )<0;当x >a 时,f ′(x )>0. 故f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. 于是当x =a 时,f (x )取得最小值ln a .由已知得ln a =0,解得a =1.综上,a =1.(2)证明:①下面先证当x ∈(0,π)时,e x +(ln x -1)sin x >0. 因为x ∈(0,π),所以只要证e xsin x >1-ln x .由(1)可知1x ≥1-ln x ,于是只要证e x sin x >1x ,即只要证x e x -sin x >0.令h (x )=x e x -sin x ,则h ′(x )=(x +1)e x -cos x .当0<x <π时,h ′(x )=(x +1)e x -cos x >1·e 0-1=0,所以h (x )在(0,π)上单调递增.所以当0<x <π时,h (x )>h (0)=0,即x e x -sin x >0.故当x ∈(0,π)时,不等式e x +(ln x -1)sin x >0成立.②当x ∈[π,+∞)时,由(1)知1x ≥1-ln x ,于是有x ≥1-ln 1x ,即x ≥1+ln x .所以e x ≥e 1+ln x ,即e x ≥e x ,又因为e x ≥e(1+ln x ),所以e x ≥e(1+ln x ),所以e x +(ln x -1)sin x ≥e(ln x +1)+(ln x -1)sin x=(e +sin x )ln x +(e -sin x )>0.综上,不等式e x +(ln x -1)sin x >0成立.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3-22t ,y =5+22t (t 为参数).在以原点O 为极点,x 轴正半轴为极轴的极坐标系中,圆C 的方程为ρ=25sin θ.(1)写出直线l 的普通方程和圆C 的直角坐标方程; (2)若点P 坐标为(3,5),圆C 与直线l 交于A 、B 两点,求|P A |+|PB |的值.解 (1)由⎩⎨⎧x =3-22t ,y =5+22t 得直线l 的普通方程为x +y -3-5=0. 又由ρ=25sin θ得圆C 的直角坐标方程为x 2+y 2-25y =0,即x 2+(y -5)2=5.(2)把直线l 的参数方程代入圆C 的直角坐标方程,得 ⎝⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0. 由于Δ=(32)2-4×4=2>0,故可设t 1、t 2是上述方程的两实数根, 所以t 1+t 2=32,t 1·t 2=4.又直线l 过点P (3, 5),A 、B 两点对应的参数分别为t 1、t 2, 所以|P A |+|PB |=|t 1|+|t 2|=t 1+t 2=3 2.23.(本小题满分10分)选修4-5:不等式选讲设函数f (x )=|x -1|+|x -a |(a ∈R ).(1)当a =4时,求不等式f (x )≥5的解集.(2)若f (x )≥4对a ∈R 恒成立,求实数a 的取值范围. 解 (1)当a =4时,|x -1|+|x -a |≥5等价于⎩⎪⎨⎪⎧ x <1,-2x +5≥5或⎩⎪⎨⎪⎧ 1≤x ≤4,3≥5或⎩⎪⎨⎪⎧x >4,2x -5≥5, 解得x ≤0或x ≥5.所以不等式f (x )≥5的解集为{x |x ≤0或x ≥5}.(2)因为f (x )=|x -1|+|x -a |≥|(x -1)-(x -a )|=|a -1|,所以f (x )min =|a -1|.要使f (x )≥4对a ∈R 恒成立,则|a -1|≥4即可,所以a ≤-3或a ≥5,即实数a 的取值范围是{a |a ≤-3或a ≥5}.。
四川成都2017届高三二诊模拟考试数学试题理含答案
![四川成都2017届高三二诊模拟考试数学试题理含答案](https://img.taocdn.com/s3/m/f6bd32d889eb172ded63b7b2.png)
成都2017届二诊模拟考试数学试卷(理科)(时间:120分钟,总分:150分)命题人: 刘在廷 审题人: 张世永一.选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求.把答案涂在答题卷上.)1.已知集合}2,1,0,1,2{--=A ,}0lg |{≤=x x B ,则B A =( )A }1{B }1,0{C }2,1,0{D }2,1{2.已知i 是虚数单位,若17(,)2ia bi ab R i+=+∈-,则ab 的值是( ) A -15 B -3 C 3 D 15 3.如图,某组合体的三视图是由边长为2的正方形和直径为2的圆组成,则它的体积为( ) A π44+ B π48+ C π344+ D π348+ 4.为了得到函数41log 2+=x y 的图像,只需把函数x y 2log =的图象上所有的点( )A 向左平移1个单位长度,再向上平移2个单位长度B 向右平移1个单位长度,再向上平移2个单位长度C 向左平移1个单位长度,再向下平移2个单位长度D 向右平移1个单位长度,再向下平移2个单位长度5. 某程序框图如图所示,若使输出的结果不大于20,则输入的整数i 的最大值为( )A 3B 4C 5D 6 6.如图,圆锥的高2=PO ,底面⊙O 的直径2=AB , C 是圆上一点,且︒=∠30CAB ,D 为AC 的中点,则直线OC 和平面PAC 所成角的正弦值为( ) A21 B 23 C 32D 317.若曲线1C :2220x y x +-=与曲线2C :()0y y mx m --=有四个不同的交点,则实数m 的取值范围是( )A (3-,3) B (3-0)∪(0,3)C [-∞,∪+∞)正视图侧视图俯视图8.三棱锥A BCD -中,,,AB AC AD 两两垂直,其外接球半径为2,设三棱锥A BCD -的侧面积为S ,则S 的最大值为( )A 4B 6C 8D 16 9.已知221)a ex dx π-=⎰,若2017220170122017(1)()ax b b x b x b x x R -=++++∈,则20171222017222b b b +++的值为( ) A 0 B -1 C 1 D e 10.由无理数引发的数学危机一直延续到19世纪,直到1872年,德国数学家戴金德提出了“戴金德分割”,才结束了持续2000多年的数学史上的第一次大危机.所谓戴金德分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足M ∪N=Q ,M ∩N=∅,M 中的每一个元素都小于N 中的每一个元素,则称(M ,N )为戴金德分割.试判断,对于任一戴金德分割(M ,N ),下列选项中一定不成立的是( ) A M 没有最大元素,N 有一个最小元素 B M 没有最大元素,N 也没有最小元素 C M 有一个最大元素,N 有一个最小元素 D M 有一个最大元素,N 没有最小元素11.已知函数3211()201732f x mx nx x =+++,其中{2,4,6,8},{1,3,5,7}m n ∈∈,从这些函数中任取不同的两个函数,在它们在(1,(1))f 处的切线相互平行的概率是( )A 7120B 760C 730D 以上都不对12.若存在正实数,,x y z 满足 2zx ez ≤≤且ln y z x z =,则ln y x 的取值范围为( )A [1,)+∞B [1,1]e -C (,1]e -∞-D 1[1,ln 2]2+二.填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.)13. 在ABC ∆中,边a 、b 、c 分别是角A 、B 、C 的对边,若cos (3)cos b C a c B =-,则=B cos .14.已知点(,)P x y 的坐标满足条件400x y x y x -≤⎧⎪+≤⎨⎪≥⎩,若点O 为坐标原点,点(1,1)M --,那么OM OP ⋅的最大值等于_________.15.动点(,)M x y 到点(2,0)的距离比到y 轴的距离大2,则动点M 的轨迹方程为_______.16.在△ABC 中,A θ∠=,,D E 分别为,AB AC 的中点,且BE CD ⊥,则cos 2θ的最小值为___________.三.解答题(17-21每小题12分, 22或23题10分,共70分.在答题卷上解答,解答应写出文字说明,证明过程或演算步骤.)17.设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列. (1)求数列{}n a 的通项公式; (2)求数列1{}nn a -的前n 项和n T .18. 为宣传3月5日学雷锋纪念日,成都七中在高一,高二年级中举行学雷锋知识竞赛,每年级出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为321,,432,乙队每人答对的概率都是23.设每人回答正确与否相互之间没有影响,用X 表示甲队总得分. (1)求随机变量X 的分布列及其数学期望()E X ; (2)求甲队和乙队得分之和为4的概率.19.已知等边△//AB CBCD中,1,BD CD BC ==1所示),现将B 与/B ,C 与/C 重合,将△//AB C向上折起,使得AD =2所示). (1)若BC 的中点O ,求证:⊥平面BCD 平面AOD ;(2)在线段AC 上是否存在一点E ,使E D B C D 与面成30角,若存在,求出CE 的长度,若不存在,请说明理由;(3)求三棱锥A BCD -的外接球的表面积.BACD20.已知圆222:2,E x y +=将圆2E按伸缩变换://2x x y y ⎧=⎪⎨=⎪⎩后得到曲线1E , (1)求1E 的方程;(2)过直线2x =上的点M 作圆2E 的两条切线,设切点分别是A ,B ,若直线AB 与1E 交于C ,D 两点,求CDAB的取值范围.21.已知函数()sin ln sin g x x x θθ=--在[1,)+∞单调递增,其中(0,)θπ∈ (1)求θ的值; (2)若221()()x f x g x x -=+,当[1,2]x ∈时,试比较()f x 与/1()2f x +的大小关系(其中/()f x 是()f x 的导函数),请写出详细的推理过程;(3)当0x ≥时,1(1)xe x kg x --≥+恒成立,求k 的取值范围.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.选修4-4:坐标系与参数方程在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :2sin 2cos (0)a a ρθθ=>,又过点(2,4)P --的直线l的参数方程为224x y ⎧=-+⎪⎪⎨⎪=-+⎪⎩(t 为参数),l 与曲线C 分别交于M ,N.(1)写出曲线C 的平面直角坐标系方程和l 的普通方程; (2)若,,PM MN PN 成等比数列,求a 的值.23.选修4-5:不等式选讲设函数()f x =1(0)x x a a a++->(1)证明:()2f x ≥;(2)若()35f <,求a 的取值范围.成都2017届二诊模拟考试数学试卷(理科参考答案)一、 选择题 1-5:ABDCB 6-10:CBCBC 11-12:BB 二、填空题 13.31 14. 4 15. 28(0)y x x =≥或0(0)y x =< 16.725三、解答题 17 .解:(1)由已知12n n S a a =-有1122(1)n n n n n a S S a a n --=-=->,即12(1)n n a a n -=>. 从而21312,4a a a a ==. 又∵123,1,a a a +成等差数列,即1322(1)a a a +=+,∴11142(21)a a a +=+,解得12a =.∴数列{}n a 是首项为2,公比为2的等比数列 故2n n a =.…………6分(2)由(1)得112n n n n a -=-, 因数列⎭⎬⎫⎩⎨⎧n a 1是首项为21,公比为21的等比数列,∴11[1()](1)1(1)221122212n n n n n n n T -++=-=---.………………12分 18.解:(1)X 的可能取值为0,1,2,3.1111(0)43224P X ==⨯⨯= ,3111211111(1)4324324324P X ==⨯⨯+⨯⨯+⨯⨯=,32112131111(2)43243243224P X ==⨯⨯+⨯⨯+⨯⨯=,3211(3)4324P X ==⨯⨯=,X ∴6分1111123()012324424412E X =⨯+⨯+⨯+⨯=.………………………………7分 (2)设“甲队和乙队得分之和为4”事件A,包含“甲队3分且乙队1分”,“甲队2分且乙队2分”,“甲队1分且乙队3分”三个基本事件,则:31)32(4131)32(2411)31(3241)(3223213=⨯+⨯⨯⨯+⨯⨯⨯=C C A P .………………12分 19. 解:(1)∵△ABC 为等边三角形,△BCD 为等腰三角形,且O 为中点 ∴,BC AO BC DO ⊥⊥,AO DO O ⋂=,BC AOD ∴⊥平面,又BC ABC ⊂面∴⊥平面BCD 平面AOD………………3分(2)(法1)作,AH DO ⊥交DO 的延长线于H ,则平面BCD ⋂平面,AOD HD =则AH BCD ⊥平面,在Rt BCD ∆中,122OD BC ==, 在Rt ACO ∆中,AO AC ==AOD ∆中, DABCOEF H222cos 23AD OD AO ADO AD OD +-∠==⋅,sin ADO ∴∠=,在Rt ADH ∆中sin 1AH AD ADO =∠=,设(0CE x x =≤≤,作EF CH F ⊥于,平面AHC ⊥平面B C D ,,EF BCD EDF ∴⊥∠平面就是E D B C D与面所成的角。
2017年四川省成都市高考数学二诊试卷(理科)(详细解析)
![2017年四川省成都市高考数学二诊试卷(理科)(详细解析)](https://img.taocdn.com/s3/m/284c99c683c4bb4cf6ecd1dd.png)
2017年省市高考数学二诊试卷(理科)(附详细解析)一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A=[﹣1,2],B={y|y=x2,x∈A},则A∩B=()A.[1,4] B.[1,2] C.[﹣1,0] D.[0,2]2.若复数z1=a+i(a∈R),z2=1﹣i,且为纯虚数,则z1在复平面所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.在等比数列{an }中,已知a3=6,a3+a5+a7=78,则a5=()A.12 B.18 C.24 D.364.已知平面向量,的夹角为,且||=1,||=,则+2与的夹角是()A.B.C.D.5.若曲线y=lnx+ax2(a为常数)不存在斜率为负数的切线,则实数a的取值围是()A.(﹣,+∞)B.[﹣,+∞) C.(0,+∞) D.[0,+∞)6.若实数x,y满足不等式,且x﹣y的最大值为5,则实数m的值为()A.0 B.﹣1 C.﹣2 D.﹣57.已知m,n是空间中两条不同的直线,α、β是两个不同的平面,且m⊂α,n⊂β.有下列命题:①若α∥β,则m∥n;②若α∥β,则m∥β;③若α∩β=l,且m⊥l,n⊥l,则α⊥β;④若α∩β=l,且m⊥l,m⊥n,则α⊥β.其中真命题的个数是()A.0 B.1 C.2 D.38.已知函数f(x)=a x(a>0,a≠1)的反函数的图象经过点(,).若函数g (x)的定义域为R,当x∈[﹣2,2]时,有g(x)=f(x),且函数g(x+2)为偶函数,则下列结论正确的是()A .g (π)<g (3)<g ()B .g (π)<g ()<g (3)C .g ()<g (3)<g (π) D .g ()<g (π)<g (3)9.执行如图所示的程序框图,若输入a ,b ,c 分别为1,2,0.3,则输出的结果为( )A .1.125B .1.25C .1.3125D .1.37510.已知函数f (x )=sin (ωx +2φ)﹣2sinφcos(ωx +φ)(ω>0,φ∈R )在(π,)上单调递减,则ω的取值围是( ) A .(0,2] B .(0,] C .[,1] D .[,]11.设双曲线C :﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,以F 1F 2为直径的圆与双曲线左支的一个交点为P ,若以OF 1(O 为坐标原点)为直径的圆与PF 2相切,则双曲线C 的离心率为( ) A . B . C . D .12.把平面图形M 上的所有点在一个平面上的射影构成的图形M′叫作图形M 在这个平面上的射影.如图,在三棱锥A ﹣BCD 中,BD ⊥CD ,AB ⊥DB ,AC ⊥DC ,AB=DB=5,CD=4,将围成三棱锥的四个三角形的面积从小到大依次记为S 1,S 2,S 3,S 4,设面积为S 2的三角形所在的平面为α,则面积为S 4的三角形在平面α上的射影的面积是( )A.2 B.C.10 D.30二、填空题(本大题共4小题,每小题5分,共20分)13.在二项式(ax2+)5的展开式中,若常数项为﹣10,则a=.14.在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未污损,即9,10,11,,那么这组数据的方差s2可能的最大值是.15.如图,抛物线y2=4x的一条弦AB经过焦点F,取线段OB的中点D,延长OA 至点C,使|OA|=|AC|,过点C,D作y轴的垂线,垂足分别为E,G,则|EG|的最小值为.16.在数列{an }中,a1=1,an=an﹣1(n≥2,n∈N*),则数列{}的前n项和Tn=.三、解答题(本大题共5小题,共70分)17.(12分)如图,在平面四边形ABCD中,已知∠A=,∠B=,AB=6,在AB边上取点E,使得BE=1,连接EC,ED.若∠CED=,EC=.(Ⅰ)求sin∠BCE的值;(Ⅱ)求CD的长.18.(12分)某项科研活动共进行了5次试验,其数据如表所示:特征量第1次第2次第3次第4次第5次 x 555559 551 563 552y 601605 597 599 598 (Ⅰ)从5次特征量y的试验数据中随机地抽取两个数据,求至少有一个大于600的概率;(Ⅱ)求特征量y关于x的线性回归方程=x+;并预测当特征量x为570时特征量y的值.(附:回归直线的斜率和截距的最小二乘法估计公式分别为=, =﹣)19.(12分)如图,已知梯形CDEF与△ADE所在平面垂直,AD⊥DE,CD⊥DE,AB∥CD∥EF,AE=2DE=8,AB=3,EF=9.CD=12,连接BC,BF.(Ⅰ)若G为AD边上一点,DG=DA,求证:EG∥平面BCF;(Ⅱ)求二面角E﹣BF﹣C的余弦值.20.(12分)在平面直角坐标系xOy中,已知椭圆E: +=1(a>b>0),圆O:x2+y2=r2(0<r<b),若圆O的一条切线l:y=kx+m与椭圆E相交于A,B两点.(Ⅰ)当k=﹣,r=1时,若点A,B都在坐标轴的正半轴上,求椭圆E的方程;(Ⅱ)若以AB为直径的圆经过坐标原点O,探究a,b,r之间的等量关系,并说明理由.21.(12分)已知函数f(x)=alnx﹣x+,其中a>0(Ⅰ)若f(x)在(2,+∞)上存在极值点,求a的取值围;(Ⅱ)设x1∈(0,1),x2∈(1,+∞),若f(x2)﹣f(x1)存在最大值,记为M(a).则a≤e+时,M(a)是否存在最大值?若存在,求出最大值;若不存在,请说明理由.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为(α为参数),直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴为正半轴为极轴的极坐标系中,过极点O的射线与曲线C相交于不同于极点的点A,且点A的极坐标为(2,θ),其中θ∈(,π)(Ⅰ)求θ的值;(Ⅱ)若射线OA与直线l相交于点B,求|AB|的值.[选修4-5:不等式选讲]23.已知函数f(x)=4﹣|x|﹣|x﹣3|(Ⅰ)求不等式f(x+)≥0的解集;(Ⅱ)若p,q,r为正实数,且++=4,求3p+2q+r的最小值.2017年省市高考数学二诊试卷(理科)参考答案与试题解析一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A=[﹣1,2],B={y|y=x2,x∈A},则A∩B=()A.[1,4] B.[1,2] C.[﹣1,0] D.[0,2]【考点】交集及其运算.【分析】先分别求出集合A和B,由此利用交集定义能求出A∩B.【解答】解:∵集合A=[﹣1,2],B={y|y=x2,x∈A}=[0,4],∴A∩B=[0,2].故选:D.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.若复数z1=a+i(a∈R),z2=1﹣i,且为纯虚数,则z1在复平面所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、纯虚数的定义、几何意义即可得出.【解答】解:复数z1=a+i(a∈R),z2=1﹣i,且===+i为纯虚数,∴ =0,≠0,∴a=1.则z1在复平面所对应的点(1,1)位于第一象限.故选:A.【点评】本题考查了复数的运算法则、纯虚数的定义、几何意义,考查了推理能力与计算能力,属于基础题.3.在等比数列{an }中,已知a3=6,a3+a5+a7=78,则a5=()A.12 B.18 C.24 D.36【考点】等比数列的通项公式.【分析】设公比为q,由题意求出公比,再根据等比数列的性质即可求出.【解答】解:设公比为q,∵a3=6,a3+a5+a7=78,∴a3+a3q2+a3q4=78,∴6+6q2+6q4=78,解得q2=3∴a5=a3q2=6×3=18,故选:B【点评】本题考查了等比数列的性质,考查了学生的计算能力,属于基础题.4.已知平面向量,的夹角为,且||=1,||=,则+2与的夹角是()A.B.C.D.【考点】平面向量数量积的运算.【分析】结合题意设出,的坐标,求出+2的坐标以及+2的模,代入公式求出+2与的夹角余弦值即可求出角的度数.【解答】解:平面向量,的夹角为,且||=1,||=,不妨设=(1,0),=(,),故+2=(,),|+2|=,(+2)•=×+×=,故cos<+2,>===,故+2与的夹角是,故选:A.【点评】本题考查了平面向量数量积的运算,考查向量夹角的余弦公式,是一道中档题.5.若曲线y=lnx+ax2(a为常数)不存在斜率为负数的切线,则实数a的取值围是()A.(﹣,+∞)B.[﹣,+∞) C.(0,+∞) D.[0,+∞)【考点】利用导数研究曲线上某点切线方程.【分析】令y′≥0在(0,+∞)上恒成立可得a,根据右侧函数的值域即可得出a的围.【解答】解:y′=+2ax,x∈(0,+∞),∵曲线y=lnx+ax2(a为常数)不存在斜率为负数的切线,∴y′=≥0在(0,+∞)上恒成立,∴a≥﹣恒成立,x∈(0,+∞).令f(x)=﹣,x∈(0,+∞),则f(x)在(0,+∞)上单调递增,又f(x)=﹣<0,∴a≥0.故选D.【点评】本题考查了导数的几何意义,函数单调性与函数最值,属于中档题.6.若实数x,y满足不等式,且x﹣y的最大值为5,则实数m的值为()A.0 B.﹣1 C.﹣2 D.﹣5【考点】简单线性规划.【分析】画出约束条件表示的可行域,然后根据目标函数z=x﹣2y的最大值为2,确定约束条件中a的值即可.【解答】解:画出约束条件,的可行域,如图:x﹣y的最大值为5,由图形可知,z=x﹣y经过可行域的A时取得最大值5,由⇒A(3,﹣2)是最优解,直线y=m,过点A(3,﹣2),所以m=﹣2,故选:C.【点评】本题考查简单的线性规划,考查学生分析问题解决问题的能力,属于中档题.7.已知m,n是空间中两条不同的直线,α、β是两个不同的平面,且m⊂α,n⊂β.有下列命题:①若α∥β,则m∥n;②若α∥β,则m∥β;③若α∩β=l,且m⊥l,n⊥l,则α⊥β;④若α∩β=l,且m⊥l,m⊥n,则α⊥β.其中真命题的个数是()A.0 B.1 C.2 D.3【考点】空间中直线与平面之间的位置关系.【分析】根据空间直线和平面,平面和平面平行或垂直的判定定理,分别判断,即可得出结论.【解答】解:①若α∥β,则m∥n或m,n异面,不正确;②若α∥β,根据平面与平面平行的性质,可得m∥β,正确;③若α∩β=l,且m⊥l,n⊥l,则α与β不一定垂直,不正确;④若α∩β=l,且m⊥l,m⊥n,l与n相交则α⊥β,不正确.故选:B.【点评】本题主要考查命题的真假判断,涉及空间直线和平面,平面和平面平行或垂直的判定,根据相应的判定定理和性质定理是解决本题的关键.8.已知函数f(x)=a x(a>0,a≠1)的反函数的图象经过点(,).若函数g (x)的定义域为R,当x∈[﹣2,2]时,有g(x)=f(x),且函数g(x+2)为偶函数,则下列结论正确的是()A.g(π)<g(3)<g()B.g(π)<g()<g(3)C.g()<g(3)<g(π)D.g()<g(π)<g(3)【考点】反函数.【分析】根据函数的奇偶性,推导出g(﹣x+2)=g(x+2),再利用当x∈[﹣2,2]时,g(x)单调递减,即可求解.【解答】解:函数f(x)=a x(a>0,a≠1)的反函数的图象经过点(,),则a=,∵y=g(x+2)是偶函数,∴g(﹣x+2)=g(x+2),∴g(3)=g(1),g(π)=f(4﹣π),∵4﹣π<1<,当x∈[﹣2,2]时,g(x)单调递减,∴g(4﹣π)>g(1)>g(),∴g()<g(3)<g(π),故选C.【点评】本题考查反函数,考查函数单调性、奇偶性,考查学生的计算能力,正确转化是关键.9.执行如图所示的程序框图,若输入a,b,c分别为1,2,0.3,则输出的结果为()A.1.125 B.1.25 C.1.3125 D.1.375【考点】程序框图.【分析】模拟程序的运行,依次写出每次循环得到的a,b的值,当a=1.25,b=1.5时满足条件|a﹣b|<0.3,退出循环,输出的值为1.375.【解答】解:模拟程序的运行,可得a=1,b=2,c=0.3执行循环体,m=,不满足条件f(m)=0,满足条件f(a)f(m)<0,b=1.5,不满足条件|a﹣b|<c,m=1.25,不满足条件f(m)=0,不满足条件f(a)f(m)<0,a=1.25,满足条件|a﹣b|<c,退出循环,输出的值为1.375.故选:D.【点评】本题考查了程序框图的应用,模拟程序的运行,正确依次写出每次循环得到的a,b的值是解题的关键,属于基础题.10.已知函数f(x)=sin(ωx+2φ)﹣2sinφcos(ωx+φ)(ω>0,φ∈R)在(π,)上单调递减,则ω的取值围是()A .(0,2]B .(0,]C .[,1]D .[,] 【考点】三角函数中的恒等变换应用.【分析】利用积化和差公式化简2sinφcos (ωx +φ)=sin (ωx +2φ)﹣sinωx.可将函数化为y=Asin (ωx +φ)的形式,在(π,)上单调递减,结合三角函数的图象和性质,建立关系可求ω的取值围.【解答】解:函数f (x )=sin (ωx +2φ)﹣2sinφcos(ωx +φ)(ω>0,φ∈R ).化简可得:f (x )=sin (ωx +2φ)﹣sin (ωx +2φ)+sinωx =sinωx,由+,(k ∈Z )上单调递减, 得: +,∴函数f (x )的单调减区间为:[,],(k ∈Z ). ∵在(π,)上单调递减, 可得: ∵ω>0, ω≤1. 故选C .【点评】本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.11.设双曲线C :﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,以F 1F 2为直径的圆与双曲线左支的一个交点为P ,若以OF 1(O 为坐标原点)为直径的圆与PF 2相切,则双曲线C 的离心率为( ) A . B . C . D .【考点】双曲线的简单性质.【分析】设F 1N=ON=MN=r ,则OF 2=2r ,根据勾股定理NF 2=2r ,再利用相似三角形和双曲线的离心率公式即可求得 【解答】解:设F 1N=ON=MN=r , 则OF 2=2r ,根据勾股定理NF2=2r,又△MF2N∽△PF1F2,∴e======,故选:D【点评】此题要求学生掌握定义:到两个定点的距离之差等于|2a|的点所组成的图形即为双曲线.考查了数形结合思想、本题凸显解析几何的特点:“数研究形,形助数”,利用几何性质可寻求到简化问题的捷径.12.把平面图形M上的所有点在一个平面上的射影构成的图形M′叫作图形M在这个平面上的射影.如图,在三棱锥A﹣BCD中,BD⊥CD,AB⊥DB,AC⊥DC,AB=DB=5,CD=4,将围成三棱锥的四个三角形的面积从小到大依次记为S1,S2,S3,S4,设面积为S2的三角形所在的平面为α,则面积为S4的三角形在平面α上的射影的面积是()A.2 B.C.10 D.30【考点】平行投影及平行投影作图法.【分析】由题意,面积为S4的三角形在平面α上的射影为△OAC,即可得出结论.【解答】解:如图所示,面积为S4的三角形在平面α上的射影为△OAC,面积为=2,故选A.【点评】本题考查射影的概念,考查三角形面积的计算,比较基础.二、填空题(本大题共4小题,每小题5分,共20分)13.在二项式(ax2+)5的展开式中,若常数项为﹣10,则a= ﹣2 .【考点】二项式系数的性质.【分析】利用通项公式即可得出.==a5﹣r,【解答】解:二项式(ax2+)5的展开式中,通项公式Tr+1令10﹣=0,解得r=4.∴常数项=a=﹣10,∴a=﹣2.故答案为:﹣2.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.14.在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未污损,即9,10,11,,那么这组数据的方差s2可能的最大值是36 .【考点】极差、方差与标准差.【分析】设这组数据的最后2个分别是:10+x,y,得到x+y=10,表示出S2,根据x的取值求出S2的最大值即可.【解答】解:设这组数据的最后2个分别是:10+x,y,则9+10+11+(10+x)+y=50,得:x+y=10,故y=10﹣x,故S2= [1+0+1+x2+(﹣x)2]= + x2,显然x最大取9时,S2最大是36,故答案为:36.【点评】本题考查了求数据的平均数和方差问题,是一道基础题.15.如图,抛物线y2=4x的一条弦AB经过焦点F,取线段OB的中点D,延长OA 至点C,使|OA|=|AC|,过点C,D作y轴的垂线,垂足分别为E,G,则|EG|的最小值为 4 .【考点】抛物线的简单性质.【分析】设直线AB的方程为x=my+1,代入抛物线y2=4x,可得y2﹣4my﹣4=0,|EG|=y2﹣2y1=y2+,利用基本不等式即可得出结论.