机械优化设计习题及答案
《机械优化设计》试卷及答案 新 全
《机械优化设计》复习题及答案一、选择题1、下面 方法需要求海赛矩阵。
A 、最速下降法B 、共轭梯度法C 、牛顿型法D 、DFP 法2、对于约束问题()()()()2212221122132min 44g 10g 30g 0f X x x x X x x X x X x =+-+=--≥=-≥=≥根据目标函数等值线和约束曲线,判断()1[1,1]T X =为 ,()251[,]22TX =为 。
A .内点;内点B. 外点;外点C. 内点;外点D. 外点;内点3、内点惩罚函数法可用于求解__________优化问题。
A 无约束优化问题B 只含有不等式约束的优化问题C 只含有等式的优化问题D 含有不等式和等式约束的优化问题4、对于一维搜索,搜索区间为[a ,b],中间插入两个点a 1、b 1,a 1<b 1,计算出f(a 1)<f(b 1),则缩短后的搜索区间为___________。
A [a 1,b 1]B [ b 1,b]C [a1,b]D [a,b1]5、_________不是优化设计问题数学模型的基本要素。
A设计变量B约束条件C目标函数D 最佳步长6、变尺度法的迭代公式为x k+1=x k-αk H k▽f(x k),下列不属于H k必须满足的条件的是________。
A. H k之间有简单的迭代形式B.拟牛顿条件C.与海塞矩阵正交D.对称正定7、函数)(Xf在某点的梯度方向为函数在该点的。
A、最速上升方向B、上升方向C、最速下降方向D、下降方向8、下面四种无约束优化方法中,__________在构成搜索方向时没有使用到目标函数的一阶或二阶导数。
A 梯度法B 牛顿法C 变尺度法D 坐标轮换法9、设)f在R上为凸函数的(X(Xf为定义在凸集R上且具有连续二阶导数的函数,则)充分必要条件是海塞矩阵G(X)在R上处处。
A 正定B 半正定C 负定D 半负定10、下列关于最常用的一维搜索试探方法——黄金分割法的叙述,错误的是,。
机械优化设计试题及答案
机械优化设计试题及答案### 机械优化设计试题及答案#### 一、选择题(每题2分,共10分)1. 机械优化设计的最基本目标是什么?- A. 最小化成本- B. 最大化效率- C. 确保安全性- D. 以上都是2. 以下哪个是优化设计中常用的数学方法?- A. 线性代数- B. 微积分- C. 概率论- D. 几何学3. 在进行机械优化设计时,以下哪个因素通常不是设计变量? - A. 材料选择- B. 尺寸参数- C. 工作温度- D. 制造工艺4. 机械优化设计中,约束条件通常包括哪些类型?- A. 应力约束- B. 位移约束- C. 速度约束- D. 所有上述5. 以下哪个软件不是用于机械优化设计的?- A. ANSYS- B. MATLAB- C. AutoCAD- D. SolidWorks#### 二、简答题(每题10分,共20分)1. 简述机械优化设计的基本步骤。
2. 解释什么是多目标优化,并举例说明其在机械设计中的应用。
#### 三、计算题(每题15分,共30分)1. 假设有一个机械臂设计问题,需要优化其长度以获得最大的工作范围。
如果机械臂的长度 \( L \) 与工作范围 \( R \) 的关系为 \( R = L \times \sin(\theta) \),其中 \( \theta \) 是机械臂与水平面的夹角,\( 0 \leq \theta \leq 90^\circ \),求当 \( \theta = 45^\circ \) 时,机械臂的最佳长度 \( L \)。
2. 考虑一个简单的梁结构,其长度为 \( 10 \) 米,承受均布载荷\( q = 10 \) kN/m。
若梁的弯曲刚度 \( EI \) 为 \( 1 \times10^7 \) Nm²,求梁的最大挠度 \( \delta \)。
#### 四、论述题(每题15分,共30分)1. 论述机械优化设计在现代制造业中的重要性。
《机械优化设计》复习题-答案
