3.2导数的计算
3.2导数的计算练习
![3.2导数的计算练习](https://img.taocdn.com/s3/m/a1093510647d27284b7351b9.png)
考点2 求曲线的切线方程
例例2:求曲线y=x3-2x在点(1,-1)处的切线方程.
[解: y′=(x3-2x)′=3x2-2, ∴y′|x=1=3×12-2=1. 即在点(1,-1)处的切线的斜率是1. 由点斜式得切线方程为y+1=x-1即x-y-2=0.
即[f(x)-g(x)]′=0,所以f(x)-g(x)=C(C为常数).
答案:C
二5.若、函填数空f题(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)=________.
解析:由f(x)=ax4+bx2+c得f′(x)=4ax3+2bx,又f′(1)=2,所以4a+2b=2 ,即f′(-1)=-4a-2b=-(4a+2b)=-2.
求过点(1,-1)且与曲线y=x3-2x相切的直线方程.
解:设P(x0,y0)为切点,则切线的斜率为f′(x0)=3x-2, 故切线方程为y-y0=(3x-2)(x-x0), 即y-(x-2x0)=(3x-2)(x-x0), 又知切线过点(1,-1),代入上述方程, 得解-得1x0-=(1x-或2x0x=0)=-(312x-,2)(1-x0), 故所求的切线方程为y+1=x-1 或y+1=- 4 (x-1),
10.已知函数f(x)=ax3+bx2+cx过点(1,5),其导函数y=f′(x)的图象如图所示 ,求f(x)的解析式.
解:∵f(x)=ax3+bx2+cx, ∴f′(x)=3ax2+2bx+c.由图象可知f′(1)=0,f′(2)=0. ∴3a+2b+c=0,① 12a+4b+c=0,② 又函数f(x)的图象过点(1,5), ∴f(1)=5,即a+b+c=5③ 由①②③可得a=2,b=-9,c=12. ∴函数y=f(x)的解析式为f(x)=2x3-9x2+12x.
3.2导数的计算(27张PPT)
![3.2导数的计算(27张PPT)](https://img.taocdn.com/s3/m/15dae18cb04e852458fb770bf78a6529647d3530.png)
;
(7) y 3 x; 2
例3 :日常生活中的饮用水通常是经过净化的,随着水纯
净度的提高,所需净化费用不断增加。已知1吨水净化
到纯净度为x%时所需费用(单位:元)为:
c(x)= 5284 (80 x 100). 100 x
求净化到下列纯净度时,所需净化费用的瞬时变化率;
(1)90%;
(2)98%.
x
x
f (x) (x2) ' lim y lim 2x x x2 lim (2x x) 2x.
x x0
x0
x
x0
公式三:(x2)' 2x
二、几种常见函数的导数
4) 函数y=f(x)=1/x的导数.
解: y f (x) 1 , x
y f (x x) f (x) 1 1 x x x x (x x)x
y
'
1 x2
探究:
表示y=C图象上每一点处的切线 斜率都为0
表示y=x图象上每一点处的切线 斜率都为1
这又说明什么?
这又说明什么?
画出函数y=1/x的图像。根据图像, 描述它的变化情况。并求出曲线在 点(1,1)处的切线方程。
x+y-2=0
3.2.2基本初等函数 的导数公式及导数 的运算法则
高二数学 选修1-1
y f (x x) f (x) C C 0,
y 0, x
f (x) C lim y 0. x0 x
公式一:C 0 (C为常数)
二、几种常见函数的导数
2) 函数y=f(x)=x的导数. 解: y f (x) x,
y f (x x) f (x) (x x) x x,
(1) c '(90) 5284 52.84 (100 90)2
3.2.2基本初等函数的导数公式及导数的运算法则(课件)
![3.2.2基本初等函数的导数公式及导数的运算法则(课件)](https://img.taocdn.com/s3/m/11c177ebf705cc1755270921.png)
§3.2 导数的计算
3.2.2 基本初等函数的导数公式及导数
的运算法则
1.掌握基本初等函数的导数公式. 2.掌握导数的和、差、积、商的求导法则. 3.会运用导数的四则运算法则解决一些函数的求导问题.
1.导数公式表的记忆.(重点)
2.应用四则运算法则求导.(重点)
3.利用导数研究函数性质.(难点)
x xlna
2.导数的四则运算法则 设f(x)、g(x)是可导的. 公式 语言叙述 两个函数的和(或差)的导数,等于 这两个函数的导数的 和(差)
[f(x)±g(x)]′= f′(x)±g′(x)
[f(x)g(x)]′= f′(x)g(x)+f(x)g′(x)
两个函数的积的导数,等于第一个 函数的导数乘上第二个函数,加上 第一个函数乘上第二个函数的导数
答案: 1± 7 3
4.求下列函数的导数: 1 (1)y=2x -x+ x;(2)y=2xtan x.
3
解析: (1) y′=(2x
3
1 1 2 )′-x′+ x ′=6x -1-x2.
(2)y′=(2xtan x)′=(2x)′tan x+2x(tan x)′ =2 ln 2tan x+2
1.基本初等函数的导数公式
(1)若f(x)=c,则f′(x)=0;
nxn-1 ; (2)若f(x)=xn(n∈Q*),则f′(x)=_____
(3)若f(x)=sinx,则f′(x)=_____ cosx ;
(4)若f(x)=cosx,则f′(x)=______; -sinx (5)若f(x)=ax,则f′(x)=_____( axlna a>0); (6)若f(x)=ex,则f′(x)=__ ex; (7)若f(x)=logax,则f′(x)= 1 (a>0且a≠1); (8)若f(x)=lnx,则f′(x)= 1 .