【解答】解:设直线AB的方程为x=my+1,代入抛物线y2=4x,可得y2﹣4my﹣4=0,设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=﹣4,∴|EG|=y2﹣2y1=y2+≥4,当且仅当y2=4时,取等号,即|EG|的最小值为4,故答案为4.【点评】本题考查|EG|的最小值的求法,具体涉及到抛物线的简单性质,直线与抛物线的位置关系,解题时要认真审题,仔细解答,注意合理地进行等价转化.16.在数列{an }中,a1=1,an=an﹣1(n≥2,n∈N*),则数列{}的前n项和Tn=.【考点】数列的求和.【分析】由条件可得=•,令bn =,可得bn=•bn﹣1,由bn=b1••…•,求得bn,进而得到an,可得==2(﹣),再由数列的求和方法:裂项相消求和,即可得到所求和.【解答】解:在数列{an }中,a1=1,an=an﹣1(n≥2,n∈N*),可得=•,令bn =,可得bn=•bn﹣1,由bn =b1••…•=1••…•=,可得an=,即有==2(﹣),则前n项和Tn=2(1﹣+﹣+…+﹣)=2(1﹣)=.故答案为:.【点评】本题考查数列的求和,注意运用构造数列法,结合数列恒等式,考查裂项相消求和,考查化简整理的运算能力,属于难题.三、解答题(本大题共5小题,共70分)17.(12分)(2017•模拟)如图,在平面四边形ABCD中,已知∠A=,∠B=,AB=6,在AB边上取点E,使得BE=1,连接EC,ED.若∠CED=,EC=.(Ⅰ)求sin∠BCE的值;(Ⅱ)求CD的长.【考点】三角形中的几何计算.【分析】(Ⅰ)在△CBE中,正弦定理求出sin∠BCE;(Ⅱ)在△CBE中,由余弦定理得CE2=BE2+CB2﹣2BE•CBcos120°,得CB.由余弦定理得CB2=BE2+CE2﹣2BE•CEcos∠BEC⇒cos∠BEC⇒sin∠BEC、cos∠AED在直角△ADE中,求得DE=2,在△CED中,由余弦定理得CD2=CE2+DE2﹣2CE•DEcos120°即可【解答】解:(Ⅰ)在△CBE中,由正弦定理得,sin∠BCE=,(Ⅱ)在△CBE中,由余弦定理得CE2=BE2+CB2﹣2BE•CBcos120°,即7=1+CB2+CB,解得CB=2.由余弦定理得CB2=BE2+CE2﹣2BE•CEcos∠BEC⇒cos∠BEC=.⇒sin∠BEC=,sin∠AED=sin(1200+∠BEC)=,⇒cos∠AED=,在直角△ADE中,AE=5,═cos∠AED=,⇒DE=2,在△CED中,由余弦定理得CD2=CE2+DE2﹣2CE•DEcos120°=49∴CD=7.【点评】本题考查了正余弦定理在解三角形中的应用,是中档题18.(12分)(2017•模拟)某项科研活动共进行了5次试验,其数据如表所示:特征量第1次第2次第3次第4次第5次 x 555559 551 563 552y 601605 597 599 598(Ⅰ)从5次特征量y的试验数据中随机地抽取两个数据,求至少有一个大于600的概率;(Ⅱ)求特征量y关于x的线性回归方程=x+;并预测当特征量x为570时特征量y的值.(附:回归直线的斜率和截距的最小二乘法估计公式分别为=, =﹣)【考点】线性回归方程.【分析】(Ⅰ)利用对立事件的概率公式,可得结论;(Ⅱ)求出回归系数,即可求特征量y关于x的线性回归方程=x+;并预测当特征量x为570时特征量y的值.【解答】解:(Ⅰ)从5次特征量y的试验数据中随机地抽取两个数据,共有=10种方法,都小于600,有=3种方法,∴至少有一个大于600的概率==0.7;(Ⅱ)=554, =600, ===0.25, =﹣=461.5,∴ =0.25x+461.5,x=570, =604,即当特征量x为570时特征量y的值为604.【点评】本题考查概率的计算,考查独立性检验知识的运用,正确计算是关键.19.(12分)(2017•模拟)如图,已知梯形CDEF与△ADE所在平面垂直,AD ⊥DE,CD⊥DE,AB∥CD∥EF,AE=2DE=8,AB=3,EF=9.CD=12,连接BC,BF.(Ⅰ)若G为AD边上一点,DG=DA,求证:EG∥平面BCF;(Ⅱ)求二面角E﹣BF﹣C的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)以D为原点,DC为x轴,DE为y轴,DA为z轴,建立空间直角坐标系,利用向量法能证明EG∥平面BCF.(Ⅱ)求出平面BEF的法向量和平面BFC的法向量,利用向量法能求出二面角E ﹣BF﹣C的余弦值.【解答】证明:(Ⅰ)∵梯形CDEF与△ADE所在平面垂直,AD⊥DE,CD⊥DE,AB∥CD∥EF,∴以D为原点,DC为x轴,DE为y轴,DA为z轴,建立空间直角坐标系,∵AE=2DE=8,AB=3,EF=9.CD=12,连接BC,BF.G为AD边上一点,DG=DA,∴E(0,4,0),G(0,0,),B(3,0,4),C(12,0,0),F(9,4,0),=(9,0,﹣4),=(6,4,﹣4),=(0,﹣4,),设平面BCF的法向量=(x,y,z),则,取z=3,得=(4,3,3),∵=﹣12+12=0,EG⊄平面BCF,∴EG∥平面BCF.解:(Ⅱ) =(3,﹣4,4),=(9,0,0),设平面BEF的法向量=(a,b,c),则,取c=1, =(0,,1),平面BFC的法向量=(4,3,3),设二面角E﹣BF﹣C的平面角为θ,则cosθ===.∴二面角E﹣BF﹣C的余弦值为.【点评】本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.20.(12分)(2017•模拟)在平面直角坐标系xOy中,已知椭圆E: +=1(a >b>0),圆O:x2+y2=r2(0<r<b),若圆O的一条切线l:y=kx+m与椭圆E 相交于A,B两点.(Ⅰ)当k=﹣,r=1时,若点A,B都在坐标轴的正半轴上,求椭圆E的方程;(Ⅱ)若以AB为直径的圆经过坐标原点O,探究a,b,r之间的等量关系,并说明理由.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)依题意原点O到切线l:y=﹣x+m的距离为半径1,⇒m=,⇒A(0,),B(,0)代入椭圆方程,求出a、b即可(2)由原点O到切线l:y=kx+m的距离为半径r⇒m2=(1+k2)r2.联立直线方程和与椭圆的方程,利用求解.【解答】解:(Ⅰ)依题意原点O到切线l:y=﹣x+m的距离为半径1,∴,⇒m=,切线l:y=﹣x+,⇒A(0,),B(,0)∴a=,b=,∴椭圆E的方程为:.(Ⅱ)设A(x1,y1),B(x2,y2),联立,得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0...∵以AB为直径的圆经过坐标原点O,∴;⇒(k2+1)x1x2+km(x1+x2)=m2(a2+b2)=(k2+1)a2b2…①又∵圆O的一条切线l:y=kx+m,∴原点O到切线l:y=kx+m的距离为半径r⇒m2=(1+k2)r2…②由①②得r2(a2+b2)=a2b2.∴以AB为直径的圆经过坐标原点O,则a,b,r之间的等量关为:r2(a2+b2)=a2b2.【点评】本题考查曲线方程的求法,考查了直线与圆锥曲线位置关系的应用,训练了平面向量在求解圆锥曲线问题中的应用,是中档题.21.(12分)(2017•模拟)已知函数f(x)=alnx﹣x+,其中a>0(Ⅰ)若f(x)在(2,+∞)上存在极值点,求a的取值围;(Ⅱ)设x1∈(0,1),x2∈(1,+∞),若f(x2)﹣f(x1)存在最大值,记为M(a).则a≤e+时,M(a)是否存在最大值?若存在,求出最大值;若不存在,请说明理由.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【分析】(Ⅰ)求出函数f(x)的导数,得到a=x+在x∈(2,+∞)上有解,由y=x+在x∈(2,+∞)上递增,得x+∈(,+∞),求出a的围即可;(Ⅱ)求出函数f(x)的导数,得到[f(x2)﹣f(x1)]max=f(n)﹣f(m),求出M(a)=f(n)﹣f(m)=aln+(m﹣n)+(﹣),根据函数的单调性求出M(a)的最大值即可.【解答】解:(Ⅰ)f′(x)=﹣1﹣=,x∈(0,+∞),由题意得,x2﹣ax+1=0在x∈(2,+∞)上有根(不为重根),即a=x+在x∈(2,+∞)上有解,由y=x+在x∈(2,+∞)上递增,得x+∈(,+∞),检验,a>时,f(x)在x∈(2,+∞)上存在极值点,∴a∈(,+∞);(Ⅱ)若0<a≤2,∵f′(x)=在(0,+∞)上满足f′(x)≤0,∴f(x)在(0,+∞)上递减,∴f(x2)﹣f(x1)<0,∴f(x2)﹣f(x1)不存在最大值,则a>2;∴方程x2﹣ax+1=0有2个不相等的正实数根,令其为m,n,且不妨设0<m<1<n,则,f(x)在(0,m)递减,在(m,n)递增,在(n,+∞)递减,对任意x1∈(0,1),有f(x1)≥f(m),对任意x2∈(1,+∞),有f(x2)≤f(n),∴[f(x2)﹣f(x1)]max=f(n)﹣f(m),∴M(a)=f(n)﹣f(m)=aln+(m﹣n)+(﹣),将a=m+n=+n,m=代入上式,消去a,m得:M(a)=2[(+n)lnn+(﹣n)],∵2<a≤e+,∴ +n≤e+,n>1,由y=x+在x∈(1,+∞)递增,得n∈(1,e],设h(x)=2(+x)lnx+2(﹣x),x∈(1,e],h′(x)=2(1﹣)lnx,x∈(1,e],∴h′(x)>0,即h(x)在(1,e]递增,∴[h(x)]max=h(e)=,∴M(a)存在最大值为.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道综合题.[选修4-4:坐标系与参数方程]22.(10分)(2017•模拟)在直角坐标系xOy中,曲线C的参数方程为(α为参数),直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴为正半轴为极轴的极坐标系中,过极点O的射线与曲线C相交于不同于极点的点A,且点A的极坐标为(2,θ),其中θ∈(,π)(Ⅰ)求θ的值;(Ⅱ)若射线OA与直线l相交于点B,求|AB|的值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(Ⅰ)曲线C的极坐标方程,利用点A的极坐标为(2,θ),θ∈(,π),即可求θ的值;(Ⅱ)若射线OA与直线l相交于点B,求出A,B的坐标,即可求|AB|的值.【解答】解:(Ⅰ)曲线C的参数方程为(α为参数),普通方程为x2+(y﹣2)2=4,极坐标方程为ρ=4sinθ,∵点A的极坐标为(2,θ),θ∈(,π),∴θ=;(Ⅱ)直线l的参数方程为(t为参数),普通方程为x+y﹣4=0,点A的直角坐标为(﹣,3),射线OA的方程为y=﹣x,代入x+y﹣4=0,可得B(﹣2,6),∴|AB|==2.【点评】本题考查三种方程的转化,考查两点间距离公式的运用,属于中档题.[选修4-5:不等式选讲]23.(2017•模拟)已知函数f(x)=4﹣|x|﹣|x﹣3|(Ⅰ)求不等式f(x+)≥0的解集;(Ⅱ)若p,q,r为正实数,且++=4,求3p+2q+r的最小值.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(I)由题意,分类讨论,去掉绝对值,解不等式即可;(Ⅱ)运用柯西不等式,可3p+2q+r的最小值.【解答】解:(Ⅰ)f(x+)≥0,即|x+|+|x﹣|≤4,x≤﹣,不等式可化为﹣x﹣﹣x+≤4,∴x≥﹣2,∴﹣2≤x≤﹣;﹣<x<,不等式可化为x+﹣x+≤4恒成立;x≥,不等式可化为x++x﹣≤4,∴x≤2,∴≤x≤2,综上所述,不等式的解集为[﹣2,2];(Ⅱ)∵(++)(3p+2q+r)≥(1+1+1)2=9, ++=4∴3p+2q+r≥,∴3p+2q+r的最小值为.【点评】本题考查不等式的解法,考查运用柯西不等式,考查运算和推理能力,属于中档题.21 / 21。
2017届高三第二次模拟考试 数学理 (含答案)word版
![2017届高三第二次模拟考试 数学理 (含答案)word版](https://img.taocdn.com/s3/m/813514cc3186bceb18e8bb0e.png)
2017年高考考前适应性训练数学(理工农医类)本试卷共4页,分第I 卷(选择题)和第II 卷(非选择题)两部分.共150分.考试时间120分钟.第I 卷(选择题 共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每题选出答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再改涂其它答案标号.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数ii ++113的虚部是A.i -B.1-C.iD.12.设集合⎭⎬⎫⎩⎨⎧=+=143422y x x A ,{}2x y y B ==,则B A ⋂=A.[]2,2-B.[]2,0C.0.4D.0.83.在某项测量中,测量结果ξ服从正态分布()(σσ2,1N >)0,若ξ在(0.2)内取值的概率为0.8,则ξ在()1,0内取值的概率为 A.0.1B.0.2C.0.4D.0.84. 已知两条直线 a ,b 与两个平面α、αβ⊥b ,,则下列命题中正确的是 ①若,//αa 则b a ⊥;②若b a ⊥,则a//α;③若β⊥b ,则βα// ; ④若βα⊥,则b//β. A. ①③B.②④C.①④D.②③5.已知点P 在圆522=+y x 上,点Q (0,—1),则线段PQ 的中点的轨迹方程是 A.022=-+x y xB.0122=-++y y x C.0222=--+y y xD.022=+-+y x y x6.已知a x x p ≥-+-910:的解集为R ,aq 1:<1,则⌝p 是q 的 A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.为了普及环保知识,增强环保意识,某大学从理工类专业的A 班和文史类专业的B 班各抽取20名同学参加环保知识测试.统计得到成绩与专业的列联表: 附:参考公式及数据: (1)卡方统计量()()()()()22122111222112112211222112n n n n n n n n n n n n n x ++++-=(其中)22211211n n n n n +++=;(2)独立性检验的临界值表:则下列说法正确的是A.有99%的把握认为环保知识测试成绩与专业有关B.有99%的把握认为环保知识测试成绩与专业无关C.有95%的把握认为环保知识测试成绩与专业有关D.有95%的把握认为环保知识测试成绩与专业无关8.函数()(()⎩⎨⎧≤++-=0142ln 2x x x x x x x f 的零点个数为A.0B.1C.2D.39.如图为某个几何体的三视图,则该几何体的侧面积为 A.π416+ B.π412+ C.π816+ D.π812+10.已知函数()x f 的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,()()[]()1212x x x f x f --<0恒成立,设()()3,2,21f c f b f a ==⎪⎭⎫ ⎝⎛-=,则a 、b 、c 的大小关系为 A.c >a >bB.c >b >aC.a >c >bD.b >a >c11.已知双曲线154:22=-y x C 的左、右焦点分别为F 1、F 2,P 为C 的右支上一点,且212F F PF =,则21PF ⋅等于A.24B.48C.50D.5612.对于定义域为D 的函数()x f ,若存在区间[](a D b a M ⊆=,<)b ,使得(){}M M x x f y y =∈=,,则称区间M 为函数()x f 的“等值区间”.给出下列四个函数:①();2xx f =②();3x x f =③();sin x x f =④().1log 2+=x x f则存在“等值区间”的函数的个数是A.1个B.2个C.3个D.4个>)0第II 卷(非选择题 共90分)注意事项:1.将第II 卷答案用0.5mm 的黑字签字笔答在答题纸的相应位置上。
2017届高三第二次教学质量检测数学理试题(12页有答案)
![2017届高三第二次教学质量检测数学理试题(12页有答案)](https://img.taocdn.com/s3/m/33ab2ab227d3240c8547efb3.png)
-1012}012}01}-101}-1012} 23B.5A.4C.D.3[+高三年级第二次教学质量检测试题理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)一.选择题:本大题共12个小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={-2,,,,,B={x|-2<x≤2},则A B=A.{-1,,,B.{-1,,C.{-2,,,D.{-2,,,,2.复数2-i1+i对应的点在A.第一象限B.第二象限C.第三象限D.第四象限3.已知向量a=(2,-1),b=(3,x),若a⋅b=3,则x=A.3B.4C.5D.64.已知双曲线x2y2-a b23=1的一条渐近线方程为y=x,则此双曲线的离心率为457445.已知条件p:x-4≤6;条件q:x≤1+m,若p是q的充分不必要条件,则m的取值范围是A.(-∞,-1]B.(-∞,9]C.1,9]D.[9,∞)6.运行如图所示的程序框图,输出的结果S=A.14B.30C.62D.1268.已知α,β是两个不同的平面,l,m,n是不同的直线,下列命题不正确的是A.πA.332D.27.(x-1)n的展开式中只有第5项的二项式系数最大,则展开式中含x2项的系数是xA.56B.35C.-56D.-35...A.若l⊥m,l⊥n,m⊂α,n⊂α,则l⊥αB.若l//m,l⊂/α,m⊂α,则l//αC.若α⊥β,αβ=l,m⊂α,m⊥l,则m⊥βD.若α⊥β,m⊥α,n⊥β,,则m⊥n9.已知f(x)=sin x+3cos x(x∈R),函数y=f(x+ϕ)的图象关于直线x=0对称,则ϕ的值可以是πππB.C.D.263410.男女生共8人,从中任选3人,出现2个男生,1个女生的概率为1528,则其中女生人数是A.2人B.3人C.2人或3人D.4人11.已知抛物线y2=4x,过焦点F作直线与抛物线交于点A,B(点A在x轴下方),点A与1点A关于x轴对称,若直线AB斜率为1,则直线A B的斜率为12B.3C.12.下列结论中,正确的有①不存在实数k,使得方程x ln x-1x2+k=0有两个不等实根;2②已知△ABC中,a,b,c分别为角A,B,C的对边,且a2+b2=2c2,则角C的最大值为π6;③函数y=ln与y=ln tan x2是同一函数;④在椭圆x2y2+a2b2=1(a>b>0),左右顶点分别为A,B,若P为椭圆上任意一点(不同于A,B),则直线PA与直线PB斜率之积为定值.A.①④B.①③C.①②D.②④13.已知等比数列{a}的前n项和为S,且a+a=5n2414.已知实数x、y满足约束条件⎨y≥2,则z=2x+4y的最大值为______.⎪x+y≤6②若a∈(0,1),则a<a1+11-x是奇函数(第Ⅱ卷(非选择题共90分)本卷包括必考题和选考题两部分.第13题~21题为必考题,每个试题考生都必须做答.第22题、第23题为选考题,考生根据要求做答.二.填空题:本大题共4小题;每小题5分,共20分.5,a+a=,则S=__________.n13246⎧x≥2⎪⎩15.一个几何体的三视图如图所示,则这个几何体的外接球的半径为__________.16.下列命题正确是.(写出所有正确命题的序号)①若奇函数f(x)的周期为4,则函数f(x)的图象关于(2,0)对称;③函数f(x)=ln;三.解答题:本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)在△ABC中,角A、B、C的对边分别为a,b,c,且a=3,b=4,B=A+高三理科数学试题和答案第3页共6页π2., 20 40 60 80 ,(1)求 cos B 的值;(2)求 sin 2 A + sin C 的值.18.(本小题满分 12 分)如图,三棱柱 ABC - A B C 中,侧棱 AA ⊥ 平面 ABC , ∆ABC 为等腰直角三角形,1 1 1 1∠BAC = 90 ,且 AA = AB , E , F 分别是 C C , BC 的中点.1 1(1)求证:平面 AB F ⊥ 平面 AEF ;1(2)求二面角 B - AE - F 的余弦值.119.(本小题满分 12 分)某市随机抽取部分企业调查年上缴税收情况(单位:万元),将所得数据绘制成频率分布直方图(如图),年上缴税收范围是[0 100],样本数据分组为第一组[0, ),第二组[20, ),第 三组 [40, ),第四组 [60, ),第五组 [80 100].(1)求直方图中 x 的值;(2)如果年上缴税收不少于 60 万元的企业可申请政策优惠,若共抽取企业 1200 家,试估计有多少企业可以申请政策优惠;(3)从所抽取的企业中任选 4 家,这 4 家企业年上缴税收少于 20 万元的家数记为 X ,求 X 的分布列和数学期望.(以直方图中的频率作为概率)= 1(a > b > 0) 经过点 P (2, 2) ,离心率 e = ,直线 l 的方程为 220.(本小题满分 12 分)已知椭圆 C : x 2 y 2+ a 2 b 22 2x = 4 .(1)求椭圆 C 的方程;(2)经过椭圆右焦点 F 的任一直线(不经过点 P )与椭圆交于两点 A , B ,设直线 AB 与l 相交于点 M ,记 P A , PB , PM 的斜率分别为 k , k , k ,问:是否存在常数 λ ,使得1 2 3k + k = λ k ?若存在,求出 λ 的值,若不存在,说明理由.12321.(本小题满分 12 分)已知函数 f ( x ) = ax + ln x ,其中 a 为常数,设 e 为自然对数的底数.(1)当 a = -1 时,求 f ( x ) 的最大值;(2)若 f ( x ) 在区间 (0, e ] 上的最大值为 -3 ,求 a 的值;(3)设 g ( x ) = xf ( x ), 若 a > 0, 对于任意的两个正实数 x , x ( x ≠ x ) ,1 2 1 2证明: 2 g ( x 1 + x 2) < g ( x ) + g ( x ) .1 2请考生在第 22、23 二题中任选一题做答,如果多做,则按所做的第一题记分.做答时,用⎪⎪ 5⎩17.解:(1)∵ B = A + , ∴ A = B -, ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1 分 ==2B 铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分 10 分)选修 4-4:坐标系与参数方程⎧3 x =- t + 2 在直角坐标系 xOy 中,直线 l 的参数方程为 ⎨ ( t 为参数),以原点 O 为极点, x⎪ y = 4 t ⎪5轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为 ρ = a sin θ .(1)若 a = 2 ,求圆 C 的直角坐标方程与直线 l 的普通方程;(2)设直线 l 截圆 C 的弦长等于圆 C 的半径长的 3 倍,求 a 的值.23.(本小题满分 10 分)选修 4-5:不等式选讲已知函数 f ( x ) = 2x -1 + 2x + 5 ,且 f ( x ) ≥ m 恒成立.(1)求 m 的取值范围;(2)当 m 取最大值时,解关于 x 的不等式: x - 3 - 2x ≤ 2m - 8 .高三第二次质量检测理科数学答案一.ADABD CCABC CA二.13.631614.20 15. 61 16.①③ππ2 23 4 又 a = 3, b = 4 ,所以由正弦定理得 ,sin Asin B34所以, ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅3 分- cos B sin B所以 -3sin B = 4cos B ,两边平方得 9sin 2 B = 16cos 2 B ,3又 sin 2 B + cos 2 B = 1 ,所以 cos B = ± , ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 5 分5π 3而 B > ,所以 cos B = - . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 6 分2 53 4(2)∵ cos B = - ,∴ sin B = , ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 7 分5 5∴面 ABC ⊥ 面 BB C C..........2 分+ = 则 F (0,0,0) , A ( 22 2 2 2 2 1 ∵ B = A +π2,∴ 2 A = 2 B - π ,∴ sin 2 A = sin(2 B - π ) = - sin 2 B ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 8 分4 3 24= -2sin B cos B = -2 ⨯ ⨯ (- ) = ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 10 分5 5 25又 A + B + C = π ,∴ C = 3π 2- 2 B ,7 24 7 31∴ sin C = - cos 2 B = 1 - cos 2 B = .∴ sin 2 A + sin C = . (12)25 25 25 25分18.解答: (1)证明:∵ F 是等腰直角三角形 ∆ABC 斜边 BC 的中点,∴ AF ⊥ BC .又∵侧棱 AA ⊥ 平面ABC ,11 1∴ AF ⊥ 面 BB 1C 1C , AF ⊥ B 1F .…3 分设 AB = AA = 1 ,则1,EF= , .∴ B F 2 + EF 2 = B E 2 ,∴ B F ⊥ EF ........... 4 分1 11又 AF ⋂ EF = F ,∴ B F ⊥平面 AEF .…1而 B F ⊂ 面 AB F ,故:平面 AB F ⊥ 平面 AEF . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅5 分1 11(2)解:以 F 为坐标原点, FA , FB 分别为 x , y 轴建立空间直角坐标系如图,设 AB = AA = 1 ,12 2 1,0,0) , B (0, - ,1) , E (0, - , ) ,12 2 1 2 2AE = (- , - , ) , AB = (- , ,1) .… ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 6 分2 2 2 2 2由(1)知, B F ⊥平面 AEF ,取平面 AEF 的法向量:12m = FB = (0, ,1) . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 7 分14 4 256 4 4 4 644 4 64 4 4 64设平面 B AE 的法向量为 n = ( x , y , z ) ,1由取 x = 3 ,得 n = (3, -1,2 2) (10),分设二面角 B - AE - F 的大小为θ ,1则 cos θ=|cos <>|=| |= .由图可知θ 为锐角,∴所求二面角 B - AE - F 的余弦值为.… ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 12 分119.解答: 解:(I )由直方图可得: 20 ⨯ (x + 0.025 + 0.0065 + 0.003 ⨯ 2) = 1解得 x = 0.0125 .⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 2 分(II )企业缴税收不少于 60 万元的频率 = 0.003 ⨯ 2 ⨯ 20 = 0.12 , ∴1200 ⨯ 0.12 = 144 .∴1200 个企业中有144 个企业可以申请政策优惠.⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 4 分(III ) X 的可能取值为 0,1,2,3,4 .由(I )可得:某个企业缴税少于 20 万元的概率 = 0.0125 ⨯ 20 = 0.25 =分1 3 81 1 3 27P ( X = 0) = C 0 ( )0 ( )4 = P ( X = 1) = C 1 ( )1 ( )3 = 41 3 27 1 3 3P ( X = 2) = C 2 ( )2 ( )2 = P ( X = 3) = C 3 ( )3 ( )1 =4 4 14 (5)X0 1 2 3 44 4 256∴ E ( X ) = 0 ⨯ 81+ = 1 ① 又e = , 所以 = = 4, a = 8,b 1 + 2k 2 1 + 2k 2, x x = x - 2 x - 22, k = k = 2k - 2 4 - 2 2P8125627 64 27 64 3 64 1 2561 3 1P ( X = 4) = C 4 ( )4 ( )0 =4...................................... 10 分............. 11 分27 27 3 1+ 1⨯ + 2 ⨯ + 3 ⨯ + 4 ⨯= 1. ....12 分25664 64 64 25620.解:(1)由点 P (2, 2) 在椭圆上得, 4 2 2 c 2 a 2 b 2 2 a 2②由 ①②得 c 2 2 2 = 4 ,故椭圆 C 的方程为 x 2 y 2+ = 1 ……………………..4 分 8 4(2)假设存在常数 λ ,使得 k + k = λ k .1 23由题意可设 AB 的斜率为k , 则直线AB 的方程为 y = k ( x - 2) ③代入椭圆方程x 2 y 2+ = 1 并整理得 (1+ 2k 2 ) x 2 - 8k 2 x + 8k 2 - 8 = 0 8 48k 2 8k 2 - 8设 A ( x , y ), B ( x , y ) ,则有 x + x = ④ ……………6 分 1 1 2 2 1 2 1 2在方程③中,令 x = 4 得, M (4,2 k ) ,从而 k = y 1 - 2 y 2 - 21 2 1,3 2= k - .