概率论与数理统计要点复习.docx
概率论与数理统计知识要点
知识要点一 概念:1随机事件:用,,A B C 等表示 互不相容: AB =Φ互逆: AB =Φ且A B ⋃=Ω ,此时,B A = 互逆⇒互不相容 ,反之不行相互独立: ()()P A B P A =或()()()P AB P A P B =2 随机事件的运算律:(1) 交换律: ,A B B A AB BA ⋃=⋃= (2) 结合律: ()(),()()A B C A B C AB C A BC ⋃⋃=⋃⋃=(3) 分配律: (),()()()A B C AB AC A BC A B A C ⋃=⋃⋃=⋃⋃(4 ) De Morgen 律(对偶律)B A B A =⋃ B A AB ⋃= 推广:11n ni i i i A A ===U I11nni i i i A A ===IU3 随机事件的概率:()P A 有界性 0()1P A ≤≤ 若A B ⊂ 则()()P A P B ≤ 条件概率 ()()()P AB P A B P B =4 随机变量: 用大写,,X Y Z 表示 .若X 与Y 相互独立的充分必要条件是)()(),(y F x F y x F Y X =若X 与Y 是离散随机变量且相互独立的充分必要条件是(,)()()X Y f x y f x f y = 若X 与Y 是连续随机变量且相互独立的充分必要条件是(,)()()X Y p x y p x p y =若X 与Y 不相关,则cov(,)0X Y = 或 (,)0R X Y = 独立⇒不相关 反之不成立当X 与Y 服从正态分布时 ,则相互独立 ⇔不相关二 两种概率模型古典概型 :()MP A N=:M A 所包含的基本事件的个数 ;:N 总的基本事件的个数 伯努利概型 : n 次独立试验序列中事件A 恰好发生m 次的概率 ()m m n mn n P m C p q -=n 次独立试验序列中事件A 发生的次数为1m 到2m 之间的概率2112()()m n m m P m m m P m =≤≤=∑n 次独立试验序列中事件A 至少发生r 次的概率1()()1()nr n n m rm P m r P m P m -==≥==-∑∑特别的 ,至少发生一次的概率 (1)1(1)nP m p ≥=--三 概率的计算公式:加法公式:()()()()P A B P A P B P AB ⋃=+-若B A ,互不相容 ,则)()()(B P A P B A P +=+推广:)()()()()()()()(ABC P AC P BC P AB P C P B P A P C B A P +---++=⋃⋃若B A,,C 互不相容,则()()()()P A B C P A P B P C ++=++乘法公式:)()()(A B P A P AB P =或()()P B P A B = 若,A B 相互独立 ,()()()P AB P A P B =推广:)()()()()(12121312121-=n n n A A A A P A A A P A A P A P A A A P ΛΛΛΛΛΛ 若它们相互独立,则1212()()()()n n P A A A P A P A P A =L L L L全概率公式:若 A 为随机事件,n B B B ΛΛ21,互不相容的完备事件组,且 0)(>i B P 则 )()()()()()()(2211n n B A P B P B A P B P B A P B P A P +++=ΛΛ 注: 常用,B B 作为互不相容的完备事件组有诸多原因可以引发某种结果 ,而该结果有不能简单地看成这诸多事件的和 ,这样的概率问题属于全概问题. 用全概率公式解题的程序:(1) 判断所求解的问题 是否为全概率问题(2) 若是全概率类型,正确的假设事件A 及i B ,{}i B 要求是互斥的完备事件组 (3) 计算出(),()i i P B P A B(4) 代入公式计算结果四 一维随机变量:分布函数:)()(x X P x F ≤= 性质:(1) 1)(0≤≤x F(2) 若21x x < ,则)()(21x F x F ≤ (3) 右连续(4)1)(lim =+∞→x F x 即 1)(=+∞F0)(lim =-∞→x F x 即 0)(=-∞F ( 此性质常用来确定分布函数中的常数)利用分布函数计算概率:()()()P a X b F b F a <≤=- 一维离散随机变量:概率函数:()()1,2i i p x P X x i ===L (分布律)性质:()0i p x ≥()1iip x =∑ (此性质常用来确定概率函数中的常数)已知概率函数求分布函数 ()()()i i iix xx xF x P X x p x ≤≤===∑∑一维连续随机变量: 概率密度()f x性质:(1) 非负性()0f x ≥ (2)归一性:()1f x dx +∞-∞=⎰(常用此性质来确定概率密度中的常数)分布函数和概率密度的关系: ()()f x F x '= ()()xF x f x dx -∞=⎰(注意:当被导函数或被积函数是分段函数时,要分区间讨论,其结果也是分段函数) 利用概率密度求概率 ()()baP a X b f x dx <≤=⎰五 一维随机变量函数的分布:离散情形 : 列表 、整理、合并连续情形()Y g X =: 分布函数法. 先求Y 的分布函数 ,再求导 六 二维随机变量: 联合分布函数 :(,)(,)F xy P X x Y y =≤≤性质: (1) (,)0F -∞-∞= (2) (,)0F x -∞= (3) (,)0F y -∞= (4) (,)1F +∞+∞=(此极限性质常用来确定分布函数中的常数)边缘分布函数: ()(,)X F x F x =+∞ ()(,)Y F y F y =+∞ 二维离散随机变量:联合概率函数 (,)(,)i j i j p x y P X x Y y === 列表 边缘概率函数: ()(,)X i ijjp x p x y =∑ ()(,)Yi i j ipy p x y =∑二维连续随机变量: 联合概率密度 (,)f x y性质 (1)(,)0f x y ≥(2)(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰(常用此性质来确定概率密度中的常数)联合分布函数与联合概率密度的关系(,)(,)(,)(,)x yf x y F x y x yF x y f x y dxdy-∞-∞∂=∂∂=⎰⎰(注意:当被导函数或被积函数是分段函数时,要分区间讨论,其结果也是分段函数) 利用联合概率密度求概率((,))(,)RP x y R f x y dxdy ∈=⎰⎰已知联合概率密度求边缘概率密度()(,)X f x f x y dy +∞-∞=⎰()(,)Y f y f x y dx +∞-∞=⎰(注意:当被积函数是分段函数时,要分区间讨论,其结果也是分段函数)七 随机变量的数字特征: 若X 为离散随机变量:1()()niii E X x p x ==∑若X 为连续随机变量: ()()E X xf x dx +∞-∞=⎰二维情形 若(,)~(,)X Y f x y 为二维连续随机变量,则 ()()(,)X E X xf x dx xf x y dxdy +∞+∞+∞-∞-∞-∞==⎰⎰⎰()(,)E Y yf x y dxdy +∞+∞-∞-∞=⎰⎰若(,)~(,)i j X Y p x y 为二维离散随机变量,则()()(,)i X i i i j iijE X x p x x p x y ==∑∑∑()()(,)j Y j j i j jjiE Y y p y y p x y ==∑∑∑随机变量的函数的数学期望:若X 为离散随机变量:[]()()()iiiE g X g x p x =∑若X 为连续随机变量 []()()()E g X g x f x dx +∞-∞=⎰方差:定义 []{}2()()D X EX E X =-方差的计算公式:22()()()D X E X E X =- 注意这个公式的转化:22()()()E X D X E X =+关于期望的定理: 关于方差的定理 (1) ()E C C = (1) ()0D C =(2)()()E CX CE X = (2) 2()()D