电磁学名词解释
电磁铁磁学名词解释
电磁学名词解释什么叫磁感应强度(B),什么叫磁通密度(B),B与H,J,M之间存在什么样的关系理论与实践均表明,对任何介质施加一磁场H时(该磁场可由外部电流或外部永磁体提供,亦可由永磁体对永磁介质本身提供,由永磁体对永磁介质本身提供的磁场又称退磁场---关于退磁场的概念,见9 Q),介质内部的磁场强度并不等于H,而是表现为H与介质的磁极化强度J之和。
由于介质内部的磁场强度是由磁场H通过介质的感应而表现出来的,为与H区别,称之为介质的磁感应强度,记为B:B=?0H+J(SI单位制)(1-1)B=H+4?M(CGS单位制)磁感应强度B的单位为T,CGS单位为Gs(1T=104Gs)。
对于非铁磁性介质如空气、水、铜、铝等,其磁极化强度J、磁化强度M 几乎等于0,故在这些介质中磁场强度H与磁感应强度B相等。
由于磁现象可以形象地用磁力线来表示,故磁感应强度B又可定义为磁力线通量的密度,磁感应强度B和磁通密度B在概念上可以通用。
金属磁性材料分为几大类,它们是如何划分的金属磁性材料分为永磁材料、软磁材料二大类。
通常将内禀矫顽力大于0."8kA/m的材料称为永磁材料,将内禀矫顽力小于0."8kA/m的材料称为软磁材料。
什么叫磁能积(BH)m在永磁材料的B退磁曲线上(二象限),不同的点对应着磁体处在不同的工作状态,B退磁曲线上的某一点所对应的Bm和Hm(横坐标和纵坐标)分别代表磁体在该状态下,磁体内部的磁感应强度和磁场的大小,Bm和Hm的绝对值的乘积(BmHm)代表磁体在该状态下对外做功的能力,等同于磁体所贮存的磁能量,称为磁能积。
在B退磁曲线上的Br点和bHc点,磁体的(BmHm)=0,表示此时磁体对外做功的能力为0,即磁能积为0;磁体在某一状态下(BmHm)的值最大,表示此时磁体对外做功的能力最大,称为该磁体的最大磁能积,或简称磁能积,记为(BH)max或(BH)m。
因此,人们通常都希望磁路中的磁体能在其最大磁能积状态下工作。
电磁场与电磁波名词解释
学习必备欢迎下载电磁场与电磁波名词解释:1.亥姆赫兹定理(P26):在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定,这就是亥姆赫兹定理的核心内容。
2.洛伦兹力(P40):当一个电荷既受到电场力同时又受到磁场力的作用时,我们称这样的合力为洛伦兹力。
3.传导电流(P48):自由电荷在导电媒质中作有规则运动而形成。
4.运流电流(P49):电荷在无阻力空间作有规则运动而形成。
5.位移电流(P49):电介质内部的分子束缚电荷作微观位移而形成。
6.电介质(P65):电介质实际上就是绝缘材料,其中不存在自由电荷,带电粒子是以束缚电荷形式存在的。
7.电介质的极化(P64):当把一块电介质放入电场中时,它会受到电场的作用,其分子或原子内的正、负电荷将在电场力的作用下产生微小的弹性位移或偏转,形成一个个小电偶极子,这种现象称为电介质的极化。
8.电介质的磁化(P64):当把一块介质放入磁场中时,它也会受到磁场的作用,其中也会产生一个个小的磁偶极子,这种现象称为介质的磁化。
9.对偶原理(P105):如果描述两种物理现象的方程具有相同的数学形式,并且有相似的边界条件或对应的边界条件,那么它们的数学解的形式也将是相同的,这就是对偶原理。
10.叠加原理(P106):若φ1和φ2分别满足拉普拉斯方程,即▽²φ1=0和▽²φ2=0,则φ1和φ2的线性组合φ=aφ1+bφ2也必然满足拉普拉斯方程,即▽²(aφ1+bφ2)=0。
11.唯一性原理(P107):对于任一静态场,在边界条件给定后,空间各处的场也就唯一地确定了,或者说这时拉普拉斯方程的解是唯一的。
12.镜像法(P107):通过计算由源电荷和镜象电荷共同产生的合成电场,而得到源电荷与实际的感应电荷所产生的合成电场,这种方法称为镜象法。
13.电磁波谱(P141):为了对各种电磁波有个全面的了解,人们按照波长或频率的顺序把这些电磁波排列起来,这就是电磁波谱。
电磁学概述
电磁学概述大量实验事实表明,物体间的相互作用不是超距作用,而是由场传递的。
电磁力就是由电磁场传递的。
正是场与实物间的相互作用,才导致实物间的相互作用。
电磁学:研究物质间电磁相互作用,研究电磁场的产生、变化和运动的规律。
关于电磁现象的观察记录公元前约585年希腊学者泰勒斯观察到用布摩擦过的琥珀能吸引轻微物体。
“电”(e l e c t r i c i t y)这个词就是来源于希腊文琥珀。
我国,战国时期《韩非子》中有关“司南”的记载;《吕氏春秋》中有关“慈石召铁”的记载东汉时期王充所著《论衡》一书记有“顿牟缀芥,磁石引针”字句电和磁现象的系统研究英国威廉·吉尔伯特在1600年出版的《论磁、磁体和地球作为一个巨大的磁体》一书中描述了对电现象所做的研究,把琥珀、金刚石、蓝宝石、硫磺、树脂等物质摩擦后会吸引轻小物体的作用称为“电性”,也正是他创造了“电”这个词。
吉尔伯特第一次明确区分了以前常被人混在一起的电和磁这两种吸引。
他指出这两种吸引之间有深刻的差异。
电磁现象的定量研究从1785年库仑定律的建立开始,其后通过泊松、高斯等人的研究形成了静电场(以及静磁场)的(超距作用)理论。
伽伐尼于1786年发现了电流,后经伏特、欧姆、法拉第等人发现了关于电流的定律。
1820年奥斯特发现了电流的磁效应,一两年内,毕奥、萨伐尔、安培、拉普拉斯等作了进一步定量的研究。
1831年法拉第发现了有名的电磁感应现象,并提出了场和力线的概念,进一步揭示了电与磁的联系。
在这样的基础上,麦克斯韦集前人之大成,再加上他极富创见的关于感应电场和位移电流的假说,建立了以一套方程组为基础的完整的宏观的电磁场理论。
电磁学内容按性质来分,主要包括“场”和“路”两部分。
大学物理偏重于从“场”的观点来进行阐述。
“场”不同于实物物质,它具有空间分布,但同样具有质量、能量和动量,对矢量场(包括静电场和磁场)的描述通常用到“通量”和“环流”两个概念及相应的通量定理和环路定理。
电磁学基本概念知识点总结