又因为 A 、F 、B 共线,则有 k = k AF = k BF ,即有y当 a = -1 时, f ( x ) = - x + ln x , f ' ( x ) = -1 + 1①若 a ≥ - ,则 f ' ( x ) ≥ 0 ,从而 f ( x ) 在 (0, e ] 上是增函数,y1=2= k ……………8 分x - 2x - 21 2所以 k + k = 1 2 y - 2 y - 2 1 + 2 x - 2 x - 21 2= y y 1 11 +2 - 2( + )x - 2 x - 2 x - 2 x - 2 1 2 1 2= 2k - 2x 1 + x 2 - 4x x - 2( x + x ) + 41 212⑤ ……………10 分将④代入⑤得 k + k = 2k - 2 1 2 8k 2- 41 + 2k2 8k 2 - 8 8k 2- 2 + 41 + 2k2 1 + 2k 2= 2k - 2 ,又 k = k - 32 2 ,所以 k + k = 2k 1 2 3 . 故存在常数 λ = 2 符合题意…………12 分21.【解答】解:(1)易知 f ( x ) 定义域为 (0, +∞) ,1 - x= ,x x令 f ' ( x ) = 0 ,得 x = 1 .当 0 < x < 1 时, f ' ( x ) > 0 ;当 x > 1 时, f ' ( x ) < 0 . (2)分∴ f ( x ) 在 (0,1) 上是增函数,在 (1,+∞) 上是减函数.f ( x )max= f (1) = -1.∴函数 f ( x ) 在 (0, +∞) 上的最大值为 -1 . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 4 分(2)∵ f '( x ) = a + 1 1 1, x ∈ (0, e ], ∈ [ , +∞) .x x e1e∴ f ( x )max= f (e ) = ae + 1 ≥ 0 ,不合题意. ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 5 分11② 若 a < - ,则由 f ' ( x ) > 0 ⇒ a +ex> 0 ,即 0 < x < -1a11由 f ' ( x ) < 0 ⇒ a +< 0 ,即 - < x ≤ e . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 6 分xa从而 f ( x ) 在 (0, - ) 上增函数,在 (- (3)法一:即证 2a ( x + x 2) + 2( 12 )ln( 222 2 x 2 x21 1a a, e ) 为减函数∴ f ( x ) max 1 1 = f (- ) = -1 + ln(- ) a a1 1令 -1 + ln(- ) = -3 ,则 ln(- ) = -2a a∴- 11= e -2 -e 2 < -a ,即 a = -e 2.∵ e ,∴ a = -e 2 为所求 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 8 分1 1 x + x x + x2 2 22 ) ≤ ax 2 + ax 2 + x ln x + x ln x 1 2 1 1 222a ( x + x ( x + x )21 2 )2 - ax 2 - ax 2 = a ⋅[ 1 21 2- x 2 - x 2 ]1 2( x - x )2= -a 1 2 2< 0 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 9 分另一方面,不妨设 x < x ,构造函数1 2k ( x ) = ( x + x )ln(1x + x12) - x ln x - x ln x ( x > x )1 1 1x + xx + x则 k ( x ) = 0 ,而 k ' ( x ) = ln 1 - ln x = ln 1 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 10 分1x + x由 0 < x < x 易知 0 < 11< 1 , 即 k ' ( x ) < 0 , k ( x ) 在 ( x , +∞) 上为单调递减且连续, 1x + x故 k ( x ) < 0 ,即 ( x + x )ln( 11) < x ln x + x ln x 1 1相加即得证⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 12 分1法二: g ' ( x ) = 2ax + 1 + ln x , g '' ( x ) = 2a + > 0.........9 分x故 g ' ( x ) 为增函数,不妨令 x > x 21令 h ( x ) = g ( x ) + g ( x ) - 2 g (1x + x12)( x > x )1h ' ( x ) = g '(x ) - g ' (x + x12) ......... 10 分易知 x > x + x x + x1 , 故h ' ( x ) = g '(x ) - g ' ( 12 2) > 0 (11)分而 h ( x ) = 0 , 知 x > x 时, h ( x ) > 0112(2)圆 C : x 2 + y - a ⎫2∴圆心 C 到直线的距离 d = 2- 8 得 a = 32 或 a = 32 ⎪ -4 x - 4, x < - 523.解 (1) f (x) = ⎨6, - 5⎩ 4 x + 4, x > 22 ≤ x ≤ ⎩3 - x - 2 x ≤4 ⎧ 3 ≤ x < 3 .所以,原不等式的解集为 ⎨⎧x x ≥ - ⎬ .故 h ( x ) > 0 , 即 2 g ( x 1 + x 2) < g ( x ) + g ( x )21 2 (12)分22.解 (1) a = 2 时,圆 C 的直角坐标方程为 x 2 + (y -1)2 = 1 ;直线 l 的普通方程为 4 x + 3 y - 8 = 0 . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 4 分⎛⎪ = ⎝ 2 ⎭a 2 4 ,直线 l : 4 x + 3 y - 8 = 0 ,∵直线 l 截圆 C 的弦长等于圆 C 的半径长的 3 倍,3a1 a5 = 2 ⨯ 2 ,11 .⎧2 ⎪1 ⎪2 ≤ x ≤ 2 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 2 分⎪1 ⎪ ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 7 分⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 10 分当 - 5 12 时,函数有最小值 6 ,所以 m ≤ 6 . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 5 分另解:∵ 2x -1 + 2x + 5 ≥ (2x -1) - (2x + 5) = -6 = 6 .∴ m ≤ 6 .(2)当 m 取最大值 6 时,原不等式等价于 x - 3 - 2x ≤ 4 ,⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 6 分等价于 ⎨ x ≥ 3 ⎩ x - 3 - 2x ≤ 4 ⎧ x < 3 ,或 ⎨,⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 8 分可得 x ≥ 3 或 - 11 ⎫ ⎩ 3 ⎭⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 10 分。
2017届高三第二次模拟考试 数学理科试题(含答案)word版
![2017届高三第二次模拟考试 数学理科试题(含答案)word版](https://img.taocdn.com/s3/m/668aa406fc4ffe473368abff.png)
绝密★启用并使用完毕前 2017年威海市高考模拟考试理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共5页.满分150分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合1{1,10,}10A =,{|lg ,}B y y x x A ==∈,则A B = A.1{}10 B. {10} C. {1} D. ∅ 2.复数11i -的共轭复数为A.11+22iB. 1122i -C. 11+22i -D. 1122i -- 3.如图,三棱锥V ABC -底面为正三角形,侧面VAC 与底面垂直且VA VC =,已知其主视图的面积为23,则其左视图的面积为4.若函数()sin()f x x ϕ=+是偶函数,则tan2ϕ=A.0B.1C.1-D. 1或1- 5.等差数列{}n a 中,10590,8S a ==,则4a =A.16B.12C.8D.66.已知命题p :函数12x y a +=-恒过(1,2)点;命题q :若函数(1)f x -为偶函数,则()f x 的图像关于VAB C第3题图直线1x =对称,则下列命题为真命题的是A.p q ∧B.p q ⌝∧⌝C.p q ⌝∧D.p q ∧⌝7.R 上的奇函数()f x 满足(3)()f x f x +=,当01x <≤时,()2x f x =,则(2012)f = A. 2- B. 2 C. 12-D. 128.函数2lg ()=xf x x的大致图像为9.椭圆2222+1(0)x y a b a b =>>的离心率为3,若直线kx y =与其一个交点的横坐标为b ,则k 的值为A.1±B.3±D. 10.设6(x 的展开式中3x 的系数为A ,二项式系数为B ,则:A B = A.4 B. 4- C.62 D.62-11.如图,菱形ABCD 的边长为2,60A ∠=,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM AN ⋅ 的最大值为 A.3 B. 6 D.912.函数()f x 的定义域为A ,若存在非零实数t ,使得对于任意()x C C A ∈⊆有,x t A +∈ 且()()f x t f x +≤,则称()f x 为C 上的t 度低调函数.已知定义域为[)0+∞,的函数()=3f x mx --,且()f x 为[)0+∞,上的6度低调函数,那么实数m 的取值范围是 A.[]0,1 B. [)+∞1, C.(],0-∞ D.(][),01,-∞+∞第Ⅱ卷( 共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13.某商场调查旅游鞋的销售情况,随机抽取了部分顾客C 第11题图A的购鞋尺寸,整理得如下频率分布直方图,其中直方图从左至右的前3个小矩形的面积之比为1:2:3,则购鞋尺寸在[)39.5,43.5内的顾客所占百分比为______. 14.阅读右侧程序框图,则输出的数据S 为______.15.将,,a b c 三个字母填写到3×3方格中,要求每行每列都不能出现重复字母,不同的填写方法有________种.(用数值作答)16.若集合12,n A A A 满足12n A A A A = ,则称12,n A A A 为集合A 的一种拆分.已知: ①当12123{,,}A A a a a = 时,有33种拆分; ②当1231234{,,,}A A A a a a a = 时,有47种拆分; ③当123412345{,,,}A A A A a a a a a = ,时,有515种拆分;……由以上结论,推测出一般结论:当112123{,,,}n n A A A a a a a += 有_________种拆分.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数2()sin cos 2f x x x x ωωω=⋅-(0>ω),直线1x x =,2x x =是)(x f y =图象的任意两条对称轴,且||21x x -的最小值为4π. (I )求()f x 的表达式; (Ⅱ)将函数()f x 的图象向右平移8π个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数()y g x =的图象,若关于x 的方程()0g x k +=,在区间0,2π⎡⎤⎢⎥⎣⎦上有且只有一个实数解,求实数k 的取值范围. 18.(本小题满分12分)某市职教中心组织厨师技能大赛,大赛依次设基本功(初赛)、面点制作(复赛)、热菜烹制(决赛)第14题图三个轮次的比赛,已知某选手通过初赛、复赛、决赛的概率分别是34,23,14且各轮次通过与否相互独立. (I )设该选手参赛的轮次为ξ,求ξ的分布列和数学期望; (Ⅱ)对于(I )中的ξ,设“函数()3sin()2x f x x R ξπ+=∈是偶函数”为事件D ,求事件D 发生的概率.19.(本小题满分12分)在等比数列}{n a 中,412=a ,512163=⋅a a .设22122log 2log 2n n n a a b +=⋅,n T 为数列{}n b 的前n 项和.(Ⅰ)求n a 和n T ;(Ⅱ)若对任意的*∈N n ,不等式n n n T )1(2--<λ恒成立,求实数λ的取值范围.20.(本小题满分12分)如图所示多面体中,AD ⊥平面PDC ,ABCD 为平行四边形,E 为AD 的中点,F 为线段BP 上一点,∠CDP =120 ,AD =3,AP =5,PC=(Ⅰ)若F 为BP 的中点,求证:EF ∥平面PDC ; (Ⅱ)若13BF BP =,求直线AF 与平面PBC 所成角的正弦值.21.(本小题满分12分)已知函数21()ln 12a f x a x x +=++. (Ⅰ)当21-=a 时,求)(x f 在区间],1[e e上的最值;(Ⅱ)讨论函数)(x f 的单调性; (Ⅲ)当10a -<<时,有()1ln()2af x a >+-恒成立,求a 的取值范围. 22.(本小题满分14分)如图,在平面直角坐标系xoy 中,设点()0,F p (0p >), 直线l :y p =-,点P 在直线l 上移动,R 是线段PF 与x 过R 、P 分别作直线1l 、2l ,使1l PF ⊥,2l l ⊥ 12l l Q = . (Ⅰ)求动点Q 的轨迹C 的方程;F DCB APE(Ⅱ)在直线l 上任取一点M 做曲线C 的两条切线,设切点为A 、B ,求证:直线AB 恒过一定点; (Ⅲ)对(Ⅱ)求证:当直线,,MA MF MB 的斜率存在时,直线,,MA MF MB 的斜率的倒数成等差数列.理科数学参考答案一、选择题C B BD D, B A D C A, D D二、填空题13. 55% 14. 0 15. 12 16. 1(21)n n +- 三、解答题17.(本小题满分12分)解:(Ⅰ)11()sin 2sin 22sin(2)223f x x x x x πωωωω=+==+,-------------------------------------------3分由题意知,最小正周期242T ππ=⨯=,222T πππωω===,所以2ω=, ∴()sin(4)3f x x π=+-----------------------------------------6分(Ⅱ)将()f x 的图象向右平移个8π个单位后,得到sin(4)6y x π=-的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到sin(2)6y x π=-的图象.()sin(2).6g x x π=-所以 -------------------------9分令26x t π-=,∵02x π≤≤,∴566t ππ-≤≤()0g x k +=,在区间0,2π⎡⎤⎢⎥⎣⎦上有且只有一个实数解,即函数()y g x =与y k =-在区间0,2π⎡⎤⎢⎥⎣⎦上有且只有一个交点,由正弦函数的图像可知1122k -≤-<或1k -= ∴1122k -<≤或1k =-. -------------------12分18.(本小题满分12分)解:(I )ξ可能取值为1,2,3. -------------------------------2分 记“该选手通过初赛”为事件A ,“该选手通过复赛”为事件B ,31(1)()1,44321(2)()()()(1),434P P A P P AB P A P B ξξ===-=====⨯-=321(3)()()().432P P AB P A P B ξ====⨯= --------------------------5分ξ的分布列为:ξ的数学期望123.4424E ξ=⨯+⨯+⨯= -------------------------- 7分(Ⅱ)当1ξ=时,1()3sin =3sin()222x f x x πππ+=+()f x 为偶函数; 当2ξ=时,2()3sin 3sin()22x f x x πππ+==+()f x 为奇函数; 当3ξ=时,33()3sin 3sin()222x f x x πππ+==+()f x 为偶函数; ∴事件D 发生的概率是34. -----------------------------------12分19.(本小题满分12分)解:(Ⅰ)设}{n a 的公比为q ,由5121161552263==⋅=q q a a a 得21=q , ∴n n n qa a )21(22=⋅=-. ---------------------------------- 2分 22211211()2122()2log 2log 2=log 2log 21111()(21)(21)22121n n nn n a a b n n n n -++=⋅⋅==--+-+∴)1211215131311(21+--++-+-=n n T n 111)22n 121n n =-=++(. -------------------------------------5分(Ⅱ)①当n 为偶数时,由2-<n T n λ恒成立得,322)12)(2(--=+-<nn n n n λ恒成立,即min )322(--<n n λ, ----------------------------------6分 而322--n n 随n 的增大而增大,∴2=n 时0)322(min =--nn ,∴0<λ; ----------------------------------8分 ②当n 为奇数时,由2+<n T n λ恒成立得,522)12)(2(++=++<nn n n n λ恒成立,即min )522(++<nn λ, -----------------------------------9分 而95222522=+⋅≥++nn n n ,当且仅当122=⇒=n n n 等号成立,∴9<λ. ---------------------------------------11分综上,实数λ的取值范围0∞(-,). ----------------------------------------12分 20.(本小题满分12分)解(Ⅰ)取PC 的中点为O ,连FO ,DO , ∵F ,O 分别为BP ,PC 的中点, ∴FO ∥BC ,且12FO BC =, 又ABCD 为平行四边形,ED ∥BC ,且12ED BC =, ∴FO ∥ED ,且FO ED =∴四边形EFOD 是平行四边形 ---------------------------------------------2分即EF ∥DO 又EF ⊄平面PDC∴EF ∥平面PDC . --------------------------------------------- 4分 (Ⅱ)以DC 为x 轴,过D 点做DC 的垂线为y 轴,DA 为z 轴建立空间直角坐标系, 则有D (0 ,0 , 0),C (2,0,0),B (2,0,3),P(-,A (0,0,3) ------------------------------6分设(,,)F x y z,14(2,,3)(1)33BF x y z BP =--==--∴2(2),3F则2(1)3AF =- -----------------------------8分 设平面PBC 的法向量为1(,,)n x y z =P则1100n CB n PC ⎧⋅=⎪⎨⋅=⎪⎩即3040z x =⎧⎪⎨-=⎪⎩ 取1y =得1(2n = -----------------10分2cos ,AF n AF n AF n+⋅<>====⋅ ∴AF 与平面PBC. -------------------------12分21. (本小题满分12分)解:(Ⅰ)当21-=a 时,14ln 21)(2++-=x x x f , ∴xx x x x f 21221)(2-=+-='. ∵)(x f 的定义域为),0(+∞,∴由0)(='x f 得1=x . ---------------------------2分 ∴)(x f 在区间],1[e e 上的最值只可能在)(),1(),1(e f ef f 取到,而421)(,4123)1(,45)1(22e e f e e f f +=+==,∴45)1()(,421)()(min 2max==+==f x f e e f x f . ---------------------------4分(Ⅱ)2(1)()(0,)a x af x x x++'=∈+∞,. ①当01≤+a ,即1-≤a 时,)(,0)(x f x f ∴<'在),0(+∞单调递减;-------------5分 ②当0≥a 时,)(,0)(x f x f ∴>'在),0(+∞单调递增; ----------------6分③当01<<-a 时,由0)(>'x f 得1,12+->∴+->a a x a ax 或1+--<a ax (舍去) ∴)(x f 在),1(+∞+-a a 单调递增,在)1,0(+-a a上单调递减; --------------------8分 综上,当0≥a 时,)(x f 在),0(+∞单调递增;当01<<-a 时,)(x f 在),1(+∞+-a a 单调递增,在)1,0(+-a a上单调递减. 当1-≤a 时,)(x f 在),0(+∞单调递减; -----------------------9分(Ⅲ)由(Ⅱ)知,当01<<-a 时,min ()f x f =即原不等式等价于1ln()2af a >+- ---------------------------10分即111ln()212a a aa a a +-⋅+>+-+ 整理得ln(1)1a +>- ∴11a e>-, ----------------------------11分 又∵01<<-a ,所以a 的取值范围为11,0e ⎛⎫- ⎪⎝⎭. ---------------------------12分 22. (本小题满分14分)解:(Ⅰ)依题意知,点R 是线段FP 的中点,且RQ ⊥FP ,∴RQ 是线段FP 的垂直平分线. ---------------------------------------2分 ∴PQ QF =.故动点Q 的轨迹C 是以F 为焦点,l 为准线的抛物线,其方程为:24(0)x py p =>. -----------------------------------4分 (Ⅱ)设(,)M m p -,两切点为11(,)A x y ,22(,)B x y 由24x py =得214y x p =,求导得12y x p'=. ∴两条切线方程为1111()2y y x x x p-=- ① 2221()2y y x x x p-=-② -------------------6分对于方程①,代入点(,)M m p -得,1111()2p y x m x p --=-,又21114y x p= ∴211111()42p x x m x p p--=-整理得:2211240x mx p --= 同理对方程②有2222240x mx p --=即12,x x 为方程22240x mx p --=的两根.∴212122,4x x m x x p +==- ③ -----------------------8分设直线AB 的斜率为k ,2221211221211()4()4y y x x k x x x x p x x p--===+--所以直线AB 的方程为211211()()44x y x x x x p p-=+-,展开得:12121()44x x y x x x p p =+-,代入③得:2my x p p=+ ∴直线恒过定点(0,)p . -------------------------------------10分 (Ⅲ) 证明:由(Ⅱ)的结论,设(,)M m p -, 11(,)A x y ,22(,)B x y且有212122,4x x m x x p +==-, ∴1212,MA MB y p y pk k x m x m++==-- ----------------------------11分 ∴11MA MBk k +=1212122222221212124()4()4444x m x m x m x m p x m p x m x x y p y p x p x p p p p p------=+=+=+++++++ =1212212221122121212124()4()4()4()44()4p x m p x m p x m x p x m x pm pm mx x x x x x x x x x x x p p-----+====-------------------------------13分 又∵12MFm mk p p p==---,所以112MA MB MF k k k +=即直线,,NA NM NB 的斜率倒数成等差数列. ----------------------------14分。
广西南宁市2017届高三第二次模拟考试数学(理)试题 扫描版含答案
![广西南宁市2017届高三第二次模拟考试数学(理)试题 扫描版含答案](https://img.taocdn.com/s3/m/4683e76da417866fb84a8ec2.png)
2017年南宁市高中毕业班第二次适应性测试数学试卷(理科)评分标准一、选择题1.已知集合{}|310A x x =+<,{}2|610B x x x =--≤,则=B A A. 11[,]32- B. Φ C. 1(,)3-∞ D.1{}3 【答案】B2.复数11ia +(R)a ∈在复平面内对应的点在第一象限,则a 的取值范围是 A. 0<a B. 10<<a C. 1>a D. 1-<a 【答案】A3.若椭圆C :12222=+by a x (0)a b >>的短轴长等于焦距,则椭圆的离心率为 A. 21 B. 33 C. 22 D. 42 【答案】C4.在ABC ∆中,53cos =B ,65==AB AC ,,则角C 的正弦值为 A. 2524 B. 2516 C. 259 D. 257 【答案】A 5.如图是一个几何体的三视图,则该几何体的体积是 A.31 B. 32 C. 1 D. 43【答案】D 6.已知向量),(01=a ,),(21=b ,向量c 在a 方向上的投影为2. 若c //b ,则c 的大小为A.. 2B. 5C. 4D. 52 【答案】D 7.执行如图的程序框图,输出的S 的值是A. 28B. 36C. 45D. 55 【答案】C8.若以函数()0sin >=ωωx A y 的图像中相邻三个最值点为顶点的三角形是面积为1的直角三角形,则ω的值为第7题图A.1B. 2C. πD. π2 【答案】C9.已知底面是边长为2的正方形的四棱锥ABCD P -中,四棱锥的侧棱长都为4,E 是PB 的中点,则异面直线AD 与CE 所成角的余弦值为A.B. C.12D. 2【答案】A 10.定义,,min{,},>,a ab a b b a b ≤⎧=⎨⎩设21()=min{,}f x x x ,则由函数()f x 的图像与x 轴、直线=2x 所围成的封闭图形的面积为A.712 B. 512 C. 1+ln 23 D. 1+ln 26【答案】C 11.函数11()33x f x -=-是 A. 奇函数 B. 偶函数C. 既是奇函数也是偶函数D. 既不是奇函数也不是偶函数 【答案】D12.设实数e d c b a ,,,,同时满足关系:,8=++++e d c b a 1622222=++++e d c b a ,则实数e 的最大值为A.2B.516 C. 3 D. 25【答案】B 解: 将题设条件变形为2222216,8e d c b a e d c b a -=+++-=+++, 代入由柯西不等式得如下不等式222222222(1111)(1111)()a b c d a b c d ⋅+⋅+⋅+⋅≤++++++有)16(4)8(22e e -≤-,解这个一元二次不等式,得.5160≤≤e 所以,当56====d c b a 时,实数e 取得最大值.516 二、填空题:本大题共4个小题,每小题5分,共20分. 把答案填答题卷相应题中横线上.13.设变量y x ,满足约束条件22344x y x y x y -≤⎧⎪+≤⎨⎪-≥-⎩,则目标函数2z y x =-的最大值是 【答案】1414若锐角βα,满足54sin =α,32)tan(=-βα,则=βtan ▲ .【答案】176 15. 过动点M 作圆:22221x y -+-=()()的切线MN ,其中N 为切点,若||||MO MN =(O 为坐标原点),则||MN 的最小值是 ▲ . 【答案】827 16.定义在R 上的函数()f x ,如果存在函数()g x ax b =+,(,a b 为常数),使得()()f x g x ≥对一切实数x 都成立,则称()g x 为函数()f x 的一个承托函数.给出如下命题:①函数()2g x =-是函数ln ,0,()1,0x x f x x >⎧=⎨≤⎩的一个承托函数; ②函数()1g x x =-是函数()sin f x x x =+的一个承托函数;③若函数()g x ax =是函数()f x =e x 的一个承托函数,则a 的取值范围是[0,e]; ④值域是R 的函数()f x 不存在承托函数.其中正确的命题的个数为 ▲ . 【答案】2三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12分)(注意:在试题卷上作答无效.........) 已知数列{}n a 的前n 项和n S 满足:*2,2N n n n S n ∈+=.(1)求数列{}n a 的通项公式;(2)记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:16n T <. 