2014年人教A版选修1-1课件 3.2 导数的计算
![2014年人教A版选修1-1课件 3.2 导数的计算](https://img.taocdn.com/s3/m/d67e0d40852458fb770b56bc.png)
问题1. 上一课时我们学习了导函数, 你能求出以 下函数的导函数吗? 其几何意义和物理意义如何? (1) y=c (c为常数); (2) y=cx (c为常数); (3) y=x2; (4) y = 1 . x (2) y=cx, y f ( x x ) f ( x ) y = lim = lim x 0 x x 0 x c( x x ) cx 几何意义: = lim x 0 x 直线 y=cx 的切线是它本身, = lim c = c. x 0 切线的斜率就是此直线的斜率 c. 物理意义: 路程线性增加, 则速度为匀速 c.
解: y=3x, f ( x x ) f ( x ) y = lim x 0 x 3( x x ) 3 x = lim x 0 x = lim 3 = 3.
问题1. 上一课时我们学习了导函数, 你能求出以 下函数的导函数吗? 其几何意义和物理意义如何? (1) y=c (c为常数); (2) y=cx (c为常数); (3) y=x2; (4) y = 1 . x 1, y = (4) x y f ( x x ) f ( x ) y y = lim = lim x 0 x x 0 x 1 1 几何意义: o x = lim x x x 曲线在每一点的切线 x 0 x 的斜率都是负的. 1 = lim x 0 x( x x ) = 12 . x
解: y=2x, f ( x x ) f ( x ) y = lim x 0 x 2( x x ) 2 x = lim x 0 x = lim 2 = 2.
x 0
(2x)=2.
y 4 3 2
y=4x y=3x y=2x
o
1
x
练习: (课本82页 “探究”) 1. 在同一平面直角坐标系中, 画出函数 y=2x, y=3x, y=4x 的图象, 并根据导数定义, 求它们的导数. (1) 从图象上看, 它们的导数分别表示什么? (2) 这三个函数中, 哪一个增大得最快? (3) 函数 y=kx (k≠0) 增 (减) 的快慢与什么有关?
3.2 导数的基本公式及四则运算法则
![3.2 导数的基本公式及四则运算法则](https://img.taocdn.com/s3/m/3df3bccf0508763231121240.png)
所以
∆y 1 ∆x ∆x = lim[ log a (1 + ) ] lim ∆x →0 ∆x ∆x − 0 x x
x
1 ∆x ∆x = log a lim (1 + ) ∆x →0 x x 1 1 , = log a e = x x ln a
x
即
1 . (log a x)′ = x ln a
y′ = 5( x 2 )′ + 3( x −3 )′ − (2 x )′ + 4(cos x)′
= 5 × 2 x + 3 × (−3) x −4 − 2 x ln 2 + 4(− sin x) 9 = 10 x − 4 − 2 x ln 2 − 4 sin x . x
2.乘积函数的导数 2.乘积函数的导数
= 30 x 2 − 2 x − 1 .
例3
设 y = x sin x ln x ,求 y′
解 y′ = ( x)′ sin x ln x + x(sin x)′ ln x + x sin x(ln x)′ 1 = 1 ⋅ sin x ln x + x cos x ln x + x sin x ⋅ x = sin x ln x + x cos x ln x + sin x .
(uvw)′ = u′vw + uv′w + uvw′ .
例2 解
2 设 y = (1 + 2 x)(5 x − 3 x + 1) , 求 y′. y′ = (1 + 2 x)′(5 x 2 − 3 x + 1) + (1 + 2 x)(5 x 2 − 3 x + 1)′ = 2(5 x 2 − 3 x + 1) + (1 + 2 x)(10 x − 3)
高二人教A版高中数学选修1-3 第三章 导数及其应用3.2 导数的计算
![高二人教A版高中数学选修1-3 第三章 导数及其应用3.2 导数的计算](https://img.taocdn.com/s3/m/d3089720f01dc281e43af046.png)
=
28 (1 4)2
=-
6 25
.
因此曲线 y= 2x 在点(2, 4 )处的切线方程为 y- 4 =- 6 (x-2),
x2 1
5
5 25
即 6x+25y-32=0.
答案:(1)6x+25y-32=0
(2)已知曲线 y=5 x ,则过点 P(0,5)且与曲线相切的切线方程为
.
解析:(2)因为点 P(0,5)不在曲线 y=5 x 上,
1
f′(x)= x ln a (a>0,且 a≠1)
1
f′(x)= x
2.导数运算法则
和差的导数 积的导数
商的导数
[f(x)±g(x)]′= f′(x)±g′(x) [f(x)·g(x)]′= f′(x)g(x)+f(x)g′(x)
[ f (x) ]′= f (x)g(x) f (x)g(x)
3.2 导数的计算 3.2.1 几个常用函数的导数 3.2.2 基本初等函数的导数公式及导数
的运算法则
课标要求:1.能根据定义求函数y=c,y=x,y=x2,y=1 的导函数.2.理解导数的
x
四则运算法则.3.掌握几种常见函数的导数公式.4.能够应用导数公式及运
算法则进行求导运算.
自主学习 课堂探究
值为( B )
(A)1-cos 1
(B)1+cos 1 (C)cos 1-1
(D)-1-cos 1
5.(商的导数的应用)设函数f(x)= sin x ,f′(x)为函数f(x)的导函数,则
x
f′(π )=
.