电磁学基本概念知识点总结电磁学是物理学中一门重要的学科,研究电荷之间相互作用、电流及磁场的产生与作用等内容。
在这篇文章中,我们将对电磁学的基本概念进行总结,重点讨论电荷、电场和磁场的相关知识。
1.电荷电荷是物质的基本性质之一,可以呈现正电荷或负电荷。
同种电荷相互排斥,异种电荷相互吸引。
电荷的基本单位是库仑(Coulomb,简写为C)。
2.电场电场是由电荷产生的一种物理场。
在电场中,它对于周围的带电粒子具有力的作用。
电场的强度用电场强度(Electric Field Strength)表示,通常用字母E表示,单位是伏特每米(V/m)。
3.电场力电场力是电场对于带电粒子施加的力。
带电粒子在电场中会受到电场力的作用,其大小由电场强度和电荷的数值决定。
电场力的方向与电荷正负有关。
4.电势电势是描述电场能量分布的物理量。
单位电荷在电场中具有的位置能量就是该点的电势。
电势可以用电势差(Potential Difference)表示,通常用字母V表示,单位是伏特(Volt,简写为V)。
5.电容电容是指电流对电势变化的响应程度。
它是指电容器两极板上储存的电荷量与电压之间的关系。
电容的单位是法拉(Farad,简写为F)。
6.磁场磁场是由电荷的运动产生的物理场。
磁场可以通过磁感应强度(Magnetic Induction)来描述,通常用字母B表示,单位是特斯拉(Tesla,简写为T)。
7.洛伦兹力洛伦兹力是磁场对于运动带电粒子施加的力。
带电粒子在磁场中会感受到洛伦兹力的作用,其大小由磁感应强度、电荷数值以及粒子速度决定。
8.电磁感应电磁感应是指通过磁场的变化产生电流的现象。
根据法拉第电磁感应定律,当一个磁场发生变化时,会在磁场中产生感应电动势,从而导致电流的产生。
9.电磁波电磁波是由电场和磁场通过振荡相互作用而产生的波动现象。
电磁波可以具有不同的频率和波长,包括无线电波、可见光、X射线等。
10.麦克斯韦方程组麦克斯韦方程组是描述电磁学基本规律的一组偏微分方程。
电 磁 学 概 述
1
x
2
dx
a
E
b
1
解:取 dx
dF Edq
1
2 0 x
a b
2 d x
M l F q l E
M PE
F F q E
电偶极子在均匀外电场中 所受的合外力
F 0
l
F
+q
F
–q
E
0, 时 ,
M 0
以上关于电偶极子的讨论在下一章电介 质分子在外电场作用下产生极化现象的 分析中至关重要!
d Ey
x
dE
r a csc .
2 2 2
dE
4 0 a
dLeabharlann d E x d E sin
d E y d E cos( ) d E cos
14
y
dE
4 0 a
2
d
dl L l
r
dE x
d Ey
4 0 a
dq 4 0 r
2
E L d E x L cos 4 0 r
2
cos
L
dq
L d q
qx 4 0 ( R x )
2 2 3 2
R
0
x
z
dE
E
cos q 4 0 r
2
讨论:x R
E
q 4 0 x
2
当dq 位置发生变化时,它所激发 的电场矢量构成了一个圆锥面。
解: 按库仑定律计算,电子和质子之间的静电力为
F 1 e
电磁学总结
电磁学:电磁学是研究电磁现象的规律和应用的物理学分支学科,起源于18世纪。
广义的电磁学可以说是包含电学和磁学,但狭义来说是一门探讨电性与磁性交互关系的学科。
主要研究电磁波、电磁场以及有关电荷、带电物体的动力学等等。
电磁学是研究电、磁、二者的相互作用现象,及其规律和应用的物理学分支学科。
根据近代物理学的观点,磁的现象是由运动电荷所产生的,因而在电学的范围内必然不同程度地包含磁学的内容。
所以,电磁学和电学的内容很难截然划分,而“电学”有时也就作为“电磁学”的简称。
电磁学从原来互相独立的两门科学(电学、磁学)发展成为物理学中一个完整的分支学科,主要是基于两个重要的实验发现,即电流的磁效应和变化的磁场的电效应。
这两个实验现象,加上麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术。
电磁学总结:1磁现象1.最早的指南针叫司南。
2.磁性:磁体能够吸收钢铁一类的物质。
3.磁极:磁体上磁性最强的部分叫磁极。
磁体两端的磁性最强,中间最弱。
水平面自由转动的磁体,静止时指南的磁极叫南极(S极),指北的磁极叫北极(N极)。
4.磁极间的作用规律:同名磁极相互排斥,异名磁极相互吸引。
一个永磁体分成多部分后,每一部分仍存在两个磁极。
5.磁化:使原来没有磁性的物体获得磁性的过程。
钢和软铁的磁化:软铁被磁化后,磁性容易消失,称为软磁材料。
钢被磁化后,磁性能长期保持,称为硬磁性材料。
所以制造永磁体使用钢,制造电磁铁的铁芯使用软铁。
磁铁之所以吸引铁钉是因为铁钉被磁化后,铁钉与磁铁的接触部分间形成异名磁极,异名磁极相互吸引的结果。
6.物体是否具有磁性的判断方法:①根据磁体的吸铁性判断。
②根据磁体的指向性判断。
③根据磁体相互作用规律判断。
④根据磁极的磁性最强判断。
磁性材料在现代生活中已经得到广泛应用,音像磁带、计算机软盘上的磁性材料就具有硬磁性。
2磁场1.磁场:磁体周围存在着的物质,它是一种看不见、摸不着的特殊物质。
电磁场与微波技术名词解释
1. 电场:任何电荷在其所处的空间中激发出对置于其中别的电荷有作用力的物质。
2. 磁场:任一电流元在其周围空间激发出对另一电流元(或磁铁)具有力作用的物质。
3. 标量场:物理量是标量的场成为标量场。
4. 矢量场:物理量是矢量的场成为矢量场。
5. 静态场:场中各点对应的物理量不随时间变化的场。
6. 有源场:若矢量线为有起点,有终点的曲线,则矢量场称为有源场。
7. 通量源:发出矢量线的点和吸收矢量线的点分别称为正源和负源,统称为通量源。
8. 有旋场:若矢量线是无头无尾的闭曲线并形成旋涡,则矢量场称为有旋场。
9. 方向导数:是函数u (M )在点 M0 处沿 l 方向对距离的变化率。
10. 梯度:在标量场 u (M ) 中的一点 M 处,其方向为函数 u (M )在M 点处变化率最大的方向,其模又恰好等于此最大变化率的矢量 G ,称为标量场 u (M ) 在点 M 处的梯度,记作 grad u (M )。
