历年中考数学真题考点分析
安徽省近五年中考数学试卷知识点分析与总结
安徽省近五年中考数学试卷知识点分析与总结数学作为中考的必考科目,对于考生来说是一个重要的考察点。
掌握数学的知识点和解题技巧能够有效提升考试成绩。
本文将对安徽省近五年数学中考试卷的知识点进行分析,并总结出一些备考策略。
一、整数运算在近五年的数学中考试卷中,整数运算是一个经常出现的知识点。
这一部分主要包括整数的加减乘除法、正数与负数的相互关系等内容。
学生在备考时要熟练掌握整数运算的基本法则,尤其是负数的加减法以及乘除法的规则。
二、比例与百分数比例与百分数是近五年中考试卷中的另一个重要知识点。
考生需要了解比例的定义、常见问题的解决方法,掌握百分数与小数之间的转换关系。
备考时,可通过大量的例题来练习比例与百分数的计算,提高解题速度和准确度。
三、图形的性质与计算数学中考试卷中图形的性质与计算也是一个常见的知识点。
这一部分主要涉及直角三角形、平行四边形、梯形等各类多边形的性质与计算方法。
备考时,需要掌握各类多边形的面积计算公式,了解各类多边形的性质与判定方法,通过大量的练习来提高解题能力。
四、方程与不等式方程与不等式是中考数学试卷中的另一个重要知识点。
考生需要熟练掌握一元一次方程、一元一次不等式的解法,特别是带绝对值符号的方程与不等式的解法。
备考时,可以通过大量的练习来加深对方程与不等式解法的理解,熟练掌握解题技巧。
五、函数与图像函数与图像是数学中考试卷中的重要知识点之一。
考生需要了解函数的定义、性质以及函数图像的特点与表示方法。
备考时,可以通过绘制函数图像、分析函数的变化趋势等方式来加深对函数与图像的理解。
六、统计与概率统计与概率是中考数学试卷中的另一个常见知识点。
考生需要了解统计中的频数、频率、平均数等概念,掌握概率计算的方法。
备考时,可以通过实际生活中的统计问题来加强对统计与概率的理解,提高解题能力。
综上所述,安徽省近五年中考数学试卷的知识点主要包括整数运算、比例与百分数、图形的性质与计算、方程与不等式、函数与图像以及统计与概率等内容。
中考数学试卷真题分析
中考数学试卷真题分析中考数学试卷一直被认为是考生们晋级高中所必须要面对的一道关卡。
通过对中考数学试卷的真题分析,我们可以更好地了解试卷的出题趋势和考察重点,为备考提供有效的参考。
本文将针对历年中考数学试卷进行真题分析,以帮助考生们在备考中更为有针对性地进行复习。
第一部分:选择题分析在中考数学试卷中,选择题是考察考生基础知识和解题能力的重要部分。
通过对选择题的真题分析,我们可以发现一些规律和特点。
以2019年某地区中考数学试卷为例,其中选择题部分如下:1. 已知函数 y = -2x + c,若点 (2, 5) 在图像上,则 c = ?A. -9B. -1C. 1D. 92. 如果一个整数 x 满足 x^2 - 5x - 14 = 0,则 x = ?A. -2B. 7C. -7D. 2通过分析上述两道题目,我们可以发现选择题的题目类型主要包括函数与方程、几何和概率统计等。
在备考中,我们需要重点掌握这些知识点,并能够熟练运用。
同时,在解题过程中,要注意审题、排除法和推理等解题技巧的运用,以提高解题正确率。
第二部分:填空题分析填空题是中考数学试卷的另一个重要组成部分。
通过填空题的真题分析,我们可以发现一些解题技巧和常见考点。
以2018年某地区中考数学试卷为例,其中填空题部分如下:1. 根据(x-2)(x+7)的展开式,得到二次项的系数是____。
2. 8的平方根是____。
3. 用分数表示0.875,得到的分数为____。
通过分析上述三道题目,我们可以发现填空题主要考察基础知识和计算能力。
在备考中,我们需要熟练掌握数的运算、代数式的展开等基础知识,并能够迅速准确地计算填空内容。
第三部分:解答题分析解答题在中考数学试卷中占有一定比重,需要考生们具备较强的分析和推理能力。
通过对解答题的真题分析,我们可以找出一些解题技巧和注意事项。
以下是2017年某地区中考数学试卷中的一道解答题例题:某商店的一些商品以七折出售,张三用140 元购买了其中的一部分,问:如果他再多花 10 元,还可以买到商品的数量是多少?解题步骤:1. 根据七折出售的信息,可以得到商品的原价是x元,折扣价是0.7x元。
中考数学必考题型分析及解题策略总结
中考数学必考题型分析及解题策略总结一、必考题型分析1、线段、角的计算与证明问题中考的解答题一般是分两到三部分的。
第一部分基本上都是一些简单题或者中档题,目的在于考察基础。
第二部分往往就是开始拉分的中难题了。
对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。
线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。
2、图形位置关系中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。
在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。
3、动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。
动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。
4、一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。
一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。
但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。
5、多种函数交叉综合问题初中数学所涉及的函数就一次函数,反比例函数以及二次函数。
这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。
成都数学中考考点分析