CX C D X =(3) ()()()E X Y E X E Y +=+ 相互独立: ()()()D X Y D X D Y +=+ ()()()E X Y E X E Y -=- ()()()D X Y D X D Y -=+ ()()()E X Y E X E Y λμλμ+=+ (注意:反之不成立) 相互独立()()()E XY E X E Y =(注意:反之不成立)八 要熟记的常用分布及其数字特征:01-分布 (1,)B p 1()0,1x xp x p q x -== ()()E X p D X pq == 二项分布(,)B n p ()0,1x x n xi n p x C p qx n -==L ()()E X np D X npq ==泊松分布()p λ ()0,1!xp x e x x λλ-==L ()()E X D X λλ==均匀分布:(,)U a b 1()0a x b f x b a ⎧<≤⎪=-⎨⎪⎩其他 ()01x aa xb b a F X x ax b -⎧≤<⎪-⎪=<⎨⎪≥⎪⎩2()()()212a bb a E X D X +-==指数分布:()e λ 0()00xe xf x x λλ-⎧>=⎨≤⎩ 10()00x e x F x x λ-⎧->=⎨≤⎩211()()E X D X λλ==正态分布:2~(,)X N μσ22()21()2x f x e μσπσ--=22()21()2x xF x edx μσπσ---∞=⎰2()()E X D X μσ==特别地(0,1)N 221()2x x e ϕπ-=221()2x xx edx π--∞Φ=⎰()(1)(x x Φ-=-Φ)()0()1E X D X ==2~(,)X N μσ 1212()()x x X P x X x P μμμσσσ---<<=<<21()()x x μμσσ--=Φ-Φ九 正态随机变量线性函数的分布十 统计部分:统计量 无偏性 有效性矩估计 最大似然估计 区间估计 假设检验例: 甲袋中有5只红球10只白球,乙袋中有8只红球6只白球,现先从甲袋中任取一球放入乙袋,然后又从乙袋中任取一球放入甲袋. 求这一个来回后甲袋中红球数不变的概率 . 解: 设A :从甲袋中取出放入乙袋的是红球,B :从乙袋中返还甲袋的是红球,C : 这一个来回后甲袋中红球数不变,则,B A AB C +=从而)()()()()()()(A B P A P A B P A P B A P B A P C P +=+=951581510159155=⋅+⋅=.例 高射炮向敌机发射三发炮弹(每弹击中与否相互独立),设每发炮弹击中敌机的概率均为3.0 ,又若敌机中一弹,其坠落的概率为2.0,若敌机中两弹,其坠落的概率为6.0,若敌机中三弹,则必然坠落。
概率论与数理统计总复习知识点归纳
概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。
-频率和概率的关系,概率的基本性质。
-古典概型和几何概型的概念。
-条件概率和乘法定理。
-全概率公式和贝叶斯公式。
-随机变量和概率分布函数的概念。
-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。
2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。
-协方差、相关系数和线性变换的数学期望和方差公式。
-两个随机变量的和、差、积的数学期望和方差公式。
3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。
-中心极限定理的概念和中心极限定理的两种形式。
4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。
-样本统计量和抽样分布的概念。
-点估计和区间估计的概念。
-假设检验的基本思想和步骤。
-正态总体的参数的假设检验和区间估计。
5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。
-矩估计的原理和方法。
-最小二乘估计的原理和方法。
-一般参数的假设检验和区间估计。
6.相关分析和回归分析-相关系数和线性相关的概念和性质。
-回归分析的一般原理。
-简单线性回归的估计和检验。
7.非参数统计方法-秩和检验和符号检验的基本思想和应用。
-秩相关系数的计算和检验。
8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。
-正态总体参数的拟合优度检验。
-贝叶斯估计的基本思想和方法。
9.时间序列分析和质量控制-时间序列的基本性质和分析方法。
-时间序列预测的方法和模型。
-质量控制的基本概念和控制图的应用。
以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。
概率论与数理统计总复习
概率论与数理统计总复习1、研究和揭示随机现象 统计规律性的科学。
随机现象:是在个别试验中结果呈现不确定性,但在大量重复试验中结果又具有统计规律性的现象。
2、互斥的或互不相容的事件:A B φ⋂=3、逆事件或对立事件:φ=⋂=⋃B A S B A 且4、德∙摩根律:B A B A ⋂=⋃,B A B A ⋃=⋂5、在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值/A n n 称为事件A 发生的频率,并记为()n f A 。
6、概率的性质(1)非负性:(A)0P ≥; (2)规范性:(S)1P =;(3)有限可加性:设A 1,A 2,…,A n ,是n 个两两互不相容的事件,即A i A j =φ,(i ≠j), i , j =1, 2, …, n , 则有∑==ni i n A P A A P 11)()...((4)()0P φ=;(5)单调不减性:若事件A ⊂B ,则P(B)≥P(A) (6)对于任一事件A ,P(A)≤1 (7)差事件概率:对于任意两事件A 和B ,()()()P B A P B P AB -=-(8)互补性(逆事件的概率):对于任一事件A ,有 P(A )=1-P(A) (9)加法公式:P(A ⋃B)=P(A)+P(B)-P(AB))()()()()()()()(321323121321321A A A P A A P A A P A A P A P A P A P A A A P +---++=⋃⋃7、古典概型中的概率: ()()()N A P A N S =①乘法原理:设完成一件事需分两步, 第一步有n 1种方法,第二步有n 2种方法, 则完成这件事共有n 1n 2种方法。
例:从甲、乙两班各选一个代表。
②加法原理:设完成一件事可有两类方法,第一类有n 1种方法,第二类有n 2种方法,则完成这件事共有n 1+n 2种方法。
(完整word版)概率论与数理统计知识点总结(word文档良心出品)
Ai Ai
德摩根率: i1
i 1
AB AB,AB AB
(7)概率 的公理化 定义
设 为样本空间, A 为事件,对每一个事件 A 都有一个实数 P(A),若满
足下列三个条件: 1° 0≤P(A)≤1, 2° P(Ω ) =1
3° 对于两两互不相容的事件 A1, A2 ,…有
P( A) L( A) 。其中 L 为几何度量(长度、面积、体积)。 L()
(10)加法+B)=P(A)+P(B)-P(AB) 当 AB 不相容 P(AB)=0 时,P(A+B)=P(A)+P(B) 当 AB 独立,P(AB)=P(A)P(B), P(A+B)=P(A)+P(B)-P(A)P(B) P(A-B)=P(A)-P(AB)
,
则称 X 为连续型随机变量。 f (x) 称为 X 的概率密度函数或密度函数,简称概
率密度。
密度函数具有下面 4 个性质:
1、 f (x) 0 。
f (x)dx 1
2、
。
(3)离散 与连续型
3、 P(x1 X x2 ) F(x2 ) F(x1)
x2 f (x)dx
P(A)=(1 ) (2 ) (m ) = P(1 ) P(2 ) P(m )
m n
A所包含的基本事件数 基本事件总数