11. 通量:矢量A 沿某一有向曲面S 的面积分为A 通过S 的通量。
12. 环量:矢量场 A 沿有向闭曲线 L 的线积分称为矢量 A 沿有向闭曲线 L 的环量。
13. 亥姆霍兹定理:对于边界面为S 的有限区域V 内任何一个单值、导数连续有界的矢量场,若给定其散度和旋度,则该矢量场就被确定,最多只相差一个常矢量;若同时还给出该矢量场的边值条件,则这个矢量场就被唯一确定。
(前半部分又称唯一性定理)14. 电荷体密度: ,即某点处单位体积中的电量。
15. 传导电流:带电粒子在中性煤质中定向运动形成的电流。
16. 运流电流:带电煤质本身定向运动形成形成的电流。
17. 位移电流:变化的电位移矢量产生的等效电流。
18. 电流密度矢量(体(面)电流密度):垂直于电流方向的单位面积(长度)上的电流。
19. 静电场:电量不随时间变化的,静止不动的电荷在周围空间产生的电场。
20. 电偶极子:有两个相距很近的等值异号点电荷组成的系统。
电磁学核心概念分析
电磁学核心概念分析电磁学是物理学的一个分支,研究电和磁的现象、规律、相互作用以及电磁波等。
本文将分析电磁学的核心概念。
电场和电势电场是物质周围存在的电荷所造成的一种物理场。
在电场中,如果一个电荷受到作用力而运动,则称这个电场是有力场或者说是一个静电场。
一个带电粒子从一点A移到另一点B,它在从A到B 的过程中所做的功就等于在电场中能量势差的变化,即电势差。
电场的电势与引入电荷时所做的功成正比,于引入电荷的电量称为电势。
磁场和磁通量磁场是磁体周围的媒质中存在的磁荷所产生的物理场。
在磁场中,如果一个电荷受到的力是垂直于其运动方向的,则称这个磁场是一个无力场。
由于磁单极子不存在,所以磁荷和磁场之间是不可分割的,而只有磁场是存在的。
磁通量是一个面积上的常数表示的磁场大小与面积间的联系。
法拉第电磁感应定律电磁感应现象是指当磁通量发生变化时,电路中会产生感应电动势。
法拉第电磁感应定律描述了感应电动势的大小与变化的磁通量和时间的变化率成正比关系。
如果变化的磁通量的率是一个常数,那么感应电动势就是一个定值。
库仑定律库仑定律指出在真空中两个电荷之间的作用力与它们之间的距离成反比例关系,与它们两个电荷之间的大小成正比例。
电荷的大小可正可负,而两个相同符号的电荷之间的作用力是相互排斥的,两个异号电荷之间则会相互吸引。
洛伦兹力洛伦兹力描述了一个电荷在磁场中所受到的力。
当电荷和磁场异方向时它会受到一个交叉的力,此时电荷会跟磁力线做匀速圆周运动。
常见电磁现象常见的电磁现象有电感、磁感应强度、电感应、磁化强度等。
这些核心概念是电磁学的重要内容,理解这些概念是学习电磁学的基础。
物理电磁学的基础知识讲解
物理电磁学的基础知识讲解在我们的日常生活中,电磁现象无处不在。
从手机通讯到电力传输,从电动机的运转到微波炉的加热,电磁学的应用已经深入到了我们生活的方方面面。
那么,什么是电磁学?它又包含哪些基础知识呢?让我们一起来探索一下这个神奇而又充满魅力的领域。
首先,我们来了解一下电磁学中最重要的两个概念:电和磁。
电,简单来说,就是电荷的流动。
电荷分为正电荷和负电荷,同种电荷相互排斥,异种电荷相互吸引。
当电荷在导体中定向移动时,就形成了电流。
电流的单位是安培(A),它表示单位时间内通过导体横截面的电荷量。
我们日常生活中使用的电器,如电灯、电视、电脑等,都是通过电流来工作的。
磁,是指能够产生磁力的现象。
磁铁具有南北两极,同极相斥,异极相吸。
磁力线从北极出发,回到南极,形成一个封闭的回路。
磁场的强度用磁感应强度(B)来表示,单位是特斯拉(T)。
地球本身就是一个巨大的磁体,它的磁场对指南针的指向起着决定性的作用。
接下来,让我们看看电和磁之间的关系。
丹麦科学家奥斯特在 1820 年发现了电流的磁效应,即通电导线周围会产生磁场。
这一发现开启了电磁学研究的新篇章。
随后,法拉第通过实验发现了电磁感应现象,即当闭合电路中的一部分导体在磁场中做切割磁感线运动时,导体中就会产生电流。
这一发现为发电机的发明奠定了基础。
电磁感应现象不仅让我们能够发电,还引出了一个重要的概念——感应电动势。
感应电动势的大小与磁通量的变化率成正比。
磁通量是指通过某一面积的磁感应强度的通量,用Φ表示。
其单位是韦伯(Wb)。
如果磁通量发生变化,就会产生感应电动势,从而在电路中产生电流。
在电磁学中,还有一个非常重要的定律——安培定律。
安培定律描述了电流元在磁场中所受到的磁力。
磁力的大小与电流元的大小、电流元所在位置的磁感应强度以及电流元与磁感应强度之间的夹角有关。
安培定律在电动机、电磁起重机等设备的设计和分析中有着广泛的应用。
除了安培定律,还有一个与之相关的定律——毕奥萨伐尔定律。
物理学电磁学基础(知识点)
物理学电磁学基础(知识点)电磁学是物理学中的重要分支,研究电荷之间的相互作用及其产生的电磁现象。
它与我们日常生活息息相关,如电力、电子设备、无线通信等都离不开电磁学知识。
本文将介绍电磁学的基础知识点,包括电磁场、电磁波以及电磁感应等。
一、电磁场电磁场是一种在空间中存在的物理场,由电荷和电流产生。
电磁场有两个基本特点:电场和磁场。
1. 电场电场是由电荷产生的一种物理场,描述了电荷对其他电荷的作用力。
电场的性质由库仑定律描述,即两个电荷之间的作用力正比于它们的电荷量,反比于它们之间的距离的平方。
电场可以通过电场线表示,它们是沿着电场中的力线方向的连续曲线。
2. 磁场磁场是由电流产生的一种物理场,描述了电流对其他电流的作用力。
磁场的性质由安培定律描述,即通过导线的电流产生的磁场与电流成正比,与距离成反比。
磁场可以通过磁力线表示,它们是沿着磁场中的力线方向的连续曲线。
二、电磁波电磁波是一种由变化的电场和磁场相互作用而产生的波动现象。
电磁波具有电场和磁场的振荡,并在空间中传播。
根据波长的不同,电磁波可分为不同的类型,如射线、微波、红外线、可见光、紫外线、X射线和γ射线等。
电磁波的速度是光速,即30万千米/秒。
电磁波在我们生活中有广泛的应用,如无线通信、广播电视、雷达、医疗影像等。