中考数学复习建议1 中考数学复习经过本人对成都历年中考的分析以及解剖觉得,若要在中考数学轻松的高分,以及对高中数学打下牢实的基础,一下几个过程不可少。
无论你来自成都市还是成都附近的,都有自己的梦想的高中学校:四七九中、成外、实外、新都实验一中、新津一中、棠湖中学。
希望这个小小的总结能帮你实现梦想。
一、近年成都市中考试题分析为了更好地做好中考复习,首先应对近年成都市中考试题作必要的分析.1.整体特点(1)主要考查重点知识点,无偏题怪题;(2)试卷结构、题型保持较平稳,但在不断寻求变化,推陈出新;(3)A卷除最后一题(20题)外,整体较简单、运算量也较小;B卷难度较大,区分度明显,充分体现选拔功能.2.考点分布及分值统计按国家初中数学学业考试命题指导研究组的要求:初中数学学业考试整卷应涉及全部二级知识点,即数与式、方程与不等式、函数、图形的认识、图形与变换、图形与坐标、图形与证明、统计、概率.三级知识点(共45个)的覆盖率不能低于85%.下表是近三年成都市中考数学试题中,“数与代数”、“空间与图形”、“统计与概率”三大板块分值占比情况的统计:3、考点分析从上表不难看出很多考点每年都考,且题型大体不变●选择、填空题常见考点:(1)科学计数法;(2)整式(幂)的运算;(3)函数自变量取值范围;(4)三视图;(5)几何变换与坐标;(6)与圆有关的角度或长度计算;(7)与圆锥有关的计算;(8)众数与中位数.●计算题常见类型:(1)实数运算(含特殊角三角函数);(2)分式运算;(3)整式运算;(4)解不等式组;(5)解方程.●解答题常见题型:(1)一次函数与反比例函数的综合;(2)用列表法或树状图求概率;(3)解直角三角形的应用;(4)以四边形为基架,结合全等或相似的证明与计算;(5)现实情景应用题;(6)以圆为基架的综合题;(7)以二次函数为基架的综合题.4.命题趋势(1)淡化纯概念和文字命题的考查(2)渗透参数思想,强化符号运算二、复习建议1.处理好三个关系(1)基础与能力比如,评讲卷子老师容易忽视A卷,而恰恰评讲A卷更具实效性,通过对细节的点评可以让大面积学生得到提高,而且用时较少. B卷的评讲重点应放在讲思路,讲方法,讲改错要求上,不必完整讲评,而且有些内容学生还可以互助.(2)数量与质量(3)讲解与过手2.落实阶段复习计划和目标我校中考复习一般分为三个阶段:第一阶段:(2月——4月中旬)知识梳理、夯实双基第二阶段:(4月下旬——5月中旬)专题强化、提升能力第三阶段:(5月下旬——6月上旬)综合训练、查漏补缺3.专题设计与分析●A卷专题(1)计算题专题①实数运算;②分式运算;③解不等式组;④解方程(重点是分式方程).(2)反比例函数与一次函数专题①用待定系数法求函数解析式;②联立解析式求交点坐标;③面积问题;④根据图象比较两函数的大小关系;⑤与几何的简单结合.(3)解直角三角形应用专题①测山高,塔高,楼高类;(仰角,俯角)②航海类;(方位角)③加固大坝,拓宽沟渠类.(坡度,坝长)(4)A卷压轴题专题①以三角形为基架;②以四边形为基架;③以圆为基架.命题方式:建立在全等基础上的证明与计算;建立在相似基础上的证明与计算;简单的几何变换;简单的动点问题.(5)统计与概率专题(6)与圆锥有关的计算专题●B卷专题(1)B卷填空专题①代数式化简或求值;②一元二次方程判别式与根系关系;③分式方程增根问题;④探索规律;⑤综合型概率问题;⑥动点问题;⑦多项判断问题;⑧双解或多解问题;⑨含字母参数的问题;⑩较难的几何问题.(2)应用题专题按问题背景分:①工程问题;②行程问题;③增长率问题;④销售问题或利润问题;⑤方案设计问题;⑥调度问题.按涉及知识分:①一元二次方程;②二元一次方程组;③分式方程;④不等式(组);⑤一次函数;⑥二次函数;⑦反比例函数;⑧分段函数.(3)几何压轴题专题①以四边形为基架;②以圆为基架.(4)二次函数压轴题专题①二次函数与面积;②二次函数与特殊三角形;③二次函数与相似形;④二次函数与特殊四边形;⑤二次函数与圆;⑥二次函数与几何变换.4.教学中的具体做法(1)回归课本、回归课标、回归基础;(2)精心编写每一份试卷,做到有的放矢;(3)淡化特殊技巧,注重通性通法;(4)注重基本图形的归纳,如相似中的A型、X型、斜A型、斜X型、母子型、K型等;(6)不要一讲到底,应给学生留足纠错和消化的时间;(7)加强分层辅导,增强针对性,重视小考与过关;(8)注重知识的纵横联系、相互交汇,以利于学生知识网络的构建和思维品质的提升;(9)适度加强压轴题(1)、(2)小问的训练,消除学生对压轴题的恐惧心理,提高整体成绩;(10)加强考题研究,预测可能的命题方式.5.两点注意(1)不要忽略近年未考的知识点,如代数中的因式分解,几何中的几何变换作图、投影等;(2)不要局限于去年或近年考题的模式,形成思维定势,防止题型的突变.三、补充内容说明1.一元二次方程根系关系(韦达定理)去年的要求是“了解”,今年的要求是“理解”;难度要求到平方关系,三次以上不作要求;2.补充分母有理化,要求到形如“131”的化简;3.射影定理可使用,但需注明“由射影定理得”的字样;4.平行线分线段成比例定理,有两边平行的两个三角形相似都可直接使用,但需写出由哪两条平行线得出的;5.可补讲两点间距离公式和中点坐标公式,及两一次函数图象垂直的等价条件是121kk,为学生解题多提供一种思路;6.作图要作要求;7.不必补讲圆幂定理,但还不能弱化圆,学生需对如“证切线”一类的问题要熟练; 8.不必补讲余切和0、90的三角函数值.四、其他事项1.今年中考可能实行网上阅卷,教师应指导学生书写答题卡,如何写出关键得分点,有哪些注意事项,多进行板书示范;2.今年中考可能倾向于2009年的中考模式,因此一诊按成都市2009年的结构命题,同时实行网上阅卷.。
长沙中考近六年数学考点分析
长沙中考近七年考点分析一、选择题(共10小题,每小题3分,共30分)二、填空题(共8小题,每小题3分,共24分)三、解答题(共8个小题,共66分)2017年长沙市中考题代数部分占65分,其中选择填空题24分,解答题41分;几何部分占41分,其中选择填空题占24,解答题17分;概率统计部分占14分,其中选择填空6分,解答题8分。