解:(1)第一类解法:当n=1时,13a =....................................................................................................1分 当2n ≥时1--=n n n S S a .....................................................................................2分 222(1)2(1)n n n n =+----................................................................................3分 21n =+....................................................................................................................4分 而13a =也满足21n a n =+...................................................................................5分 ∴数列{}n a 的通项公式为12+=n a n .................................................................................6分 第二类解法:1--=n n n S S a ........................................................................................1分222(1)2(1)n n n n =+----.....................................................................2分21n =+......................................................................................................3分∴数列{}n a 的通项公式为12+=n a n .................................................................................4分 第三类解法:113a S ==..........1分; 221a S S =-.......1分;12+=n a n ...........1分,共3分第四类解法:由S n 22n n =+可知{}n a 等差数列.........................................................................2分 且13a =,212132d a a S S =-=--=...............................................................................4分 ∴数列{}n a 的通项公式为12+=n a n .................................................................................5分(2)∵12+=n a n ,∴111(21)(23)n n a a n n +=++....................................................7分 111()22123n n =-++..........................................................................8分 则1111111[()().......()]235572123n T n n =-+-++-++................................................9分 111()2323n =-+.........................................................................10分 11646n =-+...........................................................................11分 1.6<...........................................................................................................................................12分 18. (本小题满分12分)(注意:在试题卷上作答无效.........) 某食品店为了了解气温对销售量的影响,随机记录了该店1月份中5天的日销售量y (单位:千克)与该地当日最低气温x (单位:C)的数据,如下表:(1)求出y 与x 的回归方程y b x a ∧∧∧=+;(2)判断y 与x 之间是正相关还是负相关;若该地1月份某天的最低气温为6C ,请用所求回归方程预测该店当日的销售量;(3)设该地1月份的日最低气温X ~2(,)N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s ,求(3.813.4)PX <<. 附: ①回归方程y b x a ∧∧∧=+中, 1221()()n i ii n i i x y nx y b xn x ∧==-=-∑∑,a y b x ∧∧=-. 若X ~2(,)N μσ,则()0.6826P X μσμσ-<<+=,(22)0.9544P X μσμσ-<<+=.解:【提示:本题第(1)、(2)问与第(3)问没有太多关系,考生第(1)、(2)问做不对,第(3)问也可能做对,请老师们留意】(1) ∵令5n =,11357,5n i i x x n ====∑114595n i i y y n ====∑,.........................................1分 【说明:如果考生往下算不对结果,只要上面的两个平均数算对其中一个即可给1分】 ∴1()28757928.n i i i x y nx y =-=-⨯⨯=-∑ .......................................................................2分 2221()2955750.n i i xn x =-=-⨯=∑ ...............................................................................................3分 ∴280.5650b ∧-==- ....................................................................................................4分【说明:2分至4分段,如果考生不是分步计算,而是整个公式一起代入计算,正确的直接 给完这部分的分;如果结果不对,只能给1分】 ∴9(0.56)712.92.a y b x ∧∧=-=--⨯= (或者:32325) ...............................................5分∴所求的回归方程是0.5612.92y x ∧=-+ ....................................................................6分(2) 由0.560b ∧=-<知y 与x 之间是负相关, ....................................................................7分【说明:此处只要考生能回答负相关即可给这1分】将6x =代入回归方程可预测该店当日的销售量0.56612.929.56y ∧=-⨯+=(千克) (或者:23925) ....................................................................8分【说明:此处只要考生能算得正确的答案即可给这1分】(3)由(1)知7x μ==,又由2221[(27)5s σ==-22(57)(87)+-+-+22(97)(117)]-+- 10,=得3.2σ= ......................................................................................................................9分【说明:此处要求考生算对方差才能给这1分】从而(3.813.4)P X <<=(2)P X μσμσ-<<+ ..........................................................10分()P X μσμ=-<<(2)P X μμσ+<<+1()2P X μσμσ=-<<+1(22)2P X μσμσ+-<<+ ...............................................11分【说明:此处不管考生用什么方法进行变换,只要有变换过程都给这1分】 0.8185= ........................................................................12分【说明:此处是结论分1分,必须正确才给】19. (本小题满分12分)(注意:在试题卷上作答无效.........) 如图,已知侧棱垂直于底面的四棱柱1111-D C B A ABCD 中,==1A B A D ,,3==CD CB 60BCD ∠= ,31=CC .(1)若E 是线段A A 1上的点且满足AE E A 31=,求证: 平面EBD ⊥平面BD C 1;(2)求二面角1C C D B --的平面角的余弦值.解:(1) 解法(一): 60BCD ∠= ,,3,1====CD CB AD AB ∴90CDA ∠= ,2=C A .. ...............1分(没有这一步扣一分) ∴以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系. ...............2分设M 是BD 的中点,连接1MC .........................................................................................................2分C C 1⊥平面ABCD , ,3==CD CB ∴11C D C B =.M 是BD 的中点,∴1MC ⊥BD ................................................................................................3分 ),(430,1E,3(4M ,)33,0(1,C,∴13(,44MC =- ,(1,0,)4DE =. ................................................ ..........4分13100444MC DE =-⨯+=,∴1MC ⊥DE ..............................................5分(证得1MC ⊥ME 或BE也行)DE与BD 相交于D, ∴1MC ⊥平面EBD .1MC在平面BD C 1内, ∴平面EBD ⊥平面BD C 1 (6)分解法(二): 设M 是BD 的中点,连接EM 和11,MC EC ..............................................................1分,,CD CB AD AB ==∴BD ⊥CA 且,,C A M 共线. ∴BD ⊥ME ,BD ⊥1MC .EA ⊥平面ABCD , C C 1⊥平面ABCD ,∴∠1EMC 是二面角1C BD E --的平面角...........................................................2分60BCD ∠= ,,3,1====CD CB AD AB∴90CDA ∠= ,13,22MA MC ==................................................3分(正确计算出才给这1分)AE E A 31=,31=CC ,∴142EM C M ==………………4分(至少算出一个)1,4C E =.............................................................................................5分 ∴22211C E C M EM =+,即1C E ⊥EM .∴二面角1C BD E --的平面角为直角. ∴平面EBD ⊥平面BD C 1......................................................................................................6分解法(三): 60BCD ∠=,,3,1====CD CB AD AB ∴90CDA ∠=,2=C A . 以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系. ...............1分设M 是BD 的中点,连接EM 和11,MC EC ..,,CD CB AD AB ==∴BD ⊥CA 且,,C A M 共线. ........................................................2分EA ⊥平面ABCD , C C 1⊥平面ABCD ,∴BD ⊥ME ,BD ⊥1MC .∴∠1EMC 是二面角1C BD E --的平面角 (3)分则),(430,1E ,)33,0(1,C,3(,44M ......................4分(至少正确写出一个点的坐标)∴1(,4ME =,13(4MC =- .∴113()(044ME MC ∙=⨯-+= ................................5分 ∴ME ⊥1MC,∠190EMC = ,二面角1C BD E --的平面角为直角,平面EBD ⊥平面BD C 1................................................6分解法四: 连结AC ,11AC ,11B D ,交点为O 和N ,如图. 60BCD ∠=,,3,1====CD CB AD AB∴90CDA ∠= ,2=C A .以O 为原点,OB 为x 轴,OC 为y 轴,ON 为z 轴,建立空间直角坐标系. ...............1分 则O 是BD 的中点.C C 1⊥平面ABCD , ,3==CD CB O 是BD 的中点,∴11C D C B =. O 是BD 的中点,∴1OC ⊥BD ............3分1,24E-(0,),(0)2B ,,13(0,2C ,∴13(0,2OC =,1(,224BE =-- .1310()022OC BE =+⨯-+= ,∴1OC ⊥BE (5)分BE与BD 相交于O , ∴1OC ⊥平面EBD . 1OC在平面BD C 1内, ∴平面EBD ⊥平面BD C 1 (6)分(2) 解法一: (若第1问已经建系)(1,0,0)A ,DA ⊥平面1C DC ,∴(1,0,0)DA =是平面1C DC 的一个法向量...........8分32B (,1C ,3(2DB =,1DC =设平面BD C 1的法向量是(,,)m x y z = ,则10,0m DB m DC ⎧=⎪⎨=⎪⎩,302x y ⎧+=⎪⎨=, 取1,x =得y z ==平面BD C 1的法量(1,m =...................................10分 【另解:由(1)知当13A E AE =时,ME ⊥平面BD C 1,则平面BD C 1的法向量是 ME=1(,4】cos ,||||DA mDA m DA m ∙<>=⨯.............................................................................................11分7=∴由图可知二面角1C C D B --的平面角的余弦值为7....................................12分 解法二: (第1问未建系)60BCD ∠= ,,3,1====CD CB AD AB ∴90CDA ∠= ,2=C A 以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系. ..................7分(1,0,0)A ,DA⊥平面1C DC ,∴(1,0,0)DA=是平面1C DC 的法向量 (8)分3,22B (,0),1C ,3(,22DB =,1DC = ,设平面BD C 1的法向量是(,,)m x y z = ,则10,0m DB m DC ⎧=⎪⎨=⎪⎩,3020x y ⎧+=⎪=, 取1,x =得y z ==平面BD C 1的法量(1,m = (10)分cos ,||||DA mDA m DA m ∙<>=⨯.................................................................................................11分=.∴由图可知二面角1C C D B --.......................................12分解法三: (几何法)设N 是CD 的中点,过N 作NF ⊥D C 1于F ,连接FB ,如图.......................................................7分60BCD ∠= ,,3==CD CB ∴ NB ⊥CD .侧面D C 1⊥底面ABCD , ∴ NB ⊥侧面D C 1..........8分 NF ⊥D C 1,∴BF ⊥D C 1∴∠BFN 是二面角1C C D B --的平面角...................9分依题意可得NB =32, NFBF..................11分 ∴cos ∠BFN =NF BF∴二面角1C C D B --....................12分 20. (本小题满分12分)(注意:在试题卷上作答无效.........) 已知椭圆1C 和抛物线2C 有公共焦点(1,0)F ,1C 的中心和2C 的顶点都在坐标原点,过点(4,0)M 的直线l 与抛物线2C 分别相交于,A B 两点(其中点A 在第四象限内).(1)若||4||MB AM =,求直线l 的方程;(2)若坐标原点O 关于直线l 的对称点P 在抛物线2C 上,直线l 与椭圆1C 有公共点,求椭圆1C的长轴长的最小值.解:(1)解法一:由题意得抛物线方程为24y x =.......................................................................1分设直线l 的方程为4x my =+........................................................................................................2分令211(,),4y A y 222(,),4y B y 其中10y <.由||4||MB AM =,得214y y =- (3)分联立24,4,y x x my ⎧=⎨=+⎩可得24160y my --=,12211216,4,4y y y y y y m=-⎧⎪=-⎨⎪+=⎩解得12y =-,28y =, (4)分∴32m =.........................................................................................................................................5分∴直线l 的方程为2380x y --= (6)分解法二: 由题意得抛物线方程为24y x =.....................................................................................1分设直线l 的方程为(4)y k x =-...................................................................................................2分令211(,),4y A y 222(,),4y B y 其中10y <.由||4||MB AM =,得214y y =- (3)分联立24,(4)y x y k x ⎧=⎨=-⎩可得24160ky y k --=,1221124,4,16y y k y y y y ⎧+=⎪⎪=-⎨⎪=-⎪⎩解得12y =-,28y =, (4)分∴23k =.........................................................................................................................................5分∴直线l 的方程为2380x y --= (6)分解法三: 由题意得抛物线方程为24y x =.................................................................................1分设直线l 的方程为(4)y k x =-...................................................................................................2分令11(,),A x y 22(,),B x y 其中2140,x x >>>由||4||MB AM =, 得21204,0x x k =->..............3分联立24,(4)y x y k x ⎧=⎨=-⎩可得2222(84)160k x k x k -++=,2122211284,204,16k x x k x x x x ⎧++=⎪⎪⎪=-⎨⎪=⎪⎪⎩解得11x =,216x =,...............................................................................................................4分∴2.3k =..................................................................................................................................5分∴直线l 的方程为2380x y --=.........................................................................................6分第一问得分点分析:(1)求出抛物线方程,得1分。
2017届四川省成都市高三第二次诊断性考试理科数学试题及答案 精品
![2017届四川省成都市高三第二次诊断性考试理科数学试题及答案 精品](https://img.taocdn.com/s3/m/d589175ea8956bec0975e388.png)
四川省成都市2017届高三第二次诊断性检测理数试题数学(理工类)本试卷分选择题和非选择题两部分,第I卷(选择题)第1至2页,第II卷(非选择题)3至4页,共4页,满分150分,考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名,考籍号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦拭干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上做答,在试题卷上答题无效。
5.考试结束后,只将答题卡交回。
第I卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1. 设复数i=3(i为虚数单位)在复平面中对应点A,z+将OA绕原点O逆时针旋转0°得到OB,则点B在(A)第一象限(B)第二象限(C)第三象限(D)第四象限2. 执行如图的程序框图,若输入的x值为7,则输出的x的值为 (A )41(B )3log 2 (C )2 (D )33. ()101-x 的展开式中第6项系的系数是(A )510C - (B )510C (C )610C - (D )610C4. 在平面直角坐标系xoy 中,P 为不等式⎪⎩⎪⎨⎧≤--≥-+≤01021y x y x y 所表示的平面区域上一动点,则直线OP 斜率的最大值为(A )2 (B )31 (C )21 (D )15. 已知βα,是两个不同的平面,则“平面//α平面β”成立的一个充分条件是(A )存在一条直线l ,βα//,l l ⊂ (B )存在一个平面γ,βγαγ⊥⊥,(C )存在一条直线βα⊥⊥l l l ,, (D )存在一个平面βγαγγ⊥,//,6. 设命题();000000cos cos --cos ,,:βαβαβα+∈∃R p 命题,,:R y x q ∈∀且ππk x +≠2,Z k k y ∈+≠,2ππ,若y x >,则y x tan tan >,则下列命题中真命题是(A )q p ∧ (B )()q p ⌝∧ (C )()q p ∧⌝ (D )()()q p ⌝∧⌝7. 已知P 是圆()1122=+-y x 上异于坐标原点O 的任意一点,直线OP 的倾斜角为θ,若d OP =,则函数()θf d =的大致图像是8. 已知过定点()0,2的直线与抛物线y x =2相交于()()2211,,,y x B y x A 两点.若21,x x 是方程0cos sin 2=-+ααx x 的两个不相等实数根,则αtan 的值是(A )21 (B )21- (C )2 (D )-29. 某市环保部门准备对分布在该市的H G F E D C B A ,,,,,,,等8个不同检测点的环境监测设备进行监测维护.要求在一周内的星期一至星期五检测维修完所有监测点的设备,且每天至少去一个监测点进行检测维护,其中B A ,两个监测点分别安排在星期一和星期二,E D C ,,三个监测点必须安排在同一天,F 监测点不能安排在星期五,则不同的安排方法种数为(A )36 (B )40 (C )48 (D )6010. 已知定义在[)+∞,0上的函数()x f ,当[]1,0∈x 时,;2142)(--=x x f 当1>x 时,()()a R a x af x f ,,1∈-=为常数.下列有关函数()x f 的描述:①当2=a 时,423=⎪⎭⎫⎝⎛f ; ②当,<1a 函数()x f 的值域为[]2,2-; ③当0>a 时,不等式()212-≤x ax f 在区间[)+∞,0上恒成立;④当01-<<a 时,函数()x f 的图像与直线()*-∈=N n a y n 12在[]n ,0内的交点个数为()211nn -+-.其中描述正确的个数有 (A )4 (B )3 (C )2 (D )1第II 卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2017届高三第二次模拟考试数学理(含答案)word版
![2017届高三第二次模拟考试数学理(含答案)word版](https://img.taocdn.com/s3/m/944ffc342af90242a895e55f.png)