其中,可见光是我们能够感知的,它的波长范围约为380纳米到760纳米。
三、电磁感应电磁感应是指当导体中的磁场发生变化时,在导体中产生感应电动势的现象。
根据法拉第电磁感应定律,当导体与磁场相对运动或者磁场的强度发生变化时,在导体中会产生感应电动势。
感应电动势的大小与变化速率有关。
在电磁感应中,也可以根据磁场变化产生的电动势来制造电动机和发电机等设备。
电动机利用电磁感应产生的力来将电能转化为机械能,而发电机则利用机械能转化为电能。
总结电磁学是物理学非常重要的分支,涉及到了电磁场、电磁波以及电磁感应等多个知识点。
了解电磁学的基础知识,有助于我们更好地理解和应用电磁现象。
电磁学名词解释
安培环路定理在恒定电流的磁场中,磁感强度沿任何闭合路径的线积分等于此路径所环绕的电流的代数和的μ0倍。
安培载流导线在磁场中所受的作用力。
毕奥-萨伐尔定律实验指出,一个电流元Idl产生的磁场为场强叠加原理电场中某点的电场强度等于各个电荷单独在该点产生的电场强度的叠加(矢量和)。
磁场叠加原理空间某一点的磁场(以磁感强度示)是各个磁场源(电流或运动电荷)各自在该点产生的磁场的叠加(矢量和)。
磁场能量密度单位磁场体积的能量。
磁场强度是讨论有磁介质时的磁场问题引入的辅助物理量,其定义是磁场强度的环路定理沿磁场中任一闭合路径的磁场强度的环量(线积分)等于此闭合路径所环绕的传导电流的代数和。
磁畴铁磁质中存在的自发磁化的小区域。
一个磁畴中的所有原子的磁矩(铁磁质中起主要作用的是电子的自旋磁矩)可以不靠外磁场而通过一种量子力学效应(交换耦合作用)取得一致方向。
磁化在外磁场作用下磁介质出现磁性或磁性发生变化的现象。
返回页首磁化电流(束缚电流) 磁介质磁化后,在磁介质体内和表面上出现的电流,它们分别称作体磁化电流和面磁化电流。
磁化强度单位体积内分子磁矩的矢量和。
磁链穿过一个线圈的各匝线圈的磁通量之和称作穿过整个线圈的磁链,又称"全磁通"。
磁屏蔽闭合的铁磁质壳体可有效地减弱外界磁场对壳内空间的影响的作用称作磁屏蔽。
磁通连续原理(磁场的高斯定理)在任何磁场中,通过任意封闭曲面的磁通量总为零。
磁通量通过某一面积的磁通量的概念由下式定义磁滞伸缩铁磁质中磁化方向的改变会引起介质晶格间距的改变,从而使得铁磁质的长度和体积发生改变的现象。
磁滞损耗铁磁质在交变磁场作用下反复磁化时的发热损耗。
它是磁畴反复变向时,由磁畴壁的摩擦引起的。
磁滞现象铁磁质工作在反复磁化时,B 的变化落后于H的变化的现象。
D的高斯定理通过任意闭合曲面的电位移通量等于该闭合面所包围的自由电荷的代数和。
其表示式是带电体在外电场中的电势能即该带电体和产生外电场的电荷间的相互作用能。
基础电磁学中的重要概念解析
基础电磁学中的重要概念解析电磁学是物理学中的一个重要分支,研究电荷和电流所产生的电磁现象。
在学习电磁学的过程中,我们会遇到许多重要的概念,这些概念对于理解电磁学的原理和应用至关重要。
本文将对一些基础电磁学中的重要概念进行解析,帮助读者更好地理解电磁学的基本原理。
一、电场和磁场电场和磁场是电磁学中最基本的概念之一。
电场是由电荷产生的力场,描述了电荷之间相互作用的力。
磁场则是由电流产生的力场,描述了电流所受的力。
电场和磁场都是矢量场,具有方向和大小。
在电磁学中,我们用电场强度和磁感应强度来描述电场和磁场的大小。
二、电磁感应和法拉第定律电磁感应是指磁场发生变化时,会在磁场变化的区域内产生感应电流。
这是由法拉第定律提出的,法拉第定律是电磁学中的重要定律之一。
根据法拉第定律,感应电动势的大小与磁场变化的速率成正比,方向与磁场变化的方向相反。
电磁感应的应用非常广泛,例如发电机、变压器等都是基于电磁感应原理工作的。
三、安培环路定理和比奥-萨伐尔定律安培环路定理是电磁学中的另一个重要定律。
根据安培环路定理,通过一个闭合回路的电流的总和等于该回路所围成的面积上的磁感应强度的总和乘以该面积的法向量。
这个定理和比奥-萨伐尔定律是电磁学中的两个基本定律,它们描述了电流和磁场之间的相互作用。
四、麦克斯韦方程组麦克斯韦方程组是电磁学的基本方程组,由麦克斯韦提出。
它包括四个方程,分别是高斯定律、法拉第定律、安培环路定理和法拉第电磁感应定律。
这些方程描述了电场和磁场之间的相互作用和传播规律,是电磁学理论的基础。
五、电磁波和光波电磁波是由电场和磁场相互作用产生的波动现象。
根据麦克斯韦方程组的推导,我们知道电磁波是横波,具有电场和磁场垂直传播的特点。
光波是电磁波的一种,它是在真空中传播的电磁波。
光波具有波长、频率和速度等特性,是我们日常生活中所熟知的光线。
六、电磁学的应用电磁学的应用非常广泛,涉及到许多领域。
在电力工程中,电磁学的理论和方法被广泛应用于电力输送、变压器、电机等设备的设计和运行。
物理电磁学知识点总结
物理电磁学知识点总结电磁学是物理学的一个分支,起源于近代。
广义的电磁学可以说是包含电学和磁学,但狭义来说是一门探讨电性与磁性交互关系的学科。
下面是店铺为你整理的物理电磁学知识点,一起来看看吧。
物理电磁学知识点一、磁现象最早的指南针叫司南。
磁性:磁体能够吸收钢铁一类的物质。
磁极:磁体上磁性最强的部分叫磁极。
磁体两端的磁性最强,中间最弱。
水平面自由转动的磁体,静止时指南的磁极叫南极(S极),指北的磁极叫北极(N极)。
磁极间的作用规律:同名磁极相互排斥,异名磁极相互吸引。
一个永磁体分成多部分后,每一部分仍存在两个磁极。
磁化:使原来没有磁性的物体获得磁性的过程。
钢和软铁的磁化:软铁被磁化后,磁性容易消失,称为软磁材料。
钢被磁化后,磁性能长期保持,称为硬磁性材料。
所以制造永磁体使用钢,制造电磁铁的铁芯使用软铁。
磁铁之所以吸引铁钉是因为铁钉被磁化后,铁钉与磁铁的接触部分间形成异名磁极,异名磁极相互吸引的结果。
物体是否具有磁性的判断方法:①根据磁体的吸铁性判断。
②根据磁体的指向性判断。
③根据磁体相互作用规律判断。
④根据磁极的磁性最强判断。
磁性材料在现代生活中已经得到广泛应用,音像磁带、计算机软盘上的磁性材料就具有硬磁性。