2018年长沙中考数学分析如下:1、选择题今年的选择题基本延续了往年的命题风格,比如第1、2、6、8、11等题都能在最近三年的试卷当中找到几乎一样的题型,而且大多数题目都比较简单,但是今年第12题有了明显的难度升级,结合了二次函数与一元一次含参方程无解的知识,题目比较灵活,估计会放倒一大片同学。
2、填空题填空题整体变化不大,重点考察基础,亮点不多。
只要平时基础稳固、复习扎实的孩子,在这个部分应该不会出现太多的问题,大家在这个阶段可以调整心态,轻松去迎接后面的挑战。
18题稍微有所变化,历年填空题中涉及到圆的知识主要考察都是垂径定理,用来求弧长或弦长,但今年转换成了求圆心角、圆周角度数,不过难度也不算太大。
3、解答题19、20题还是原来的配方,还是熟悉的味道,一道综合计算,一道化简求值,这种送分题大家务必要笑纳。
21、22题也基本沿用2017年的题型,分别是统计和三角函数。
23题和24题在2017年曾经调换了顺序,但在2018年又回归了既定的轨道,23题是一道二元一次方程组的应用,而且难度相比去年有所降低,但是24题的难度有所提升,增加了三角形的外接圆和内切圆的知识考察,这个知识点在近几年中考中都还未曾出现过,因此值得引起注意。
4、压轴题综合比较中考试卷每一年的25、26题是拉开差距,决定能否上A的关键。
25题已经连续5年考察新定义问题,26题的话,几乎每年都是二次函数的代几综合,融合了相似三角形、动点问题、最值问题等知识点。
今年这一块有了比较巨大的变化,首先是两题的位置有所调整,25题变成了代几综合题,考察的主要是反比例函数与相似三角形的知识;而26题则是一道新定义的问题,主要融合了平行四边形、二次函数、圆等知识点。
广州市中考数学历年考点分析
10
概率
21
12
各模块近三年考查分析
知
识
点
年
份
2010
2011
2012
数与式
1、相反数
2、去括号
3、乘法法则,真假命题
4、二次根式化简
5、科学计数法
6、分式意义
7、因式分解(提公因式)
1、实数分类
2、判断有理数乘法的符号
3、幂的运算
4、相反数
5、定义新运算
6、整式乘法、因式分解
1、倒数
2、整式的运算
2、扇形统计图,样本估计 总体
1、中位数
2、柱形图
3、列举法求概率
1、数据的统计
2、概率与坐标的 结合
概率与统计
15分(10%)
16分(10%)
15分(10%)
几何
48分(32%)
58分(40%)
48分(32%)
下面是我对2010~2012年广州市中考数学试卷的分析表
2010考点题号分值汇总表
板块
题号
总分
数与式
1、3、8、9、11、12、15
21
方程与不等式
5、17、19
22
函数
21、23
24
图形的认识
6
图形与坐标
4
3
图形与证明
15、18、25
26
统计
3
3
概率
22
12
2012考点题号分值汇总表
板块
题号
总分
数与式
1、4、6、14、20
22
方程与不等式
8、12、15、17
18
函数
2、10、23、24
长春中考数学试题分析及答案
长春中考数学试题分析及答案本文将对长春市中考数学试题进行分析,并提供对应的答案。
1. 第一题分析:这道题目考察的是数学计算能力。
题干给出了一个数列,需要计算数列中所有奇数项的和。
答案:假设数列为a1,a2,a3,...,an,其中a1=1,an=100。
根据题干,这是一个等差数列,公差为2。
而奇数项的个数为50个。
因此,根据等差数列求和公式,可以得出答案为(1+99)×25=2500。
2. 第二题分析:这道题目考察的是立体几何知识。
题干给出了一个长方体的体积和表面积,需要计算长、宽和高的积。
答案:假设长方体的长、宽、高分别为x、y、z。
根据题干,可以得到以下两个等式:2(x·y + y·z + x·z) = 132x·y·z = 24通过求解这个方程组,可以得到长、宽和高的值分别为2, 3和4。
因此,积为2×3×4=24。
3. 第三题分析:这道题目考察的是函数的定义域和值域。
题干给出了一个函数的定义式,需要求出该函数的定义域和值域。
答案:根据题目给出的函数定义,可以得知该函数的定义域为实数集R。
接下来,我们需要求出该函数的值域。
可以观察到,函数的定义式是一个关于x的二次函数,开口向上,因此函数的最小值为定点的纵坐标。
根据顶点公式,可以求得定点坐标为(-2, 4)。
因此,函数的值域是大于等于4的实数。
4. 第四题分析:这道题目考察的是概率统计知识。
题干给出了一个袋子中黑球和白球的数量和抽取规则,需要计算抽出两个白球的概率。
答案:假设袋子中黑球的数量为m,白球的数量为n。
根据题干,有以下两个等式:m + n = 10n(n-1)/10(10-1) = 1/3通过求解这个方程组,可以得到m和n的值分别为6和4。
因此,抽出两个白球的概率为4/10 × 3/9 = 2/15。
5. 第五题分析:这道题目考察的是平面几何知识。
近五年中考数学试卷分析
考点对比二、试卷分析数学中考主要考察学生对基本方法、基本知识、基本技能的考查,因此较少偏、怪、难的题目,大多数题目都来源于课本或者课本立体的改编,解法都能从课本上找到影子。
因此解题的关键就是要回归课本,掌握典型例题、课后习题的规律及解法,这样考试时才能得心应手,沉着应对。
把2015-2019这五年的中考数学试卷进行分析我们可得到以下结论:1、试卷满分都是150分,考试时间120分钟;2、题型的分布都是总共25道题,其中选择题10道(30分),填空题6道(18分),解答题9道(102分);3、试卷难度不大,基础题占有122分(82%),有难度拔高题占有28分(18%);4、代数部分考查分数大概是80〜90分(56.5 ),几何部分考查分数60〜70分(43.5%);5、知识点的考查比较有规律,常规题型的变化不大面是年广州市中考数学试卷的分析表,仅供参考:三、题型探究1、代数部分(1)函数函数部分是代数部分的重点内容,也是难点内容,考查的对象主要是:一次函数、反比例函数、二次函数。