江西省上饶市2017年第二次高考模拟考试数学(理科)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,,共150分.第Ⅰ卷1.答题前,考生务必将自己的学校、座位号、姓名填写在答题卡上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束后,监考员将试题卷、答题卷一并收回. 一、选择题:(本大题共10小题,每小题5分,共50分,每题只有一个正确答案)1.若z·i =1+i ,则复数Z 的虚部为A .1B .iC .-1D .1-i 2.若集合A ={-1,0,1},B ={y |y =cosx ,x ∈A },则A ∩B = A .{0} B .{1} C .{0,1} D .{-1,0,1}3.已知双曲线2221x y a-=的焦点与椭圆2215x y +=的焦点重合,则此双曲线的离心率为A B C D .54.下面求1+4+7+…+2008的值的程序中,正整数m 的最大值为A .2009B .2010C .2011D .20125.若a 0+a 1(2x -1)+a 2(2x -1)2+a 3(2x -1)3+a 4(2x -1)4=x 4,则a 2=A .32B .34C .38D .3166.设数列{n a }的前n 项和为S n (n ∈N ),关于数列{n a }有下列四个命题:(1)若{n a }既是等差数列又是等比数列,则a n =a n +1(n ∈N *);(2)若S n =An 2+Bn (A ,B ∈R ,A 、B 为常数),则{n a }是等差数列;(3)若S n =1-(-1)n,则{a }是等比数列;(4)若{n a }是等比数列,则S m ,S 2m -S m ,S 3m -S 2m (m ∈N *)也成等比数列;其中正确的命题的个数是A .4B .3C .2D .17.已知动点P (x ,y )满足约束条件3010,10x y x y x +-≤⎧⎪--≤⎨⎪-≥⎩,O 为坐标原点,定点A (6,8),则OP 在OA上的投影的范围A .[311,55] B .[112,5] C .3[,2]5D .[211,55] 8.如图,正方体ABCD -A 1B 1C 1D 1A 为球 心,2半径作一个球,则图中球面与正方体的表面相交所得到 的两段弧长之和等于A .56πB .23πC .πD .76π 9.对任意的实数a ,b ,记max {a ,b }=(),().a ab b a b ≥⎧⎨<⎩若F (x )=max {f (x ),g (x )}(x ∈R ),其中奇函数y =f (x )在x =1时有极小值-2,y =g (x )是正比例函数,函数y =f (x )(x >0)与函数y =g (x )的图象如图所示,则下列关于函数y =F (x )的说法中,正确的是 A .y =F (x )为奇函数B .y =F (x )有极大值F (1) 且有极小值F (-1)C .y =F (x )的最小值为-2且最大值为2D .y =F (x )在(-3,0)上不是单调函数10.函数f (x )=sin ||x k x=(k >0)有且仅有两个不同的零点θ,ϕ(θ>ϕ),则以下有关两零点关系的结论正确的是 A .sin ϕ=ϕcos θB .sin ϕ=-ϕcos θC .sin θ=θcos ϕD .sin θ=-θcos ϕ第Ⅱ卷二、填空题:(本大题共5小题,每小题5分,共25分)11.如图是某学校抽取的学生体重的频率分布直方 图,已知图中从左到右的前3个小组频率之比为 1∶2∶3,第2小组的频数为10,则抽取的学生人 数为 .12.数轴上方程Ax +B =0(A ≠0)表示一个点,平面直角坐标系内方程Ax +By +C =0(A 2+B 2≠0)表示一条直线,空间直角坐标系中方程 表示一个平面. 13.已知O (0,0),A (1,0),B (1,1),C (0,1),向正方形OABC 内投一个点P ,点P 落在函数y =x α(α>0)与y =x 所围封闭图形内的概率为16,则实数α的取值是 . 14.把5个不同的小球放入甲、乙、丙3个不同的盒子中,在每个盒子中至少有一个小球的条件下,甲盒子中恰有3个小球的概率为 . 15.请在下列两题中任选一题作答,(如果两题都做,则按所做的第一题评分)(A )将圆M :x 2+y 2=a (a >0)的横坐标伸长为原来的2与直线x -y =1相切,若以原点为极点,x 轴非负半轴为极轴建立极坐标系,则圆M 的极坐标方程为 .(B )关于x 的不等式:2-x 2>|x -a|至少有一个负数解,则实数a 的取值范围是 . 三、解答题:(本大题共6小题,共75分.其中第16—19小题每题12分,第20题13分,第21题14分).16.(12分)已知函数f (x )=sin ωx ωx +sin ωx )+12(ω∈R ,x ∈R )最小正周期为π,且图象关于直线x =76π对称. (1)求f (x )的最大值及对应的x 的集合;(2)若直线y =a 与函数y =1-f (x ),x ∈[0,2]的图象有且只有一个公共点,求实数a 的范围.17.(12分)2009年,福特与浙江吉利就福特旗下的沃尔沃品牌业务的出售在商业条款上达成一致,据专家分析,浙江吉利必须完全考虑以下四个方面的挑战:第一个方面是企业管理,第二个方面是汽车制造技术,第三个方面是汽车销售,第四个方面是人才培养.假设以上各种挑战各自独立,并且只要第四项不合格,或第四项合格且前三项中至少有两项不合格,企业将破产,若第四项挑战失败的概率为14,其他三项挑战失败的概率分别为13. (1)求浙江吉利不破产的概率;(2)专家预测:若四项挑战均成功,企业盈利15亿美元;若第一、第二、第三项挑战中仅有一项不成功且第四项挑战成功,企业盈利5亿美元;若企业破产,企业将损失10亿美元.设浙18.(12分)已知数列{n a }的首项a 1=5,前n 项和为S n ,且S n +1=2S n +n +5(1)求证{1+n a }为等比数列,并求数列{n a }的通项公式; (2)11,n n n n n a b T a a ++=⋅是数列{n b }前n 项和,求T n .19.(12分)已知函数f (x )=lnx -212ax bx -(a ≠0)(1)若a =3,b =-2,求f (x )在[12,e ]的最大值;(2)若b =2,f (x )存在单调递减区间,求a 的范围. 20.(13分)如图分别是正三棱台ABC -A 1B 1C 1的直观图和正视图,O ,O 1分别是上下底面的中心,E是BC 中点.(1)求正三棱台ABC -A 1B 1C 1的体积;(2)求平面EA 1B 1与平面A 1B 1C 1的夹角的余弦; (3)若P 是棱A 1C 1上一点,求CP +PB 1的最小值.21.(14分)已知:圆C :x 2+(y -a )2=a 2(a >0),动点A 在x 轴上方,圆A 与x 轴相切,且与圆C 外切于点M .(1)若动点A 的轨迹为曲线E ,求曲线E 的方程; (2)动点B 也在x 轴上方,且A ,B 分别在y 轴两侧.圆B 与x 轴相切,且与圆C 外切于点N .若圆A ,圆C ,圆B 的半径成等比数列,求证:A ,C ,B 三点共线;(3)在(2)的条件下,过A ,B 两点分别作曲线E 的切线,两切线相交于点T ,若11AMTBNTS S ∆∆+的最小值为2,求直线AB 的方程.上饶市2017年第二次高考模拟考试数学(理科)试卷参考答案一、选择题二、填空题11、40 12、)0(0222≠++=+++C B A D Cz By Ax 13、2或2114、21515、A :ρ= ;B :(2,49-)三、解答题16、解:1cos 21222x x ωω-++12cos 212x x ωω-+…………………………2分 =sin(2)16x πω-+ T=21|2|πωω⇒=±………………3分 若ω=1 , ()sin(2)16f x x π=-+此时76x π=不是对称轴………4分 若ω=-1 ,()sin(2)11sin(2)66f x x x ππ=--+=-+此时76x π=是对称轴…5分 )(x f ∴最大值为2.此时2x+6π=2k π-2π⇒x=k π-3π,k ∈Z……………………6分 (2) 1()sin(2),062y f x x x ππ=-=+≤≤,的图象与直线y=a 的图象有且只有一个公点11(0),()1,()2622f f f ππ===-…………9分 {}11,122a ⎡⎫∴∈-⋃⎪⎢⎣⎭……………………12分17、解:(1)第四项失败的概率14,其他三项失败的概率13破产的概率=1+3[(322112()()C +)] =1+3[1123+⨯⨯] =4………4分不破产的概率1-49=59………6分 (2)x 可能的取值15 , 5 , -10………7分P(x=15)= 34⨯(23)3=34⨯827=836=29……9分P(x=5)= 34[C 1313(23)2]=34⨯13⨯3⨯49=1236=39……11分 P(x=-10)=1636= 49EX=15⨯29+5⨯39-10⨯49=59……12分18.解:⑴由已知:521++=+n S S n n①当12,24n n n S S n -≥=++②, 两式相减得:()1121n n n n S S S S +--=-+即)2(121≥+=+n a a n n , …………3分当1n =时, 51212++=S S 62112+=+∴a a a又15a =,112=∴a ,从而1212+=a a ……4分)(121++∈+=∴N n a a n n )1(211+=+∴+n n a a ,……5分即数列{}1n a +是首项为611=+a ,公比为2的等比数列;1261-⨯=+∴n n a 123-⨯=∴n n a ……7分(2)12311231)123()123(231111-⋅--⋅=-⋅⋅-⋅⋅=⋅+=+++n n n n n n n n n a a a b ……10分 12231111111111()()...()5321321321321321321321n n n n T ++=-+-++-=-⋅-⋅-⋅-⋅-⋅-⋅-⋅- 12分19.解:(1)'()f x =1x -ax-b=1x -3x+2=2132x xx-+=-(31)(1)x x x +-12x e ≤≤ 当112x ≤≤时 f′(x)≥0; 1<x ≤e f′(x)<0 当且仅当x=1,f(x)max =f(1)=12a-b=-32+2=12……5分(2) '()f x = 1x -ax-2=221221ax x ax x x x--+-=-f(x)存在递减区间,∴f′(x)<0有解ax 2+2x-1>0有x>0的解…………7分 a>0,显然满足…………9分∴a 的范围(-1,0) (0,+∞) …………12分20.解:(1)由题意34,3211==C A AC ,正三棱台高为3……..2分21,312,33111111===-∆∆C B A ABC C B A ABC V S S ………..4分11C B (2)设1,O O 分别是上下底面的中心,E 是BC 中点,F 是中点.如图,建立空间直角坐标系xyz O -1. )0,2,32(1-C ,)3,1,3(-C , )3,1,0(E ,)0,4,0(1-A ,)0,2,32(1B ,)3,1,0(1=E A ,)0,6,32(11=B A ,设平面11B EA 的一个法向量),,(z y x n =,则⎪⎩⎪⎨⎧=⋅=⋅00111B A n E A n 即⎪⎩⎪⎨⎧=+=+033035y x z y取)5,3,3(--=n ,取平面111C B A 的一个法向 量)1,0,0(=m ,设所求角为θ 则37375cos =⋅⋅=nm n m θ ……..8分 (3)将梯形11ACC A 绕11C A 旋转到1''1C C A A ,使其与111C B A ∆成平角772sin ,721cos cos 111111111111'=∠=⋅⋅=∠=∠A CC A C C C A C C C A CC A C C 1421)3cos(cos 1111-=+∠=∠∴πA CCB CC 34,3,111'11'==∆B C C C B C C 中,由余弦定理得671'=∴B C即1PB CP +的最小值为67 ……..13分 21解:(1)设),0(),0)(,(a C y y x A >则a y AC +=,a y a y x +=-+∴22)(∴ 曲线E 的方程为)0(42>=y ay x ……………3分(2) 同(1)知,动点B 轨迹也为曲线E :)0(42>=y ay x …………..4分由已知得2a BN AM =⋅,即221a y y =⋅……………..6分04))((4421212122112211=-+=-+-=---=-∴y ay a y y y y ay a y ay a y x a y x a y K K ABAC即B C A ,,三点共线……………………..8分(3)由(2)知B C A ,,三点共线,且直线AB 有斜率,设直线AB :a kx y +=,)0(42>=a ay x 联立得:04422=--a akx x .由题意,B A ,为切点,设)0,0)(,(),,(212211>>y y y x B y x A ,不妨令210x x >> 则: )12(22)(22121+=++=+k a a x x k y y ………………9分直线)(24:1121x x a x a x y AT -=-,即ax x x a y 421211-= ① 同理, 直线BT :ax x x a y 421222-= ②, 由①②解得a ax x a x x x x a y ak x x x -==-+⋅==+=44221,22212121121, 即:),2(a ak T -…………..11分T 到直线0:=+-a y kx AB 的距离12122222+=++=k a k a ak d∴令=+=+=+=∆∆dy y y y dy dy S S BNTAMT212121)(221121111λ112422++⋅k k a ……12分 令)1(12≥+=t k t 则0)12(4),12(41242'2>+=-=-⋅=ta t t a t t a λλ 0,1==∴k t 时,2,24min =∴==a aλ 此时,直线AB 的方程为:2=y …………………………………..14分。
2017届高三二诊模拟考试数学(理)试卷
![2017届高三二诊模拟考试数学(理)试卷](https://img.taocdn.com/s3/m/a51b0396856a561252d36fb9.png)
四川省成都七中2017届高三二诊模拟考试数学(理)试卷一、选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求.把答案涂在答题卷上).1.已知集合{}2,1,0,1,2A =--,{}|lg 0B x x =≤,则A B I =( )A .{}1B .{}0,1C .{}0,1,2D .{}1,22.已知i 是虚数单位,若()17ii ,2i a b a b +=+∈-R ,则ab 的值是( )A .15-B .3-C .3D .153.如图,某组合体的三视图是由边长为2的正方形和直径为2的圆组成,则它的体积为( )A .44π+B .84π+C .44π3+ D .48π3+4.为了得到函数21log 4x y +=的图像,只需把函数2log y x =的图像上所有的点( )A 向左平移1个单位长度,再向上平移2个单位长度B 向右平移1个单位长度,再向上平移2个单位长度C 向左平移1个单位长度,再向下平移2个单位长度D 向右平移1个单位长度,再向下平移2个单位长度5.某程序框图如图所示,若使输出的结果不大于20,则输入的整数i 的最大值为( )A .3B .4C .5D .6正视图侧视图俯视图6.如图,圆锥的高PO =O 的直径2AB =,C 是圆上一点,且30CAB ∠=o ,D 为AC 的中点,则直线OC 和平面PAC 所成角的正弦值为( )A .12 BCD .137.若曲线1C :2220x y x +-=与曲线2C :()0y y mx m --=有四个不同的交点,则实数m 的取值范围是( )A.⎛ ⎝⎭B.⎛⎫⎛ ⎪ ⎪ ⎝⎭⎝⎭U C.⎡⎢⎣⎦D.,⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭U 8.三棱锥A BCD -中,AB AC AD 、、两两垂直,其外接球半径为2,设三棱锥A BCD -的侧面积为S ,则S 的最大值为( )A .4B .6C .8D .16 9.已知)221e πa x dx -=⎰,若()20172201701220171()ax b b x b x b x x -=++++∈R L ,则20171222017222b b b +++L 的值为( ) A .0 B .1- C .1 D .e10.由无理数引发的数学危机一直延续到19世纪,直到1872年,德国数学家戴金德提出了“戴金德分割”,才结束了持续2000多年的数学史上的第一次大危机.所谓戴金德分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足(),,M N M N =∅I ,M 中的每一个元素都小于N 中的每一个元素,则称(),M N 为戴金德分割.试判断,对于任意戴金德分割(),M N ,下列选项中一定不成立的是( )A .M 没有最大元素,N 有一个最小元素B .M 没有最大元素,N 也没有最小元素C .M 有一个最大元素,N 有一个最小元素D .M 有一个最大元素,N 没有最小元素11.已知函数()3211201732f x mx nx x =+++,其中{}{}2,4,6,8,1,3,5,7m n ∈∈,从这些函数中任取不同的两个函数,在它们在(1,(1))f 处的切线相互平行的概率是( )A .7120B .760 C .730D .以上都不对 12.若存在正实数x y z 、、满足e 2z x z ≤≤且ln y z x z =,则ln y x 的取值范围为( ) A .[)1,+∞ B .[]1,e 1- C .(],e 1-∞- D .11,ln 22⎡⎤+⎢⎥⎣⎦二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.13.在ABC △中,边a 、b 、c 分别是角A 、B 、C 的对边,若()cos 3cos b C a c B =-,则cos B =_________.14.已知点(,)P x y 的坐标满足条件400x y x y x -≤⎧⎪+≤⎨⎪≥⎩,若点O 为坐标原点,点()1,1M --,那么OM OP u u u u r u u u r g 的最大值等于_________.15.动点(),M x y 到点()2,0的距离比到y 轴的距离大2,则动点M 的轨迹方程为_________.16.在ABC △中,A θ∠=,D E 、分别为AB AC 、的中点,且BE CD ⊥,则cos2θ的最小值为_________.三、解答题(17~21每小题12分,22或23题10分,共70分.在答题卷上解答,解答应写出文字说明,证明过程或演算步骤).17.设数列{}n a 的前n 项和12n n S a a =-,且1231a a a +、、成等差数列.(1)求数列{}n a 的通项公式;(2)求数列1n n a ⎧⎫-⎨⎬⎩⎭的前n 项和n T . 18.为宣传3月5日学雷锋纪念日,成都七中在高一,高二年级中举行学雷锋知识竞赛,每年级出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为321,,432,乙队每人答对的概率都是23.设每人回答正确与否相互之间没有影响,用X 表示甲队总得分.(1)求随机变量X 的分布列及其数学期望()E X ;(2)求甲队和乙队得分之和为4的概率.19.已知等边AB C ''△,BCD △中,1,BD CD BC ===(如图1所示),现将B 与B ',C 与C '重合,将AB C ''△向上折起,使得AD =2所示).(1)若BC 的中点O ,求证:BCD AOD ⊥平面平面;(2)在线段AC 上是否存在一点E ,使ED BCD 与面成30︒角,若存在,求出CE 的长度,若不存在,请说明理由;(3)求三棱锥A BCD -的外接球的表面积. 20.已知圆222:2,E x y +=将圆2E 按伸缩变换:22x x y y '=⎧⎪⎨'=⎪⎩后得到曲线1E (1)求1E 的方程;(2)过直线2x =上的点M 作圆的两条切线,设切点分别是A B 、,若直线AB 与交于C D 、两点,求||||CD AB 的取值范围. 21.已知函数()sin ln sin g x x x θθ=--在[)1,+∞单调递增,其中()0,πθ∈(1)求θ的值;(2)若()()221x f x g x x -=+,当[]1,2x ∈时,试比较()f x 与()12f x '+的大小关系(其中()f x '是()f x 的导函数),请写出详细的推理过程;(3)当0x ≥时,()e 11x x kg x --≥+恒成立,求k 的取值范围.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.【选修4—4:坐标系与参数方程】在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :()2sin 2cos 0a a ρθθ=>,又过点()2,4P --的直线l 的参数方程为222242x t y t ⎧=-+⎪⎪⎨⎪=-+⎪⎩(t 为参数),l 与曲线C 分别交于M N 、.(1)写出曲线C 的平面直角坐标系方程和l 的普通方程;(2)若,,PM MN PN 成等比数列,求a 的值.23.【选修4—5:不等式选讲】设函数()f x =()10x x a a a++-> (1)证明:()2f x ≥;2E 1E BACDf ,求a的取值范围.(2)若(3)5。
2017届高三下学期二模考试(理)数学试题(附答案)
![2017届高三下学期二模考试(理)数学试题(附答案)](https://img.taocdn.com/s3/m/882d90b384254b35eefd3483.png)
2 3.若 x ,y 满足 ⎨ x + y ≤ 0 ,则 x + 2 y 的最大值为( )⎪ y ≥ 0 2D .216B.北京市东城区 2017 届高三下学期二模数学试卷(理科)一、选择题共 8 小题,每小题 5 分,共 40 分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合 A = {x | x ﹣4<0} ,则 RA =( )A . {x | x ≤ -2或x ≥ 2}B . {x | x <-2或x >2}C .{x | -2<x <2}D .{x | -2 ≤ x ≤ 2}2.下列函数中为奇函数的是( )A . y = x + cosxB . y = x + sin xC . y = xD . y = e - x⎧ x - y + 1 ≥ 0⎪ ⎩A . -1B .0C . 14.设 a, b 是非零向量,则“ a, b 共线”是“ | a + b |=| a | + | b | ”的()A .充分而不必要条件 C .充分必要条件B .必要而不充分条件D .既不充分也不必要条件5.已知等比数列{a n }为递增数列, S n 是其前 n 项和.若 a + a = 1 5 17 2, a a = 4 ,则 S =( ) 2 4 6A . 2727 863 63 C . D .4 26.我国南宋时期的数学家秦九韶(约1202﹣1261)在他的著作《数书九章》中提出了多项式求值的秦九韶算法.如图所示的框图给出了利用秦九韶算法求多项式的一个实例.若输入的n = 5,v = 1, x = 2 ,则程序框图 计算的是()A . 25 + 24 + 23 + 22 + 2 + 1B . 25 + 24 + 23 + 22 + 2 + 5C . 26 + 25 + 24 + 23 + 22 + 2 + 1D . 24 + 23 + 22 + 2 + 147.动点P从点A出发,按逆时针方向沿周长为1的平面图形运动一周,A,P两点间的距离Y与动点P所走过的路程X的关系如图所示,那么动点P所走的图形可能是()A.B.C.D.8.据统计某超市两种蔬菜A,B连续n天价格分别为a,a,a,⋯,a,和b,b,b,,令123n123M={m|a<b,m=1,2,,n},若M中元素个数大于3n,则称蔬菜A在这n天的价格低于蔬菜B的价格, m m记作:A,B,现有三种蔬菜A,B,C,下列说法正确的是()A.若A<B,B<C,则A<CB.若A<B,B<C同时不成立,则A<C不成立C.A<B,B<A可同时不成立D.A<B,B<A可同时成立二、填空题共6小题,每小题5分,共30分.9.复数i(2-i)在复平面内所对应的点的坐标为_______.10.在极坐标系中,直线ρcosθ+3ρsinθ+1=0与圆ρ=2a cosθ(a>0)相切,则a=_______.11.某校开设A类选修课4门,B类选修课2门,每位同学需从两类选修课中共选4门,若要求至少选一门B类课程,则不同的选法共有_______种.(用数字作答)12.如图,在四边形ABCD中,∠ABD=45︒,∠ADB=30︒,BC=1,DC=2,cos∠BCD=角形ABD的面积为_______.14,则BD=_______;三13.在直角坐标系xOy中,直线l过抛物线y2=4x的焦点F,且与该抛物线相交于A,B两点,其中点14.已知函数f(x)⎨min{|x-1|,|x-3|},x∈(2,4]{}⎩min|x-3|,|x-5|,x∈(4,+∞)(Ⅱ)若(x)在⎢,⎥上单调递减,求f(x)的最大值.flE A B,A在x轴上方.若直线的倾斜角为60︒,则OA=_______.⎧|x-1|,x∈(0,2]⎪⎪①若f(x)=a有且只有一个根,则实数a的取值范围是_______.②若关于x的方程f(x+T)=f(x)有且仅有3个不同的实根,则实数T的取值范围是_______.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.已知函数f(x)=3sin2x+a cos2x(a∈R).(Ⅰ)若f(π)=2,求a的值;6⎡π7π⎤⎣1212⎦16.小明计划在8月11日至8月20日期间游览某主题公园.根据旅游局统计数据,该主题公园在此期间“游览舒适度”(即在园人数与景区主管部门核定的最大瞬时容量之比,40%以下为舒适,40%﹣60%为一般,60%以上为拥挤)情况如图所示.小明随机选择8月11日至8月19日中的某一天到达该主题公园,并游览2天.(Ⅰ)求小明连续两天都遇上拥挤的概率;(Ⅱ)设X是小明游览期间遇上舒适的天数,求X的分布列和数学期望;(Ⅲ)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明)17.如图,在几何体ABCDEF中,平面A D⊥平面C四边形ABCD为菱形,且∠DAB=60︒,EA=ED=AB=2EF,EF∥AB,M为BC中点.(Ⅰ)求证:FM∥平面BDE;(Ⅱ)求直线CF与平面BDE所成角的正弦值;(Ⅲ)在棱CF上是否存在点G,使BG⊥DE?若存在,求CGCF的值;若不存在,说明理由.n维T向量.对于两个n维T向量A,B,定义(A,B)=∑|a-b|.d,),0),A为12维T向量序列中的项,求出所有的m.18.设函数f(x)=(x2+ax-a)e-x(a∈R).(Ⅰ)当a=0时,求曲线y=f(x)在点(1,f(-1))处的切线方程;(Ⅱ)设g(x)=x2-x-1,若对任意的t∈[0,2],存在s∈[0,2]使得f(s)≥g(t)成立,求a的取值范围.19.已知椭圆C:x2y2+a2b2=1(a>b>0)的短轴长为23,右焦点为F(1,0),点M是椭圆C上异于左、右顶点A,B的一点.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线AM与直线x=2交于点N,线段B N的中点为E.证明:点B关于直线EF的对称点在直线MF 上.20.对于n维向量A=(a,a,⋯,a),若对任意i∈{1,2,12n,n}均有a=0或a=1,则称A为i ini ii=1(Ⅰ)若A=(1,0,1,0,1),B=(0,1,1,1,0),求d(A B的值.(Ⅱ)现有一个5维T向量序列:A,A,A,⋯,若A1=(1,1,1,1,1)且满足:d(A,A+1)=2,i∈N*.求证:1231i i该序列中不存在5维T向量(0,0,0,0,0).(Ⅲ)现有一个12维T向量序列:A,A,A,,若A(1,1,,1)且满足:d(A,A)=m,m∈N*,i=1,2,3,,1231i i+112个若存在正整数j使得A(0,0,j12个j北京市东城区2017届高三下学期二模考试(理)数学试卷答案1.A2.B3.C4.B5.D6.A7.C8.C9.(1,2)10.111.1412.2;3-113.2114.①(1,+∞);②(-4,-2)(2,4)15.解(Ⅰ)因为f(π)=3sin2631+a=2.22故得:a=1.ππ+a cos2=2, 66(Ⅱ)由题意:f(x)=3+a2sin(2x+θ),其中tanθ=a 3 ,∴函数的周期T=π,且7πππ-=, 12122所以当x=π12时,函数f(x)取得最大值,即f(x)maxππ=f()=3+a2sin(+θ)=3+a2,126π∴sin(+θ)=1,6πa∴θ=+2kπ,k∈Z.∴tanθ==3,∴a=3.33因此f(x)的最大值为23.16.解:设A表示事件“小明8月11日起第i日连续两天游览主题公园”(i=1,2, i1根据题意,P(A)=,且事件A与A互斥.i i j ,9).993 故 X 的期望 E( X ) = 0 ⨯ + 1⨯(Ⅰ)设 B 为事件“小明连续两天都遇上拥挤”,则 B = AA .47所以 P(B) = P( A4A ) = P( A ) + P( A ) = 27 4 7. (Ⅱ)由题意,可知 X 的所有可能取值为 0,1,2,P( X = 0) = P( A 4A71A ) = P( A ) + P( A ) + P( A ) = ,8 4 7 8P( X = 1) = P( A3A 5A6A ) = P( A ) + P( A ) + P( A ) + P( A ) = 9 3 5 6 9 4 9, P( X = 2) = P( A1A ) = P( A ) + P( A ) = 2 1 2 2 9.所以 X 的分布列为X0 1 2P13 4 9 2 91 3 42 8+ 2 ⨯ = .9 9 9(Ⅲ)从 8 月 16 日开始连续三天游览舒适度的方差最大.17.证明:(Ⅰ) 取CD 中点 N , 连结 M N 、FN .因为 N , M 分别为 C D, BC 中点, 所以MN ∥BD .又BD ⊂ 平面BDE, 且MN ⊄ 平面BDE, 所以MN ∥平面BDE ,因为 EF / / AB, AB = 2EF , 所以EF ∥CD, EF = DN .所以四边形 EFND 为平行四边形.所以 FN ∥ED . 又 ED ⊂ 平面BDE 且FN ⊄ 平面BDE , 所以 FN ∥平面BDE , 又 FNMN = N , 所以平面MFN ∥平面BDE .又 FM ⊂ 平面MFN , 所以FM ∥平面BDE . 解:(Ⅱ) 取AD 中点O , 连结EO, BO .因为 EA = ED, 所以EO ⊥ AD .因为平面 ADE ⊥ 平面ABCD, 所以EO ⊥ 平面ABCD, EO ⊥ BO . 因为 AD = AB, ∠DAB = 60︒, 所以△ADB 为等边三角形.因为 O 为AD 中点, 所以AD ⊥ BO .因为 EO, BO, AO 两两垂直, 设AB = 4,以 O 为原点, O A, O B, O E 为x, y , z 轴,如图建立空间直角坐标系 O - xyz .-6-/15⎪ ⎩ ⎩由题意得, A (2,0,0 ), B(0,2 3,0) , C (-4,2 3,0) , D (-2,0,0 ), E (0,0,2 3) , F (-1, 3,2 3) .CF = (3,- 3,2 3) , CE = (2,0,2 3) , BE = (3,-2 3,2 3) .设平面 BDE 的法向量为 n =(x, y , z ),⎧n BE = 0 ⎧⎪ y - z = 0 则 ⎨ ,即 ⎨ ,⎪n DE = 0⎪ x + 3z = 0令 z = 1,则y = 1 , x = - 3 .所以 n = (- 3,1,1) .设直线 CF 与平面 BDE 成角为 α , sin α =| cos < CF ,n >|= 10 10,所以直线 CF 与平面ADE 所成角的正弦值为 10 10.(Ⅲ)设 G 是CF 上一点,且 CG = λ CF , λ ∈[0,1] .因此点 G(3λ - 4, - 3λ + 2 3,2 3λ) .BG = (3λ - 4, - 3λ,2 3λ) .由 BG DE = 0 ,解得 λ = 49.所以在棱 CF 上存在点G 使得BG ⊥ DE ,此时CG 4= .CF 9' ' ' ' ' 2] 2] '18.解:(Ⅰ)当 a = 0时,f (x )= x 2e - x ,∴ f (x )=( - x 2 + 2 x )e - x ,∴ f ( - 1)= - 3e .又∵ f ( - 1)= e ,∴曲线 y = f ( x )在点(-1, f (-1)) 处的切线方程为:y - e = -3e(x + 1),即3ex + y + 2e = 0 .(Ⅱ)“对任意的 t ∈ [0,2 ], 存在 s ∈ [0, 2]使得 f (s )≥ g (t )成立”,等价于“在区间[0,2 ]上, f (x )的最大值大于或等于g (x )的最大值”.∵ g ( x ) = x 2 - x - 1 = ( x - 1 )2 - 25 4,∴ g (x )在[0,2 ]上的最大值为g (2)= 1 .f (x )=(2 x + a ) e - x -(x 2 + ax - a ) e - x = -e x [ x 2 +(a - 2)x - 2a] = e - x (x - 2)(x + a ) ,令 f (x )= 0, 得x = 2, 或x = -a .①当 -a <0,即a >0时,f (x )>0在[0,上恒成立 ,f (x )在[0, 上为单调递增函数,f (x )的最大值为f (2)=(4 + a ) 1 e 2,由(4 + a ) 1 e 2≥ 1,得a ≤ e 2 - 4②当 0< - a <2,即 - 2<a <0 时,当 x ∈(0,- a )时,f (x )<0, f (x )为单调递减函数,当 x ∈ (-a, -2)时,f '(x)>0, f ( x ) 为单调递增函数.