(9)几何 概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空 间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何 概型。对任一事件 A,
P( X k) q k1 p, k 1,2,3, ,其中 p≥0,q=1-p。
概率论及数理统计要点复习
概率论与数理统计 复习资料第一章随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A(1) 包含:若事件A 发生,一定导致事件B 发生,那么,称事件B 包含事件A ,记作A B ⊂(或B A ⊃). (2) 相等:若两事件A 与B 相互包含,即A B ⊃且B A ⊃,那么,称事件A 与B 相等,记作A B =. (3) 和事件:“事件A 与事件B 中至少有一个发生”这一事件称为A 与B 的和事件,记作A B ⋃;“n 个事件1,2,,nA A A 中至少有一事件发生”这一事件称为1,2,,nA A A 的和,记作12nA A A ⋃⋃⋃(简记为1nii A =). (4) 积事件:“事件A 与事件B 同时发生”这一事件称为A 与B 的积事件,记作A B ⋂(简记为AB );“n 个事件1,2,,nA A A 同时发生”这一事件称为1,2,,nA A A 的积事件,记作12n A A A ⋂⋂⋂(简记为12nA A A 或1nii A =). (5) 互不相容:若事件A 和B 不能同时发生,即AB φ=,那么称事件A 与B互不相容(或互斥),若n 个事件1,2,,nA A A 中任意两个事件不能同时发生,即i j A A φ=(1≤i<j ≤几),那么,称事件 1,2,,n A A A 互不相容. (6) 对立事件:若事件A 和B 互不相容、且它们中必有一事件发生,即AB φ=且A B ⋃=Ω,那么,称A 与B 是对立的.事件A 的对立事件(或逆事件)记作A . (7) 差事件:若事件A 发生且事件B 不发生,那么,称这个事件为事件A 与B 的差事件,记作A B -(或AB ) .2.运算规则 (1)交换律:BA AB A B B A =⋃=⋃(2)结合律:)()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃ (3)分配律))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)德摩根(De Morgan )法则:B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率: 如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件A的概率为()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)·6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|((5)贝努里概型与二项概率设在每次试验中,随机事件A发生的概率()(01)P A p p =<<,则在n 次重复独立试验中.,事件A恰发生k 次的概率为()(1),0,1,,k n k n n P k p p k n k -⎛⎫=-= ⎪⎝⎭,7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用)下列四个命题是等价的:(i) 事件A 与B 相互独立;(ii) 事件A 与B 相互独立;(iii) 事件A 与B 相互独立;(iv) 事件A 与B 相互独立.8、思考题1.一个人在口袋里放2盒火柴,每盒n 支,每次抽烟时从口袋中随机拿出一盒(即每次每盒有同等机会被拿到)并用掉一支,到某次他迟早会发现:取出的那一盒已空了.问:“这时另一盒中恰好有m 支火柴”的概率是多少?2.设一个居民区有n 个人,设有一个邮局,开c 个窗口,设每个窗口都办理所有业务.c 太小,经常排长队;c 太大又不经济.现设在每一指定时刻,这n 个人中每一个是否在邮局是独立的,每个人在邮局的概率是p .设计要求:“在每一时刻每窗口排队人数(包括正在被服务的那个人)不超过m ”这个事件的概率要不小于a (例如,0.8,0.9.95a o =或),问至少须设多少窗口? 3.设机器正常时,生产合格品的概率为95%,当机器有故障时,生产合格品的概率为50%,而机器无故障的概率为95%.某天上班时,工人生产的第一件产品是合格品,问能以多大的把握判断该机器是正常的?第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P3. 几个常用随机变量名称与记号分布列或密度数学期望 方差0—1分布 两点分布 ),1(p B p X P ==)1(,p q X P -===1)0(p pq二项式分布),(p n Bn k q p C k X P k n k kn ,2,1,0,)(===-,np npq泊松分布)(λP,2,1,0,!)(===-k k ek X P kλλλλ几何分布)(p G,2,1 ,)(1===-k p qk X P kp1 2p q 均匀分布),(b a Ub x a a b x f ≤≤-= ,1)(,2ba + 12)(2a b - 指数分布)(λE 0 ,)(≥=-x e x f x λλλ1 21λ正态分布),(2σμN222)(21)(σμσπ--=x ex fμ2σ标准正态分布的分布函数记作()x Φ,即()x Φ221()2t xx e dtπ--∞Φ=⎰,当出0x ≥时,()x Φ可查表得到;当0x <时,()x Φ可由下面性质得到()1()x x Φ-=-Φ.设2~(,)X N μσ,则有()()x F x μσ-=Φ;()()()b a P a X b μμσσ--<≤=Φ-Φ.4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; 特别的 ()()(0)P X a F a F a ==-- (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
《概率论与数理统计》知识点简单汇总
《概率论与数理统计》知识点简单汇总第一章1.事件的基本关系与运算(和事件、积事件、差事件、对立事件等)2. 加法公式和乘法公式(条件概率,结合事件的独立性)3. 全概率公式、贝叶斯公式(结合书上例题和课后习题)P17例5、例6第二章1.有关这章的概念制表格一(把握概率分布、概率密度与分布函数的关系)2.常用离散型和连续型分布制表二熟记书上P82表4-13.理解第4节随机变量函数的概念(侧重离散型,包括二维离散型)(P36例1 ;P40定理1;P41例4;P43习题1、2 ;P44例1;P46习题1等)(此章概念是重点也同时是基础,与后续3,4章紧密关联)第三章1 . 理解离散型的联合分布律和边缘分布律(结合书上P51例1、P55例1)2 . 理解连续型的联合概率密度和边缘概率密度(结合P52例3、P57例3、P59习题4)3. 理解随机变量的独立性(P60例题)4. 随机变量函数(P62 例1)第四章1. 熟练数学期望的定义、性质、计算(P71例2、例3;P74例7)2. 熟练方差的定义、性质、计算(书上例题)期望和方差两个概念与第2章和后面的统计部分紧密关联,重点掌握3. 熟悉协方差、相关系数和矩三个概念及计算公式 建议上述数字特征自制表格三第五章1. 熟练 切比雪夫不等式 (P92 定理、P92例1)2. 了解大数定律和中心极限定理(P101定理2、P102例4) 第六章1. 理解样本和总体的概念;(统计就是用样本来研究总体)2. 熟练常用统计量 109P ; 掌握P110两个例题;3. 三个重要分布自制表格四 (0,1)N )4. 上分位点 (P42定义5、P113定义3 、P115定义5)结合2()n χ和()t n 两个的图形来理解; 注意与随机变量的分布函数()F x (特别是标准正态分布()x Φ)的区别 上述所有都是重点,必须理解加熟记,是整个统计部分的基础。
第七章1. 第一节,熟练掌握点估计的矩估计法和极大似然估计法;P127例2、3P130例62. 第二节,理解无偏性和有效性3. 区间估计P136例1,例139例2,例3(见P140表7-1)以上都结合书上例题,予以熟练掌握。