二、磁场磁场:磁体周围存在着的物质,它是一种看不见、摸不着的特殊物质。
磁场看不见、摸不着我们可以根据它对其他物体的作用来认识它。
这里使用的是转换法。
(认识电流也运用了这种方法。
)磁场对放入其中的磁体产生力的作用。
磁极间的相互作用是通过磁场而发生的。
磁场的方向规定:在磁场中的某一点,小磁针静止时北极所指的方向,就是该点磁场的方向。
磁感线:在磁场中画一些有方向的曲线。
任何一点的曲线方向都跟放在该点的磁针北极所指的方向一致。
磁感线的方向:在用磁感线描述磁场时,磁感线都是从磁体的N极出发,回到磁体的S极。
说明:①磁感线是为了直观、形象地描述磁场而引入的带方向的曲线,不是客观存在的。
但磁场客观存在.②磁感线是封闭的曲线。
高三物理电磁知识点讲解
高三物理电磁知识点讲解电磁学是物理学中的一个重要分支,研究电荷和电流产生的电场和磁场以及它们之间的相互作用。
在高三物理学习中,电磁学是一个重点内容,掌握电磁知识点对理解和解决相关问题至关重要。
本文将对高三物理电磁知识点进行全面讲解。
一、电磁场的基本概念电磁场是由电荷和电流产生的电场和磁场相互作用而形成的。
电场是指电荷周围的电力作用区域,用电场强度来描述。
磁场是指电流周围的磁力作用区域,用磁感应强度来描述。
电场和磁场都是矢量量,具有方向和大小。
二、静电场和静磁场的基本性质1. 静电场的基本性质静电场是指不随时间变化的电场,由静止电荷产生。
静电场的电场线为闭合曲线,电场强度与电荷量和距离的平方成反比。
静电场中,电势能的变化与电荷间的位置变化有关。
2. 静磁场的基本性质静磁场是指不随时间变化的磁场,由静止电流产生。
静磁场的磁感应强度与电流和距离成正比,遵循安培定律。
静磁场中不存在单独的磁荷,只有磁偶极子。
三、电磁感应和电磁感应定律1. 电磁感应现象电磁感应是指磁场的变化引起电场的感应,或电场的变化引起磁场的感应。
常见的电磁感应现象包括电磁感应现象、自感现象和互感现象。
2. 法拉第电磁感应定律法拉第电磁感应定律描述了导体中感应电动势的产生。
当导体中的磁通量发生变化时,感应电动势会在导体两端产生闭合回路。
四、电磁感应定律的应用1. 电磁感应现象的应用电磁感应现象的应用十分广泛,最常见的就是发电机和电动机原理。
利用电磁感应现象,我们可以将机械能转化为电能或者将电能转化为机械能。
2. 互感现象的应用互感现象在变压器中得到了广泛应用。
通过调整原、副绕组的匝数比,可以实现电压的升降,从而实现电能的输送和变换。
五、电磁波和光的本质1. 电磁波的基本概念电磁波是由变化的电场和磁场相互作用而形成的,具有横波性质。
电磁波的特点包括速度快、传播方向垂直于电磁场振动方向和传播方向、能量传播但不传播物质。
2. 光的本质和光的波粒二象性光是一种电磁波,具有波动性质,可以用光的干涉、衍射和偏振等现象来解释。
电磁学概念
:
三相交流电
三相交流电产生:如果在磁场里有三个互成120°的线圈同时转动,电路
里就有产生三个交流电动势,这样的发电机叫做三相交流发电机,所发出的 电流叫做三相交流电。
Y形连接:线圈的末端和负载之间三条导线合在一起,那样就用一条导线来
连接,每相负载上的电压不变。三相四线制中,每个线圈所引出的导线称为 相线,从公共端引出的导线称做中性线,在中性线接地后引出的一根线为零 线。每个线圈的端电压叫做相电压,相线与相线之间的电压叫做线电压。Y 形连接中,相线与中性线之间的电压就是相电压,为220v。线电压为380v。
库仑定律
库仑定律:真空中两个点电荷之间相互作用的电力,跟
它们的电荷量乘积成正比,跟它们的距离的二次方成反比, 作用力的方向在它们的连线上。
库仑定律公式 F=KQ1Q2/R^2 其中K是常量
电场
电场力:电荷之间相互作用是通过电场发生的。只要有电 荷存在,电荷周围就存在着电场。电场的基本性质是它对 放入其中的电荷有力的作用。 电场强度:放入电场中某点电荷所受的电场力F跟它的电 荷量q的比值。简称场强。E=F/q 场强的单位V/m 电场线:如果在电场中画出一些曲线,使曲线上每一点的 切线方向都跟该点场强方向一致的曲线。电场线越密,场 强越大,反之则小。 匀强电场:在电场的某一区域场强的大小和方向都相同。
是0.02S 。
感抗,容抗
感抗:电感对交流阻碍的大小。电感(自感)越大,交流频率越高, 电感的阻碍越大,感抗就越大。 低频扼流圈:此线圈匝数很多,电感(自感)为几十亨,对低频交流 有很大的阻碍作用。“通直,阻交”。 高频扼流圈:线圈饶制在铁氧体芯上,有时是空心的,匝数为几百, 电感(自感)为几毫亨,此线圈对低频交流阻碍较小,对高频交流阻 碍很大。“通低,阻高”。 容抗:电容对交流阻碍的大小。电容容量越大,交流频率越高,电容 的阻碍就越小,容抗越小。
物理电磁学理论
物理电磁学理论物理学是研究自然界各种现象和规律的科学。
而电磁学作为物理学的一支重要分支,研究的是电和磁现象的原理和规律。
本文将探讨电磁学理论的基本概念、电磁场、电磁波以及电磁辐射等内容。
一、电磁学理论基本概念电磁学理论的基础概念包括电荷、电场、电势、磁场、磁感应强度和磁标量势等。
1. 电荷是电磁学研究的基础,分为正电荷和负电荷。
同性电荷相斥,异性电荷相吸。
2. 电场是指电荷周围存在的电力作用区域。
电场主要由电荷产生,并采用电场力线表示,力线越密集表示电场越强。
3. 电势是描述电场强弱的物理量,通常表示为V。
电势差是指在两点之间单位正电荷所具有的电势能差。
4. 磁场是指磁体周围的磁力作用区域。
磁场主要由磁荷(磁单极子)和电流产生。
5. 磁感应强度是描述磁场强弱的物理量,通常表示为B。
磁感应强度的方向与磁场力线的方向相同。
6. 磁标量势是指描述磁场分布的物理量,通常表示为φ。
二、电磁场电磁场是指电场与磁场同时存在的区域,是电磁学理论的基础概念之一。
1. 电场与磁场的相互作用是电磁场产生的基础。
当电流通过导线时,会产生磁场;而变化的磁场则会产生感应电场。
2. 麦克斯韦方程组是电磁场理论的核心内容,描述了电场与磁场之间的相互关系和运动规律。
3. 电磁力是电磁场中的物体所受到的力,可以通过洛伦兹力计算,包括库仑力和洛伦兹力。