考查重点在于以下几点:函数解析式的求法,难度较低,熟悉待定系数法等方法即可;三种函数图像的基本性质的应用,难度中等;函数的实际应用,常出现在试卷难度最大的代数综合题、代几综合题中,分值在20-40分不等。
(2015) 14.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3 米的速度匀速上升,则水库的水位高度y米与时间x小时0<x<5的函数关系式为(2016?广州)一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时•汽车的速度v千米/小时与时间t小时的函数关系是( )320 20A •v=320tB •v= C. v=20t D •v=-t 11(2016)若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是( )2A . ab>0B . a - b> 0 C. a +b >0 D . a+b> 0(2017)关于v的一元二次方程丨卜I迖一门有两个不相等的实数根,则的取值范围是A.厂:-6(2019)若点A( 1,yJ , B(2,y2), C(3, y a)在反比例函数y -的图像上,则力必^的x大小关系是( )(A)y y y i ( B) y2 y i y a ( C) y i y a y? ( D) y i y y(2)不等式与方程不等式与方程的复习,要以基础为主,不要只研究难题,要注重过程以及方法的总结。
2021安徽省历年中考数学题目考点
cot30°=√3
cot45°=1
cot60°=√3/3
其次就是两角和公式,这是在初中数学考试中问答题中容易用到的三角函数公式。两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(AB)=sinAcosBsinBcosAcos(A+B源自=cosAcosBsinAsinB
tan(A/2)=√((1cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1cosA))
ctg(A/2)=√((1+cosA)/((1cosA))
和差化积
2sinAcosB=sin(A+B)+sin(AB)
2cosAsinB=sin(A+B)sin(AB)
2cosAcosB=cos(A+B)sin(AB)
几何变换包括:(1)平移;(2)旋转;(3)对称。
安徽省中考数学考点
关于初中三角函数公式,在考试中用的最多的就是特殊三角度数的特殊值。如:
sin30°=1/2
sin45°=√2/2
sin60°=√3/2
cos30°=√3/2
cos45°=√2/2
cos60°=1/2
tan30°=√3/3
tan45°=1
中心对称与中心对称图形:
1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够和另外一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。
2.中心对称图形:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
重庆市近10年中考数学考题分析及考点频率统计
四边形相关 运用
17 实数的运算 实数的计算 实数的计算 实数பைடு நூலகம்计算 解分式方程
18
全等三角形 的判定与性 解不等式
质
分式方程的 不等式组的
解答
解法
众数
19
解分式方程
三角形全等 证明
角平分线的 尺规作图
作等边三角 形的尺规作 图
由图形个数 构成的规律
题
20
解直角三角 形
涉及中垂线 的尺规作图
直角三角形 的计算
题型 题号 2017 2016 2015 2014 2013 题型 题号 2012 2011 2010 2009 2008
1
相反数
倒数
绝对值
有理数的 有理数的 大小比较 大小比较
2
轴对称图 形的判定
轴对称图 形的判定
轴对称图 形的判定
整数加减
平行线的 判定与性
质
3
整式的运 算
科学计数 法
统计与概 率的调查
多边形内 角和
解分式方 程
矩形的性 质;翻折
变换
8
相似三角 代数式求 根的判别 矩形的性 切线的性
形的性质 值
式
质
质
1
有理数的大 有理数的大 小比较 小比较
倒数
相反数
倒数
2
轴对称图形
幂的乘方
同底数幂相 同底数幂相 同底数幂相
乘
除
乘
3
幂的乘方与 积的乘方
中心对称判 断
解不等式组
分式有意义 的条件
解不等式
题
实际问题与 一次函数图
像
动点面积与 一次函数图
像
简单随机概 率
近三年广东省中考数学试题考点分析(WORD版)
近三年广东省中考数学试题考点分析(WORD版)题型题号2017年2016年2015年选择题1相反数相反数绝对值2科学记数法数轴科学记数法3求补角中心对称图形中位数4一元二次方程求参数的值(代入法)科学记数法平行求角度5众数正方形的性质对称图形6对称图形(轴对称和中心对称图形)中位数整式计算7用函数图象求点坐标点坐标最大数8整式计算锐角三角函数方程根的个数9圆的基本性质整体思想求值扇形面积10正方形性质、相似几何问题分段函数图像几何问题分段函数图像填空题11因式分解算术平方根多边形外角和12多边形内角和因式分解四边形计算13数轴、比较大小求不等式组的解集分式方程14概率弧长公式相似性质15整式运算(整体代入)矩形与勾股定理找规律16矩形中的折叠问题圆周角与三角函数阴影部分面积解答题一17实数的计算(绝对值、0指数幂,负整数指数幂)实数的计算(绝对值、0指数幂,负整数指数幂)解一元二次方程18分式化简求值分式化简求值分式化简求值19二元一次方程组应用题(1)作垂直平分线(2)利用中位线求边长(1)作垂线(2)利用三角函数求边长解答题二20(1)作垂直平分线(2)利用外角求角度分式方程的应用(1)