答案:- 1
π
课堂探究
题型一 利用导数公式求函数的导数
§3.2 求导数的方法——法则与公式
![§3.2 求导数的方法——法则与公式](https://img.taocdn.com/s3/m/39db5805f12d2af90242e634.png)
y x y 即得 (x)=x1 x x
五、指数函数y=ax (a>0,且a1)的导数
两边取对数,得: lny=xlna y ln a y=ylna 两端对x求导,得: y 即得 (ax)=axlna 特别, (ex)=ex
sec2 y 0. (tan y )
1 1 1 1 从而 (arc tan x ) 2 2 2 (tan y ) sec y 1 tan y 1 x
1 类似 (arccotx ) 2 1 x
x a 2 x 2 a arcsin x 例18. 求函数 y 2 2 a 的导数 2 ( x a 2 x 2 ) ( a arcsin x ) 解: y 2 2 a 2 2 ( x ) ( a x ) a 2 2 2 a 1 a x x 2 2 2 a2 x2 2 x )2 1 ( a 2 2 2 2 a x x a 2 2 2 2 2 2 a x 2 a x 2 2 a x
u ) uv uv (v( x ) 0) (3) ( 2 v v 1 ) v 特别, ( 2 v v
推论:
(1) [ f i ( x )] f i( x )
i 1 i 1
n
n
(2) [Cf(x)]=Cf (x)
(3) [ f i ( x )] f1( x ) f 2 ( x ) f n ( x )
二、复合函数的求导法则
如果函数u=(x)在点x处可导, y=f(u) 在对应点u=(x)处也可导,则有复合函数 y=f[(x)]在点x可导,其导数为: dy dy du dx du dx
原创1:3.2.2 基本初等函数的导数公式及导数的运算法则(一)
![原创1:3.2.2 基本初等函数的导数公式及导数的运算法则(一)](https://img.taocdn.com/s3/m/23d0681a302b3169a45177232f60ddccda38e61d.png)
§3.2 导数的计算
3.2.2 基本初等函数的导数公式及导数 的运算法则(一)
掌握基本初等函数的导数公式,会求简单函数的导数.
1.本课重点是掌握基本初等函数的导数公式及应用. 2.本课的难点是利用基本初等函数的导数公式求简单函数的导 数与导数公式的简单应用.
基本初等函数的导数公式
9
27
此时公切线的斜率为k=2x1=64 .
27
综上所述,曲线C1,C2有两条公切线,其斜率分别为0,2674 ③. …………………………………………………………………12分
1.曲线y=xn在x=2处的导数为12,则n=( ) (A)1 (B)3 (C)2 (D)4 【解析】选B.∵y′=nxn-1,∴n×2n-1=12,可得n=3.所以选B.
(1)若f(x)=c,则f′(x)=0;
(2)若f(x)=xn(n∈Q*),则f′(x)=_n_x_n_-1_;
(3)若f(x)=sinx,则f′(x)=__c_o_sx_;
(4)若f(x)=cosx,则f′(x)=__-_si_n_x_;
(5)若f(x)=ax,则f′(x)=_a_x_ln_a_(a>0);
…………………………………………………………………4分
②当x=2 时,2x=3x2=4
3
3
.此时C1的切线方程为y-
4=
9
4(x-
3
),2
3
而C2的切线方程为y- 8 = (4x- ).2显然两者不是同一条
27 3 3
切线,所以x= 2舍去.………………………………………6分
3
(2)当公切线切点不同时①,在曲线C1,C2上分别任取一点A
1 x;-23 1 1
3.2求导法则与导数公式
![3.2求导法则与导数公式](https://img.taocdn.com/s3/m/b67ef0d2aa00b52acfc7cac2.png)
第二节求导法则与导数公式导数的四则运算 基本初等函数的导数 复合函数的导数 反函数求导法则导数的四则运算(1)设 u ( x) v( x) 在x可导,则[u ( x) ± v( x)]′ = u ′( x) ± v′( x) 设 y = g ( x) = u ( x) + v( x)Δy = g ( x + Δx) − g ( x) = [u ( x + Δx) + v( x + Δx)] − [u ( x) + v( x)]= [u ( x + Δx) − u ( x)] + [v( x + Δx) − v( x)]= Δu + Δv Δy Δu Δv lim Δy = lim [ Δu + Δv ] = u ′( x) + v′( x) + = Δx Δx Δx Δx →0 Δx Δx →0 Δx Δx推广[u1 ( x) ± u2 ( x) ±′ ( x) ± u2 ′ ( x) ± u n ( x)]′ = u1′ ( x). ± un[u ( x) ± v( x)]′ = u ′( x) ± v′( x)[u1 ( x) ± u2 ( x) ±例 解′ ( x) ± u2 ′ ( x) ± u n ( x)]′ = u1′ ( x). ± unf ( x) = x + sin x − cos x + 9 求其导数 f ′( x) = ( x + sin x − cos x + 9)′ = ( x )′ + (sin x)′ − (cos x)′ + (9)′= 1 / 2 x + cos x + sin x(2)设u ( x) , v( x)在x可导,则[u ( x)v( x)]′ = u ( x)v′( x) + u ′( x)v ( x ) 设 y = g ( x ) = u ( x )v ( x )Δy = g ( x + Δx ) − g ( x ) = u ( x + Δ x ) v ( x + Δx ) − u ( x ) v ( x ) = u ( x + Δ x ) v ( x + Δ x ) − u ( x ) v ( x + Δx ) + u ( x ) v ( x + Δ x ) − u ( x ) v ( x )= Δu ⋅ v( x + Δx) + u ( x)Δv. Δv Δy Δu = v ( x + Δx ) + u ( x ) . Δx Δx Δx Δy Δu Δv lim = lim ⋅ lim v( x + Δx) + u ( x) ⋅ lim Δx → 0 Δx Δx → 0 Δx Δx → 0 Δx → 0 Δx= u ( x)v′( x) + u ′( x)v( x).