∴ f ( x )的最大值为f (0) = -a 或f (2) = (4 + a) 1e 2,-8-/15设点 M (x , y ),由 ⎨x 2 y 2 ,整理得(4k 2 + 3)x 2 + 16k 2 x + 16k 2 - 12 = 0 , ⎪ + = 1 ' 2] 2] , 3 + 4k 3 + 4k ①当 MF ⊥ x 轴时, x = 1,此时k = ± .2 则 M (1,± ), N (2, ±2), E (2, ±1).时,直线 MF 的斜率为 k=y 16k 2 + (4k 2 - 1)2 =由 -a ≥ 1,得a ≤ -1;由(4 + a)1≥ 1 ,得 a ≤ e 2-4 .e 2又∵ -2<a <0,∴- 2<a = 1 .③当 -a >2,即a <-2 时,f (x )<0在[0,上恒成立 ,f (x )在[0, 上为单调递减函数,f (x )的最大值为f (0)= -a ,由 -a ≥ 1, 得a ≤ -1 ,又因为 a <-2,所以a <-2 .综上所述,实数 a 的值范围是{x | a ≤ -1或a ≥ e 2 - 4} .19.解:(Ⅰ)由题意得 2b = 2 3 ,则 b = 3 , c = 1,则a 2 = b 2 + c 2 = 4, 则a = 2 ,x 2 y 2 ∴椭圆 C 的方程为+= 1;43(Ⅱ)证明:“ 点B 关于直线 EF 的对称点在直线 MF 上”等价于 “ E F 平分 ∠MFB ”.设直线 AM 的方程为y = k (x + 2)(k ≠ 0),则N (2,4 k ) E (2,2 k ) .⎧ y = k ( x + 2)⎪ 0 0⎩ 4 316k 2 - 12 -8k 2 + 6由韦达定理可知 -2 x = ,则 x =0 2 0 2, y = k (x + 2)= 0 0 12k 3 + 4k 2 ,132此时,点 E 在∠BFM 的角平分线所在的直线 y = x - 1或y = - x + 1 ,即 EF 平分∠MFB .②当 k ≠ 1 4k 0 = ,2 x - 1 1 - 4k 2 0所以直线 MF 的方程为4kx +(4k 2 - 1)y - 4k = 0 .所以点 E 到直线 MF 的距离d = | 8k + 2k (4k 2 - 1) - 4k | | 4k + 2k (4k 2 - 1)| (4k 2 + 1)2=| 2k(4k 2 + 1)| | 4k 2 + 1| = 2k = BE .即点 B 关于直线 EF 的对称点在直线 MF 上,20.解:(Ⅰ)由于 A = (1,0,1,0,1) , B = (0,1,1,1,0) ,由定义 d ( A,B) = ∑ | a - b | , i + = 2 ,0) , A 为 12 维 T 向 量 序 列 中 的 项 , 此 时 m综上可知:点 B 关于直线 EF 的对称点在直线 MF 上.n i ii =1可得 d (A, B )= 4 .(Ⅱ)反证法:若结论不成立,即存在一个含 5 维 T 向量序列, A , A , A ,123, A ,n使得 A = (1,1,1,1,1) A = (0,0,0,0,0,0) .1m因为向量 A = (1,1,1,1,1)的每一个分量变为 0,都需要奇数次变化,1不妨设 A 的第 (i = 1,2,3,4,5 )个分量1变化了2n -1 次之后变成 0, 1i所以将 A 中所有分量 1 变为 0 共需要:1(2 n - 1) + (2 n - 1) + (2 n - 1) + (2 n - 1) (2n -1) (n + n + n + n + n - 2)-1次,此数为奇数.1234512345又因为 d (A , A )= m , m ∈ N * ,说明 A 中的分量有 2 个数值发生改变,ii +1i进而变化到 A , 所以共需要改变数值 2(m -1)次,此数为偶数,所以矛盾.i +1所以该序列中不存在 5 维 T 向量(0,0,0,0,0 ).( Ⅲ ) 存 在 正 整 数 j 使 得 A = (0,0,j12个=1,2,3,4,5,6,7,8,9,10,11,12.j3.解:作出 x ,y 满足 ⎨ x + y ≤ 0 表示的平面区域,⎪ y ≥ 0 得到如图的三角形及其内部,由 ⎨, x + y = 0 F = ∴ z 最大值 = F (- , ) = (26 - 1)解 析1.解:集合 A = {x | x 2-4<0} = {x | -2<x <2} ,则 RA = {x | x ≤ -2或x ≥ 2} .故选:A .2.解:对于 A 非奇非偶函数,不正确; 对于 B ,计算,正确,对于 C ,非奇非偶函数,不正确; 对于 D ,偶函数,不正确, 故选:B .⎧ x - y + 1 ≥ 0 ⎪⎩⎧ x - y + 1 = 0 ⎩1 1解得 A (- , ) ,2 2设 z = (x ,y ) x + 2 y ,将直线 l :z = x + 2 y 进行平移,当 l 经过点 A 时,目标函数 z 达到最大值1 12 2 1 2.故选:C .4.解:“ | a + b |=| a | + | b | ” “ a, b 共线”,反之不成立,例如 a = -b ≠ 0 .∴ a , b 是非零向量,则“ a , b 共线”是“ | a + b |=| a | + | b | ”的必要不充分条件.故选:B .5.解:设递增的等比数列{a1解得 a =, a = 8 .125n }的公比为 q ,∵ a 1+ a = 5 172 , a a = 4 = a a ,2 4 1 5解得 q = 2 ,1 则 S = 2663= .2 - 1 2故选:D .-11-/1512 i 2 i .2) θ θ 2 0) θn = 5,v = 1,x = 2,i = 4 满足条件 i ≥0,执行循环体,v =3,i =3满足条件 i ≥ 0 ,执行循环体, v = 7,i = 2满足条件 i ≥ 0 ,执行循环体, v = 15,i = 1 满足条件 i ≥ 0 ,执行循环体, v = 31,i = 0 满足条件 i ≥ 0 ,执行循环体, v = 63,i =﹣ 不满足条件 i ≥ 0 ,退出循环,输出 v 的值为 63 .由于 25+24+23+22+2+1=63.故选:A .7.解:由题意可知:对于 A 、B ,当P 位于A ,B 图形时,函数变化有部分为直线关系,不可能全部是曲线, 由此即可排除 A 、B ,对于 D ,其图象变化不会是对称的,由此排除 D , 故选 C .8.解:若 a = b ,i = 1,, n ,ii则 A < B ,B < A 同时不成立,故选 C .9.解:复数(﹣)= 2i + 1 在复平面内所对应的点的坐标为(1,2) 故答案为: (1, .10.解:直线 ρ=2acosθ(a >0)化为直角坐标方程: x + 3 y + 1 = 0 .圆 ρ = 2a cos (a >0)即 ρ 2 = 2ρ a cos (a >0), 可 得 直 角 坐 标 方 程 : x 2 + y 2 = 2ax , 配 方 为 :(x - a ) + y 2 = a 2 .可得圆心 (a ,,半径 a .∵直线 ρcos θ + 3ρsin θ + 1 = 0 与圆 ρ = 2acos (a >0)相切,∴ | a + 1|= a ,a >0 ,解得 a = 1 .2故答案为:1.11.解:根据题意,分 2 种情况讨论:①.选择 1 门 B 类课程,需要选择 A 类课程 3 门,则 B 类课程有 C 1 = 2 种选法,A 类课程有 C 3 = 4 种选法,24此时有 2 ⨯ 4 = 8 种选择方法;②.选择 2 门 B 类课程,需要选择 A 类课程 2 门,则 B 类课程有 C 2 = 1 种选法,A 类课程有 C 2 = 6 种选法,24此时有 1×6=6 种选择方法;3 y + 1 ,⎪⎪ y = 3 y + 1 ,解得: ⎨ 3 , , ⎨ 解:① f ( x ) ⎨| x - 3|, x ∈ (2,4] , ⎪| x - 5|, x ∈ (4, +∞) x ⎩2则一共有 8+6=14 种不同的选法;故答案为:14.12.解: △CBD 中,由余弦定理,可得, BD = 1 + 4 - 2 ⨯1⨯ 2 ⨯ 1= 2 ,4△ABD 中,利用正弦定理,可得 AD = 2sin 45︒ sin105︒= 2 3 - 2 ,1 1∴三角形 ABD 的面积为 ⨯ 2 ⨯ (2 3 - 2) ⨯ = 3 - 1,2 2故答案为 2, 3 - 1.13.解:抛物线 y 2 = 4 x 的焦点 F 的坐标为(1,0)∵直线 l 过F ,倾斜角为 60︒ ,即斜率 k = tan α = 3 ,∴直线 l 的方程为: y =3( ﹣1) ,即 x =3⎧ 3 ⎧ 2 3⎪ x = ⎧⎪ y = 2 3 ⎨⎪ y 2 = 4 x⎪⎩ x = 3 ⎪ x = 1 ⎪⎩ 3由点 A 在x 轴上方,则A(3, 3) ,则 OA = (3)2 + (2 3) 2 = 21 ,则 OA = 21 ,故答案为: 21 .14.⎧| x - 1|, x ∈ (0,2]⎪ ⎩作出 f (x) 的函数图象如图所示:f42+4)15.(Ⅰ)根据f()=2,即可求a的值;⎢12,12⎥上单调递减,可得最大值.(29)此时CG1]'=f2]2]f≥g2]f x g g2]由图象可知当a>1时,f(x)=a只有1解.②∵关于x的方程f(x+T)=f(x)有且仅有3个不同的实根,∴将(x)的图象向左或向右平移T个单位后与原图象有3个交点,∴2<T<4,即﹣<T<﹣或2<T<4.故答案为:①(1,∞),②(﹣4,-2)(2,.π6(Ⅱ)利用辅助角公式基本公式将函数化为y=Asinωx+ϕ)的形式,结合三角函数的图象和性质,f(x)在⎡π7π⎤⎣⎦16.设A表示事件“小明8月11日起第i日连续两天游览主题公园”(i=1,,,.根据题意P(A)=i i 且事件A与A互斥.i j 1 9,,(Ⅰ)设B为事件“小明连续两天都遇上拥挤”,则B=A4A.利用互斥事件的概率计算公式即可得出.7(Ⅱ)由题意,可知X的所有可能取值为0,1,2,结合图象,利用互斥事件与古典概率计算公式即可得出.(Ⅲ)从8月16日开始连续三天游览舒适度的方差最大.17.(Ⅰ)取CD中点N,连结M N、FN,推导出四边形EFND为平行四边形.从而FN//ED.进而FN//平面BDE,由此能证明平面MFN//平面BDE,从而FM//平面BDE.(Ⅱ)取AD中点O,连结EO,BO.以O为原点,OA,OB,OE为x,y,z轴,建立空间直角坐标系O-xyz,利用向量法能求出直线CF与平面ADE所成角的正弦值.(Ⅲ)设G是CF上一点,且CG=λCF,λ∈[0,.利用向量法能求出在棱CF上存在点G使得BG⊥DE, 4=.CF918.(Ⅰ)当a=0时,f(x)(-x2+2x)e-x,由此能求出曲线y=(x)在点(-1,f(-1))处的切线方程.(Ⅱ)“对任意的t∈[0,,存在s∈[0,使得(s)(t)成立”,等价于“在区间[0,上,(x)的最大值大于或等于()的最大值”.求出(x)在[0,上的最大值为g = ' = = ' + (4k - 1) 20.(Ⅰ)由于 A =(10101,),B =(01110,),由定义 d ( A,B) = ∑ | a - b |,求 d (A ,B )的值. ,,, ,,,(2) 1.f (x ) e - (x - 2)(x + a ),令f (x ) 0,得x = 2,或x = -a .由此利用分类讨论思想结合导数性质能求出实数 a 的值范围.19.(Ⅰ)由题意可知 b = 3,c = 1,a = b + c = 4 ,即可求得椭圆方程;222(Ⅱ)由“点 B 关于直线 EF 的对称点在直线 MF 上”等价于 “ E F 平分∠MFB ”设直线 A M 的方程,代入椭圆方程 , 由 韦 达 定 理 求 得 M 点坐标,分类讨论,当 MF ⊥ x 轴时,求得 k 的 值 , 即 可 求 得N 和E 点坐标,求得点E 在∠BFM 的角平分线所在的直线 y = x - 1或y = - x + 1 ,则 EF 平分∠MFB ,当 k ≠ 12时,即可求得直线 MF 的斜率及方程 ,利用点到直线的距离公式 ,求得 d = | 8k + 2k (4k 2 - 1)- 4k|16k 2 2 2=| BE | ,则点 B 关于直线 EF 的对称点在直线 MF 上.n iii =1(Ⅱ)利用反证法进行证明即可;(Ⅲ)根据存在正整数 j 使得 A = (0,0,j12个,0) , A 为12维T 向量序列中的项,求出所有的 m .j-15-/15。
山东省2017届高三第二次诊断性考试数学理试题Word版含答案
![山东省2017届高三第二次诊断性考试数学理试题Word版含答案](https://img.taocdn.com/s3/m/fe71dc89ed630b1c58eeb53a.png)
数学(理)试题第Ⅰ卷(选择题 共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知集合4{0log 1}A x x =<<,{2}B x x =≤,则A B =( )A .(0,1)B .(0,2]C .(1,2)D .(1,2] 2.命题“对任意x R ∈,都有20x ≥”的否定为( ) A .对任意x R ∈,都有20x < B .不存在x R ∈,使得20x <C .存在0x R ∈,使得200x ≥ D .存在0x R ∈,使得200x <3.函数)y x x =-的定义域为( )A .(0,1)B .[0,1)C .(0,1]D .[]0,14.已知α是第二象限角,5sin 13α=,则cos α=( ) A .1213- B .513- C .513 D .12135.已知函数()f x 为奇函数,且当0x >时,21()f x x x=+,则(1)f -=( )A .-2B .0C .1D .26.已知函数32()f x x ax bx c =+++,下列结论中错误的是( ) A .0x R ∃∈,0()0f x =B .函数()y f x =的图象是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减D .若0x 是()f x 的极值点,则'0()0f x =7.“ϕπ=”是“曲线sin(2)y x ϕ=+过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.函数()2ln f x x =的图象与函数2()45g x x x =-+的图象的交点个数为( ) A .3 B .2 C .1 D .09.已知函数22,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若()f x ax ≥,则a 的取值范围是( )A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-10.设,S T 是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足: (i ){()}T f x x S =∈;(ii )对任意12,x x S ∈,当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”,以下集合对不是“保序同构”的是( ) A .*,A N B N ==B .{13}A x x =-≤≤,{8010}B x x x ==-<≤或C .{01}A x x =<<,B R =D .,A Z B Q ==第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5小题,每小题5分,共25分.)11.设函数()f x 在(0,)+∞内可导,且()xxf e x e =+,则'(1)f =__________.12.函数()sin()f x A x ωϕ=+(,,A ωϕ为常数,0,0A ω>>)的部分图象如图所示,则(0)f 的值是__________.13.设0a >,若曲线y x =,0x a y ==所围成封闭图形的面积为2a ,则a =__________.14.函数cos(2)y x ϕ=+(πϕπ-≤<)的图象向右平移2π个单位后,与函数sin(2)3y x π=+的图象重合,则ϕ=__________.15.设()f x 是定义在R 上且周期为2的函数,在区间[1,1]-上,1,10()2,011ax x f x bx x x +-≤<⎧⎪=+⎨≤≤⎪+⎩,其中,a b R ∈,若13()()22f f =,则3a b +的值为__________.三、解答题 (本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16. (本小题满分12分)在锐角ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且2sin 3a B b =. (1)求角A 的大小;(2)若6,8a b c =+=,求ABC ∆的面积. 17.(本小题满分12分) 已知函数3()16f x x x =+-.(1)求曲线()y f x =在点(2,6)-处的切线的方程;(2)直线l 为曲线()y f x =的切线,且经过原点,求直线l 的方程及切点坐标. 18.(本小题满分12分) 已知函数()4cos sin()4f x x πωω=+(0ω>)的最小正周期为π.(1)求ω的值;(2)讨论()f x 在区间[0,]2π上的单调性.19.(本小题满分12分) 已知函数()2)12f x x π=-,x R ∈.(1)求()6f π-的值;(2)若3cos 5θ=,3(,2)2πθπ∈,求(2)3f πθ+ 20.(本小题满分12分)设3211()232f x x x ax =-++. (1)若()f x 在2(,)3+∞上存在单调递增区间,求a 的取值范围;(2)当02a <<时,()f x 在[1,4]上的最小值为163-,求()f x 在该区间上的最大值.21.(本小题满分14分)若函数()y f x =在0x x =处取得极大值或极小值,则称0x 为函数()y f x =的极值点,已知,a b 是实数,1和-1是函数32()f x x ax bx =++的两个极值点.(1)求a 和b 的值;(2)设函数()g x 的导函数'()()2g x f x =+,求()g x 的极值点;(3)设()(())h x f f x c =-,其中[2,2]c ∈-,求函数()y h x =的零点个数.山东省实验中学2017届高三第二次诊断性考试理科数学试题参考答案2016.10说明:试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第*页,第Ⅱ卷为第*页至第*页。
2017届高三 第二次模拟考试(数学理)(含答案)word版
![2017届高三 第二次模拟考试(数学理)(含答案)word版](https://img.taocdn.com/s3/m/fb1af4f0e009581b6bd9eb7d.png)
江西省宜丰中学2017届高三第二次模拟考试数学(理)试题一、选择题:本大题10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
( )1.右图是计算函数ln(),20,232,3x x x y x x ⎧-≤-⎪=-<≤⎨⎪>⎩的值的程度框图,在①、②、③处应分别填入的是 A .ln(),0,2x y x y y =-== B .ln(),2,0x y x y y =-==C .0,2,ln()x y y y x ===-D .0,ln(),2x y y x y ==-=( )2.下列命题中是假命题的是A .存在,,tan()tan tan R αβαβαβ∈+=+使B .对任意20,lg lg 10x x x >++>有C .△ABC 中,A>B 的充要条件是sin sin A B >D .对任意,sin(2)R y x ϕϕ∈=+函数都不是偶函数( )3.设集合20{|(3106)0,0}xP x t t dt x =-+=>⎰,则集合P 的非空子集个数是A .2B .3C .7D .8( )4.甲、乙两个数学兴趣小组各有5名同学,在一次数学测试中,成绩统计用茎叶图表如下,若甲、乙小组的平均成绩分别是X 甲,X 乙,则下列结论正确的是 A .X 甲>X 乙,甲比乙成绩稳定 B .X 甲>X 乙,乙比甲成绩稳定 C .X 甲<X 乙,甲比乙成绩稳定 D .X 甲<X 乙,乙比甲成绩稳定 ( )5.若()2s i n (f x x m ωϕ=++,对任意实数t 都有()(),()3888f t f t f πππ+=-=-且,则实数m 的值等于A .—1B .±5C .—5或—1D .5或1( )6.若9()x y x +按的降幂排列的展开式中,第二项不大于第三项,且1x y +=,0xy < 则x 的取值范围是A .1(,)5-∞B .4[,)5+∞C .4(,]5-∞-D .(1,)+∞( )7.在棱长不a 的正方体ABCD —A 1B 1C 1D 1中,M 为AB 的中点,则点C 到平面A 1DM 的距离为ABCD .12a ( )8.抛物线22(0)y px p =>焦点为F ,准线为l ,经过F 的直线与抛物线交于A 、B两点,交准线于C 点,点A 在x 轴上方,AK ⊥l ,垂足为K ,若|BC|=2|BF|,且|AF|=4,则△AKF 的面积是A .4B.C.D .8( )9.定义2a b ka *=--,则方程0x x *=有唯一解时,实数k 的取值范围是A .{B . [2,1][1,2]--C .[D .[1][1- ( )10.函数()(2010)(2011)f x x x =-+的图象与x 轴、y 轴有三个交点,有一个圆恰好通过这三个点,则此圆与坐标轴的另一个交点是A .(0,1)B .C .D .12(0,)二、填空题:本大题共4小题,每小题5分,共20分。
2017届河北省邯郸市高三第二次模拟考试理科数学试题及答案
![2017届河北省邯郸市高三第二次模拟考试理科数学试题及答案](https://img.taocdn.com/s3/m/19a000ce28ea81c758f57845.png)
邯郸市2017届高三第二次模拟考试理科数学第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中只有一个是符合要求的.1.已知集合{1,0,1}A =-,{|11}B x x =-≤<,则A B =A. {0}B. {0,1}C. {1,0}-D.{1,0,1}-2.复数z 满足()(2)5z i i --=,则z =A.22i --B. 22i -+C. 22i -D. 22i + 3.下列说法不正确...的是A.命题“对x R ∀∈,都有20x ≥”的否定为“0x R ∃∈,使得200x <”B.“a b >”是“22ac bc >”的必要不充分条件;C. “若tan α≠3πα≠” 是真命题D. 甲、乙两位学生参与数学模拟考试,设命题p 是“甲考试及格”,q 是“乙考试及格”,则命题“至少有一位学生不及格”可表示为()()p q ⌝∧⌝4.函数(4) 0()(4) <0 x x x f x x x x +≥⎧=⎨-⎩,若()()f a f a <-,则a 的取值范围是A .(,0)-∞B .(0,)+∞C .(4,0)-D .(0,4)5.如图所示的程序框图,运行相应的程序,若输出y 的值为4,则输入x 的值可能为A .6B .-7C .-8D .7 6.过抛物线24y x =焦点的直线交抛物线于,A B 两点,若8AB =,则直线AB 的倾斜角为 A .566ππ或B .344ππ或C .233ππ或D .2π 7.如图是一个几何体的三视图,则该几何体的体积是 A .54 B .27 C .18 D .98.在各项均为正数的等比数列{}n a 中,若112(2)m m m a a a m +-⋅=≥,数列{}n a 的前n 项积为n T ,若21512m T -=,则m 的值为A .4B .5C .6D .7 9.已知函数()2sin()f x x ϕ=+,且(0)1f =,(0)0f '<,则函数()3y f x π=-图象的一条对称轴的方程为 A . 0x = B . 6x π=C . 23x π=D . 2x π=10. 某学校4位同学参加数学知识竞赛,竞赛规则规定:每位同学必须从甲、乙两道题中任选一题作答,选甲题答对得30分,答错得-30分;选乙题答对得10分,答错得-10分.若4位同学的总分为0,则这4位同学不同得分情况的种数是A .24B .36C .40D .44 11. 已知三棱锥A BCD -中,2,2AB AC BD CD BC AD =====, 直线AD与底面BCD 所成角为3π,则此时三棱锥外接球的表面积为A .4πB .8πC .16πD 12.若函数2()ln 2,(01)x f x a x x a m a a =+-⋅-->≠且有两个零点,则m 的取值范围A .(1,3)-B .(3,1)-C .(3,)+∞D .(,1)-∞-第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分13.已知1=a,)3,1(=b ,()a ab ⊥-,则=b a ,cos _________________.14.若实数x ,y 满足条件04(3)(3)0x y x y x y ≤+≤⎧⎨--≤⎩,则2z x y =+的最大值为_______.15.已知数列{}n a 的前5项为18,10,6,4,3,据此可写出数列{}n a 的一个通项公式为____.16.已知F 是双曲线的右焦点12222=-by a x 的右焦点,点B A ,分别在其两条渐进线上,且满足2=,0=⋅(O 为坐标原点),则该双曲线的离心率为____________. 三、解答题:本大题共6小题,共70分17. (本小题满分12分)已知函数23()2cos 2f x x x =+- (I )求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥⎣⎦的最大值(II )在ABC ∆中,A B C ∠∠∠、、所对的边分别是,,a b c ,2,a =1()2f A =-,求ABC ∆周长L 的最大值.18. (本小题满分12分)从天气网查询到邯郸历史天气统计 (2011-01-01到2017-03-01)资料如下:自2011-01-01到2017-03-01,邯郸共出现:多云507天,晴356天,雨194天,雪36天,阴33天,其它2天,合计天数为:1128天。
高三二模数学理科答案
![高三二模数学理科答案](https://img.taocdn.com/s3/m/df3b190559eef8c75fbfb374.png)