画树状图(2)求概率21几何证明与计算(菱形的性质、等腰三角和等边三角形的性质)解直角三角形几何证明与计算(折叠)22数据分析(频数分布图、扇形、估算)数据分析(条形、扇形、估算)(1)二元一次方程组应用(2)一元一次不等式应用解答题三23函数小综合(一次函数、二次函数、锐角三角函数)函数小综合(反比例函数、一次函数、二次函数)反比例函数与一次函数(最短路径问题)24(1)圆切线的性质、圆的基本性质、角平分线(2)切线的性质、平行和等腰三角形(3)全等、相似的证明和性质、求弧长(1)相似证明(2)三角形的性质(3)圆的切线的证明(1)角(圆的垂径定理)(2)特殊四边形的证明(3)垂直25图形变换,动态的问题、数形结合(1)求点的坐标(2)等腰三角形存在性讨论(3)二次函数、分类讨论、数形结合等求面积的最小值图形变换,动态的问题、数形结合(1)平行四边形的判定(2)全等三角形的性质和判定(3)二次函数、分类讨论、数形结合等求面积的最大值动点问题,数形结合(1)几何基本计算(2)三角函数计算边长(3)积,解直角三角形应用,二次函数求最值,二次根式计算。
中考数学试卷考纲考点分析
中考数学试卷考纲考点分析中考数学试卷考纲考点分析基础数学的知识与运用是个人与团体生活中不可或缺的一部分。
其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。
从那时开始,其发展便持续不断地有小幅度的进展。
今天在这给大家整理了一些中考数学试卷考纲考点分析,我们一起来看看吧!中考数学试卷考纲考点分析对于任意一个实数x,都对应着的角(弧度制中等于这个实数),而这个角又对应着确定的余割值cscx与它对应,按照这个对应法则建立的函数称为余割函数。
记作f(x)=cscxf(x)=cscx=1/sinx相信同学们看过上述的初中数学余割函数的基础公式定理内容之后,有所感悟了吧。
其实和正弦型函数的解析式差不多,余弦型函数的解析式各常数值对函数图像的影响很大。
余弦型函数余弦型函数解析式:y=Acos(ωx+φ)+h各常数值对函数图像的影响:φ(初相位):决定波形与X轴位置关系或横向移动距离(左加右减)ω:决定周期(最小正周期T=2π/|ω|)A:决定峰值(即纵向拉伸压缩的倍数)h:表示波形在Y轴的位置关系或纵向移动距离(上加下减) 作图方法运用“五点法”作图“五点作图法”即取ωx+φ当分别取0,π/2,π,3π/2,2π时y的值.在考试当中,余弦型函数的解析式经常运用在函数的综合大题中,是拿分的关键。
在直角坐标系中定义的余弦函数图像,我们相对更容易分析其的对称性特点。
图象性质1)对称轴:关于直线x=kπ,k∈Z对称2)中心对称:关于点(π/2+kπ,0),k∈Z对称作法一、运用五点法做出图象。
二、利用正弦函数导出余弦函数。
①可以由诱导公式六:sin(π/2-α)=cosα导出y=cosx=sin(π/2+x)②因此,y=cosx的图像就相对sinx左移π/2个单位(上增下减是y值的变化,左增右减是x值的变化)初中数学余弦函数的图象的作法有上述两大要点,图像为解题提供了直观的思路。
性质(1)定义域:{x|x≠kπ,k∈Z}(2)值域:实数集R(3)奇偶性:奇函数,可由诱导公式cot(-x)=-cotx推出图像关于(kπ/2,0)k∈z对称,实际上所有的零点和使cotx无意义的点都是它的对称中心(4)周期性是周期函数,周期为kπ(k∈Z且k≠0),最小正周期T=π;(5)单调性在每一个开区间(kπ,(k+1)π),k∈Z上都是减函数,在整个定义域上不具有单调性。
2023福州中考数学考点分析
2023福州中考数学考点分析学习是每个一个学生的职责,而学习的动力是靠自己的梦想,也可以这样说没有自己的梦想就是对自己的一种不责任的表现,同时知识也不是也不是随意的摘取。
要通过自己的努力,要把我自己生命的钥匙。
今天小编在这给大家整理了一些福州中考数学考点分析,我们一起来看看吧!福州中考数学考点分析1一、锐角三角函数正弦等于对边比斜边余弦等于邻边比斜边正切等于对边比邻边余切等于邻边比对边正割等于斜边比邻边二、三角函数的计算幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)它们的各项都是正整数幂的幂函数,其中c0,c1,c2,...及a都是常数,这种级数称为幂级数.泰勒展开式(幂级数展开法)f(x)=f(a)+f'(a)/1!_(x-a)+f''(a)/2!_(x-a)2+...f(n)(a)/n!_(x-a)n+...三、解直角三角形1.直角三角形两个锐角互余。
2.直角三角形的三条高交点在一个顶点上。
3.勾股定理:两直角边平方和等于斜边平方四、利用三角函数测高1、解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.福州中考数学考点分析21.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。
安徽省近五年中考数学试题分析
安徽省近六年中考数学试题分析——2013年中考辅导讲座安徽省中考数学试题总体上坚持稳中求变,变中求新,下面结合近6年我省中考数学试题,试谈我的管窥之见.一、试卷形式和内容时间120分钟,总分150分.考试内容为数与代数、空间与图形、统计与概率三个部分,数与代数约占50%、空间与图形约占38%、统计与概率约占12%.10道选择题,4题填空,9个大题共23题.涉及知识点188个,其中数与代数60个;空间与图形108个;统计与概率20个.了解、理解、掌握层次的知识点186个,运用层次的知识点2个.二、考点透视(一)近五年三种题型的考点分布:1.选择题2.填空题3.解答题(二)考点分析1.数与代数(1)数与式本部分属于基础题,约占20分,主要考概念与计算.实数、数轴、相反数、绝对值、倒数、算术平方根这些概念要很好掌握.