4. 电磁感应是指改变磁场强度或者磁通量时,所产生的感应电动势和感应电流。
三、电磁波电磁波是电磁场的一种表现形式,具有电场和磁场的振荡。
电磁波的传播速度等于真空中的光速。
1. 电磁波的生成是由振动带动电场和磁场的产生,振动的源头可以是电荷的振动或者电流的变化。
2. 电磁波分为空间上的平面波和球面波两种形式。
平面波特点是波阵面平行,球面波特点是波阵面呈球面膨胀。
3. 电磁波的频率和波长呈倒数关系,频率越高,波长越短。
电磁波的频率范围广泛,包括无线电波、微波、红外线、可见光、紫外线、X 射线和γ射线等。
物理电磁学知识点总结
物理电磁学知识点总结电磁学是物理学的一个分支,起源于近代。
广义的电磁学可以说是包含电学和磁学,但狭义来说是一门探讨电性与磁性交互关系的学科。
下面是店铺为你整理的物理电磁学知识点,一起来看看吧。
物理电磁学知识点一、磁现象最早的指南针叫司南。
磁性:磁体能够吸收钢铁一类的物质。
磁极:磁体上磁性最强的部分叫磁极。
磁体两端的磁性最强,中间最弱。
水平面自由转动的磁体,静止时指南的磁极叫南极(S极),指北的磁极叫北极(N极)。
磁极间的作用规律:同名磁极相互排斥,异名磁极相互吸引。
一个永磁体分成多部分后,每一部分仍存在两个磁极。
磁化:使原来没有磁性的物体获得磁性的过程。
钢和软铁的磁化:软铁被磁化后,磁性容易消失,称为软磁材料。
钢被磁化后,磁性能长期保持,称为硬磁性材料。
所以制造永磁体使用钢,制造电磁铁的铁芯使用软铁。
磁铁之所以吸引铁钉是因为铁钉被磁化后,铁钉与磁铁的接触部分间形成异名磁极,异名磁极相互吸引的结果。
物体是否具有磁性的判断方法:①根据磁体的吸铁性判断。
②根据磁体的指向性判断。
③根据磁体相互作用规律判断。
④根据磁极的磁性最强判断。
磁性材料在现代生活中已经得到广泛应用,音像磁带、计算机软盘上的磁性材料就具有硬磁性。
二、磁场磁场:磁体周围存在着的物质,它是一种看不见、摸不着的特殊物质。
磁场看不见、摸不着我们可以根据它对其他物体的作用来认识它。
这里使用的是转换法。
(认识电流也运用了这种方法。
)磁场对放入其中的磁体产生力的作用。
磁极间的相互作用是通过磁场而发生的。
磁场的方向规定:在磁场中的某一点,小磁针静止时北极所指的方向,就是该点磁场的方向。
磁感线:在磁场中画一些有方向的曲线。
任何一点的曲线方向都跟放在该点的磁针北极所指的方向一致。
磁感线的方向:在用磁感线描述磁场时,磁感线都是从磁体的N极出发,回到磁体的S极。
说明:①磁感线是为了直观、形象地描述磁场而引入的带方向的曲线,不是客观存在的。
但磁场客观存在.②磁感线是封闭的曲线。
电磁学的名词解释
电磁学的名词解释电磁学是物理学的一个重要分支,研究电荷和电流之间相互作用的规律,以及电磁场的产生、传播和相互作用。
在电磁学中,有许多重要的名词需要解释和理解。
本文将对电荷、电场、磁场、电流、电磁波等名词进行解释,帮助读者更好地理解电磁学。
电荷是电磁学中的核心概念之一。
电荷是物质的基本属性,有正电荷和负电荷之分。
同性电荷相互排斥,异性电荷相互吸引。
电荷是电场和电流的源头。
电场是电荷产生的一种力场。
当电荷存在时,会形成电场,该电场会影响周围的电荷。
电场的强度用电场强度表示,它是单位正电荷所受到的力的大小。
电场强度的方向是电荷正方向上的力的方向。
电场可以用电场线来描述,电场线的方向表示电场强度的方向。
磁场是由电流和磁体产生的一种力场。
当电流通过导线时,会产生磁场。
磁场的强度用磁感应强度表示,它是单位磁单极子在磁场中所受到的力的大小。
磁感应强度的方向是磁单极子正方向上的力的方向。
磁场可以用磁力线来描述,磁力线的方向表示磁感应强度的方向。
电流是电荷的移动。
当电荷在导体中流动时,就会形成电流。
电流可分为直流和交流,直流电流的方向是固定不变的,而交流电流的方向会周期性地改变。
电流可以用安培表示,安培等于每秒通过导体某一截面的电荷量。
电磁波是由振荡的电场和磁场相互作用而产生的一种波动现象。
电磁波在真空和介质中以光速传播。
电磁波具有电磁辐射的特性,包括可见光、无线电波、微波、X射线等。
电磁波由频率、波长、振幅和相位等物理量来描述。
除了以上解释的名词外,还有许多与电磁学相关的名词,如电感、电容、磁感应线、磁通量、电磁感应等。
这些名词在电磁学的理论和应用中起着重要的作用。
电磁学不仅在基础物理学中占有重要地位,同时也在现代科技和工程领域得到了广泛应用,如电子技术、通信技术、电力工程等。
总之,电磁学是物理学中一个充满魅力的领域,其中涉及的名词解释是理解和应用电磁学的基础。
本文对电磁学中的一些重要名词进行了解释,希望能够帮助读者更好地理解电磁学的原理和应用。
物理课程名词解释
物理课程名词解释
物理课程是一门关于自然界和物质运动的科学学科。
在物理课程中,学生学习和研究物质的性质、力学、热学、电磁学、光学、声学、量子力学等领域的知识。
在物理课程中,有许多重要的名词需要解释和理解。
以下是几个常见的物理课程名词解释:
1. 力学(Mechanics):力学是研究物体运动和力的学科。
它包括运动学(描述物体运动的学科)和动力学(研究物体运动的原因和力的作用)。
2. 热学(Thermodynamics):热学是研究热能和热传递的学科。
它涉及温度、热量、热力学定律、热传导、热辐射等内容。
3. 电磁学(Electromagnetism):电磁学是研究电荷和电磁场相互作用的学科。
它包括静电学(研究电荷和电场)、电流学(研究电流和磁场)和电磁波(研究电磁辐射)等内容。
4. 光学(Optics):光学是研究光的传播和光现象的学科。
它包括几何光学(研究光的传播和反射)、物理光学(研究光的干涉和衍射)和量子光学等内容。
5. 声学(Acoustics):声学是研究声音的学科。
它涉及声波的传播、声音的产生和感知、共振等内容。
6. 量子力学(Quantum Mechanics):量子力学是研究微观粒子行为的学科。
它描述了微观粒子的波粒二象性、不确定性原理、量子态和量子力学方程等内容。