[u ( x)v( x)]′ = u ( x)v′( x) + u ′( x)v ( x )[cu ( x)]′ = cu ′( x) (常数因子可以提出来) 特别:例、求 f (x) = 7 x cosx 的导数 解 f ′( x) = (7 x cos x)′ = 7[( x ) cos x +′′ x (cos x ) ]cos x = 7[ − x sin x] 2 x推广 (u ( x)v( x) w( x))′轮流求导= u ′( x)v( x) w( x) + u ( x)v′( x) w( x) + u ( x)v( x) w′( x)[u1 ( x)u2 ( x)′ ( x)u2 ( x) un ( x)]′ = u1 ′ ( x) + u1 ( x)u 2 un ( x) +un ( x) + u1 ( x)u2 ( x) ′ ( x). un例、求 f ( x ) = 4 x 2 ⋅ ln x ⋅ cos x 的导数 解 f ′(x) = (4x2 ⋅ ln x ⋅ cosx)′ = 4(x2 ⋅ ln x ⋅ cosx)′1 = 4(2x ⋅ ln x ⋅ cosx + x2 ⋅ ⋅ cosx − x2 ⋅ ln x ⋅ sin x) x = 4(2x ⋅ ln x ⋅ cosx + x cosx − x2 ⋅ ln x ⋅ sin x)(3)设′ u ( x) ⎡ u ( x) ⎤ u ′( x)v( x) − u ( x)v′( x) 设 y = g ( x) = . ⎢ v( x) ⎥ = v( x) 2 [v( x)] ⎣ ⎦ Δy = g ( x + Δx ) − g ( x ) u ( x + Δx) u ( x) u ( x + Δx)v( x) − u ( x)v( x + Δx) = − = v( x + Δx) v( x) v( x + Δx)v( x) u ( x + Δx)v( x) − u ( x)v( x) + u ( x)v( x) − u ( x)v( x + Δx) = v( x + Δx)v( x) Δuv( x) − u ( x)Δv = v( x + Δx)v( x) Δu Δv ⋅ v( x) − u ( x) ⋅ Δy Δx Δx = 因为u,v可导,所以也连续 Δx v( x + Δx)v( x)u ( x) , v( x) 在x可导 v( x ) ≠ 0u ′( x) ⋅ v( x) − u ( x) ⋅ v′( x) Δy lim = Δx →0 Δx [v( x)]2例、求y=tanx的导数 sin x ∵ y = tan( x) = cos x ′ sin x ⎞ (sin x)′ cos x − sin x(cos x)′ cos 2 x + sin 2 x ⎛ ∴ y′ = ⎜ ⎟= = 2 2 x cos cos x cos x ⎠ ⎝(tan x)′ = sec 2 x(cot x)′ = − csc 2 x= sec 2 x′ 1 ⎞ − v′( x) 特别地 ⎛ ⎜ ⎜ v( x) ⎟ ⎟ = [v( x)]2 ⎝ ⎠ ′ sin x 1 ⎞ ⎛ = tan x ⋅ sec x (sec x)′ = ⎜ ⎟ = 2 ⎝ cos x ⎠ cos x (csc x)′ = − cot x ⋅ csc x例x2 y= x 2(u ± v )′ = u ′ ± v′ (uv )′ = u ′v + uv′′ u ⎛ ⎞ u ′v − uv′ ⎜ ⎟ = v2 ⎝v⎠解: y′ = ( x 2 ⋅ 2− x )′= 2 x 2− x + x 2 (−2− x ln 2) 2 x − x 2 ln 2 = . x 2基本的初等函数的求导公式c′ = 0(c为常数 ).( x a )' = ax a −1 (a为实数 ) .y′ y == 2x 例: ,求 y′ 1 x x x − 1 2 y′ = x 2 ⎛ ⎞′ 7 ′ − 1 ⎛ ⎞ 1 −2 ⎜ ⎟ 8 y′ = − x = − 解: x = ⎜ ⎟ 2⎟ ⎜ x ⎠ ⎝ x 3x x ⎠ ⎝ 1 −2 1 y′ = − x 15 =− 2 7 − 8 2 x3 =− x . 81y=x ,2y= x =x 1 y = = x −1 x 1 − 1 y= =x 2 x1 2基本的初等函数的求导公式c′ = 0(c为常数 ).(a x )' = a x ⋅ ln a (a > 0, a ≠ 1). 1 1 (log a x)' = ⋅ (a > 0, a ≠ 1). x ln a ( x )′ = 3 x3 2( x a )' = ax a −1 (a为实数 ) . (e x )' = e x . 1 (lnx)' = . x(3x )' = 3x ln 3 (π x )′ = π x ln π ((tan α ) x )′ = (tan α ) x ⋅ ln tan α( xπ )′ = π xπ −1 ( x tan α )′ = tan α ⋅ x tan α −1识别函数关键常数、变量所在位置幂函数 例如 指数函数ax=aa=xx=xa识别对数函数log a x= log x a =log x x基本的初等函数的求导公式c′ = 0(c为常数 ).( x a )' = ax a −1 (a为实数 ) .(e x )' = e x . 1 1 1 (log a x)' = ⋅ (a > 0, a ≠ 1). (lnx)' = . x ln a x (sin x)' = cos x. 比较两边 (cos x)' = − sin x. (tan x)' = sec 2 x. (sec x)' = sec x ⋅ tan x. 1 (arcsin x)' = . 2 1− x 1 (arctan x)' = . 2 1+ x (cot x)' = − csc 2 x. (csc x)' = − csc x ⋅ cot x. 1 (arccos x)' = − . 1 − x2 1 . (arc cot x)' = − 2 1+ x(a x )' = a x ⋅ ln a (a > 0, a ≠ 1).