机械优化设计复习题解答一、填空题1、用最速下降法求fX=100x 2- x 12 2+1- x 1 2的最优解时,设X 0=,T ,第一步迭代的搜索方向为 -47,-50T ;2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长;3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解;4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势;5、包含n 个设计变量的优化问题,称为 n 维优化问题;6、函数C X B HX X T T++21的梯度为HX+B ; 7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足d 0T Gd 1=0,则d 0、d 1之间存在共轭关系;8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素;9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是,充分条件是正定 ;10、 库恩-塔克 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合; 11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 10 ; 12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件;13、牛顿法的搜索方向d k= ,其计算量大 ,且要求初始点在极小点 附近 位置; 14、将函数fX=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 ;15、存在矩阵H,向量 d 1,向量 d 2,当满足d 1T Hd 2=0,向量 d 1和向量 d 2是关于H 共轭; 16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r 数列,具有单调递增特点;17、采用数学规划法求解多元函数极值点时,根据迭代公式需要进行一维搜索,即求最优步长;1k k H g --18、与负梯度成锐角的方向为函数值下降的方向,与梯度成直角的方向为函数值变化为零的方向;19、对于一维搜索,搜索区间为[]b a ,,中间插入两个点()()111111,,,b f a f b a b a <<计算出,则缩短后的搜索区间为11b a20、由于确定搜索方向和最佳步长的方法不一致,派生出不同的无约束优化问题数值求解方法;1、导出等式约束极值条件时,将等式约束问题转换为无约束问题的方法有消元法和拉格朗日法;2、优化问题中的二元函数等值线,从外层向内层函数值逐渐变小;3、优化设计中,可行设计点位可行域内内的设计点;4、方向导数定义为函数在某点处沿某一方向的变化率5、在n 维空间中互相共轭的非零向量个数最多有n 个;6、外点惩罚函数法的迭代过程可在可行域外进行,惩罚项的作用是随便迭代点逼近边界或等式约束曲面; 二、选择题1、下面C 方法需要求海赛矩阵; A 、最速下降法 B 、共轭梯度法 C 、牛顿型法 D 、DFP 法2、对于约束问题根据目标函数等值线和约束曲线,判断()1[1,1]T X =为 ,()251[,]22TX =为 ;D A .内点;内点 B. 外点;外点 C. 内点;外点 D. 外点;内点3、内点惩罚函数法可用于求解B 优化问题; A 无约束优化问题B 只含有不等式约束的优化问题C 只含有等式的优化问题D 含有不等式和等式约束的优化问题4、对于一维搜索,搜索区间为a,b,中间插入两个点a1、b1,a1<b1,计算出fa1<fb1,则缩短后的搜索区间为D;A a1,b1B b1,bC a1,bD a,b15、D不是优化设计问题数学模型的基本要素;A设计变量B约束条件C目标函数D 最佳步长6、变尺度法的迭代公式为x k+1=x k-αk H k▽fx k,下列不属于H k必须满足的条件的是C ;A. Hk之间有简单的迭代形式B.拟牛顿条件C.与海塞矩阵正交D.对称正定7、函数)(Xf在某点的梯度方向为函数在该点的A;A、最速上升方向B、上升方向C、最速下降方向D、下降方向8、下面四种无约束优化方法中,D在构成搜索方向时没有使用到目标函数的一阶或二阶导数;A 梯度法B 牛顿法C 变尺度法D 坐标轮换法9、设)(Xf为定义在凸集R上且具有连续二阶导数的函数,则)(Xf在R上为凸函数的充分必要条件是海塞矩阵GX在R上处处B;A 正定B 半正定C 负定D 半负定10、下列关于最常用的一维搜索试探方法——黄金分割法的叙述,错误的是D,假设要求在区间a,b插入两点α1、α2,且α1<α2;A、其缩短率为B、α1=b-λb-aC、α1=a+λb-aD、在该方法中缩短搜索区间采用的是外推法;11、与梯度成锐角的方向为函数值A方向,与负梯度成锐角的方向为函数值B方向,与梯度成直角的方向为函数值 C方向;A、上升B、下降C、不变D、为零12、二维目标函数的无约束极小点就是 