乌鲁木齐地区2017年高三年级第二次诊断性测验理科数学试题参考答案及评分标准一、选择题:本大题共12小题,每小题5分选择题答案:DDCA DABA CCBB1.选D.【解析】∵{}1,2M =,()2,2N =-,∴M N = {}1.故选D .2.选D.【解析】()()()()122432255i i z i i i -+==--+,在复平面上对应的点为⎪⎭⎫ ⎝⎛-53,54,故选D .3.选C.【解析】∵()42=f ,即2,42±==a a ,又∵a 是底数,∴2-=a 舍去,∴2=a ,∴()38log 22==-f ,故选C .4.选A.【解析】执行程序框图,第一次循环2,4==k S ,第二次循环3,11==k S ,第三次循环4,26==k S ,结束循环,所以判断框内应填?3>k ,故选A .5.选D.【解析】根据线面,面面平行垂直的性质,只有D 正确,故选D .6.选A.【解析】由()()b a b a -⊥+23得()()023=-⋅+b a b a ,即8530+⋅-=a b ,∴1⋅=-a b ,∴1cos ,2⋅==-a b a b a b ,所以a 与b 的夹角为32π.故选A .7.选B .【解析】由题意可知,该几何体由底面边长为2,高为2的正三棱柱,和底面边长为1,高为1的两个正三棱柱组成,1222V =⨯⨯+139311224⨯⨯⨯=,故选B .8.选A .【解析】把函数()ϕ+=x y sin 的图像上各点的横坐标缩短到原来的21(纵坐标不变),得到()ϕ+=x y 2sin ,再向右平移3π个单位,得到2sin 23y x πφ⎛⎫=-+ ⎪⎝⎭的图象关于y 轴对称,所以Z k k ∈+=+-,232ππϕπ,ϕ可以取6π,故选A .9.选C .【解析】在ABC ∆中C B A <<⇔c b a <<⇔CB A sin sin sin <<⇔C B A 222sin sin sin<<⇔C B A 222212121sin sin sin ->->-⇔C B A 222cos cos cos >>,故选C .10.选C .【解析】∵10cos 10A =-∴310sin 10A =,()5sin sin 5C A B =+=,由,1sin sin AB BC BC C A ==,得23AB =,∴11sin 26ABC S AB BC B ∆=⋅⋅=,设BC 边上的高为h ,1126ABC S BC h ∆=⋅=,∴13h =,故选C .11.选B .【解析】不妨取右焦点,根据题意P 点坐标为⎪⎪⎭⎫⎝⎛23,2c c ,代入双曲线方程得12322222=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛bc a c ,即4322222=--a c c a c ,得3242±=e ,又1e >,∴13+=e ,故选B .12.选B .【解析】由已知()x f y =的图象关于点()0,0中心对称,即()x f 是奇函数,∴()()()()2222222202222f s s f b bf ss f b b s s b b-+-≤⇔-≤-⇔-≥-11s b ⇔-≥-,又20≤≤s ,∴012s s b s ≤≤⎧⎨≤≤-⎩或122s s b s≤≤⎧⎨-≤≤⎩,建立sOb 坐标系如图,设s b z -=,则b s z =-,可知直线b s z =-过点()0,2时,z 取得最大值2,在过点()0,2时,z 取得最小值2-,22z -≤≤,故选B .二、填空题:本大题共4小题,每小题5分.13.填2.【解析】()r r r rrrr x a C x axC T 27217773711---+=⎪⎭⎫ ⎝⎛=,常数项x 的次数为0,即6,02721==-r r ,所以676714C a -=,∴2a =.14.填2.【解析】∵yx yxyx222422424+=⨯≥+=∴224x y+≤,即22x y +≤,所以2x y +的最大值是2.15.填512.【解析】如图,延长AB 交抛物线的准线于G ,过B ,A 两点作准线的垂线,垂足为,C E ,准线交x 轴于D .根据题意GB GA EBCA=即5GB GB +=,得10=GB ,又DFGF EBGB =,即DF12210=,得512=DF ,∴512=p .16.填e -1.【解析】由题意得()ln 11x x b a ≥+--,对一切1x >-都成立.令()()11ln --+=ax x x f ,则()a x f -+='11,当0≤a 时,()0>'x f ,()x f 在()+∞-,1上单调递增,不成立.当0>a 时,()(),,时,时,0110111<'->>'-<<-x f ax x f a x ∴()2ln 1111ln 11max --=-⎪⎭⎫⎝⎛--=⎪⎭⎫⎝⎛-=a a a a a a f x f ,故0>a 时,2ln --≥a a b ,aa a a 2ln 1b --≥,令()a a a a h 2ln 1--=,则(),ln 12a aa h +='当()(),010,01<'<<>'>a h ea a h e a 当时,∴()e e e e e h a h -=--=⎪⎭⎫⎝⎛='121ln11min ,∴ba的最小值是e -1.三、解答题:第17~21题每题12分,解答应在答卷的相应各题中写出文字说明,说明过程或演算步骤.17.(12分)(Ⅰ)由已知:()1212112-=-+=-n n a a n ,1122323--⨯=⨯=n n n a a ∴47732329335212691512963-=⨯-⨯-⨯=--=+-+-a a a a a a a a …6分(Ⅱ)由(Ⅰ)知0>n a ,∴{}n a 单调递增,13224212312-+=+++++++=-n n n n n a a a a a a S 7641366212=-+=S ;777131213=+=a S S ;22351377214=-+=S 则当13≤n 时,2017<n S ,14≥n 时,2017>n S ,∴n 的最小值为14…12分18.(12分)(Ⅰ)取AD 的中点N ,连结,NM NE ,则,AD NM AD NE ⊥⊥,∴AD ⊥平面NME ,∴AD ME ⊥,过E 点,作EO NM ⊥于O ,根据题意得,1,3,2NO OM NE ===,∴3,23OE EM ==,∴ENM ∆是直角三角形,∴NE ME ⊥∴ADEME 面⊥…6分(Ⅱ)如图建立空间直角坐标系O xyz -,根据题意得,()()()()()2,1,0,2,3,0,2,1,0,0,0,3,0,3,0A B D E M ---设平面BAE 的法向量为()1,,x y z =n ,由()()0,4,0,2,1,3AB AE ==-40230y x y z =⎧⎪⎨-++=⎪⎩,取2z =,得()130,2=,n 由(Ⅰ)知()0,3,3ME =-为平面ADE 的法向量∴1117cos ,7ME ME ME⋅==⋅n n n ∴二面角B AE D --的余弦值为77.…12分19.(12分)(Ⅰ)若进货量定为13(件),则“进货量不超过市场需求量”是指“销售量不小于13(件)”相应有13138438+++=(周),“进货量不超过市场需求量”的概率为:380.552>;同理,若进货量为14(件),则“进货量不超过市场需求量”的概率为:250.552<;∴“进货量不超过市场需求量”的概率大于50.,进货量的最大值是13…4分(Ⅱ)进货量定为14(件),设“平均来说今年每周的利润”为Y若售出10件:则利润()2614310=-⨯+⨯=y ;售出11件:则利润()3013311=-⨯+⨯=y 售出12件:则利润()3412312=-⨯+⨯=y 售出13件:则利润()3811313=-⨯+⨯=y 售出14件:则利润42314=⨯=y 售出15件:则利润4421314=⨯+⨯=y售出16件:则利润4622314=⨯+⨯=y 则Y 的分布列为:Y 26303438424446P 2611311324141132131()5220205244684413421338834430226=⨯+⨯+⨯+⨯+⨯+⨯+⨯=Y E …8分(Ⅲ)依照经验可知,只有进货量和市场需求越接近的时候,利润的期望值才越大,根据市场需求量的概率分布,我们只需考虑进货量为1413,这两种情况,当进货量为13时,利润为Y ',类似(Ⅱ),可得出Y '的分布列为:Y '27313539414345P2611311324141132131()2723143583913411343845420225252E Y ⨯+⨯+⨯+⨯+⨯+⨯+⨯'==由于()()E Y E Y '>,∴今年的周进货量定为13件比较合适.…12分20.(12分)(Ⅰ)依题意有2222214=1333a b c a a b c ⎧+⎪⎪⎪=⎨⎪⎪-=⎪⎩,得2322==b ,a ,∴椭圆方程为12322=+y x ;…5分(Ⅱ)依题意直线l 不垂直于x 轴,由对称性,不妨设l 的方程为()()10y k x k =+>,则直线AB 的方程为m x ky +-=1,联立221132y x m k x y ⎧⎪⎪⎨=-++=⎪⎪⎩,得063632222=-+-⎪⎭⎫ ⎝⎛+m x k m x k 易知0>∆,得()222236343220m m ⎛⎫-⨯+-> ⎪⎝⎭,即03222<--m …①,设AB 的中点为C ,则1223223c x x mk x k +==+,221223c c k my x m k k =-+=+点C 在直线l 上,∴⎪⎭⎫⎝⎛++=+1323322222k km k k m k ,得32m k k =--…②,此时2222362440m k k k --=++>与①式矛盾,故0k >不成立当直线l 的斜率0=k 时,设()00,A x y ,则()00,B x y -,02AB y =,点O 到AB 的距离为0x ,∴0000221y x x y S AOB =⨯⨯=∆,又00202020203623223y x y x y x =⨯≥+,∴00361y x ≥,∴2600≤y x ,当且仅当21232020==y x 取等号,∴AOB S ∆的最大值为26…12分21.(12分)(Ⅰ)()()()11xax a e a f x =++-+',∴()00='f ,又∵()00=f ,∴()x f y =在()()0,0f 处的切线方程为0=y .…4分(Ⅱ)(1)当0≥a 时,∵0>x ,∴1>xe ,10ax a ++>∴()()()()()01111≥=+-++>+-++='ax a a ax a e a ax x f x,∴()x f 在()+∞,0上单调递增,∴()()00=>f x f ,符合题意(2)当21-≤a 时,()()21xf x ax a e ''=++,∵21-≤a ,∴012≤+a ,而0>x ,∴0<ax ,∴012<++a ax ,∴()012<++xe a ax ,∴()0<''xf ,则()x f '在()+∞∈,0x 时单调递减,∴()()00='<'f x f ,∴()x f 在()+∞∈,0x 时单调递减,此时()()00=<f x f ,不符合题意.(3)当021<<-a 时,取01>->ax ,此时,有01<+ax ,∵()01>+>x x e x,∴()()()111++<+x ax e ax x…①而()()()()1111112++<+++=++x a x a ax x ax …②由①②得()()111++<+x a e ax x,即()()()0111<-+-+=x a e ax x f x,此时不符合题意.综上,若0>x 时,()0>x f ,a 的取值范围是[)+∞,0.…12分请考生在第22、23题中任选一题作答,并将所选的题号下的“○”涂黑.如果多做,则按所做的第一题记分,满分10分.22.(10分)(Ⅰ)由cos ,sin x y ρθρθ==可得圆C 的极坐标方程为212cos 02ρρθ-+=…5分(Ⅱ)点M 的直角坐标为()2cos ,2sin θθ,∴直线l的参数方程为22cos 22sin 2x x θθ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数),直线l 与圆C 交于,A B 两点,把直线参数方程代入圆C方程得)292cos 2sin 4c s 21o 0t t θθθ+-+-=+,()2922cos 2sin 144cos 02θθθ⎛⎫∆=+---> ⎪⎝⎭,解得:04πθ<<,5342ππθ<<根据直线参数方程的几何意义得1294cos 2MA MB t t θ⋅=⋅=-,∴MA MB ⋅的取值范围是⎪⎭⎫⎝⎛+222929,.…10分23.(10分)(Ⅰ)()()f x g x <222421450x x x x ⇔-<+⇔+->,∴不等式()()f x g x <的解集为()(),51,-∞-+∞ …5分(Ⅱ)令()()()47,4124219,421472,2x x x x x x x H x f x g x ⎧⎪->⎪⎪-++=-≤=+=≤⎨⎪⎪-+<-⎪⎩,()G x ax =,在同一坐标系下作出()(),H x G x 的图象,根据题意()()2f x g x ax +>对一切实数均成立,即()H x 的图象恒在()G x 图象的上方,∴944a -<<.…10分以上各题的其他解法,限于篇幅从略,请相应评分。
2017年高三第二次模拟考试 数学理(含答案)word版
![2017年高三第二次模拟考试 数学理(含答案)word版](https://img.taocdn.com/s3/m/47cba908a21614791611280a.png)
辽宁省大连市2017年高三第二次模拟考试数学(理)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22题~第24题为选考题,其它题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效,考试结束后,将本试卷和答题卡一并交回.参考公式:锥体体积公式13V Sh =,其中S 为底面面积,h 为高.用最小二乘法求线性回归方程系数公式12211ˆ,.ni ii ni x ynx y ba y bx xnx==-==--∑∑第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集U=Z ,集合A={x ∈U|31x +≤1),则C u A= A .{1,0} B .{0,1}C .{一1,0,1)D .{一1,0,1,2}2.复数z 满足1(z i i i ⋅=+是虚数单位),则|z|=A .lB 2C .2D .43.若13sin cos (0,),tan αααπα-+=∈则=A 3B 3C .33D .-334.x ,y 的取值如右表,从散点图分析,y 与x 线性相关,且回归方程为 3.5 1.3y x =-,则m= A .15 B .16 C .16.2D .175.已知圆222:(2)(2)(0,0)C x p y p r r p -+-=>>过抛物线22y px =的焦点,则抛物线A .相切B .相交 c .相离 D .无法确定6.已知实数z 、y 满足不等式组2303270,210x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩则x —y 的最小值为A .-3B .-2C .-1D .47.函数()f x 定义域为(a ,b ),则“()0f x '>在(a ,b )上恒成立”是“()f x 在(a ,b )上为增函数”的 A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 8.已知程序框图如右图所示,则输出的s 为 A .22013—2 B .22013—1 C .22014 -2 D .22014—19.5个人排成一排,甲和乙不相邻,甲和丙也不相邻的不同排法种数为 A .24 B .36 C .48 D .6010.已知函数f (r )定义域为{x ∈R|x ≠0),对于定义域内任意x 、y , 都有()()(,).1f x f y f x y x +=>且时,f (x )>0,则 A .()f x 是偶函数且在(一∞,0)上单调递减 B .()f x 是偶函数且在(一∞,0)上单调递增 C .()f x 是奇函数且在(一∞,0)上单调递增D .()f x 是奇函数且在(一∞,0)上单调递减11.若关于x 2(0)ax a x m x x-=++>对给定的正数口有解,则实数m 的取值范围是A .0<m aB a ≤m<0C .0<m ≤aD .一a m<012.△ABC 中,已知AB 一77,AC=7.D 是边AC 上一点,将△ABD 沿BD 折起,得到三棱锥A-BCD .若该三棱锥的顶点A 在底面BCD 的射影M 在线段BC 上'设BM=x ,则x 的取值范围为 A .(7) B .(0,7) C .7,7) D .(7,7)第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分,满分20分.13.已知非零向量a ,b 满足+|a+b|一|a-b|,则<a , b>= .14.若函数141log (1)(0)1(),()22(0)x x x f x f x x -+≥⎧⎪=≤-⎨⎪<⎩则的 解集为 .15.某几何体的三视图如图所示,根据图中尺寸(单位:m ),可得该几何体的体积为____m 3. 16.已知数列{n a )满足10a =,对任意k ∈N*,有212,k k a a -,21k a +成公差为k 的等差数列,数列221(21),n n n n b a ++=则{b }的前n 项和S n .三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满贫12分)三分球大赛是NBA 全明星周末的比赛项目之一,比赛一共有5个投篮点:底脚对称有两个,45度角对称有两个,另一个在弧顶.每个投篮点有5个球,其中4个橘色球投中了各得1分,最后1个花球投中了得2分,满分为30分.若某球员在任意一个投篮点的5次投篮中,每次投中的概率均为35. (I )求该球员在一个投篮点得分为4分的概率;(Ⅱ)该球员在五个投篮点投篮结束后,得分为4分的投篮点的个数为X 求EX .18.(本小题满分12分)已知向量a ,b 满足a=(-2 sinx ,33sinx ),b=(cosx ,cosx - sinx ),函数,()f x =a b ⋅ (x ∈R ). (I )将()f x 化成Asin ((x ωϕ+)(A>0,0,||ωϕπ><的形式; (Ⅱ)已知数列211()(*),224n n a n f n N ππ=-∈求{}n a 的前2n 项和S 2n .19.(本小题满分12分)如图,三棱柱ABC-A'B'C',cc'=2,BC'=2,BC=2,△ABC 是以BC 为底边的等腰三角形,平面AB C ⊥平面BCC'B',E 、F 分别为棱AB 、CC'的中点. (I )求证:EF ∥平面A'BC';(Ⅱ)若AC ≤2,且EF 与平面ACC'A'所成的角的余弦为73,求二面角C-AA'-B 的大小.20.(本小题满分12分)已知椭圆2234x y +=左顶点为A ,点B 、C 在椭圆上,且AB ⊥AC 。
2017届高三年级第二次模拟考试理科数学试卷(附答案与解析)
![2017届高三年级第二次模拟考试理科数学试卷(附答案与解析)](https://img.taocdn.com/s3/m/5e395b540b4c2e3f5727638c.png)
1∑ ( x - x )2,其中 x = n 1∑ x . n 一、填空题:本大题共 14 小题,每小题 5 分,共计 70 分.请把答案填写在答题卡相应位置上.1.函数 y = 2sin(3x - ) 的最小正周期为________.6.若实数 x , y 满足 ⎨则 z =3x +2 y 的最大值为________. x ≥ 0,江苏省南通市 2017 届高三第一次调研测试理科数学试卷参考公式:样本数据 x , x ,…, x 的方差 s 2 =12nni =1ini =1i1棱锥的体积公式:V = Sh ,其中 S 为棱锥的底面积, h 为高.棱锥 3........π32.设集合 A = {1,3} , B = {a + 2,5}, AB = {3},则 A B = ________.3.复数 z = (1+2i)2 ,其中 i 为虚数单位,则 z 的实部为________.4.口袋中有若干红球、黄球和蓝球,从中摸出一只球.已知摸出红球的概率为 0.48 ,摸出黄球的概率为 0.35 , 则摸出蓝球的概率为________.5.如图是一个算法的流程图,则输出的 n 的值为________.⎧2 x + y ≤ 4, ⎪ x + 3 y ≤ 7,⎪ ⎪⎩ y ≥ 0,7.抽样统计甲、乙两名学生的 5 次训练成绩(单位:分),结果如下:学生甲乙第 1 次6580 第 2 次8070 第 3 次7075 第 4 次8580 第 5 次7570则成绩较为稳定(方差较小)的那位学生成绩的方差为________.8.如图,在正四棱柱 ABCD –A B C D 中, AB = 3 cm , AA = 1cm ,则三棱锥 D - A BD 的体积为1 1 1 1111______ cm 3.b二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过9.在平面直角坐标系xOy中,直线2x+y=0为双曲线x2y2-a2b2=1(a>0,>0)的一条渐近线,则该双曲线的离心率为________.10.《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则该竹子最上面一节的容积为________升.11.在△ABC中,若BC BA+2A C AB=CA CB,则sin Asin C的值为________.π12.已知两曲线f(x)=2sin x,g(x)=a cos x,x∈(0,)相交于点P.若两曲线在点P处的切线互相垂直,2则实数a的值为________.13.已知函数f(x)=|x|+|x-4|,则不等式f(x2+2)>f(x)的解集用区间表示为________.14.在平面直角坐标系xOy中,已知B,C为圆x2+y2=4上两点,点A(1,1),且AB⊥A C,则线段BC的长的取值范围为________........程或演算步骤.15.(本小题满分14分)如图,在平面直角坐标系x Oy中,以x轴正半轴为始边作锐角α,其终边与单位圆交于点A.以OA为始边作锐角β,其终边与单位圆交于点B,AB=(1)求cosβ的值;255.(2)若点A的横坐标为513,求点B的坐标.16.(本小题满分14分)2如图,在四棱锥P-ABCD中,四边形ABCD为平行四边形,AC,BD相交于点O,点E为PC的中点,OP=OC,P A⊥PD.求证:(1)直线P A∥平面BDE;(2)平面BDE⊥平面PCD.17.(本小题满分14分)如图,在平面直角坐标系xOy中,已知椭圆为1.(1)求椭圆的标准方程;x2y22+=1(a>b>0)的离心率为,焦点到相应准线的距离a2b22(2)若P为椭圆上的一点,过点O作OP的垂线交直线y=2于点Q,求11+的值.OP2OQ218.(本小题满分16分)如图,某机械厂要将长6m,宽m的长方形铁皮ABCD进行裁剪.已知点F为AD的中点,点E在边BC上,裁剪时先将四边形CDFE沿直线EF翻折到MNFE处(点C,D分别落在直线BC下方点M,N处,FN交边BC于点P),再沿直线PE裁剪.(1)当∠EFP=π4时,试判断四边形MNPE的形状,并求其面积;(2)若使裁剪得到的四边形MNPE面积最大,请给出裁剪方案,并说明理由.19.(本小题满分16分)已知函数f(x)=ax2-x-lnx,a∈R.dkn21.【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则-1⎥⎦1【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、((1)当a=38时,求函数f(x)的最小值;(2)若-1≤a≤0,证明:函数f(x)有且只有一个零点;(3)若函数f(x)有两个零点,求实数a的取值范围.20.(本小题满分16分)已知等差数列{a}的公差d不为0,且a,a,…,a,…(k<k<…<k<…)成等比数列,公比为q.n k k k12n12n(1)若k=1,k=3,k=8,求123a1的值;d(2)当a1为何值时,数列{k}为等比数列;n(3)若数列{k}为等比数列,且对于任意n∈N*,不等式a+a>2k恒成立,求a的取值范围.n n n1数学Ⅱ(附加题)...................按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分10分)已知圆O的直径AB=4,C为AO的中点,弦DE过点C且满足CE=2CD,求△OCE的面积.B.[选修4-2:矩阵与变换](本小题满分10分)⎡1⎤已知向量⎢⎣是矩阵A的属于特征值–的一个特征向量.在平面直角坐标系xOy中,点P(1,1)在矩阵A对应的变换作用下变为P'(3,3),求矩阵A.C.[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,求直线θ=πρ∈R)被曲线ρ=4sinθ所截得的弦长.4D.[选修4-5:不等式选讲](本小题满分10分)求函数y=3sin x+22+2cos2x的最大值........证明过程或演算步骤.22.(本小题满分10分)如图,在棱长为2的正方体A BCD-A B C D中,P为棱C D的中点,Q为棱BB上的点,且BQ=λB B(λ≠0).11111111(1)若λ=1,求AP与AQ所成角的余弦值;2(2)若直线AA与平面APQ所成的角为45︒,求实数λ的值.123.(本小题满分10分)在平面直角坐标系xOy中,已知抛物线x2=2py(p>0)上的点M(m,1)到焦点F的距离为2.(1)求抛物线的方程;(2)如图,点E是抛物线上异于原点的点,抛物线在点E处的切线与x轴相交于点P,直线PF与抛物线相交于A,B两点,求△EAB面积的最小值.2 ⨯1⨯1 = ,5 .(2)因为 cos β = 3江苏省南通市 2017 届高三第一次调研测试数学试卷答 案一、填空题:本大题共 14 小题,每小题 5 分,共计 70 分. 1.2π32. {1,3,5}3. -3 4. 0.17 5.5 6.77.20 8.329. 510.132211. 212. 2 3313. (-∞, -2)( 2,+ ∞)14. [ 6 - 2, 6 + 2]二、解答题:本大题共 6 小题,共计 90 分.15.【解】(1)在 △AOB 中,由余弦定理得,AB 2 = OA 2 + OB 2 - 2OA OB cos ∠AOB ,所以cos ∠AOB = OA 2 + OB 2 - AB 22OA OB12+ 12- ( 2 5 )2= 53 5 即 cos β = 3π5 , β ∈ (0 , 2 ) ,2 分6 分所以sinβ=1-cos2β=1-()2=413,由三角函数定义可得,cosα=所以cos(α+β)=cosαcosβ-sinαsinβ=5⨯=-3365,135135= 6565).a=2+y2=1.当OP的斜率为0时,OP=2,OQ=2,所以122k2得(2k2+1)x2=2,解得x2=2k2+1,⎩355.8分因为点A的横坐标为5513,因为α为锐角,所以sinα=1-cos2α=1-(5)2=131213.10分3124⨯-135135 12分sin(α+β)=sinαcosβ+cosαsinβ=12⨯3+5⨯45665.所以点B(-33,5616.【证明】(1)连结OE,因为O为平行四边形ABCD对角线的交点,所以O为AC中点.又因为E为PC的中点,所以OE∥P A.又因为OE⊂平面BDE,P A⊄平面BDE,所以直线P A∥平面BDE.(2)因为OE∥P A,P A⊥PD,所以OE⊥PD.因为OP=OC,E为PC的中点,所以OE⊥PC.又因为PD⊂平面PCD,PC⊂平面PCD,PC PD=P,所以OE⊥平面PCD.又因为OE⊂平面BDE,所以平面BDE⊥平面PCD.14分4分6分8分10分12分14分17.【解】(1)由题意得,c22,a2c-c=1,2分解得a=2,c=1,b=1.所以椭圆的方程为x2(2)由题意知OP的斜率存在.OP2+1OQ2=1.4分6分当OP的斜率不为0时,设直线OP方程为y=kx.⎧x2⎪+y2=1,由⎨2,所以y2=⎪y=kx,2k2+1所以OP2=2k2+22k2+1.9分k x .由 ⎨ 1 得 x = - 2k ,所以 OQ 2 = 2k 2 + 2 . ⎪ y = - x OP 2 + OQ 2 = 2k 2 + 1OP 2 + 4时,由条件得4 .2 .所以 FN ⊥ BC ,设 ∠EFD = θ (0 < θ < ) ,由条件,知 ∠EFP = ∠EFD = ∠FEP = θ .sin(π - 2θ ) = sin 2θ , tan θ .⎪3 - 2 sin 2θ > 0, ⎪sin 2θ > ,由 ⎨3 - 2⎪tan θ >0 < θ < π 2 , 0 < θ < . 2 = [(3 - 2因为 OP ⊥ OQ ,所以直线 OQ 的方程为 y = - 1⎧ y = 2 ,⎪ ⎩ k12 分所以 1 1 2k 2 + 2 + 12k 2 + 2 = 1.综上,可知 1 1OQ 2 = 1 .14 分18.【解】(1)当 ∠EFP =π∠EFP = ∠EFD = ∠FEP = π所以 ∠FPE = π四边形 MNPE 为矩形. 所以四边形 MNPE 的面积S = PN MN = 2 m 2 .(2)解法一:π 23 分5 分所以 PF = 2 2sin 2θ ,NP =NF - PF = 3 - 2ME = 3 - 28 分⎧ ⎧ 2 3 ⎪ ⎪ ⎪ 2 ⎪ tan θ > 0, 得 ⎨ 3 ,(* )⎪ ⎪ ⎩⎪ π所以四边形 MNPE 面积为1S = ( N P + ME)MN212 sin 2θ )+(3 -2tan θ )]⨯ 2tan θ -tan θ -tan θ )tan θ = 6 - 2 3 .tan θ ,即tan θ = 3 ,θ =3 时,沿直线 PE 裁剪,四边形 MNPE 面积最大,⎪3 < t < 6,⎪ ⎪ 2 3 - t + 13- t 22(3 - t ) )+(6 - t )] ⨯ 2 t - 3 ]=6 - 2 2sin 2θ=6 - 22(sin 2 θ + cos 2 θ ) 2sin θ cos θ = 6 - (tan θ + 3≤ 6 - 2 tan θ3当且仅当 tan θ =3π3 时取“=”.12 分14 分此时, (*) 成立.答:当 ∠EFD =π最大值为 6 - 2 3 m 2.解法二:设 BE = t m , 3 < t < 6 ,则 ME = 6 - t .因为 ∠EFP = ∠EFD = ∠FEP ,所以 PE = PF ,即 (3 - BP)2 + 22 = t - BP .16 分所以 BP =8 分 13 - t 2 13 - t 22(3 - t ) , NP =3 - PF =3 - PE =3 - (t - BP)=3 - t + 2(3 - t ) .⎧⎪⎧3 < t < 6, ⎪⎪ 13 - t 2 由 ⎨ > 0, 得 ⎨t > 13,(* )⎪ 2(3 - t )⎩t - 12t + 31 < 0.⎪⎩2(3 - t ) > 0所以四边形 MNPE 面积为1S = ( N P + ME)MN21 13 - t2 = [(3 - t + 2= 3t 2 - 30t + 672(3 - t )32= 6 - [ (t - 3)+212 分当且仅当(t-3)=23m时,沿直线PE裁剪,四边形MNPE面积最大,t-3,即t=3+3=3+8时,f(x)=4x-1-x=(3x+2)(x-2)x=x<0,342323时取“=”.14分此时,(*)成立.答:当点E距B点3+23最大值为6-23m2.16分19.【解】(1)当a=338x2-x-lnx.所以f'(x)=314x,(x>0).2分令f'(x)=0,得x=2,当x∈(0,2)时,f'(x)<0;当x∈(2,+∞)时,f'(x)>0,所以函数f(x)在(0,2)上单调递减,在(2,+∞)上单调递增.1所以当x=2时,f(x)有最小值f(2)=--ln2.24分(2)由f(x)=ax2-x-lnx,得f'(x)=2ax-1-1所以当a≤0时,f'(x)=2ax2-x-1函数f(x)在(0,+∞)上单调递减,2ax2-x-1x,x>0.所以当a≤0时,函数f(x)在(0,+∞)上最多有一个零点.6分1e2-e+a因为当-1≤a≤0时,f(1)=a-1<0,f()=e e2所以当-1≤a≤0时,函数f(x)在(0,+∞)上有零点.>0,综上,当-1≤a≤0时,函数f(x)有且只有一个零点.(3)解法一:由(2)知,当a≤0时,函数f(x)在(0,+∞)上最多有一个零点.因为函数f(x)有两个零点,所以a>0.由f(x)=ax2-x-lnx,得f'(x)=2ax2-x-1,(x>0),令g(x)=2ax2-x-1.x因为g(0)=-1<0,2a>0,所以函数g(x)在(0,+∞)上只有一个零点,设为x.当x∈(0,x)时,g(x)<0,f'(x)<0;当x∈(x,+∞)时,g(x)>0,f'(x)>0.00所以函数f(x)在(0,x)上单调递减;在(x,+∞)上单调递增.008分9分x < 1.= ( 1 + )2 - 1 当 0 < a < 1 时, g ( ) = 2a 因为 f ( ) = a 1 e 2 - e + a 又因为 f ( ) = 4a a - ln ≥ - ( - 1) = 1 > 0(因为 ln x ≤ x - 1 ),且 f ( x ) < 0 . a a a x =要使得函数 f ( x ) 在 (0,+ ∞) 上有两个零点,只需要函数 f ( x ) 的极小值 f ( x ) < 0 ,即 ax 2 - x - ln x < 0 .又因为 g ( x ) = 2ax 2 - x - 1 = 0 ,所以 2ln x + x - 1 > 0 ,0 0 0 0又因为函数 h( x)=2ln x + x - 1 在 (0,+ ∞) 上是增函数,且 h(1)=0 ,所以 x > 1 ,得 0 < 1又由 2ax 2 - x - 1 = 0 ,得 2a = ( 0 0 1 x )2 +1x所以 0 < a < 1 .以下验证当 0 < a < 1 时,函数 f ( x ) 有两个零点.13 分1a a 2 - 1 1 - a a - 1 = a > 0 ,所以1 < x < 0 1 a .1e e 2 e e 2- + 1 = > 0 ,且 f ( x ) < 0 .1所以函数 f ( x ) 在 ( , x ) 上有一个零点.e 02a a 2 - 2 2 2 2 02所以函数 f ( x ) 在 ( x , ) 上有一个零点.0 a1 2所以当 0 < a < 1 时,函数 f ( x ) 在 ( , ) 内有两个零点.e a综上,实数 a 的取值范围为 (0,1) .下面证明: ln x ≤ x - 1 .16 分设 t ( x ) = x - 1 - lnx ,所以 t '( x ) = 1 - 1 x - 1 x ,( x > 0 ).令 t '( x ) = 0 ,得 x = 1 .当 x ∈ (0,1) 时, t '( x ) < 0 ;当 x ∈ (1, +∞) 时, t '( x ) > 0 .所以函数 t ( x ) 在 (0,1) 上单调递减,在 (1,+∞) 上单调递增.