例.设,求f ′ (1) , f ′( ) 8 4 π 解: f ′( x ) = ( x sin x)′ + (tan )′ π π 8 f ′( )={ f ( )}′ ′ 4 4 ′ = x sin x + x (sin x ) f ′(1)={ f (1)}′ 1 sin x + x cos x = 2 x 1 f ′(1) = sin 1 + cos1 2 π 1 π π π 3π f ′( ) = sin + cos = 4 4 2 4 4 π π 注: tan 是常数,其导数等于零; 8f ( x ) = x sin x + tanππ( )x +2 x− π , 求y'. 例 设y = x解1 1 x − πx + 2 − y' = ( )' = ( x 2 − π + 2 x 2 )' x=1 ( x 2 )'− 1 2− ( π )' + 2( x1 + 2 ⋅ (− ) x 2 − 1 x x .−3 2−1 2 )'求导前先化简 可减少计算量1 = x 2 =1 2 x1 例. 求 y = 的导数 1+ x1 ′(1 + x ) − (1 + x )′ ( 1 ) 解: y′ = ( )′ = 1+ x (1 + x ) 21 2 x =− = 2 2 x (1 + x ) 2 (1 + x )1 − f ′( x) )′ = 2 一般 ( , 其中f (x)可导, f (x) ≠ 0 f ( x) f ( x)−1复合函数的导数若函数 u = g ( x ) 在x可导, 函数 y = f (u ) 在u可导 则复合函数 y= f [ g ( x )] 在x 可导 且{ f [ g ( x)]}′ = f ′(u ) g ′( x)Δy = f ( g ( x + Δx)) − f ( g ( x)) Δu = g ( x + Δx ) − g ( x ) ,= f (u + Δu ) − f (u )Δy Δy Δu = ⋅ Δx Δu Δxlim Δu = 0 所以 Δ x →0( Δu ≠ 0)Δy Δu Δy lim = lim ⋅ lim Δx →0 Δx Δx →0 Δu Δx →0 Δx因为u在 x 可导,所以必连续Δy Δu = lim ⋅ lim Δu → 0 Δu Δx → 0 Δx分析{ f [ g ( x)]}′ = f ′(u ) g ′( x){(6 x + 7) 2 }′ = 2(6 x + 7) ⋅ (6 x + 7)′y = u2 y′ = (u 2 )′ ⋅ (6 x + 7)′ = 12uu=6x+7= 12(6 x + 7)设 y = f (u ), u = ϕ ( x) , 则复合函数 y = f [ϕ ( x)] 的导数为dy dy du = dx du dx或{ f [ϕ ( x )]}′ = f ′(u )ϕ ′( x )例.求y = sin2x的导数 解:y = sin2x是由y = sinu,u = 2x复合而成dy du y′ = ⋅ = cos u ⋅ 2 = 2cos 2 x du dx例 设 y=sin3 x,求 y'. 解 令y = u 3,u = sin x,则dy dy du = ⋅ dx du dx = 3u 2 cos x = 3 sin 2 x ⋅ cos x.例. 求y = (3x2+1)100的导数 解: y = u100,而 u = 3x2+1 由公式dy du y′ = ⋅ du dx= 100 u ⋅ 6 x99= 600x(3x 2 + 1)99)2ctg ( )4(′=′xy )2ctg (2ctg21′⋅=x x)2()2csc (2ctg 212′⋅−⋅=x x x )21(2ctg22csc 2⋅−=x x 2csc 2412x x tg ⋅−=})]([{′x f ϕ)()]([u f x f ′=′ϕ表示复合函数对自变量x 求导;而对中间变量求导。
3.2 导数的运算法则(上课用)
![3.2 导数的运算法则(上课用)](https://img.taocdn.com/s3/m/3c3a6b45ad02de80d4d84080.png)
f (1) 2, 则f (1) ( B ).
A.-1 B.-2 C.2 D.0
(2008海南高考)设f ( x ) x ln x, 若f ( x0 ) 2,
则x0 ( B ).
A. e
2
B. e
ln2 C. 2
D. ln 2
曲线y x 3 x 3在点(1,3)处的 (2012广东高考)
3 0 2 0
1 x0 1或x0 2
当x0 1时, 切点为 (1,1),切线方程为 3x y 2 0
1 1 1 当x 0 时, 切 点 为 ( , ), 切 线 方 程 为 3x 4 y 1 0 2 2 8
4 2 若函数 f ( x ) ax bx c满足 (2010江西高考)
2
法则3 :两个函数的商的导数,等于分
子的导数与分母的积,减去分母的导数 与分子的积,再除以分母的平方,即:
f ( x) f ( x) g ( x) f ( x) g ( x) [ ] 2 g ( x) g ( x)
其中g ( x) 0
例3:求下列函数的导数 (1)y=tanx
解 : (1)h( x ) ( x sinx ) x sinx x(sinx ) sinx x cos x
( 2) f ( x ) 2( x ln x ) 2[( x ) ln x x(ln x )] 2(ln x 1)
(3)用两种方法求y (2 x 3)(3x 2)
5284 '(100 x ) 5284 (100 x )' c' ( x ) ( )' 5284 2 100 x (100 x )
5284 0 (100 x ) 5284 ( 1) 2 2 (100 x ) (100 x )
高二数学人教A版选修1-1课件:3.2 导数的计算
![高二数学人教A版选修1-1课件:3.2 导数的计算](https://img.taocdn.com/s3/m/6296d9c3dd88d0d233d46ad0.png)
设过(1,0)②的直线与 y=x3 相切于点(x0,������03), 则在该点处的切线斜率为 k=3������02, 所以切线方程为 y-������03=3������02(x-x0), 即 y=3������02x-2������03.