从上表可以看出:科学记数法除2009年没考外,其余四年每年都考;化简求值2010年、2011年连续两年都在15题中出现;因式分解几乎年年都考,2008年第2题,2009年第12题,2010年第15题,2011年第11题中均考了因式分解,对于数与式不要钻偏题、怪题.(2)方程与不等式安徽卷对方程的考查多以列方程解应用题形式出现.近五年也是年年都考.如2007年18题,2008年第17题,2009年第19题,2010年第19题,2011年16题都是考列方程解应用题.而对不等式的考查则以直接考解不等式(组)题型为主,如2008年第15题和2010年第12题均直接考解不等式组,五年均未出现过列不等式组的应用问题.当然方程与不等式有时在函数题里也有所体现.(3)函数中考对函数的考查属重头戏,2008年考了35分,2009年考了23分,2010年考了28分,2011年考了30分.一次函数是初中学习的第一个函数,其基础性和重要性不言而喻,各地中考对一次函数都十分关注,既有客观题,也有解答题.连续三年都考了从函数(分段函数)图象中获取信息解决问题的题目,如2008年23题,2009年23题,2010年第10题.反比例函数多以填空、选择、简答题为主.如2008年第7题,2009年未考反比例函数,2010年第17题,2011年21题.对反比例函数的复习难度不宜过大,要注意反比例函数的增减性.二次函数常以压轴题形式出现,重点考查函数图象和性质、确定函数解析式和求函数的最值.如2007年第23题,2008年第14题和21题,2009年第14题和23题,2010年第7题和22题,2011年第23题都考查了二次函数,一般都是一题客观题一题解答题,题型较稳定,客观题重在考图象和性质,主观题作为区分度题,重在考确定函数解析式和求函数的最值,放在后三题中.2.空间与图形(1)平行线的性质和判定三年都有考查,多以选择填空为主,难度不大.如2007年第7题,2008年第12题,2009年第2题,2010年第3题.(2)三角形的边角性质多以基础题为主.解直角三角形问题,近几年考查的都是涉及测量的应用问题,难度不大,如2007年第19题;2008年第16题;2009年13题;2010年16题;2011年第19题,年年都考,要引起重视.全等和相似三角形也是考查的重头戏,多以解答题形式出现.如2008年第20题考相似、22题与全等有关;2009年第22题考相似;2010年第20题考全等、第23题考相似;2011年第22题考相似、23题考全等.从题号偏后也可看其难度和重要性,估计2012年将延续下去,一题全等、一题相似的可能性非常大.(3)四边形多以特殊四边形为主,每年都考,有时综合在三角形中进行考查.如2007年第10题;2008年第20题;2009年第19、20题;2010年第20题;2011年第6、9、10、23题.(4)三视图近五年每年都考,主要以填空、选择题形式出现.如2007年第14题;2008年第6题;2009年第5题;2010年第5题;2011年第3题,千万不可忽视.(5)圆多以客观题为主,题型相对稳定,分值未超过10分,基本是以圆的基本性质为主,如垂径定理,圆心角、圆周角、弧、弦关系,五年都未涉及直线与圆的关系、圆与圆的关系、圆的切线.除2009年16题考了证明题外,其它四年题型均为选择题或填空题,没考解答题,题目主要是求与圆有关的角、弧长、弦长等.但今年考纲关于圆的要求有所提高,其中掌握层次中就列了5项:圆的性质;切线与过切点的半径之间的关系;切线的判定;弧长及扇形面积的计算;圆锥的侧面积和全面积的计算.这些变化要引起我们注意.3.统计与概率从五年中考来看,本考点每年2至3题,客观题和解答题各一题.要提高对统计与概率的重视,因为这部分知识与生活息息相关,在生活中应用较为广泛.统计2008年考的是折线统计图,2009年考的是条形统计图,2010年考的是折线统计图,2011年考的又是条形统计图,轮换着考.概率多数以选择题出现,如2008年第8题;2009年第6题;2011年第5题,有时也有大题出现,如2008年第19题; 2010年第21题.复习时,重点放在对概率意义的理解和概率的求解方法上,特别是用树状图法求概率.三、九大亮点1.“9+1”现象和14题现象“9+1”现象即10道选择题总有一题较难,题号一般排在后三题中的一题.难点多数集中在几何与函数上. 如2007—2009年连续三年考查几何,涉及知识点为圆内接正多边形、等腰三角形、三角形内切圆等;2010、2011年连续两年考函数,其中2010年考函数图象的识别,2011年考分段函数. “14题现象”即填空题第4题较难,2007年考的是三视图,2008年和2009年考的是二次函数,2010年考的是等腰三角形,2011年考的是定义运算,每年都在不断翻新.2.部分考题源于教材例如:2011年19题是沪科版九年级上P.114例5改编而成,2010安徽中考数学13题是沪科版九年级下P.29例1改编而成,2010安徽中考数学19题是沪科版八年级下P.37页例2改编而成,2009年考题20题是由沪科版九年级上P.120页课题学习“问题出在哪里”改编而成.2008年第8题火车显示屏概率题源于九(下)课本106页《阅读与欣赏》中的例2等.3.网格中图形的变换问题每年出现近五年试卷中几乎每年都考网格中图形的变换问题.如2007年16题是网格中图形变换问题;2008年18题是网格中点对称变换问题;2009年18题也是网格中的图形变换问题;2010年18题还是网格中的图形变换问题;2011年17题仍是网格中的图形变换问题.题目侧重考查在网格中图形的平移、对称、旋转和位似作图等.4.动态几何受到青睐如2007年22题动点问题;2008年22题动点问题;2011年22题图形的旋转.动点问题主要有单动点和双动点;动形问题主要有图形的平移、翻折和旋转.这类问题对学生的分类讨论、动静转化、操作探究等能力要求较高,近年受到热捧.5.规律探究题高频出现规律探究问题是根据已知条件或所提供的若干个特例,通过观察、类比、归纳,揭示和发现题目所蕴含的本质规律和特征.如2007年21题;2008年18题;2009年17题;2010年第9题;2011年18题.