植被覆盖度计算机模拟模型与参数敏感性分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作物学报 ACTA AGRONOMICA SINICA 2008, 34(11): 1964−1969
/zwxb/
ISSN 0496-3490; CODEN TSHPA9
E-mail: xbzw@
基金项目: 国家重点基础研究发展计划(973计划)项目(2007CB407203); 国家自然科学基金项目(40771150); 国家基础科学人才培养基金
(NFFTBS-J0630532)
作者简介: 瞿瑛(1985–), 男, 在读硕士研究生。E-mail: quying@
*
通讯作者(Corresponding author): 谢云。E-mail: xieyun@
Received(收稿日期): 2008-02-26; Accepted(接受日期): 2008-06-08.
DOI: 10.3724/SP.J.1006.2008.01964
植被覆盖度计算机模拟模型与参数敏感性分析
瞿 瑛1,2 刘素红1,2,3 谢 云1,2,*
(1 北京师范大学地理学与遥感科学学院, 北京100875; 2 北京师范大学遥感国家重点实验室, 北京100875; 3 北京师范大学环境遥感与数字城市北京市重点实验室, 北京100875)
摘 要: 植被覆盖度是重要的生态学参数, 对水文、生态、全球变化等研究具有重大意义。目前使用的目测估算法和数码照相法都具有一定的主观性, 另外通过自然界中相似样方的大量测量获得稳定的统计规律具有很大的难度, 因此建立叶面积指数和植被覆盖度之间的统计模型是估算植被覆盖度的有效方法。本文以大豆为例,利用椭圆来模拟大豆的叶片, 选取大豆植株结构的关键参数, 通过随机分布函数来模拟植株叶片位置、倾角和大小的分布, 获得不同植被结构参数下单位面积上的植被覆盖度, 建立植被覆盖度计算机模拟模型。通过实测数据和理论研究结论来验证模拟结果。对模型的参数敏感性进行分析结果表明, 叶半短轴是比叶半长轴更为敏感的植被结构参数。该模型为植被覆盖度的研究提供了一种新的思路和方法。
关键词: 植被覆盖度; 计算机模拟模型; 参数敏感性; 大豆
Computer Simulation Model of Fractional Vegetation Cover and Its Pa-rameters Sensitivity
QU Ying 1,2, LIU Su-Hong 1,2,3, and XIE Yun 1,2,*
(1 School of Geography, Beijing Normal University, Beijing 100875; 2 State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875; 3 Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities, Beijing 100875, China)
Abstract : Fractional Vegetation Cover (FVC) is an important ecology parameter, which is essential in the studies of hydrology,
ecology, and global variation. Currently, the estimation methods used for FVC, including eyeballing method and digital camera imagery interpretation method, are obviously subjective and uncertain. Furthermore, it is rather difficult for the statistical rela-tionship between FVC and leaf area index (LAI) to establish by measurement of millions of samples that have similar vegetation structure parameters. Thus, it is an effective way for the estimation of FVC to develop a statistical model between FVC and LAI . In the paper, we simulated the soybean leaves using ellipses, and determined the position, orientation and size with random distri-bution function by choosing the key parameters in the soybean structure to obtain the FVC per area under different vegetation structure parameters. The model was validated with data measured in situ and the theoretical conclusion. The analysis of parame-ter sensitivity of the simulation model showed that the length of stem is not a sensitive parameter when it was longer than foliage interval; wheresa the angle of stem is not a sensitive parameter until it reache a threshold. The leaf tilt angle and foliage interval were in inverse portion to the fractional vegetation cover, while the semimajor and semiminor axis of leaf were in direct portion to the fractional vegetation cover. The semiminor axis of leaf was a much more sensitive parameter than semimajor axis of leaf. It suggested that it was a novel and feasible way for FVC.
Keywords: Fractional vegetation cover; Computer simulation model; Parameters sensitivity; Soybean
植物是沟通有机界和无机界, 完成自然界水循环、碳循环、生物圈物质和能量交换过程的重要一环。植被覆盖度是指植被(包括叶、茎、枝)在单位面
积内的垂直投影面积所占百分比[1-2], 是衡量陆地植被覆盖和生长状况的重要生态学参数和量化指标, 同时也是水文、气象、生态等区域或全球问题的定