案例探究
误区警示
思悟升华
又(1,0)在切线上,则 x0=0 或 x0=32. 当 x0=0 时,切线方程为 y=0.由 y=0 与 y=ax2+145x-9 相切可得 a=-2654, 当 x0=32时,切线方程为 y=247x-247.由 y=247x-247与 y=ax2+145x-9 相切,
以及
这样想当然的错误;其次还要特������别������((������注������)) 意'=两������个������''((������函������))数积与商的求导公式中符号的异同,积的导数
法则中是“+”,商的导数法则中分子上是“-”.
一 二三
知识精要
典题例解
迁移应用
【例 1】 求下列函数的导数:
f(x)=ln x
导函数
f'(x)=0 f'(x)=αxα-1
f'(x)=cos x
f'(x)=-sin x
f'(x)=axln a(a>0)
f'(x)=ex
f'(x)=������
1 ln
������
(a>0,且
a≠1)
f'(x)=1
������
目标导航
预习导引
123
判一判(正确的打“√”,错误的打“×”).
目标导航
预习导引
数学3.2《导数计算》教案(新人教A版选修1-1)
![数学3.2《导数计算》教案(新人教A版选修1-1)](https://img.taocdn.com/s3/m/cd6d7f1a87c24028905fc30c.png)
§3.2 导数的计算【高效预习】(核心栏目)“要养成学生阅读书籍的习惯就非教他们预习不可”。
——叶圣陶【关注.思考】1.阅读课本第81——82页,总结四个常用函数的导数公式,认真阅读导数公式的推导过程,这四个常用函数有什么共同的特征,其导数有什么意义?细节提示:利用导数的定义求解四种函数的导数,对照函数图象,把握住导数的物理意义和几何意义;四种常用函数实际上都是幂函数,探讨规律时,应把导函数的系数与幂指数与原函数进行对比.【领会.感悟】1.这四种函数实质上都是特殊的幂函数,它们的导函数的系数为幂函数的指数,指数为幂函数的指数减去1所的数值;函数的导数的几何意义是函数图象在该点处的切线的斜率【精读·细化】2.认真阅读教材83页,记住基本初等函数的导数公式,注意各公式之间的联系,特别注意对数函数与指数函数的导函数.细节提示:前面四个常见函数的导函数实际上就是公式1、2所对应公式,对数函数的导函数与指数函数的导函数形式不同,应注意两者之间的区别. 【领会·感悟】2.基本初等函数的导数公式是我们求解函数导数的基础,要记准确,记牢,才可能在运算过程中不出现错误。
例1是导数的简单应用.【精读·细化】3.认真阅读教材84——85页,识记到数的运算法则,两个函数的和(差)与积的导数的形式一致吗?两函数的商的导数有什么特征?它们成立的前提条件是什么.细节提示:两个函数和(差)与积的导数的形式是不一致的,特别要注意两函数积的导数,两函数上的导数的特征非常明显,注意法则成立的前提是两函数的导数都存在. 【领会·感悟】3.深刻理解和掌握到数的运算法则,在结合给定函数自身的特点,才能有效地进行求导运算;理解和掌握求导法则与公式的结构规律是灵活进行求导的前提。
【学习细节】(核心栏目)A .基础知识导数的计算知识点1 几个常用函数的导数【情景引入】化学中常用PH 表示不同液体的酸碱性。
人教新课标版数学高二课件 3.2 第1课时 几个常用函数的导数与基本初等函数的导数公式
![人教新课标版数学高二课件 3.2 第1课时 几个常用函数的导数与基本初等函数的导数公式](https://img.taocdn.com/s3/m/983ec5dcde80d4d8d05a4f49.png)
x=
1x=x
1 2
,
∴y′=
1
x
3 2
.
2
解答
(2)y=2cos22x-1. 解 ∵y=2cos22x-1=cos x, ∴y′=(cos x)′=-sin x.
解答
类型二 导数公式的应用 命题角度1 求切线方程 例2 已知点P(-1,1),点Q(2,4)是曲线y=x2上两点,是否存在与直线PQ 垂直的切线,若有,求出切线方程,若没有,请说明理由.
解答
反思与感悟 解决切线问题,关键是确定切点,要充分利用 (1)切点处的导数是切线的斜率. (2)切点在切线上. (3)切点又在曲线上这三个条件联立方程解决.
跟踪训练2 已知两条曲线y=sin x,y=cos x,是否存在这两条曲线的一 个公共点,使在这一点处两条曲线的切线互相垂直?并说明理由. 解 设存在一个公共点(x0,y0),使两曲线的切线垂直, 则在点(x0,y0)处的切线斜率分别为 k1= y' |xx0 =cos x0,k2= y' |xx0 =-sin x0. 要使两切线垂直,必须有k1k2=cos x0(-sin x0)=-1, 即sin 2x0=2,这是不可能的. 所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.
f′(x)=_α_x_α-__1
f(x)=sin x
f′(x)=_c_o_s _x_
f(x)=cos x f(x)=ax f(x)=ex
f(x)=logax f(x)=ln x
f′(x)=-__s_i_n_x_
f′(x)= axln a(a>0)
f′(x)=_ex_ 1 f′(x)=_x_ln__a_(a>0,且a≠1)
解答
3.2 导数的计算 第1课时 几个常用函数的导数与基本初等函数的导数公式
![3.2 导数的计算 第1课时 几个常用函数的导数与基本初等函数的导数公式](https://img.taocdn.com/s3/m/7b9b71207375a417866f8fbe.png)
3.y=f(x)=x2的导数
解:根据导数定义, y f ( x x ) f ( x ) ( x x ) 2 x 2 2 x x x 2 ,
y 2 x x x 2 2 x x , x x
y 所以f ( x ) lim lim ( 2 x x ) x 0 x x 0 2 x.