该类题侧重考查学生从特殊到一般的探究能力,题目形式涉及形(如2007年21题)和数(如2009年17题;2010年第9题);静(如2007年21题)与动(如2008年18题;2011年18题).虽形式不断变化,但题型基本集中在探索结论型上.6.近四年都考查了增长率问题如2007年18题秸秆合理利用量的增长率;2008年第17题石油价格增长率问题;2009年第7题GDP 增长率;2010年第19题房价降价率问题.增长率的考查总是以列方程解应用题的形式呈现,体现了数学为经济服务的思想.7.重视初高中知识衔接点的考查中考是高中录取新生的主要依据,与高中数学知识有密切联系的二次函数、三角函数、三视图、概率等应是考试的重点.如2007的23题,2008年的14、21题,2009年的14、23题,2010年的7、22题,2011年的23题都与二次函数有关;2007年19题,2008年16题,2010年16题,2011年19题都是解直角三角形的应用;2007年17题,2008年8、19题,2009年第6题,2010年21题,2011年第5题都是概率计算等等.8.反映社会热点问题的应用题比重较大如2008年考了3题选择和5道解答题共64分应用题,2009年考了3题选择2题填空4题解答题计58分,2010年有3题选择题、4道解答题是应用题,共50分.9.压轴题关注几何和函数2007年是涉及函数的开放题;2008年是涉及函数的应用题;2009年是涉及函数的应用题;2010年是涉及几何的开放题;2011年则是几何与函数的综合题.几何侧重三角形、四边形,函数侧重一次函数和二次函数.四、两点建议(一)关注课标现已颁布的《义务教育数学课程标准(2011年版)》对原《课程标准》内容做了一些重要修订,这些无疑是中考复习关注的热点.1.删除的主要内容:(1)数与代数领域:能对含有较大数字的信息作出合理的解释与推断;了解有效数字的概念;能够根据具体问题中的数量关系,列出一元一次不等式组解决简单的问题.(2)图与几何领域:关于梯形、等腰梯形的相关要求;探索并了解圆与圆的位置关系;关于影子、视点、视角、盲区等内容,以及对雪花曲线和莫比乌斯带等图形的欣赏等;关于镜面对称的要求;等腰梯形的性质和判定定理.(3)统计与概率领域:会计算极差;会画频数折线图.观察近五年安徽卷,有效数字、列不等式组解应用题、圆与圆的位置关系、等腰梯形的性质和判定定理等都没有考,这些也正是2011年版《数学课程标准》中删除的内容.2.增加的内容:增加的内容包括两个部分,一个是必学内容,一个是选学内容.(1)增加的必学内容主要有:①数与代数:知道∣a∣的含义(这里 a 表示有理数);最简二次根式和最简分式的概念;能进行简单的整式乘法运算(一次式与二次式相乘);能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等;会利用待定系数法确定一次函数的解析表达式.②图形与几何:会比较线段的大小,理解线段的和、差,以及线段中点的意义;了解平行于同一条直线的两条直线平行;会按照边长的关系和角的大小对三角形进行分类;了解并证明圆内接四边形的对角互补;了解正多边形的概念及正多边形与圆的关系;过一点作已知直线的垂线;已知一直角边和斜边作直角三角形;作三角形的外接圆、内切圆;作圆的内接正方形和正六边形.③统计与概率:能用计算器处理较为复杂的数据;理解平均数的意义,能计算中位数、众数.(2)增加的选学内容主要有:①数与代数:能解简单的三元一次方程组;了解一元二次方程的根与系数的关系;知道给定不共线三点的坐标可以确定一个二次函数.②图形与几何:了解相似三角形判定定理的证明;探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧;探索并证明切线长定理:过圆外一点所画的圆的两条切线的长相等.《课程标准》明确指出选学内容不作考试要求.(二)关注考纲《2012年安徽省初中毕业学业考试纲要》对考试内容和考试目标要求进行了详细阐述,从考试目标要求上看,考点主要集中在A、B、C层次,D 层次只有2处作了要求.例如“图形与变换”单元中“12.图形的旋转”条目里第(7)条“用轴对称、平移和旋转的组合进行图案设计”属于D层次,安徽省中考数学试卷2007年第16题、2008年考的第18题、2009年的第18题、2010年考的第18题、2011年考的第17题均考了这类题型,每年都考,成为中考解答题常客.离中考已不到20天,在这短暂的时间里希望同学们做到:查——带着考纲查漏补缺练——带着目的进行练习纠——带着错题进行反思看——带着问题回归教材总——带着题型总结方法预祝同学们在2013年中考中取得优异成绩!。
近三年中考数学考点分析 文档
6
圆锥侧面展开图(平面与立体转化思想)
整式的计算(幂的计算)
7
判断正负(判断代数式性质符号)
分式有无意义的条件(分式中 X 的取值)
整式的计算(幂的运算)
8
平移与旋转(基本图形旋转)
轴对称(对称点与对称轴的关系)
三视图(简单几何体的视图)
9
一元一次方程根与系数的关系(熟悉根与系 简单事件的概率() 数的关系) 一次函数图像的运用(简单识图) 两圆的位置关系(半径与圆心距的关系)
12
数据的表示(中位数、众数概念)
13
平面的镶嵌(平面密铺的实际意义)
14
两圆的位置关系(圆与圆的五种位置关系) 平移与旋转(方格问题)
统计图的运用(认识图、表信息)
15
弧长的计算 (弧长、 圆心角、 半径的我关系) 运动路径的图形判断(运动的函数图像表示 意义) 分式的化简(分母有理化) 分式的化简(与因式分解的联系)
24
二次函数的综合运用 1、抛物线的求解 2、抛物线与几何图形的关系
二次函数的综合运用
二次函数的综合运用 1、有图像确定 C 值 2、与医院二次方程结合 3、分类思想
高频考点