概率论与数理统计要点复习.docx
概率论与数理统计要点复习.docx概率论与数理统计复习资料第⼀章随机事件与概率1.事件的关系AuB AuB AB A-B A Q AB =(/>(1)包含:若事件A发⽣,⼀定导致事件B发⽣,那么,称事件B包含事件A ,记作AuB(或Bz)A)?(2)相等:若两事件A与〃相互包含,即AnB且Bn A,那么,称事件A与B相等,记作A = B .(3)和事件:“事件A与事件B中⾄少有⼀个发⽣”这⼀事件称为A与B的和事件,记作AuB;“n个事件观出?…,⼈中⾄少有⼀事件发⽜”这⼀事HI J A件称为鱼…,⼈的和,记作Au⼊5??uA”(简记为* ').(4)积事件:“事件A与事件B同时发⽣”这⼀事件称为A与B的积事件,记作AcB(简记为AB);a n个事件观出,…,⼼同时发⽜”这⼀事件称为nA,⾎.…,⼈的积事件,记作(简记为A4??4或以').(5)互不相容:若事件A和B不能同时发⽣,即⼼?,那么称事件A与B互不相容(或互斥),若n个事件观出?…,⼈中任意两个事件不能同时发⽣,即A"⼴0(iwi(6)对⽴事件:若事件A和B互不相容、且它们中必有⼀事件发⽣,即AB = Q 且AuB⼆Q,那么,称A与B是对⽴的.事件A的对⽴事件(或逆事件)记作⼊(7)差事件:若事件A发⽣且事件B不发⽣,那么,称这个事件为事件A 与B的差事件,记作A-B(或⼈⽤)?2?运算规则(1)交换律:AuB = BuA AB = BA(2)结合律:(AuB)uC = Au(BuC) (AB)C = A(BC)(3)分配律(A u B)C = (AC) u (BC) (AB) uC = (Au C)(B u C)(4)德[摩根(DeMorgan)法则:AuB = AB AB = AuB3.概率P( A)满⾜的三条公理及性质:(1)0 < P(A) < 1 (2) P(Q) = 1(3)对互不相容的事件£,凡,…,有P(|J 4) = JP(A k) (n可以取co) k=[Bl(4)P(0) = O (5) P(A) = 1 - P(A)(6)P(A-B) = P(A)-P(AB),若AuB,则P(B-A) = P(B)-P(A), P(A)< P(B)(7)P(A u B) = P(A) + P(B) - P(AB)(8)P(AufiuC) = P(A) + P(B) + P(C) ⼀P( AB) - P(AC)⼀P(BC) + P(ABC)4.古典概型:基本事件有限且等可能5.⼏何概率:如果随机试验的样本空间是⼀个区域(可以是直线上的区间、平⾯或空间⼬的区域),且样本空间⼬每个试验结果的出现具有等可能性,那么规定事件A的概率为= A的长度(或⾯积、体积)(,⼀样本空间的的长度(或⾯积、体积)?6.条件概率(1)定义:若P(B)> 0,则P(A|B)⼆巴也P(B)(2)乘法公式:P(AB) = P(B)P(A | B)若⽿,场,3”为完备事件组,P(BJ>0,贝ij有(3)全概率公式:P(A) =》P(BJP(A | BJ/=!(4)Bayes 公式:P(B* | A) = £(拔)⼙(川伐)£P(BJP(A\BJ/=!(5)贝努⾥概型与⼆项概率设在每次试验中,随机事件A发⽣的概率P(A) = p(0复独⽴试验中?,事件A恰发⽣£次的概率为巳伙)⼆7 //(I —"1,20,1,…⼩k7.事件的独⽴性:A, 3独⽴o P(AB) = P(A)P(B)(注意独⽴性的应⽤)下列四个命题是等价的:(i)事件A与B相互独⽴;(ii)事件A与⽤相互独⽴;(iii)事件広与B相互独⽴;(iv)事件A与B相互独⽴.8、思考题1 . ⼀个⼈在⼝袋⾥放2盒⽕柴,每盒⽄⽀,每次抽烟时从⼝袋⼬随机拿出⼀盒(即每次每盒有同等机会被拿到)并⽤掉⼀⽀,到某次他迟早会发现:取出的那⼀盒已空了?问:“这时另⼀盒中恰好有加⽀⽕柴”的概率是多少?2?设⼀个居民区有〃个⼈,设有⼀个邮局,开c个窗⼝,设每个窗⼝都办理所有业务.c太⼩,经常排长队;c?太⼤⼜不经济.现设在每⼀指定时刻,这〃个⼈中每⼀个是否在邮局是独⽴的,每个⼈在邮局的概率是P?设计要求:“在每⼀时刻每窗⼝排队⼈数(包括正在被服务的那个⼈)不超过加”这个事件的概率要不⼩于Q (例如,Q = 0?&0?9或o.95),问⾄少须设多少窗⼝?3.设机器正常时,⽣产合格品的概率为9 5%,当机器有故障时,⽣产合格品的概率为5 0 %,⽽机器⽆故障的概率为9 5%.某天上班时,⼯⼈⽣产的第⼀件产品是合格品,问能以多⼤的把握判断该机器是正常的?第⼆章随机变量与概率分布1.离散随机变量:取有限或可列个值,P(X =xj = Pi满⾜(1) p,. > 0 , (2)⼯戸=1I(3)对任意DuR, P(X E D)= ^Pii: DJ+oof(x)dx = 1:-oo(2)P(aJu3.⼉个常⽤随机变量标准正态分布的分布函数记作①(X),即CX ] ----①⑴=I ——e 2 dt①(兀) '⼗问t ,当出“no时,①(%)可查表得到;当xvo时,①⑴可由下⾯性质得到①(I兀)=1 ⼀①(X)设X~N(“,k),则有F⑴=①(⼆)P(aer c ?4.分布函数F(x) = P(X(1)F(-oo) = 0, F(+oo) = l; (2)单调⾮降;(3)右连续;(4)P(a a) = l-F(a);特别的P(X = a) = F(a) - F(a -0)(5)对离散随机变量,F(Q =⼯⼙汀/:Xf(6)对连续随机变量,F(x) = f 为连续函数,且在.f(x)连续点上,F (x) = f(x)J—85.正态分布的概率计算以①(x)记标准正态分布2(0,1)的分布函数,则有(1)①(0) = 0.5; (2)①(⼀兀)=1 ⼀①⑴;(3)若X ?N(“Q2),则F(Q⼆①(^^);(7(4)以%记标准正态分布2(0,1)的上侧a分位数,则P(X >%) = a = l—①(⾎) 6.随机变量的函数Y = g(X)(1)离散时,求Y的值,将相同的概率相加;(2)X连续,g(x)在X的取值范围内严格单调,且有⼀阶连续导数,则/y(y) = /x (gT (y ))l (gT ()‘))'l ,若不单调,先求分布函数,再求导。
(完整版)概率论与数理统计知识点总结(免费)
《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B A ⊂ 称为事件A 与事件B 的和事件,指当且仅B}x x x { ∈∈=⋃或A B A 当A ,B 中至少有一个发生时,事件发生B A ⋃称为事件A 与事件B 的积事件,指当B}x x x { ∈∈=⋂且A B A A ,B 同时发生时,事件发生B A ⋂ 称为事件A 与事件B 的差事件,指当且仅B}x x x { ∉∈=且—A B A 当A 发生、B 不发生时,事件发生B A —,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事φ=⋂B A 件B 不能同时发生,基本事件是两两互不相容的,则称事件A 与事件B 互为逆事件,又称事件且S =⋃B A φ=⋂B A A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃ 结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃分配律)()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂徳摩根律BA B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数称为A n 事件A 发生的频数,比值称为事件A 发生的频率n n A 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率1.概率满足下列条件:)(A P (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设是两两互不相容的事件,有n A A A ,,,21 (可以取)∑===nk k n k k A P A P 11)()( n ∞2.概率的一些重要性质:(i )0)(=φP (ii )若是两两互不相容的事件,则有(可以取)n A A A ,,,21 ∑===nk knk kA P A P 11)()(n ∞(iii )设A ,B 是两个事件若,则,B A ⊂)()()(A P B P A B P -=-)A ()B (P P ≥(iv )对于任意事件A ,1)(≤A P (v ) (逆事件的概率))(1)(A P A P -=(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件A 包含k 个基本事件,即,里}{}{}{2]1k i i i e e e A =个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑=§5.条件概率(1)定义:设A,B 是两个事件,且,称为事件A 发生的0)(>A P )()()|(A P AB P A B P =条件下事件B 发生的条件概率(2)条件概率符合概率定义中的三个条件1。