此外,物理课程还涉及一些其他重要的名词,如电磁辐射、核物理、相对论等。
通过学习和理解这些名词,学生可以更好地理解物理学的基本原理和现象,为进一步研究和应用物理学打下坚实的基础。
电磁学的名词
书山有路勤为径,学海无涯苦作舟
电磁学的名词
1.磁畴:所谓磁畴是指磁性材料内部的每个区域包含原子,原子的磁矩都像磁铁整齐排列,相邻的不同区域。
2.磁化:磁力强的磁性材料离开磁场后,自身还带有磁场,这种情况就是磁化。
3.磁饱和:铁磁性物质或亚铁磁性物质处于磁极化强度或磁化强度不随磁场强度的增加而显著增大的情况。
4.磁化曲线:物质磁化强度或磁感应强度与磁场强度的依赖关系的曲线。
5、矫顽力:使磁化至技术饱和的永磁体的磁感应强度低至零所需要的反向磁场强度称为磁感矫顽力,同内禀磁感强度UoM 或Mr 降低至零所需的反向磁场强度称为内禀矫顽力。
6、磁滞:在铁磁性或亚铁磁性物质中,磁感应强度或磁化强度随磁场强度变化而发生的,且与变化率无关的不完全可逆的变化。
7、磁滞回线:当磁场强度发生周期性变化时,表示铁磁性物质或亚铁磁性物质磁滞现象的闭合磁化曲线。
8、软磁材料:当磁化发生在Hc 不大于1000A/m,这样的材料称为软磁体。
典型的软磁材料,可以用最小的外磁场实现最大的磁化强度。
9、硬磁材料:硬磁材料是指磁化后不易退磁而能长期保留磁性的一种磁性材料,也称为永磁材料
10、矩磁材料:磁滞回线的矩形度用剩磁比Rr=Br/Bm 或方形系数Rs=B(- Hm/2)/B(Hm)来表示。
11、磁路:主要由磁性材料构成,在给定区域内形成闭合磁通通道的媒质组合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安培环路定理在恒定电流的磁场中,磁感强度沿任何闭合路径的线积分等于此路径所环绕的电流的代数和的μ0倍。
安培载流导线在磁场中所受的作用力。
毕奥-萨伐尔定律实验指出,一个电流元Idl产生的磁场为场强叠加原理电场中某点的电场强度等于各个电荷单独在该点产生的电场强度的叠加(矢量和)。
磁场叠加原理空间某一点的磁场(以磁感强度示)是各个磁场源(电流或运动电荷)各自在该点产生的磁场的叠加(矢量和)。
磁场能量密度单位磁场体积的能量。
磁场强度是讨论有磁介质时的磁场问题引入的辅助物理量,其定义是磁场强度的环路定理沿磁场中任一闭合路径的磁场强度的环量(线积分)等于此闭合路径所环绕的传导电流的代数和。
磁畴铁磁质中存在的自发磁化的小区域。
一个磁畴中的所有原子的磁矩(铁磁质中起主要作用的是电子的自旋磁矩)可以不靠外磁场而通过一种量子力学效应(交换耦合作用)取得一致方向。
磁化在外磁场作用下磁介质出现磁性或磁性发生变化的现象。
返回页首磁化电流(束缚电流) 磁介质磁化后,在磁介质体内和表面上出现的电流,它们分别称作体磁化电流和面磁化电流。
磁化强度单位体积内分子磁矩的矢量和。
磁链穿过一个线圈的各匝线圈的磁通量之和称作穿过整个线圈的磁链,又称"全磁通"。
磁屏蔽闭合的铁磁质壳体可有效地减弱外界磁场对壳内空间的影响的作用称作磁屏蔽。
磁通连续原理(磁场的高斯定理)在任何磁场中,通过任意封闭曲面的磁通量总为零。
磁通量通过某一面积的磁通量的概念由下式定义磁滞伸缩铁磁质中磁化方向的改变会引起介质晶格间距的改变,从而使得铁磁质的长度和体积发生改变的现象。
磁滞损耗铁磁质在交变磁场作用下反复磁化时的发热损耗。
它是磁畴反复变向时,由磁畴壁的摩擦引起的。
磁滞现象铁磁质工作在反复磁化时,B 的变化落后于H的变化的现象。
D的高斯定理通过任意闭合曲面的电位移通量等于该闭合面所包围的自由电荷的代数和。
其表示式是带电体在外电场中的电势能即该带电体和产生外电场的电荷间的相互作用能。
电场能量密度电场中单位体积的能量电场强度电场中某点的电场强度 ( 简称场强)的大小等于位于该点的单位正电荷(检验电荷)所受的电场力的大小,方向为该正电荷所受电场力的方向。
电场线数密度通过垂直于电场强度的单位面积的电场线的条数。
返回页首电磁波的动量密度单位体积的电磁波具有的动量,表示式为:电磁波的能量密度电磁波的单位体积的能量,其大小为电磁波的能流密度(坡印廷矢量) 单位时间内通过与电磁波传播方向垂直的单位面积的电磁波的能量,其表示式为,电磁场方程组麦克斯韦综合了电磁场的所有规律提出表述电磁场普遍规律的方程组。
其积分形式是, (1)电场的高斯定理(2)磁场的高斯定理(3)电场的环路定理(4)磁场的环路定理即全电流定律电磁单位制的有理化在库仑定律的表示式中引入"4p"因子的作法,称作单位制的有理化。
这样作可使一些常用的电磁学规律的表示式因不出现"4p"因子而变得简单些。
点电荷若一个带电体的线度比带电体间的距离(或比所讨论的问题中涉及的距离)小得多,则带电体的形状和电荷在其上的分布已无关紧要,带电体可抽象为一个几何点,这称作点电荷点电荷系的相互作用能把各点电荷由所在位置分散至彼此相距无穷远的过程中电场力作的功。
电动势把单位正电荷经电源内部由负极移向正极过程中,非静电力所作的功。
电荷密度是表示空间某处带电情况的物理量,分为:体电荷密度ρ单位体积的带电量面电荷密度σ单位面积的带电量线电荷密度λ单位长度的带电量返回页首电荷守恒定律在任何物理过程中,一个系统的正负电荷的代数和保持不变,称作电荷守恒定律。
电极化强度为描写电介质极化的强弱,引入电极化强度(矢量),其定义是单位体积内分子电矩的矢量和。
电介质即绝缘体。
理想的电介质内部没有可以自由移动的电荷,因而不能导电。
电介质分子可分为有极分子和无极分子两类。
电介质的击穿若电介质中的场强很大,电介质分子的正负电荷有可能被拉开而变成可自由移动的电荷。
大量自由电荷的产生,使电介质的绝缘性能破坏而成为导体,这称作电介质的击穿。
电介质的极化在外电场中固有电矩取向(取向极化)或感生电矩产生(位移极化)从而在电介质内部和表面上产生束缚电荷(极化电荷)的现象。
电流场在导体内各处的电流形成一个"电流场",在电流场中每一点都有自己的电流密度。
电流连续性方程单位时间内流出封闭曲面的净电量应等于封闭曲面内电量的减少。