2.导函数 当x=x0时, f(x0) 是一个确定的数.那么,当x变化 时,f(x)便是x的一个函数,我们叫它为f(x)的导函数.即:
y f ( x x ) f ( x ) f ( x) y lim lim . x 0 x x 0 x
在不致发生混淆时,导函数也简称导数. f ( x) 3x 2 关系
(6)若f(x)=ex,则f′(x)=____. ex
1 x ln a (a>0,且a≠1). (7)若f(x)=logax,则f′(x)=_____
1 (8)若f(x)=lnx,则f′(x)=____. x
例 假设某国家在20年期间的年均通货膨胀率为5%. 物价(单位 p :元)与时间(单位:年)有如下关系 t : p( t ) p0 (1 5%)t .其中p0为t 0时的物价.假定某种 商品的p0 1,那么在第10个年头,这种商品的价格 上涨的速度大约是多少?(精确到0.01)
解:由导数公式:p '(t ) 1.05t p0 ln1.05,
所以p '(10) 5 0.08 0.4(元/年).
1.下列各式正确的是( C )
A. (sin ) ' cos (为常数) B. (cos x) ' sin x C. (sin x) ' cos x 1 6 D. (x ) ' x 5
高中数学选修1课件1-3.2导数的计算
![高中数学选修1课件1-3.2导数的计算](https://img.taocdn.com/s3/m/9d2e2b06580102020740be1e650e52ea5418ce40.png)
=2scinosx2-x 1.
(4)先化简,得 f(x)=1-2 x,
故 f′(x)=1-2 x′=2′1-x1--x221-x′=1-2 x2.
(5)因为 y=2xx+-11=2x+x+11-3=2-x+3 1,所以 y′=x+312.
(6)y′=e-x+x(e-x)′=e-x-xe-x=e-x(1-).
切点坐标为(-2,-26).
状元随笔
方法归纳 根据导数的几何意义,可直接得到曲线上一点处的切线的斜 率.需注意直线与曲线公共点的个数不是切线的本质特征.当问题 中涉及相切但未出现切点坐标时要设出切点坐标,然后根据已知条 件求出切点坐标.
跟踪训练 3 (1)曲线 y=x-x 2在点(1,-1)处的切线方程为 ()
答案:x+2y- 3-π6=0
类型一 利用导数公式求函数的导数 例 1 求下列函数的导数: (1)y=x20;(2)y=x14;(3)y=sin3π;(4)y=log6x; (5)y= 1 .
5 x2
解析:(1)y′=(x20)′=20x20-1=20x19; (2)y′=(x-4)′=-4x-4-1=-4x-5;
解析:∵y=xln x,∴y′=ln x+1,故切线斜率为 k=y′|x=1 =1.∴切线方程为 y=x-1.
答案:C
4.曲线 y=cosx 在点 Aπ6, 23处的切线方程为________.
解析:因为 y′=(cosx)′=-sinx,所以 k=-sin6π=-12,所 以在点 A 处的切线方程为 y- 23=-12x-π6,即 x+2y- 3-π6= 0.
解析:设切点为 P(x0,y0), 则直线 l 的斜率为 f′(x0)=3x02+1, 直线 l 的方程为 y-y0=(3x20+1)(x-x0) 即 y=(3x20+1)(x-x0)+x03+x0-16. 又因直线 l 过点(0,0),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f ( x) f ( x) g ( x) f ( x) g ( x) [ ] 2 g ( x) g ( x)
其中g ( x) 0
t 1 例3 : (1)求函数s(t ) 的导数. t
2
2 t 1 (t 1) t (t 1)t 解 : (1) s(t ) ( ) t t2 2t 2 t 2 1 t 2 1 2 2 t t
解:(2)y′=(exsin x)′=(ex)′sin x+ex(sin x)′
=exsin x+excos x
=ex(sin x+cos x).
2 2
x+3 x+3′x +3-x+3x +3′ 解:(3)y′=( 2 )′= x +3 x2+32
x2+3-x+3×2x = x2+32
4
-2
(2) y= x
(3) y= x
2 y 2 x 3 x
3
y 4 x
3
x (4) y= 2
y 2 ln 2
x
(5) y=log3x y
1 x ln 3
1、y=5 2、y=xn 3、y=sinx 4、y=cosx 5、y=ax 6、y=ex 7、y=logax 8、y=lnx 9、y=x5+sinx-7x 10、y=6x-cosx+log7x 11、y=ex+lnx+9x7 12、y=4ex-2cosx+7sinx
3.2.1几个常用 函数的导数
一、复习
1.求函数的导数的方法是:
(1)求函数的增量y f ( x x) f ( x);
(2)求函数的增量与自变量的增量的比值 : y f ( x x) f ( x) ; x x
y (3)求极限,得导函数y f ( x) lim . x 0 x
=4x(3x-2)+(2x2+3)· 3 =18x2-8x+9. 解: (2)法二: ∵y=(2x2+3)· (3x-2)=6x3-4x2+9x-6,
∴y′=18x2-8x+9.
例 2: 求下列函数的导数: x- 1 (3)y= ; (4)y=x· tan x. x+ 1 x-1 解:(3)y′=( )′ x+1
公式二:x ' 1
二、几种常见函数的导数
3) 函数y=f(x)=x2的导数.