概率论与数理统计复习要点知识点doc
第一章 随机事件及其概率一、随机事件及其运算 1. 样本空间、随机事件①样本点:随机试验的每一个可能结果,用ω表示; ②样本空间:样本点的全集,用Ω表示; 注:样本空间不唯一.③随机事件:样本点的某个集合或样本空间的某个子集,用A,B,C,…表示; ④必然事件就等于样本空间;不可能事件()∅是不包含任何样本点的空集; ⑤基本事件就是仅包含单个样本点的子集。
2. 事件的四种关系①包含关系:A B ⊂,事件A 发生必有事件B 发生; ②等价关系:A B =, 事件A 发生必有事件B 发生,且事件B 发生必有事件A 发生;③互不相容(互斥): AB =∅ ,事件A 与事件B 一定不会同时发生。
④互逆关系(对立):A ,事件A 发生事件A 必不发生,反之也成立;互逆满足A A AA ⎧⋃=Ω⎨=∅⎩注:互不相容和对立的关系(对立事件一定是互不相容事件,但互不相容事件不一定是对立事件。
) 3. 事件的三大运算①事件的并:A B ⋃,事件A 与事件B 至少有一个发生。
若AB =∅,则A B A B ⋃=+;②事件的交:A B AB ⋂或,事件A 与事件B 都发生; ③事件的差:-A B ,事件A 发生且事件B 不发生。
4. 事件的运算规律①交换律:,A B B A AB BA ⋃=⋃=②结合律:()(),()()A B C A B C A B C A B C ⋃⋃=⋃⋃⋂⋂=⋂⋂③分配律:()()(),()()()A B C A B A C A B C A B A C ⋃⋂=⋃⋂⋃⋂⋃=⋂⋃⋂ ④德摩根(De Morgan )定律:,A B AB AB A B⋃==⋃对于n 个事件,有1111,n ni i i i nni ii i A A A A ======U IIU二、随机事件的概率定义和性质1.公理化定义:设试验的样本空间为Ω,对于任一随机事件),(Ω⊂A A 都有确定的实值P(A),满足下列性质: (1) 非负性:;0)(≥A P (2) 规范性:;1)(=ΩP(3)有限可加性(概率加法公式):对于k 个互不相容事件k A A A ,,21Λ,有∑∑===ki i ki i A P A P 11)()(.则称P(A)为随机事件A 的概率. 2.概率的性质 ①()1,()0P P Ω=∅= ②()1()P A P A =-③若A B ⊂,则()(),()()()P A P B P B A P B P A ≤-=-且 ④()()()()P A B P A P B P AB ⋃=+-()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ⋃⋃=++---+注:性质的逆命题不一定成立的. 如 若),()(B P A P ≤则B A ⊂。
概率论和数理统计复习资料要点总结
《概率论与数理统计》复习提要第一章 随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则 (1)BA AB A B B A =⋃=⋃(2))()()()(BC A C AB C B A C B A =⋃⋃=⋃⋃ (3)))(()()()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能 5.几何概率 6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用)第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
概率论与数理统计总复习知识点归纳
D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)
(完整版),概率论与数理统计知识点总复习,推荐文档
随机事件和概率第一节 基本概念1、排列组合初步(1)排列组合公式从m 个人中挑出n 个人进行排列的可能数。
)!(!n m m P n m-=从m 个人中挑出n 个人进行组合的可能数。
)!(!!n m n m C nm -=(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
(3)乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(4)一些常见排列①特殊排列 相邻 彼此隔开顺序一定和不可分辨②重复排列和非重复排列(有序)③对立事件④顺序问题2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(2)事件的关系与运算①关系:如果事件A 的组成部分也是事件B 的组成部分,(A 发生必有事件B 发生):BA ⊂如果同时有,,则称事件A 与事件B 等价,或称A 等于B A ⊂A B ⊃B :A=B 。
A 、B 中至少有一个发生的事件:A B ,或者A +B 。
属于A 而不属于B 的部分所构成的事件,称为A 与B 的差,记为A-B ,也可表示为A-AB 或者,它表示A 发生而B 不发生的事件。
B A A 、B 同时发生:A B ,或者AB 。
A B=Ø,则表示A 与B 不可能同时发生,称事件A 与事件B 互不相容或者互斥。
基本事件是互不相容的。
Ω-A 称为事件A 的逆事件,或称A 的对立事件,记为A 。
它表示A 不发生的事件。
互斥未必对立。
②运算:结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)德摩根率:∞=∞==11i ii i AA,B A B A =BA B A =3、概率的定义和性质(1)概率的公理化定义设Ω为样本空间,A 为事件,对每一个事件A 都有一个实数P(A),若满足下列三个条件:1° 0≤P(A)≤1, 2° P(Ω) =13° 对于两两互不相容的事件1A ,2A ,…有∑∞=∞==⎪⎪⎭⎫ ⎝⎛11)(i i i i A P A P 常称为可列(完全)可加性。
概率论与数理统计总复习
随
机 试 验
可能结果
基 本 事 件
Ai
只有两个
不含任何ω Φ
Ai Aj 完
不可能 i j 备 Ai任何组合事件A p(Ai ) 0事
Ai
i
必然
Ωi
Ai
件 组
Ai
等
1 P(A i) n
概 完
i 1,2, n 备
事
件
可能结果
条件:
组
贝努利试验
n次重复
定义 随机变量 X 的取值可以一一列举(有限或无限)
称X 为离散型随机变量。
分布律(分布列) 表示法
公式法
PX xk pk
k 1,2,
列表法 X x1 x2
xk
xn
pk p1 p2
pk
pn
性质
1. PX xk 0 k 1,2,
n
2. pk 1
7 7
k 1
2、连续性随机变量 定义 对于随机变量X,若存在非负函数
将 F( y) 用 F[h( y)] 及有关函数表述出来。
利用 F '( y) f ( y) 求出Y的密度函数。
f
(
y)
F
(h(
y))'
h(
y)
h'
(
y)
0
y
其他
14
14
三、二维随机变量及其分布
(一)二维随机变量(X,Y) 的分布函数
定义 对于任意实数 x, y 二元函数
F(x, y) P{X x,Y y}
X为离散型其分布列为 PX xk pk
k 1,2,, n.
X为连续型其密度函数为 f (x).