所以当 x = 1 时, t ( x ) 有最小值 t (1)= 0 . 所以 t ( x ) = x - 1 - lnx ≥ 0 ,得 ln x ≤ x - 1 成立. 解法二:由(2)知,当 a ≤ 0 时,函数 f ( x ) 在 (0,+ ∞) 上最多有一个零点. 因为函数 f ( x ) 有两个零点,所以 a > 0 .9 分x 2 ≤ 2x - 1所以 a = x + ln x 整理可得: 4d 2= 3a d .因为 d ≠ 0 ,所以 1 = 4 dk n k nk1所以 n +1 = k q n dk nk1kn由 f ( x ) = ax 2 - x - lnx = 0 ,得关于 x 的方程 a = x + ln xx 2 ,( x > 0 )有两个不等的实数解.又因为 ln x ≤ x - 1 ,1x 2 = -( x - 1)2 + 1 ,( x > 0 ).1因为 x > 0 时, -( - 1)2 + 1 ≤ 1 ,所以 a ≤ 1 .x又当 a = 1 时, x = 1 ,即关于 x 的方程 a = x + ln xx 2有且只有一个实数解.所以 0 < a <1 .(以下解法同解法 1)20.【解】(1)由已知可得: a , a , a 成等比数列,所以 (a + 2d )2 = a (a + 7d ) ,138111a1 d 3 .13 分2 分4 分(2)设数列{k } 为等比数列,则 kn22= k k .1 3又因为 a , a , a 成等比数列,k 1k 2k 3所以 [a + (k - 1)d ][a + (k - 1)d ] = [a + (k - 1)d ]2 .111312整理,得 a (2k - k - k ) = d (k k - k 2 - k - k + 2k ) .12131 32132因为 k 22 = k k ,所以 a (2 k - k - k ) = d (2 k - k - k ) .1 3 12 13 2 1 3因为 2k ≠ k + k ,所以 a = d ,即 a1 = 1 .21316 分当 a1 = 1时, a dn= a+ (n - 1)d = nd ,所以 a = k d . 1 n又因为 a = a q n -1 = k dq n -1 ,所以 k = k q n -1 .1 n 1kk k qn -1 n 11 = q ,数列 {k } 为等比数列.n综上,当 a1 = 1 时,数列{k } 为等比数列.n(3)因为数列{k } 为等比数列,由(2)知 a = d , k = k q n -1 (q > 1) .n1 n 1a = a q n -1 = k dq n -1 = k a q n -1 , a = a + (n - 1)d = na .1 1 1 n 1 1因为对于任意 n ∈ N *,不等式 a + a > 2k 恒成立.nn所以不等式 na + k a q n -1 > 2k q n -1 ,11 1 18 分n+k q n-1,0<a<q n1q1ex<2ln q)2]+1,则当n>n时,原式得证.a≤2.因为OH2=OE2-EH2=4-(x)2=54.2OH CE=即a>12k q n-11n+k q n-1112k q n-1111=1+q n22k q n1恒成立.10分下面证明:对于任意的正实数ε(0<ε<1),总存在正整数n,使得n1<ε.1要证n1<ε,即证ln n<n ln q+lnε.n11因为ln x≤11112x,则ln n1=2ln n12<n12,111解不等式n2<n ln q+lnε,即(n2)2ln q-n2+lnε>0,11111可得n2>11+1-4ln q lnε1+1-4ln q lnε2ln q,所以n1>(2ln q)2.1+1-4ln q lnε不妨取n=[(010所以0<1112,所以a≥2,即得a的取值范围是[2,+∞).1116分21.A.[选修4-1:几何证明选讲](本小题满分10分)已知圆O的直径AB=4,C为AO的中点,弦DE过点C且满足CE=2CD,求△OCE的面积.【解】设CD=x,则CE=2x.因为CA=1,CB=3,由相交弦定理,得C A CB=CD CE,所以1⨯3=x2x=2x2,所以x=6取DE中点H,则OH⊥DE.328,所以OH=10又因为CE=2x=6,2分6分所以△OCE的面积S=112⨯10154⨯6=4.10分已知向量⎢⎥是矩阵A的属于特征值–1的一个特征向量.在平面直角坐标系xOy中,点P(1,1)在矩阵A 【解】设A=⎢-1⎥⎦所以⎢d⎥⎦⎢⎣-1⎥⎦⎣-1⎦⎣1⎦⎩c-d=1.所以⎢c d⎥⎦⎢⎣1⎥⎦⎣3⎦⎩c+d=3.21⎥⎦4410分43分B.[选修4-2:矩阵与变换](本小题满分10分)⎡1⎤⎣-1⎦对应的变换作用下变为P'(3,3),求矩阵A.⎡a ⎣c b⎤d⎥⎦,⎡1⎤因为向量⎢⎣是矩阵A的属于特征值–1的一个特征向量,⎡a ⎣c b⎤⎡1⎤⎡1⎤⎡-1⎤⎧a-b=-1,=(-1)⎢⎥=⎢⎥.所以⎨4分因为点P(1,1)在矩阵A对应的变换作用下变为P'(3,3),⎡a b⎤⎡1⎤⎡3⎤⎧a+b=3,=⎢⎥.所以⎨⎣8分⎡12⎤解得a=1,b=2,c=2,d=1,所以A=⎢⎣.10分C.[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,求直线.θ=【解】解法一:π4(ρ∈R).被曲线ρ=4sinθ所截得的弦长.在ρ=4sinθ中,令θ=ππ,得ρ=4sin=22,即AB=22.解法二:以极点O为坐标原点,极轴为x轴的正半轴建立平面直角坐标系.直线θ=π(ρ∈R)的直角坐标方程为y=x①,曲线ρ=4sinθ的直角坐标方程为x2+y2-4y=0②.6分4 (ρ ∈ R ) 被曲线 ρ = 4sin θ 所截得的弦长 AB = 2 2 .3 | A P|| A Q | = 15 .⎧ x = 0, ⎧ x = 2,由①②得 ⎨ 或 ⎨⎩ y = 0, ⎩ y = 2,所以 A(0,0) , B(2,2) , 所以直线θ =πD .[选修 4 - 5 :不等式选讲](本小题满分 10 分) 求函数 y = 3sin x + 2 2 + 2cos 2 x 的最大值.【解】 y = 3sin x + 2 2 + 2cos2 x =3sin x + 4 cos 2 x由柯西不等式得y 2 = (3sin x + 4 cos 2 x )2 ≤ (32 + 42 )(sin 2 x + cos 2 x) = 25 ,8 分10 分2 分8 分所以 y max= 5 ,此时 sin x = 5 .所以函数 y = 3sin x + 2 2 + 2cos 2 x 的最大值为 5.22.【解】以{AB, AD , AA }为正交基底,建立如图所示空间直角坐标系 A - xyz .1(1)因为 AP=(1,2,2) , AQ =(2,0,1) ,10 分所以 cos < AP ,AQ > = AP AQ 1⨯ 2 + 2 ⨯ 0 + 2 ⨯1 9 ⨯ 5 =4 515 .所以 AP 与 AQ 所成角的余弦值为 4 54 分(2)由题意可知, AA = (0,0,2) , AQ = (2,0,2 λ ) .1设平面 APQ 的法向量为 n = ( x , y , z) ,⎧⎪n AP = 0, 则 ⎨⎪⎩n AQ = 0, ⎧ x + 2 y + 2 z = 0,即 ⎨ ⎩2 x + 2λ z = 0.所以 | cos < n, AA >| = | n AA 1 |= 2 , |n || A A | 2 (2λ)2 + (2 - λ)2 + (-2)25 .2,2 ,2 = 2 ,即 p = 2 ,4 x 2 ,所以 y ' = 4 ), t ≠ 0 ,则抛物线在点 E 处的切线方程为 y - 2 ,即点 P( ,0) .4 ) 到直线 PF 的距离为 d =4 | t | 4 + t 2 4 + t 联立方程 ⎨⎩ 2 t 2 ⨯ 4 =令 z = -2 ,则 x = 2λ , y = 2 - λ .所以 n = (2λ,2 - λ, -2) .6 分又因为直线 AA 与平面 APQ 所成角为 45︒ ,14 2=1 1可得 5λ 2 - 4λ = 0 ,又因为 λ ≠ 0 ,所以 λ = 423.【解】(1)抛物线 x 2= 2 py( p > 0) 的准线方程为 y = -p因为 M (m ,1) ,由抛物线定义,知 MF = 1 + p所以1 + p10 分所以抛物线的方程为 x 2 = 4 y .3 分(2)因为 y = 1 12 x .设点 E(t, t 2 t 2 14 = 2 t ( x - t ) .令 y = 0 ,则 x = t t2 t 2 t因为 P( ,0) , F (0,1) ,所以直线 PF 的方程为 y = - ( x - ) ,即 2x + ty - t = 0 .2 t 2 则点 E(t, t 2t 3| 2t + - t |⎧ x 2⎪ y = ,4消元,得 t 2 y 2 - (2t 2 + 16) y + t 2 = 0 .⎪2 x + ty - t = 0,因为 ∆ = (2t 2 + 16)2 - 4t 4 = 64(t 2 + 4) > 0 ,所以 y =1 2t2 + 16 + 64(t 2 + 4) 2t 2 + 16 - 64(t 2 + 4)2t 2 , y 2 = 2t 2 ,所以 AB = y + 1 + y + 1 = y + y + 2 =1 2 1 2 2t 2 + 16 4(t 2 + 4)t 2 + 2 = t 2 .7 分所以 △EAB 的面积为 S = 1 ⨯ 4(t 2 + 4) | t | 4 + t 2 31 (t2 + 4) 22 ⨯| t | .- 16 - / 17不妨设 g ( x ) = ( x 2 + 4) 2 23 1( x 2+ 4) 2 ( x > 0) ,则 g '( x ) = x x 2(2 x 2 - 4) .因为 x ∈ (0, 2) 时, g '( x ) < 0 ,所以 g ( x ) 在 (0, 2) 上单调递减;x ∈ ( 2, +∞) 上, g '( x ) > 0 ,所以 g ( x ) 在 ( 2, +∞) 上单调递增.所以当 x = 2 时, g ( x ) 3min = (2 + 4) 2= 6 3 .所以 △EAB 的面积的最小值为 3 3 .10 分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12-i=a+b i(a,b∈R),则ab的值是(A.4+4πB.8+4πC.4+πD.8+424的图像,只需把函数y=log x的图像上所有的点(四川省成都七中2017届高三二诊模拟考试数学(理)试卷一、选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求.把答案涂在答题卷上).1.已知集合A={-2,-1,0,1,2},B={x|lg x≤0},则A B=()A.{}B.{0,1}C.{0,1,2}D.{1,2}2.已知i是虚数单位,若1+7i)A.-15B.-3C.3D.153.如图,某组合体的三视图是由边长为2的正方形和直径为2的圆组成,则它的体积为()4.为了得到函数y=logx+1正视图侧视图俯视图4A向左平移1个单位长度,再向上平移2个单位长度B向右平移1个单位长度,再向上平移2个单位长度C向左平移1个单位长度,再向下平移2个单位长度D向右平移1个单位长度,再向下平移2个单位长度5.某程序框图如图所示,若使输出的结果不大于20,则输入的整数i的最大值为()A.3B.4C.5D.6-1-/11A .- 3 , 3 ⎪⎭ 0, 3 ⎪⎭⎝ - 3 ,0 ⎭ 3 ⎭ ⎝ 31 2 ( )11.已知函数 f (x ) = mx 3 + nx 2+ x + 2017 ,其中 m ∈{2,4,6,8 }, n ∈{1,3,5,7 },从这些函数中任取不同的6.如图,圆锥的高 PO =2 ,底面⊙O 的直径 AB = 2 ,C 是圆上一点,且 ∠CAB = 30 ,D 为 AC 的中点,则直线 OC 和平面 PAC 所成角的正弦值为()PCDAO BA .1 2 B . 3 2 C . 23 D . 1 37.若曲线 C : x 2 + y 2 - 2x = 0 与曲线 C : y ( y - mx - m ) = 0 有四个不同的交点,则实数 m 的取值范围是12()⎛ 3 3 ⎫⎝⎛ 3 ⎫ B .⎪⎪ ⎛ 3 ⎫ ⎝⎡ 3 3 ⎤C . ⎢-, ⎥ ⎣ 3 3 ⎦⎛ 3 ⎫ ⎛ 3 ⎫ D . -∞, - ⎪ , +∞ ⎪ ⎝ ⎭8.三棱锥 A - BCD 中, AB 、AC 、AD 两两垂直,其外接球半径为 2,设三棱锥 A - BCD 的侧面积为 S , 则 S 的最大值为( )A . 49.已知 a =⎰ π -2B . 6C . 8D .164 - x 2 - e x dx ,若 (1 - ax )2017 = b + b x + b x 2 + + b x 2017 (x ∈ R ) ,则0 1 2 2017b b b1 +2 + + 2017 的值为( )2 22 22017A .0B . -1C .1D . e10.由无理数引发的数学危机一直延续到19世纪,直到1872年,德国数学家戴金德提出了“戴金德分割”,才结束了持续2000多年的数学史上的第一次大危机.所谓戴金德分割,是指将有理数集Q 划分为两个非空的子集 M 与 N ,且满足 MN = ∅, (M , N ),M 中的每一个元素都小于N 中的每一个元素,则称 (M , N )为戴金德分割.试判断,对于任意戴金德分割(M , N ),下列选项中一定不成立的是()A . M 没有最大元素, N 有一个最小元素B . M 没有最大元素, N 也没有最小元素C . M 有一个最大元素, N 有一个最小元素D . M 有一个最大元素, N 没有最小元素1 1 3 2两个函数,在它们在 (1, f (1))处的切线相互平行的概率是()D . ⎢1, + ln 2⎥ 14.已知点 P( x, y) 的坐标满足条件 ⎨ x + y ≤ 0 ,若点O 为坐标原点,点 M (-1,-1) ,那么O M OP 的最大值 ⎪ x ≥ 0 ⎩ a n ⎭.A .7120B . 7 7C .D .以上都不对60 30z y y12.若存在正实数 x 、y 、z 满足 ≤ x ≤ e z 且 z ln = x ,则 ln 的取值范围为( )2 z xA . [1,+∞ )B . [1,e - 1]C . (-∞,e - 1]⎡ 1 ⎤ ⎣ 2 ⎦二、填空题(本大题共 4 小题,每小题 5 分,共 20 分,把答案填在答题卷的横线上.13.在 △ABC 中,边 a 、b 、c 分别是角 A 、B 、C 的对边,若 b cosC = (3a - c )cosB ,则 cosB = _________.⎧ x - y ≤ 4 ⎪ ⎩等于_________.15.动点 M (x, y )到点 (2,0 ) 的距离比到 y 轴的距离大 2,则动点 M 的轨迹方程为_________.16.在 △ABC 中,∠A = θ ,D 、E 分别为 AB 、AC 的中点,且 BE ⊥ CD ,则 cos2θ 的最小值为_________.三、解答题(17~21 每小题 12 分,22 或 23 题 10 分,共 70 分.在答题卷上解答,解答应写出文字说明,证明过程或演算步骤).17.设数列 {a n }的前 n 项和 S n = 2a n - a 1 ,且 a 1、a 2 + 1、a 3 成等差数列. (1)求数列{a }的通项公式;n⎧ 1 ⎫(2)求数列 ⎨ - n ⎬ 的前 n 项和 T .n18.为宣传 3 月 5 日学雷锋纪念日,成都七中在高一,高二年级中举行学雷锋知识竞赛,每年级出 3 人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得 1 分,答错不答都得 0 分,已知甲队 3 人3 2 1每人答对的概率分别为 , , ,乙队每人答对的概率都是 4 3 22 3 .设每人回答正确与否相互之间没有影响,用 X表示甲队总得分.(1)求随机变量 X 的分布列及其数学期望 E (X ) ;(2)求甲队和乙队得分之和为 4 的概率.19.已知等边 △AB 'C ' 边长为 2 ,△BCD 中, B D = CD = 1,BC = 2 (如图 1 所示),现将 B 与 B ' ,C 与C ' 重合,将 △AB 'C ' 向上折起,使得 AD = 3 (如图 2 所示)20.已知圆 E : x 2 + y 2 = 2, 将圆 E 按伸缩变换: ⎨ 2 后得到曲线 E 1⎪ y ' = y (2)过直线 x = 2 上的点 M 作圆 E 的两条切线,设切点分别是 A 、B ,若直线 AB 与 E 交于 C 、D 两点,求)x⎪ x = -2 +又过点 P (-2, -4) 的直线 l 的参数方程为 ⎨ABDC(1)若 BC 的中点 O ,求证: 平面BCD ⊥ 平面AOD ;(2)在线段 AC 上是否存在一点 E ,使 ED 与面BCD 成 30︒ 角,若存在,求出 C E 的长度,若不存在,请 说明理由;(3)求三棱锥 A - BCD 的外接球的表面积.⎧ x ' = x⎪ 2 2⎩ 2(1)求 E 的方程;121|CD || AB |的取值范围.21.已知函数 g (x ) = xsin θ - ln x - sin θ 在 [1,+∞ ) 单调递增,其中θ ∈ (0, π (1)求θ 的值;(2)若 f (x ) = g (x )+2x - 1x 2 ,当 x ∈ [1,2 ]时,试比较 f (x ) 与 f '(x )+ 1 2的大小关系(其中 f ' (x )是 f (x ) 的导函数),请写出详细的推理过程;(3)当 x ≥ 0 时, e x - x - 1 ≥ kg (x + 1)恒成立,求 k 的取值范围.请考生在第 22、23 题中任选一题作答,如果多做,则按所做的第一题计分.22.【选修 4—4:坐标系与参数方程】 在直角坐标系中,以原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线 C :ρsin 2θ = 2acos θ (a > 0) ,⎧ ⎪ ⎪ y = -4 + ⎪⎩2 2 2 2 tt( t 为参数), l 与曲线 C 分别交于 M 、N .(1)写出曲线 C 的平面直角坐标系方程和 l 的普通方程;(2)若 PM , MN , PN 成等比数列,求 a 的值. 23.【选修 4—5:不等式选讲】设函数 f (x) = x + 1 a + x - a (a > 0 )(1)证明: f (x) ≥ 2 ;(2)若f(3)5,求a的取值范围.- n = - n ,因数列 ⎨ ⎬ 是首项为 ,公比为 的等比数列, a ⎭ ⎩ n ⎧ 1 ⎫⎢1 - ⎪ ⎥ 1 2 2n 2 ⎣⎦ n (n + 1) = 1 - 1 -四川省成都七中 2017 届高三二诊模拟考试数学(理)试卷答 案一、选择题1~5.ABDCB 二、填空题6~10.CBCBC 11~12.BB13.1314.415. y 2 = 8x (x ≥ 0) 或 y = 0 (x < 0)16.725三、解答题17.解:(1)由已知 S = 2a - a 有 a = S - Snn1nn即 a = 2a(n > 1) ,从而 a = 2a , a = 4a .nn -12131n -1= 2a - 2an n -1(n > 1) ,又 a , a + 1,a 成等差数列,即 a + a = 2 (a + 1),12 3 1 3 2∴ a + 4a = 2 (2a + 1),解得 a = 2 .1111∴ 数列 {a } 是首项为 2,公比为 2 的等比数列故 a = 2n .…………6 分nn(2)由(1)得 1 1 1 1a 2n2 2n∴ T = n1⎡⎛ 1 ⎫n⎤1 2 ⎢ ⎝ 2 ⎭ ⎥ - n (n + 1) .………………12 分18.解:(1)X的可能取值为0,1,2,3.11114322431112111114324324324321121311114324324322432114324∴X的分布列为-6-/11P(X)=0=⨯⨯=,P(X=1)=⨯⨯+⨯⨯+⨯⨯=,P(X=2)=⨯⨯+⨯⨯+⨯⨯=,P(X=3)=⨯⨯=,+ 1⨯ + 2 ⨯ + 3 ⨯ = ⨯ C 1 ⨯ ⨯ ⎪ + ⨯ C 2 ⨯ ⎪ ⨯ + ⨯ ⎪ = .………………………………………12 分4 3 ⎝ 3 ⎭ 24 ⎝ 3 ⎭ 3 4 ⎝ 3 ⎭ 3, R △ BCD 中, OD = 1 BC = 22 2∴sin ∠ADO = ( ),在 △Rt ADH 中 AH = ADsin ∠ADO = 1,设 CE = x 0 ≤ x ≤ 2 ,作 EF ⊥ CH 于F ,平 面 AHC ⊥ 平面 BCD ,∴ EF ⊥ 平面BCD, ∠EDF 就是 ED 与面BCD 所成的角.由 = ,∴ EF = x1X0 1 2 31 P241 411 241 4E (X ) = 0 ⨯ 1 1 11 1 2324 4 24 4 12.…………………………………………………………7 分(2)设“甲队和乙队得分之和为 4”事件 A ,包含“甲队 3 分且乙队 1 分”,“甲队 2 分且乙队 2 分”,“甲队 1 分且乙队 3 分”三个基本事件,则:P ( A ) = 1 2 ⎛ 1 ⎫2 11 ⎛ 2 ⎫2 1 1 ⎛ 2 ⎫3 13 319.解:(1) △ABC 为等边三角形, △BCD 为等腰三角形,且 O 为中点∴ BC ⊥ AO , BC ⊥ DO ,AO DO = O ,∴ BC ⊥ 平面 AOD ,又 BC ⊂ 面 ABC ∴ 平面BCD ⊥ 平面AOD ∴ 平面 BCD ⊥ 平面 AOD …………3 分(2)ABEDOHF C法一:作 AH ⊥ DO, 交 DO 的延长线于 H ,则平面 BCD平面 AOD = HD则 AH ⊥ 平面 BCD ,在 t ,在 △Rt ACO 中, AO = 3 6 AC =2 2 ,在 △AOD 中,AD 2 + OD 2 - AO 2 6cos ∠ADO = =2 A D ⋅ OD 3,3 3 EF CE 2AH AC 2(※),在 △Rt CDE 中, DE = CE 2 + CD 2 =x 2 +1 ,要使 ED 与面BCD 成 30︒ 角,只需使 2x 2 = ,∴ x = 1 ,x 2 + 1 2当 CE = 1 时, ED 与面BCD 成 30 角………………………………………………………………………9 分,(0,0,0),E⎛ ⎛2⎝2x,1,2x⎭,DE=⎝2x,1,2x⎭1=cos60,即220.解:(1)按伸缩变换:⎨2得:(x')2+2(y')2=2,则E:+y2=1…………………3分2⎪y'=y(切线斜率是-x1,方程是x x+y y=2,经过B点的切线方程是x x+y y=2,又两条切线AM、BN相yzAxEB DOH F Cy法二:在解法1中接(※)以D为坐标原点,以直线D B、DC分别为x轴,y轴的正方向,以过D与平面BCD垂直的直线为z轴,建立空间直角坐标系则D22⎫2⎫⎪ ⎪,又平面BCD的一个法向量为n=(0,0,1),要使ED与面BCD成30角,只需使DE与n成60,只需使DE nDE n2x=,∴x=1,x2+12当CE=1时ED与面BCD成30角法三:将原图补形成正方体(如右图所示),再计算(3)将原图补形成正方体,则外接球的半径r=3,表面积:3π………………………………12分2⎧x'=x⎪x21⎩2(2)设直线x=2上任意一点M的坐标是(2,t),t∈R切点A、B坐标分别是(x,y)、x,y1122)则经过A点的11221交于 M (2, t )∴ ⎨ 1t = 0, A (1,1), B (1,-1), C 1, , D 1,- 2 ⎪⎭2 ⎪⎭ 2 ∴| CD |= 2,| AB |= 2,∴ | CD | ⎪⎪ t ⎪ x + y 2 = 1( )( ⎪⎪ 3t 2 + 8 ⎪ 3 t 2 + 8t( + 4)2 t t+ + 1, 又令u = ∈ 0, ⎪ϕ (x ) =-32u 3 + 6u + 1,u ∈ 0, ⎪, ∴ϕ (u )在 0, ⎪( ) ( )∴ | CD | ∈ ⎛ ∴ϕ (u )∈ ϕ (0),ϕ ⎪ ⎪ ,即 ϕ (u ) ∈ 1, 2 , f (x )∈ 1, 2 ,1⎪⎪ 综上所述,∴ | AB | ⎝ 2,1⎪⎪……………………………………………………………………………………………12 分≥ 0 恒成立∴sin θ ≥∴ s in θ ≥ 1 ∴ s in θ = 1 θ ∈ (0, π )∴θ = ……2 分= x - ln x + - - 1 ∴ f ' (x ) = 1 - - +- 2 令 h (x ) = x - ln x , H (x ) = + ∴ f (x )- f '(x ) = x - ln x + + - 2 ∴h '(x ) = 1 - ≥ 0⎧2 x + ty = 21 ⎩2 x 2 + ty 2 =2所以经过 A 、B 两点的直线 l 的方程是 2x + ty = 2当⎛ 2 ⎫ ⎛ 2 ⎫ ⎪ , ⎝ ⎝ yA MC O xD2=| AB | 2By= 当 t ≠ 0 时,联立 ⎨ 2⎪⎩ 2 ⎧ 2 - 2x,整理得 t 2 + 8 x 2 - 16x + 8 - 2t 2 = 0 设 C, D 坐标分别为 (x , y )、x , y ) 则 3 3 4 4⎧16x + x =4 ⎨ ⎪ x ⋅ x = 8 - 2t 24| CD |= 2 2 ( 2 + 4 )t 2 + 82 (2+ 2)| AB |= 2∴t 2 + 4| CD | | AB |= 32( 2 + 8) t 2 + 2t 2 + 4 = x > 4, 设 f (x ) = - 32 6 1 ⎛ 1⎫x 2 x x ⎝ 4 ⎭⎛ 1 ⎫ ⎝ 4 ⎭ ϕ (x ) = -96u 2 + b = 0 ⇒ u = 0 1 4 ⎛ 1 ⎫⎝ 4 ⎭⎝ ⎝ 4 ⎭⎭ ⎭⎡ 2 ⎫范围是 ⎢⎣ 2 ⎭21.解:(1)由题: g '(x ) = sin θ - 1 1 (x ∈[1,+∞))恒成立 x xπ2(2) f (x ) = g (x )+ 2x - 1 2 1 1 2 2x 2 x x 2 x x 2 x 33 1 2 3 1 2 1- -x x 2 x 3 x x 2 x 3 x-9-/11x 4 令 ϕ (x ) = -3x 2 - 2 x + 6 显然 ϕ (x ) 在 [1,2] 单调递减= min {H (1), H (2)}= H (2) = - ∴ H (x ) ≥ H (2) = - 12 即: f (x ) > f '(x )+x + 1 - (k + 1)x + 1 - (k + 1)x + 1 - (k + 1) ≥ x + 1 +x + 1 - (k + 1) ≥ 1 + k - (k + 1) = 0x + 1 - (k + 1) ≥ 1 + k - (k + 1) = 0( ) 当 k > 1 时, F '' x = e x - ( x + 1)2则 F ''(x )单调递增,又 F '' (0) = 1 - k < 0 且∴ h (x )单调递增则 h (x ) ≥ h (1) = 1又 H ' (x ) = -3x 2 - 2x + 6且 ϕ (1) = 1,ϕ (2) = -10, 则 ∃x ∈ (1,2 ) 使得 H (x ) 在 (1, x )单调增,在 (x ,2 )单调递减0 0∴ H (x ) min12 2∴ f (x )- f '(x ) = h (x )+ H (x ) ≥ h (x ) min + H (x ) min= 12 又两个函数的最小值不同时取得;∴ f (x )- f '(x ) > 1 12 ……………………………………………………………7 分(3) e x - x - 1 ≥ kg (x + 1)恒成立,即: e x + k ln (x + 1) - (k + 1)x - 1 ≥ 0 恒成立,令 F (x ) = e x + k ln (x + 1) - (k + 1)x - 1 ,则 F '(x ) = e x +k由(1)得: g (x ) ≥ g (1)即 x - ln x - 1 ≥ 0 (x ≥ 1) ,即: x + 1 ≥ ln (x + 1) + 1(x ≥ 0)即: x ≥ ln (x + 1)(x ≥ 0) ∴ e x ≥ x + 1 ∴ F '(x ) ≥ (x + 1)+k当 k = 1 时, x ≥ 0 F '(x ) ≥ (x + 1)+ k 1 x + 1 - 2 ≥ 0∴ F (x ) 单调增,∴ F (x ) ≥ F (0) = 0 满足当 k ∈ (0,1)x ≥ 0 由对角函数性质 F '(x ) ≥ (x + 1)+k∴ F (x ) 单调增,∴ F (x ) ≥ F (0) = 0 满足当 k ≤ 0 时,x ≥ 0 由函数的单调性知 F '(x ) ≥ (x + 1)+k∴ F (x ) 单调增,∴ F (x ) ≥ F (0) = 0 满足kx → +∞, F '' (x ) > 0 则 F ''(x ) 在 (0, +∞) 存在唯一零点 t ,则 F ' (x ) 在 (0, t ) 单减,在 (t , +∞ ) 单增,∴当0 0x ∈ (0, t ) 时, F ' (x ) < F (0) = 0∴ F ( x ) 在 (0, t ) 单减,∴ F ( x ) < F (0) = 0 不合题意综上: k ≤ 1 ………………………………………………………………………………………………12 分 22.解:(Ⅰ)曲线 C 的直角坐标方程为 y 2 = 2ax (a > 0 )min = a +(2)因为 f (3) < 5 ,所以 | 1 1 1 1 + 55 + 21直线 l 的普通方程为 x - y - 2=0 .………………………………………………………………………4 分(Ⅱ)将直线 l 的参数方程与 C 的直角坐标方程联立,得t 2 - 2 (4 + a )t + 8 (4 + a ) = 0 (*) ∆ = 8a (4 + a ) > 0.设点 M 、N 分别对应参数 t 、t , 恰为上述方程的根.12则 PM = t , PN = t , MN =| t - t | .1212由题设得 (t - t12)2 = t t1 2,即(t + t 12)2 - 4t t = t t1 2 1 2.由(*)得 t + t = 2 (4+a ), t t = 8 (4+a ) > 0 则有12 1 2(4+a )2 - 5(4+a ) = 0, 得 a = 1, 或 a = -4, 因为 a > 1 ,所以 a = 1 .…………………………………10 分23 .解:( 1 )证明:由绝对值不等式的几何意义可知:f (x ) 1 a≥ 2, 当且仅当 a = 1 取等,所以f (x ) ≥ 2 .…………………………………………………………………………………………………4 分1 1+ 3| + | a - 3| < 5 ⇔ + 3+ | a - 3| < 5 ⇔ | a - 3| < 2 - ⇔aaa- 2 < a - 3 < 2 - ,解得: < a < a a 22.…………………………………………………10 分。