1、轴对称与中心对称图形的识别 2、正负数表示 3、简单几何体的三视图书馆 4、科学记数法 5、判断字母的正负 6、圆 锥的侧面展开图书馆 7、简单事件的概率计算 8、整式的计算法则 9、简单图形的平移和旋转 10、两圆的位置关系 11、分式 的化简 12、解二元一次方程组、一元一次方程组 面军 13、利用一次函数的图象解决实际问题 14、三种统计图表的应用与计算 15、三角形与内切圆、外接圆的证明与计算 16、平均增长率 17、动点问题 18、二次函数的综合应用。
长沙中考近六年数学考点分析
近六年来,长沙中考数学考试的内容和形式有所变化,但是一些固定的考点依然稳定存在。
本文将分析长沙中考近六年数学考点,以帮助考生更好地备考。
一、图形的认识与运用图形的认识与运用一直是长沙中考数学考试的重要内容。
其中,直角三角形、平行四边形、矩形、正方形等基本图形的性质与运用一直是考察的重点。
除了这些基础知识,其他图形的内外部角度量、面积计算等内容也经常出现在考试中。
二、数据的处理与应用数据的处理与应用是长沙中考数学考试非常关注的内容,主要包括统计与概率、平均数、比例等内容。
统计与概率题目常常涉及收集、整理和表达数据的能力,平均数则要求学生熟练运用算式求解平均。
比例题目涉及到多种情境,考查学生对比例关系的理解和应用。
三、函数与方程从近六年的考试中可以看出,函数与方程是长沙中考数学考试的重点内容之一、具体而言,线性函数的计算和运用、解一元一次方程和不等式等是经常出现的考点。
此外,根据题目要求的不同,非线性函数的运算和应用也会偶尔出现。
四、空间与立体几何在近几年的考题中,空间与立体几何的考点比较固定。
重点考察内容包括平行线与平角、平面中直线与直角、平面直角坐标系以及三角形的性质。
此外,一些立体几何中的立体体积与表面积的计算和应用也会出现在考试中。
五、投影与视图投影与视图是长沙中考数学考试的较为特色的考点之一、主要是指物体在不同投影面上的图形,要求考生能够根据给定的条件确定物体在不同视图上的图形。
该考点不仅考查了学生对空间的理解和抽象能力,还要求学生熟练掌握投影与视图的转换关系。
六、数与数量关系数与数量关系是长沙中考数学考试的基础考点之一、主要包括整数的运算、分数的运算与应用、百分数与比例的应用以及运用数字表达式计算和运算等。
这些内容都是大部分数学题的基础,考生在备考过程中必须夯实基础。
上海00~13历年中考数学试题考点分类梳理
上海中考数学试题考点梳理第一单元数与运算一、数的整除:数的整除性、奇数和偶数、因数和倍数、素数和合数,公因数和最大公因数、公倍数和最小公倍数、分解素因数;能被2和5整除的正整数的特征.二、实数:考点1、实数的有关概念1.(2003) 8的平方根是。
2.(2003)下列命题中正确的是()(多项选择)(A)有限小数是有理数(B)无限小数是无理数(C)数轴上的点与有理数一一对应(D)数轴上的点与实数一一对应3.(2005)在下列实数中,是无理数的为().A、0B、-3。
5C、D、4。
(2010)下列实数中,是无理数的为( )A. 3。
14B. 错误!C. 错误!D. 错误!5.(2011•上海)下列分数中,能化为有限小数的是()A. B. C. D.考点2、近似计算、科学记数法1.(2000)中国的国土面积约为9600000平方千米,用科学记数法可表示为______平方千米.2.(2003)上海浦东磁悬浮铁路全长30千米,单程运行时间约8分钟,那么磁悬浮列车的平均速度用科学记数法表示约米/分钟。
考点3、实数的运算1.(2000)计算:=________.2.(2001)计算:·=.3。
(2003)如图,矩形内有两个相邻的正方形,面积分别是4和2,那么,阴影部分的面积为。
4.(2005)计算:5.(2006)计算:__________6.(2007)计算:7.(2010)计算:8.(2011•上海)计算:.9。
(2012)计算.10。
(2012)11.(2013)计算:.第二单元方程与代数一、整式与分式:考点4、整式的运算1.(2001)下列计算中,正确的是().A.a3·a2=a6B.(a+b)(a-b)=a2-b2C.(a+b)2=a2+b2D.(a+b)(a-2b)=a2-ab-2b22.(2003)某公司今年5月份的纯利润是a万元,如果每个月份纯利润的增长率都是x,那么预计7月份的纯利润将达到万元(用代数式表示)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
取值范围(二次根式)
解二元一次方程组
科学计数法
11
分解因式
统计--众数
因式分解
12
正比例函数
取值范围
统计--众数
13
统计--中位数
反比例函数
流程图
14
四边形角度
圆(求角度)
三角函数--正弦
15
圆(求角度)
分式方程的应用
圆(求角度)
16
规律Байду номын сангаас索
取值范围(一次函数与反比例函数结合)
等腰梯形
解答题
17
25
函数综合(一次函数)
函数综合(二次函数)
函数综合(二次函数、平行四边形)
26
几何综合
(动点--圆与一次函数)
几何综合
(动点--相似三角形)
圆与直线的位置关系(综合)
27
探究--四边形、三角形中位线
探究--四边形
函数综合(一次函数)
28
探究(等分四边形)
整式运算
整式运算
整式运算
18
解不等式组
化简求值
解分式方程(检验)
19
化简求值
解不等式
解不等式组
20
统计
统计
三角形全等
21
概率
概率
方程应用(行程问题)
22
四边形证明及计算
(平行四边形、菱形)
四边形(菱形)
统计
23
方程的应用(正方形的构成)
方案设计
概率
24
一次函数与反比例函数的应用
解直角三角形
解直角三角形
年份
2013年
2012年
2011年
题目
选择题
1
正数
绝对值
相反数
2
幂的运算
轴对称图形
幂的运算
3
三视图
科学计数法
乘法公式
4
科学计数法
概率
反比例
5
三角函数
有理数运算
图形(找三角形的高)
6
数轴
圆锥的计算
概率
7
概率
平行的相关计算
多边形
8
四边形计算
三角函数(正切值)
三视图
填空题
9
幂的运算
有理数(比XX大的数)
有理数(比-1小的数)