解 : y f ( x) x2 ,
y f ( x x) f ( x) ( x x)2 x2 2x x x2 ,
y 2 x x x 2 2 x x, x x
x-1′x+1-x-1x+1′ = x+12
x+1-x-1 = 2 x+1
2 = x+12
例 2: 求下列函数的导数: x- 1 (3)y= ; (4)y=x· tan x. x+ 1 xsin x 解:(4)y′=(x· tan x)′=( )′ cos x xsin x′cos x-xsin xcos x′ = cos2x
(5) y (2 x 3) 1 x ; 1 (6) y 4 ; x (7) y x x ;
2
1 x2 (3) y ; 2 2 (1 x ) 1 (4) y ; 2 cos x 6 x3 x (5) y ; 2 1 x 4 (6) y 5 ; x
练习:1 求下列幂函数的导数
(1)y x 1 ( 2) y 2 x 3 (3) y x
3
5
( 4) y x
5
注意:关于a x 和x a 是两个不同
的函数,例如:
(1)(3 ) 3 ln 3
x
x
(2)(x ) 3 x
3
2
练习1、求下列函数的导数。
(1) y= 5
y 0
2
( x ) sin x x (sin x) 解:y 2 sin x
2 ' 2 '
'
2 x sin x x cos x 2 sin x
2
x3 4. 求 y 2 在点x 3处的导数 x 3
1 ( x 3) ( x 3) 2 x 解:y 2 2 ( x 3)
解 : (1)h( x) ( x sin x) x sin x x(sin x) sin x x cos x (2) f ( x) (2 x ln x) (2 x) ln x (2 x)(ln x)
2 ln x 2
法则4 :两个函数的商的导数,等于分子的 导数与分母的积,减去分母的导数与分子 的积,再除以分母的平方,即:
1 1 公式三:( ) ' 2 x x
可以直接使用的基本初等函数的导数公式
公式1.若f ( x) c, 则f '( x) 0; 公式2.若f ( x) x a , 则f '( x) ax a 1 ; 公式3.若f ( x) sin x, 则f '( x) cos x; 公式4.若f ( x) cos x, 则f '( x) sin x; 公式5.若f ( x) a x , 则f '( x) a x ln a ( a 0); 公式6.若f ( x) e x , 则f '( x) e x ; 1 公式7.若f ( x) log a x, 则f '( x) ( a 0, 且a 1); x ln a 1 公式8.若f ( x) ln x, 则f '( x) ; x
sin x+xcos xcos x+xsin x = cos2x
2
sin xcos x+x = . cos2x
练习:求下列函数的导数 x+ 3 1 1 2 x (1)y=x(x + + 3); (2)y=e sin x; (3)y= 2 . x x x +3 1 1 1 2 3 解:(1)∵y=x(x + + 3)=x +1+ 2,∴y′=3x2- 23. x x x x
2
( x ) (sin x) 2 x cos x
2
3 2 (2)求函数g ( x) x x 6 x 2的导数. 2
3
3 2 解:g ( x) ( x x 6 x) 2 3 2 3 2 ( x ) ( x ) (6 x ) 3 x 3 x 6 2
3
法则 2: 两个函数的积的导数,等于第一
个函数的导数乘以第二个函数加上第一个 函数乘以第二个函数的导数.即:
[ f ( x) g ( x)] f ( x) g ( x) f ( x) g ( x).
法则3:
[Cf ( x)] Cf ( x).(C为常数)
例2: (1)求函数h( x) x sin x的导数. (2)求函数f ( x) 2 x ln x的导数.
2
2
解 : (2) f ( x) (
x (2)求函数f(x) x 的导数. e x x x
x e x ( e ) ) x x 2 e (e ) x x x x x e x(e ) e xe 1 x x x 2 2x (e ) e e
x 3. y 的导数 sin x
1、 已知函数 y=xlnx (1)求这个函数的导数 (2)求这个函数的图像在点 x 1 处的切线方程
【变式训练】
说明:上面的方 法中把x换成 x0即为求函数 在点x0处的 导 数.
2.函数f(x)在点x0处的导数 f ( x0 ) 就是导函数 f ( x )在x= x0处的函数值,即 f ( x0 ) f ( x) |x x0 .这也是求函数在点x0 处的导数的方法之一。
3.函数 y=f(x)在点x0处的导数的几何意义,就是曲线y= f(x)在点P(x0 ,f(x0))处的切线的斜率.
2 y 2 x x x f ( x) ( x 2 ) ' lim lim lim (2 x x) 2 x. x 0 x x 0 x 0 x
公式三:(x ) ' 2x
2
二、几种常见函数的导数
4) 函数y=f(x)=1/x的导数.
公式一:C 0 (C为常数)
二、几种常见函数的导数
2) 函数y=f(x)=x的导数.
解 : y f ( x) x,
y f ( x x) f ( x) ( x x) x x,
y 1, x y f ( x) x ' lim 1. x 0 x
(7) y 3 x; 2
练习:已知函数 f x 的导函数为 f ' x , 且满足 f x 3x 2 xf ' 2 ,
2
则 f ' 5
.
如何用导数解决与切线有关的问题?
设切点
求出切线方程 依据题意,代人条件 代数求解 得到结论
3.函数 y=f(x)在点x0处的导数的几何意义,就是曲线y= f(x)在点P(x0 ,f(x0))处的切线的斜率. 4.求切线方程的步骤: (1)找切点 (2)求出函数在点x0处的变化率 f ( x0 ) ,得到曲线 在点(x0,f(x0))的切线的斜率。
二、几种常见函数的导数
根据导数的定义可以得出一些常见函数的导数公式. 1) 函数y=f(x)=c的导数.
解 : y f ( x) C,
y f ( x x) f ( x) C C 0,
y 0, x y f ( x) C lim 0. x 0 x
(3)根据直线方程的点斜式写出切线方程,即
y f ( x0 ) f ( x0 )( x x0 ).
曲线的切线问题,是高考的常见题型之 主要有以下几类问题: 一、已知切点,求曲线的切线
1、函数 y lg x 在点 1,0 处 的切线方程是 __________