电流密度电流密度是个矢量,某点的电流密度,其方向---该点正电荷定向运动的方向;大小---通过垂直于该点电荷运动方向的单位面积上的电流强度。
电流强度单位时间通过导体某一横截面的电量。
电流线类似电场线,在电流场中可画出电流线。
其特点是(1)电流线上某点的切向与该点j的方向一致;(2)通过垂直于某点j的单位面积的电流线的条数等于该点j的大小。
电偶极矩是一个矢量,其大小等于构成电偶极子的电荷的电量与两电荷距离的乘积,方向从负电荷指向正电荷。
返回页首电偶极子一对靠得很近的等量异号的点电荷所组成的带电系统。
一些实际的带电系统(如电介质的分子)可简化为电偶极子。
电容(量) 电容器的带电量与其电压之比。
电势电场中某点的电势等于把单位正电荷自该点移至"标准点"过程中电场力作的功。
或电场中某点的电势等于单位正电荷在该点具有的电势能。
电势差a、b两点的电势差即把单位正电荷自a点移至b点的过程中电场力作的功电势叠加原理电场中某点的电势等于各电荷单独在该点产生的电势的叠加(代数和)。
等势面电势相等的点组成的面。
电势能q0在电场中某点a的电势能为把q0自a 点移至 "标准点"的过程中电场力作的功。
电势梯度电势梯度是个矢量,其方向是电势增加最快的方向,大小为沿该方向的电势变化率。
电通量电通量的概念由下式定义如借助电场线的概念,则通过某面积的电通量等于通过该面积的电场线的条数。
电位移矢量D是在讨论电介质的电场问题时引入的一个辅助物理量,其定义是电象法为求某区域内的电场,可在满足原边界条件的前提下在区域外放置一定的假想电荷(称象电荷或电象),由区域内电荷及电象即可求出区域内的电场,这种求电场的方法称电象法。
动生电动势导体在恒定磁场中运动时产生的感应电动势。
法拉第电磁感应定律回路中的感应电动势和通过回路的磁通量的变化率成正比。
分布电容(杂散电容)两条输电线或任意两条靠近的导线之间的电容,此电容分布在整个输电线(或导线)之间。
返回页首分子磁矩对顺磁质分子,分子磁矩即分子的固有磁矩;对抗磁质分子,分子磁矩即分子的感生磁矩。
分子电矩在电介质分子的正负电"重心"相对错开时,可把电介质的分子看作电偶极子(物理模型)。
此电偶极子的电偶极矩即叫做分子电矩,其意义是附加磁矩在外磁场中,由于电子的轨道运动、自旋运动及核的自旋运动所产生的和外磁场方向相反的磁矩。
辐射压力由于电磁波有动量,当它入射到物体表面上时,对表面产生的压力作用称作辐射压力或光压。
感生磁矩抗磁质分子在外磁场中产生的和外磁场方向相反的磁矩。
它是抗磁质分子中所有附加磁矩(其方向都相同 )的矢量和。
感生电场当磁场变化时,不仅在导体回路中,而且在空间任一点都会激发出一种电场,这种电场称作感生电场。
感生电场的电流线是闭合的。
高斯定理真空中静电场内,通过任意闭合曲面的电通量等于该曲面所包围的电量的代数和的1/ε0倍。
固有磁矩顺磁质分子在正常情况( 无外磁场 )下所具有的磁矩。
它是分子中所有电子的轨道磁矩和自旋磁矩及所有核磁矩的矢量和。
感应电动势当通过回路的磁通量发生变化时,在回路中产生的电动势称作感应电动势。
恒定电场是由不随时间改变的电荷分布产生的不随时间改变的电场。
恒定电流是指电流场中各处的电流密度均不随时间改变的电流。
互感电动势当一个线圈中的电流随时间变化时,在邻近的其它线圈中产生的感应电动势称作互感电动势。
互感系数对于一对邻近的线圈,当在其中一个线圈通有电流时,在另一线圈中产生的磁链(全磁通)与此电流成正比,其比例系数称作这对线圈的互感系数。
返回页首回路电压定律(基尔霍夫第二定律)在恒定电流电路中,沿任何闭合回路一周电势降落的代数和等于零。
回路静止回路包围的磁场变化时,在回路中产生的感应电动势。
霍耳效应在磁场中的载流导体上出现横向电势差的现象。
利用霍耳效应可以测量半导体中载流子的种类和浓度,还可用来测量磁感强度。
节点电流定律(基尔霍夫第一定律)流入节点的电流之和与流出节点的电流之和相等。
介电强度电介质可承受的不被击穿的最大场强。
静电场相对观察者静止的电荷产生的电场静电场的保守性对任何静电场,电场强度的线积分只取决于起、终点a、b 的位置,而与积分路径无关。
所以,静电力作功与路径无关,静电场是保守力场。
静电场的环路定理在静电场中,电场强度沿任意闭合路径的线积分等于零。
静电屏蔽空腔导体可保护腔内空间的电场不受腔外带电体的影响;接地空腔导体可保护腔外空间的电场不受腔内带电体的影响,这称作静电屏蔽。
静电平衡状态导体内部和表面都没有电荷的定向移动的状态。
静电体系在某状态的静电能等于把无限分散的电荷聚为该状态(电荷分布、位形) 外力所作的功。
或等于把该状态的电荷无限分小,并移至彼此相距无穷远的过程中静电力所作的功。
也可以说,一个体系的静电能即体系中所有电荷(指所有无限分小的电荷)间的相互作用能。
静电体系的静电能静电体系处于某状态的电势能称静电势能或静电能。
它包括体系内各带电体的自能和带电体间的相互作用能居里温度(居里点) 是一个临界温度,当达到这一温度时,铁磁质的铁磁性消失,铁磁质将变为顺磁质。
返回页首库仑定律真空中两个静止的点电荷之间的作用力与两电荷电量的乘积成正比,与它们的距离的平方成反比,作用力的方向沿两点电荷的连线。
楞次定律闭合回路中感应电流的方向,总是使得它所产生的磁通阻止原磁通(引起感应电流的磁通)的变化。
即感应电流的效果总是阻止产生感应电流的原因。
连续带电体的静电能把带电体的电荷无限分割并分散到彼此相距无穷远时,电场力作的功。
量子霍耳效应半导体在极低温度和强磁场中,其霍耳电阻和磁感强度的关系并不是线性关系,而是有一系列台阶式的改变,这称作量子霍耳效应。
德国物理学家克里青(K.Klitzing)因这一发现而获得1985年诺贝尔物理学奖。
洛仑兹力运动电荷在磁场中所受的作用力。
面磁化电流密度磁介质表面上,垂直于磁化电流方向的单位宽度上的电流。
漂移速度金属中电子的平均定向速度。
它等于通过该面积的磁感线的根数。
全电流通过空间某截面的传导电流与位移电流之和称通过该截面的全电流。
全电流是连续的,在空间构成闭合回路。
全电流定律即推广了的H的环路定理,趋肤效应高频电路中,传导电流集中到导线表面附近的现象。