《概率论与数理统计》复习-知识归纳整理
《概率论与数理统计》复习大纲第一章 随机事件与概率基本概念随机试验E----指试验可在相同条件下重复举行,试验的结果具有多种可能性(每次试验有且仅有一个结果闪现,且事先知道试验可能闪现的一切结果,但不能预知每次试验确实切结果。
样本点ω ---随机试验E的每一具可能闪现的结果样本空间Ω----随机试验E的样本点的全体随机事件-----由样本空间中的若干个样本点组成的集合,即随机事件是样本空间的一具子集。
必然事件---每次试验中必然发生的事件。
不可能事件∅--每次试验中一定不发生的事件。
事件之间的关系包含A⊂B相等A=B对立事件,也称A的逆事件互斥事件AB=∅也称不相容事件A,B相互独立P(AB)=P(A)P(B)例1事件A,B互为对立事件等价于( D )A、A,B互不相容B、A,B相互独立C、A∪B=ΩD、A,B构成对样本空间的一具剖分例2设P(A)=0,B为任一事件,则(C )A、A=∅B、A⊂BC、A与B相互独立D、A与B互不相容事件之间的运算事件的交AB或A ∩B 例1设事件A、B满足A B¯=∅,由此推导不出(D)A、A⊂BB、A¯⊃B¯C、A B=BD、A B=B例2若事件B与A满足B – A=B,则一定有(B)A、A=∅B、AB=∅C、AB¯=∅D、B=A¯事件的并A∪B事件的差A-B 注意:A-B= A B= A-AB = (A∪B)-BA1,A2,…,An构成Ω的一具完备事件组(或分斥)−−指A1,A2,…,An两两互不相容,且∪i=1nAi=Ω运算法则交换律A∪B=B∪A A∩B=B∩A结合律(A∪B)∪C=A∪(B∪C) (A∩B)∩C=A∩(B∩C)分配律(A∪B)∩C=(AC)∪(BC) (A∩B)∪C=(A∪C)∩(B∪C) 对偶律A∪B=A∩B A∩B=A∪B文氏图事件与集合论的对应关系表记号概率论集合论Ω样本空间,必然事件全集∅不可能事件空集ω基本事件元素A 事件全集中的一具子集A A的对立事件A的补集A⊂B 事件A发生导致事件B发生A是B的子集A=B 事件A与事件B相等A与B相等A∪B 事件A与事件B至少有一具发生A与B的并集AB 事件A与事件B并且发生A与B的交集知识归纳整理A-B事件A 发生但事件B 不发生A 与B 的差集 AB=∅ 事件A 与事件B 互不相容(互斥) A 与B 没有相同的元素古典概型 古典概型的前提是Ω={ω1,ω2, ω3,…, ωn ,}, n 为有限正整数,且每个样本点ωi 出现的可能性相等。
考研数学《概率论与数理统计》知识点总结
考研数学《概率论与数理统计》知识点总结引言《概率论与数理统计》是考研数学中的一个重要分支,它不仅要求学生掌握理论知识,还要求能够运用这些知识解决实际问题。
本文档旨在对《概率论与数理统计》的核心知识点进行总结,帮助考生系统复习。
第一部分:概率论基础1. 随机事件与样本空间随机事件:在一定条件下可能发生也可能不发生的事件。
样本空间:所有可能结果的集合。
2. 概率的定义古典定义:适用于有限样本空间,每个样本点等可能发生。
频率定义:长期频率的极限。
主观定义:基于个人信念或偏好。
3. 概率的性质非负性:概率值非负。
归一性:所有事件的概率之和为1。
加法定理:互斥事件概率的和。
4. 条件概率与独立性条件概率:已知一个事件发生的情况下,另一个事件发生的概率。
独立性:两个事件同时发生的概率等于各自概率的乘积。
5. 随机变量及其分布离散型随机变量:可能取有限个或可数无限个值。
连续型随机变量:可能取无限连续区间内的任何值。
分布函数:随机变量取值小于或等于某个值的概率。
第二部分:随机变量及其分布1. 离散型随机变量的分布概率质量函数:描述离散型随机变量取特定值的概率。
常见分布:二项分布、泊松分布、几何分布等。
2. 连续型随机变量的分布概率密度函数:描述连续型随机变量在某区间的概率密度。
常见分布:均匀分布、正态分布、指数分布等。
3. 多维随机变量及其分布联合分布:描述多个随机变量联合取值的概率。
边缘分布:从联合分布中得到的单一随机变量的分布。
条件分布:给定一个随机变量的条件下,另一个随机变量的分布。
第三部分:数理统计基础1. 数理统计的基本概念总体与样本:总体是研究对象的全体,样本是总体中所抽取的一部分。
统计量:根据样本数据计算得到的量。
2. 参数估计点估计:用样本统计量估计总体参数的单个值。
区间估计:在一定概率下,总体参数落在某个区间的估计。
3. 假设检验原假设与备择假设:研究问题中的两个对立假设。
检验统计量:用于决定是否拒绝原假设的量。
《概率论与数理统计》复习资料要点总结
《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则(1)BAAB A B B A =⋃=⋃ (2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃(4)BA AB B A B A ⋃==⋃ 3.概率)(A P 满足的三条公理及性质:(1)1)(0≤≤A P (2)1)(=ΩP (3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()( (n 可以取∞)(4)0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤(7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃4.古典概型:基本事件有限且等可能5.几何概率6.条件概率(1)定义:若0)(>B P ,则)()()|(B P AB P B A P =(2)乘法公式:)|()()(B A P B P AB P =若n B B B ,,21为完备事件组,0)(>i B P ,则有(3)全概率公式:∑==ni iiB A P B P A P 1)|()()((4)Bayes 公式:∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性:B A ,独立)()()(B P A P AB P =⇔(注意独立性的应用)第二章随机变量与概率分布1.离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2.连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P 3.几个常用随机变量名称与记号分布列或密度数学期望方差两点分布),1(p B p X P ==)1(,pq X P -===1)0(p pq 二项式分布),(p n B n k q p C k X P kn k k n ,2,1,0,)(===-,npnpqPoisson 分布)(λP,2,1,0,!)(===-k k e k X P kλλλλ几何分布)(p G,2,1 ,)(1===-k p qk X P k p 12p q 均匀分布),(b a U b x a a b x f ≤≤-= ,1)(,2b a +12)(2a b -指数分布)(λE 0,)(≥=-x e x f x λλλ121λ正态分布),(2σμN 222)(21)(σμσπ--=x ex f μ2σ4.分布函数)()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续;(4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>;(5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5.正态分布的概率计算以)(x Φ记标准正态分布)1,0(N 的分布函数,则有(1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==>6.随机变量的函数)(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计复习资料第一章随机事件与概率1.事件的关系AuB AuB AB A-B A Q AB =(/>(1)包含:若事件A发生,一定导致事件B发生,那么,称事件B包含事件A ,记作AuB(或Bz)A)・(2)相等:若两事件A与〃相互包含,即AnB且Bn A,那么,称事件A与B相等,记作A = B .(3)和事件:“事件A与事件B中至少有一个发生”这一事件称为A与B的和事件,记作AuB;“n个事件观出•…,人中至少有一事件发牛”这一事HI J A件称为鱼…,人的和,记作Au入5・・uA”(简记为* ').(4)积事件:“事件A与事件B同时发生”这一事件称为A与B的积事件,记作AcB(简记为AB);a n个事件观出,…,心同时发牛”这一事件称为nA,血.…,人的积事件,记作(简记为A4・・4或以').(5)互不相容:若事件A和B不能同时发生,即心©,那么称事件A与B互不相容(或互斥),若n个事件观出•…,人中任意两个事件不能同时发生,即A"广0(iwi<jw 儿),那么,称事件A.谡…,4互不相容.(6)对立事件:若事件A和B互不相容、且它们中必有一事件发生,即AB = Q 且AuB二Q,那么,称A与B是对立的.事件A的对立事件(或逆事件)记作入(7)差事件:若事件A发生且事件B不发生,那么,称这个事件为事件A 与B的差事件,记作A-B(或人用)・2•运算规则(1)交换律:AuB = BuA AB = BA(2)结合律:(AuB)uC = Au(BuC) (AB)C = A(BC)(3)分配律(A u B)C = (AC) u (BC) (AB) uC = (Au C)(B u C)(4)德[摩根(DeMorgan)法则:AuB = AB AB = AuB3.概率P( A)满足的三条公理及性质:(1)0 < P(A) < 1 (2) P(Q) = 1(3)对互不相容的事件£,凡,…,有P(|J 4) = JP(A k) (n可以取co) k=[Bl(4)P(0) = O (5) P(A) = 1 - P(A)(6)P(A-B) = P(A)-P(AB),若AuB,则P(B-A) = P(B)-P(A), P(A)< P(B)(7)P(A u B) = P(A) + P(B) - P(AB)(8)P(AufiuC) = P(A) + P(B) + P(C) 一P( AB) - P(AC)一P(BC) + P(ABC)4.古典概型:基本事件有限且等可能5.几何概率:如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间屮的区域),且样本空间屮每个试验结果的出现具有等可能性,那么规定事件A的概率为= A的长度(或面积、体积)(,一样本空间的的长度(或面积、体积)•6.条件概率(1)定义:若P(B)> 0,则P(A|B)二巴也P(B)(2)乘法公式:P(AB) = P(B)P(A | B)若耳,场,・・・3”为完备事件组,P(BJ>0,贝ij有(3)全概率公式:P(A) =》P(BJP(A | BJ/=!(4)Bayes 公式:P(B* | A) = £(拔)卩(川伐)£P(BJP(A\BJ/=!(5)贝努里概型与二项概率设在每次试验中,随机事件A发生的概率P(A) = p(0<p<l)f则在口次重复独立试验中・,事件A恰发生£次的概率为巳伙)二7 //(I —"1,20,1,…小k7.事件的独立性:A, 3独立o P(AB) = P(A)P(B)(注意独立性的应用)下列四个命题是等价的:(i)事件A与B相互独立;(ii)事件A与用相互独立;(iii)事件広与B相互独立;(iv)事件A与B相互独立.8、思考题1 . 一个人在口袋里放2盒火柴,每盒斤支,每次抽烟时从口袋屮随机拿出一盒(即每次每盒有同等机会被拿到)并用掉一支,到某次他迟早会发现:取出的那一盒已空了•问:“这时另一盒中恰好有加支火柴”的概率是多少?2・设一个居民区有〃个人,设有一个邮局,开c个窗口,设每个窗口都办理所有业务.c太小,经常排长队;c•太大又不经济.现设在每一指定时刻,这〃个人中每一个是否在邮局是独立的,每个人在邮局的概率是P・设计要求:“在每一时刻每窗口排队人数(包括正在被服务的那个人)不超过加”这个事件的概率要不小于Q (例如,Q = 0・&0・9或o.95),问至少须设多少窗口?3.设机器正常时,生产合格品的概率为9 5%,当机器有故障时,生产合格品的概率为5 0 %,而机器无故障的概率为9 5%.某天上班时,工人生产的第一件产品是合格品,问能以多大的把握判断该机器是正常的?第二章随机变量与概率分布1.离散随机变量:取有限或可列个值,P(X =xj = Pi满足(1) p,. > 0 , (2)工戸=1I(3)对任意DuR, P(X E D)= ^Pii: DJ»+oof(x)dx = 1:-oo(2)P(a<X <b)=\ f(x)dx; (3)对任意aw R, P(X =a) = 0Ju3.儿个常用随机变量标准正态分布的分布函数记作①(X),即CX ] ----①⑴=I ——e 2 dt①(兀) '十问t ,当出“no时,①(%)可查表得到;当xvo时,①⑴可由下面性质得到①(I兀)=1 一①(X)设X~N(“,k),则有F⑴=①(二)P(a<X<b) =①(匕Q - ①(伫Z)er c •4.分布函数F(x) = P(X<x),具有以下性质(1)F(-oo) = 0, F(+oo) = l; (2)单调非降;(3)右连续;(4)P(a<X<b) = F(b) - F(a),特别P(X > a) = l-F(a);特别的P(X = a) = F(a) - F(a -0)(5)对离散随机变量,F(Q =工卩汀/:Xf <x(6)对连续随机变量,F(x) = f 为连续函数,且在.f(x)连续点上,F (x) = f(x)J—85.正态分布的概率计算以①(x)记标准正态分布2(0,1)的分布函数,则有(1)①(0) = 0.5; (2)①(一兀)=1 一①⑴;(3)若X 〜N(“Q2),则F(Q二①(^^);(7(4)以%记标准正态分布2(0,1)的上侧a分位数,则P(X >%) = a = l—①(血) 6.随机变量的函数Y = g(X)(1)离散时,求Y的值,将相同的概率相加;(2)X连续,g(x)在X的取值范围内严格单调,且有一阶连续导数,则/y(y) = /x (gT (y ))l (gT ()‘))'l ,若不单调,先求分布函数,再求导。
7、思考题1・某地有2 5 0 0人参加人寿保险,每人在年初向保险公司交付把费1 2元 若在这一年内死亡,则由其家属从保险公司领取2 0 0 0元.设该地人口死亡率 为1・5 %,求保险公司获利不少于1 0 0 0 0元的概率.第三章随机向量1.二维离散随机向量,联合分布列P(X =x i ,Y = y j ) = Pij ,边缘分布列P(X =“)= 〃,,P(Y = yj ) = p .有(1) p.. > 0 : (2)工為=1;⑶卩卜=口甘,P.j = S Pij U J j2. 二维连续随机向量,联合密度/(x, y),边缘密度人(兀),人(刃,有⑴ /(x,y) > 0 ; (2)匚匸/(S)i ;⑶ P((X,K)e G) = /(x,y)dxdy ;⑷ fx (^)= 1/r (.y) = J f(x,y)dxJ —8J —CO3. 二维均匀分布/(x,y) = tG),(X ,y )GG,其中加(G)为G 的面积 0,其它4. 二维正态分布(X,Y)〜Ng 屮2Q :Q 纭P),其密度函数(牢记五个参数的含义)5.二维随机向量的分布函数F(x,y) = P(X <x,Y<y)有(1) /(x, y) >0, -oo<x,y<+oo.-“JO -坨)6 6I 0-“2)2]2 兀P ,(—“J?⑵匸匸/(S)如尸1;(3)设(X』)为二维连续型随机变量,则对任意一条平面曲线厶,有p((x,y)GL)= o.(4)关于兀y单调非降;(2)关于兀y右连续;(5)F(X,-8)= F(-8,y) = F(-8,—g) = 0 ;(6)F(+8,+8)= ], F(X,+OO)=F x (x), F(+x, y)=耳(y);(7)P3 < X <x2,y} v 丫5旳)=尸(兀2*2)一尸(兀1,力)一尸(兀2,》'|)+ 尸(西,〉'1);(8)对二维连续随机向量,伽刃=空¥卫dxdy(9)设(X』)为二维连续型随机变量,则对平面上任一区域D有P((X,r)eP) = jj/(x,jWyD •6.概率密度/(兀)及连续型随机变量的性质(1 ) /⑴》0;(2)匸•/'(皿=1;(3 )连续型随机变量X的分布函数为F(x)是连续函数,且在FCr)的连续点处有F'(x) = f(x);(4)设X为连续型随机变量,则对任意一个实数c, P(X=c) = 0;(5)设/(兀)是连续型随机变量X的概率密度,则有P(a<X<b) = P(a<X <b) = P(a<X<b) = P(a<X< b)eb_ I f(x)dx7.二维连续型随机变量(X』)的边缘概率密度设/(兀,刃为二维连续型随机变量的联合概率密度,则X的边缘概率密度为fx(x) =匸/(兀,y)dyY的边缘概率密度为f+8fg y)dx8. 二维连续型随机变量(X ,Y)的条件概率密度设/(兀, >')为二维连续型随机变量的联合概率密度,则x 在给定丫 = y 的条件 卜•的条件概率密度为/xiy(xly)-oo<x<+oo/心),其中 /y (y)>0;Y 在给定X 二兀的条件下的条件概率密度为Aix(yl^) =r 卫)'其中AU)>o9. 常用的二维连续型随机变量(1)均匀分布如果(XV)在二维平面上某个区域G 上服从均匀分布,则它的联合概率密度/(x, y) = < G 的面积' 0,⑵ 二维正态分布“ 如果(X 』)的联合概率密度] (兀_〃l )2 2Q (X_H )(y_“2)|(X_#|)2 2(1一 p 叽 <T,2 (702 加则称(XM)服从二维止态分布,并记为(X,Y )~N (“],“2Q ;Q ;,P )如果(X,Y)~N(/Z],//2,q2,&,p),则 X 〜N (禺,氏),Y 〜N(〃2,&),即二维 正态分布的边缘分布还是正态分布.7. 随机变量的独立性 X,丫独立o F(x,y) = Fx (x )"(y ) (1) 离散时 X,丫独立o Pij=Pi P.j (2) 连续时 独立« f(x,y) = f x (x)f Y (y)(3)二维正态分布X 』独立0 p = 0,且X + Y 〜N("+//2Q :+W )8. 随机变量的函数分布r+co 「4*00(1) 和的分布 Z = X + Y 的密度 fz®= [ /(z-y,y)〃y = [ /(x,z-x)dxJ —8J->CO以上两个公式也称为卷积公式.(2) 最大最小分布 Z = max(X,y )的分布函数为巧⑵=塢⑵耳⑵(x,y )wG;其余.y ) = -------- exp2阿込Jl_/r特别有下面的结论:设X~N(MQ;),Y ~ NgQ》,且X与Y相互独立,则X + Y 〜"(M+aB + b) 9、思考题1・设随机变量(XM)的概率密度为门、向严匕%>0,y>0,0,其它.求P(X>3D.2 .若X与Y为相互独立的分别服从[0,1]上均匀分布的随机变量,试求Z = X+Y的分布密度函数.第四章随机变量的数字特征1.期望⑴离散时E(X) =工也,E(g(X)) =》g(M ;f+<»^+©O连续时E(X)= xfMdx, E(g(X)) = J g(x)f(x)dx ;J—CO J—8⑶二维时E(g(X,Y)) =》ga•,儿)心,E(g(X,Y)) =匸匸g(x, y)f(x, y^dxdy • •2.数学期望的性质(1)E(c) = c (其中c为常数);(2)E(kX +b) = kE(X) + b (k,b 为常数);(3)E(X + Y) = E(X) + E(Y);⑷如果X与相互独立,则£(xr)= £(x)£(r).3.方差(1)方差P(X) = E(X-E(X))2 =E(X2)-(EX)2,标准差(r(X) = J D(X);(2)D(C) = 0, D(X+C) = D(X);(3)Z)(CX) = C2Z)(X);(4)X,Y独立时,D(X + y)= D(X) + D(y)当X为连续型随机变量,其概率密度为/(X),如果广义积分收敛,则x的方差为D( X) = J a (兀一E(x))2j\x)dx3.协方差(1)Cov(X, Y) = E[(X - E(X))(Y一E(Y))] = E(XY) - E(X)E(Y);(2)Cov(X,Y) = Cov(Y,X), Cov(aX,bY) = abCov(X,Y);(3)Cov(X l +X2,Y) = C OV(X},Y) + Cov(X2, Y):(4)C“(X,Y) = O时,称X,Y不相关,独立=>不相关,反之不成立,但正态时等价;(5)D(X + y)= D(X) + D(Y) + 2C"(X,Y)4.相关系数P XY =:;;寫;;;有Sxy 1^ I » I P XY 1= 1 O%", P(Y = aX + /?) = 1 相关系数“紆反映了随机变量X与YZ间线性关系的紧密程度,当Sxy I越大,X 与YZ间的线性相关程度越密切,当如时,称X与Y不相关.相关系数具有下列性质:(1)I P XY I— 1 ;(2)的充要条件是p(y = dX+b)= i,其屮"为常数;(3)若随机变量X与Y相互独立,则X与Y不相关,即Pxy=^f但由Pxr=°不能推断X与丫独立.(4)下列5个命题是等价的:(i)呛=0;(ii)cov(x,r)= o.(iii)E(XY) = E(X)E(Y);(iv)D(X + Y) = D(X) + D(Y));(v)D(x-r)= o(x)+ D(y).利用协方差或相关系数可以计算D(X±y)= D(X) + D(y)±2cov(X,Y) = D(X) + D(y)±2pxyjD(X)jD(y)5.随机变量X的◎介原点矩定义为E(X k).随机变量X的k阶中心矩定义为£|(X-£(X)/ ]1;随机变量(X,y)的伙J)阶混合原点矩定义为E(XV);随机变量(X, Y)的伙,/)阶混合中心矩定义为E[(X- E(X)y (Y - E(y))z ]. 一阶原点矩是数学期望E(X);二阶中心矩是方差D(X);(1」)阶混合中心矩为协方差cov(X, Y).9.常用分布的数字特征(1)当X服从二项分布B(1 P)时,E(X) = np, D(X) = np(l-p)(2)当X服从泊松分布时,E(x)= a, D(X)=A9(3)当X服从区间⑺小)上均匀分布时,E(X)冲D(X) = ^2 12(4)当X服从参数为2的指数分布时,E(X) = » D(X) = *(5)当X服从正态分布时,E(X) = ^D(X) = cr\(6)当(X,Y)服从二维正态分布N(“],〃2'5 0 ,p)时,E(X) = % D(X) = a12;COV(X,Y)=0702,P XY =P10.分位数设X为任意一个随机变量,对于° V"V1,如果实数C满足P(X<c)> pllP( X>c)>l-p f则称c是X (或X所服从的分布)的卩分位数,记作乙・当P=2时,称也为中位数.对连续型随机变量X,记其密度函数为/«,如果X的值域是某个区间,则匸f{x)dx =三、思考题1.设X 〜N(“Q2),求2.设X的密度函数为.^―兀>0/(x) = <a2,‘⑺为正常数)0, x<0."丄记x,求丫的数学期望E(Y)・3.一学徒工用车床接连加工10个零件,设第Z个零件报废的概率为1777(21,2,…,10),求报废零件个数的数学期望.第五章大数定律与中心极限定理1 • Chebyshev 不等式(切比雪夫不等式)p{\x-E(X )i>E }<或BI X -E (X )i<E }STE~2. 大数定律1) .切比雪夫大数定律设随机变量X|,X2,・・・,X”,・・・,相互独立,数学期望E(XJQ(XJ,心1,2,…, 都存在,II 方差是一致有上界的,即存在常数c,使得》区)",心1,2,・・・”・・, 则对于任何正数£,有[〃 1 nlim Al —工 X 厂—工 £(X /)|<^) = 1 E n /=| n /=12) .辛钦大数定律(独立同分布大数定律)设随机变量/,X2,・・・,X 〃,・・・相互独立且同分布,并具有有限的数学期望〃和 方差k,则对任何正数£,有3) ・伯努里大数定律设随机变量则对任意正数£,有 lim P(\^-p\< £) = 1/?—><*>>73•中心极限定理设随机变量X],X2,・・・,X 〃独立同分布E(XJ = y ,D(X.) = o-2(2) 棣莫弗•拉普拉斯中心极限定理设随机变量(仏p),则对任意一个实数.有 lim P(- n = < %) = O(x)i JripQ 一 p这个定理的直观意义是,当斤足够大时,服从二项分布的随机变量岭可认为 近似服从正态分布N5P ,“(1 - P)) • 思考题・用切比雪夫不等式确定当掷一均匀硕币时,需投多少次才能保证使得正面 出现的频率在0.4至0.6之间的概率不小于90%,并用正态逼近计算同一问题.y %,〜“皿心), =『近似厂/=!X Xj T 屮或七矿护n/=12・根据遗传学理论,红黄两种番茄杂交第二代结红果植株和黄果植株的比率为3: 1,现种槓杂交种432株,试问(1)黃株介于108和117之间的概率;是多少?(2)红株介于315和324之间的概率是多少?(提示:使用中心极限定理计算)第六章样本及抽样分布1.总体、样本(1)当X服从正态分布那(从,)时,称总体X为正态总体。