B;A、等值线族的一个共同中心B、梯度为0的点C、全局最优解D、海塞矩阵正定的点13、最速下降法相邻两搜索方向d k和d k+1必为 B 向量;A 相切B 正交C 成锐角D 共轭14、下列关于内点惩罚函数法的叙述,错误的是A;A 可用来求解含不等式约束和等式约束的最优化问题;B 惩罚因子是不断递减的正值C初始点应选择一个离约束边界较远的点;D 初始点必须在可行域内三、问答题看讲义1、试述两种一维搜索方法的原理,它们之间有何区答:搜索的原理是:区间消去法原理区别:1、试探法:给定的规定来确定插入点的位置,此点的位置确定仅仅按照区间的缩短如何加快,而不顾及函数值的分布关系,如黄金分割法2、插值法:没有函数表达式,可以根据这些点处的函数值,利用插值方法建立函数的某种近似表达式,近而求出函数的极小点,并用它作为原来函数的近似值;这种方法称为插值法,又叫函数逼近法;2、惩罚函数法求解约束优化问题的基本原理是什么答,基本原理是将优化问题的不等式和等式约束函数经过加权转化后,和原目标函数结合形成新的目标函数——惩罚函数求解该新目标函数的无约束极值,以期得到原问题的约束最优解3、试述数值解法求最佳步长因子的基本思路;答主要用数值解法,利用计算机通过反复迭代计算求得最佳步长因子的近似值4、试述求解无约束优化问题的最速下降法与牛顿型方法的优缺点;答:最速下降法此法优点是直接、简单,头几步下降速度快;缺点是收敛速度慢,越到后面收敛越慢;牛顿法优点是收敛比较快,对二次函数具有二次收敛性;缺点是每次迭代需要求海塞矩阵及其逆矩阵,维数高时及数量比较大;5、写出用数学规划法求解优化设计问题的数值迭代公式,并说明公式中各变量的意义,并说明迭代公式的意义;6、什么是共轭方向满足什么关系共轭与正交是什么关系四、解答题1、试用梯度法求目标函数fX=+ x1x2-2x1的最优解,设初始点x0=-2,4T,选代精度ε=迭代一步;解:首先计算目标函数的梯度函数,计算当前迭代点的梯度向量值梯度法的搜索方向为, 因此在迭代点x0的搜索方向为12,-6T 在此方向上新的迭代点为:===把新的迭代点带入目标函数,目标函数将成为一个关于单变量的函数令,可以求出当前搜索方向上的最优步长新的迭代点为当前梯度向量的长度, 因此继续进行迭代; 第一迭代步完成;2、试用牛顿法求f X =x1-22+x1-2x22的最优解,设初始点x0=2,1T;解1:注:题目出题不当,初始点已经是最优点,解2是修改题目后解法;牛顿法的搜索方向为,因此首先求出当前迭代点x0的梯度向量、海色矩阵及其逆矩阵不用搜索,当前点就是最优点;解2:上述解法不是典型的牛顿方法,原因在于题目的初始点选择不当;以下修改求解题目的初始点,以体现牛顿方法的典型步骤;以非最优点x0=1,2T作为初始点,重新采用牛顿法计算牛顿法的搜索方向为,因此首先求出当前迭代点x0的梯度向量、以及海色矩阵及其逆矩阵梯度函数:初始点梯度向量:海色矩阵:海色矩阵逆矩阵:当前步的搜索方向为:=新的迭代点位于当前的搜索方向上:====把新的迭代点带入目标函数,目标函数将成为一个关于单变量的函数令,可以求出当前搜索方向上的最优步长新的迭代点为当前梯度向量的长度, 因此继续进行迭代;第二迭代步:因此不用继续计算,第一步迭代已经到达最优点;这正是牛顿法的二次收敛性;对正定二次函数,牛顿法一步即可求出最优点;3、设有函数 fX=x12+2x22-2x1x2-4x1,试利用极值条件求其极值点和极值;解:首先利用极值必要条件找出可能的极值点:令=求得,是可能的极值点;再利用充分条件正定或负定确认极值点;因此正定, 是极小点,极值为fX=-84、求目标函数f X =x12+x1x2+2x22 +4x1+6x2+10的极值和极值点;解法同上5、试证明函数 f X =2x12+5x22 +x32+2x3x2+2x3x1-6x2+3在点1,1,-2T处具有极小值;解:必要条件:将点1,1,-2T带入上式,可得充分条件=40正定;因此函数在点1,1,-2T处具有极小值6、给定约束优化问题min fX=x1-32+x2-22. g1X=-x12-x22+5≥0g 2X=-x1-2x2+4≥0g 3X= x1≥0g 4X=x2≥0验证在点TX]2[,1=Kuhn-Tucker条件成立; 解:首先,找出在点TX]2[,1=起作用约束:g1X =0g2X =0g3X =2g4X =1因此起作用约束为g1X、g2X;然后,计算目标函数、起作用约束函数的梯度,检查目标函数梯度是否可以表示为起作用约束函数梯度的非负线性组合;==,求解线性组合系数得到均大于0因此在点T X ]2[,1=Kuhn-Tucker 条件成立 7、设非线性规划问题用K-T 条件验证[]TX 0,1*=为其约束最优点;解法同上8、已知目标函数为fX= x 1+x 2,受约束于:g 1X=-x 12+x 2≥0 g 2X=x 1≥0 写出内点罚函数; 解:内点罚函数的一般公式为其中: r 1>r 2 >r 3… >r k … >0 是一个递减的正值数列 r k =Cr k-1, 0<C <1 因此 罚函数为:9、已知目标函数为fX= x 1-12+x 2+22受约束于:g 1X=-x 2-x 1-1≥0g 2X=2-x 1-x 2≥0 g 3X=x 1≥0 g 4X=x 2≥0试写出内点罚函数; 解法同上10、如图,有一块边长为6m 的正方形铝板,四角截去相等的边长为x 的方块并折转,造一个无盖的箱子,问如何截法x 取何值才能获得最大容器的箱子;试写出这一优化问题的数学模型以及用MATLAB 软件求解的程序;11、某厂生产一个容积为8000cm 3的平底无盖的圆柱形容器,要求设计此容器消耗原材料最少,试写出这一优化问题的数学模型以及用MATLAB 软件求解的程序;12、一根长l 的铅丝截成两段,一段弯成圆圈,另一段弯折成方形,问应以怎样的比例截断铅丝,才能使圆和方形的面积之和为最大,试写出这一优化设计问题的数学模型以及用MATLAB 软件求解的程序;13、求表面积为300m 2的体积最大的圆柱体体积;试写出这一优化设计问题的数学模型以及用MATLAB 软件求解的程序; 14、薄铁板宽20cm,折成梯形槽,求梯形侧边多长及底角多大,才会使槽的断面积最大;写出这一优化设计问题的数学模型,并用matlab软件的优化工具箱求解写出M文件和求解命令;15、已知梯形截面管道的参数是:底边长度为c,高度为h,面积A=64516mm2,斜边与底边的夹角为θ,见图1;管道内液体的流速与管道截面的周长s的倒数成比例关系s只包括底边和两侧边,不计顶边;试按照使液体流速最大确定该管道的参数;写出这一优化设计问题的数学模型;并用matlab软件的优化工具箱求解写出M文件和求解命令;16、某电线电缆车间生产力缆和话缆两种产品;力缆每米需用材料9kg,3个工时,消耗电能4kW·h,可得利润60元;话缆每米需用材料4kg,10个工时,消耗电能5kW·h,可得利润120元;若每天材料可供应360kg,有300个工时消耗电能200kW·h可利用;如要获得最大利润,每天应生产力缆、话缆各多少米写出该优化问题的数学模型以及用MATLAB软件求解的程序;。
(完整版)机械优化设计习题参考答案孙靖民第四版机械优化设计
2.黄金分割法(0.618法)
原理:提高搜索效率:1)每次只插一个值,利用一个前次的插值;2)每次的缩短率λ相同。左右对称。
程序:p52
(四)插值方法
1.抛物线法
原理:任意插3点:
算得: ; ;
要求:
设函数 用经过3点的抛物线 代替,有
解线代数方程
解得:
程序框图p57
网格法 ,缩小区间,继续搜索。
Monte Carlo方法 , ,随机数。
比较各次得到的 得解
遗传算法(专题)
(二)区间消去法(凸函数)
1.搜索区间的确定:高—低--高( )则区间内有极值。
2.区间消去法原理:在区间[a, b]内插两个点a1, b1保留有极值点区间,消去多余区间。
缩短率:
(三)0.618法
可行方向—约束允许的、函数减小的方向。(图)约束边界的切线与函数等高线的切线方向形成的区域。
数学模型
用内点法或混合法,取 ,
直接方法
(一)随机方向法
1.在可行域产生一个初始点 ,因 (约束),则
--(0,1)的随机数。
2.找k个随机方向,每个方向有n个方向余弦,要产生kn个随机数 , , ,随机方向的单位向量为
3.取一试验步长 ,计算每个方向的最优点
4.找出可行域中的最好点 得搜索方向 。以 为起点, 为搜索方向得 。最优点必须在可行域内或边界上,为此要逐步增加步长。
得
穷举下去得递推公式
3.算例
p73
4.框图p72
5.特点
作业:1. 2.
(六)变尺度法
1.引言
坐标变换
二次函数
令 为尺度变换矩阵
机械优化设计试题及答案(山大)
1 1 4 2 = 3 2 4 − 2 2
2 2 2 + 2α1 3 + α1 2 2
x2=x1+ α1 d 1 = 1 + α1 3 = 1
2 2
′ (α1 ) = 0 其中的 α1 为最佳步长,通过f(x2)= min ϕ 2 (α ), ϕ 2
′(α 0 ) = 0 其中的 α 0 为最佳步长,可通过f(x1)= min ϕ1 (α ), ϕ1
α
求得 x1 =
α0 =
1 4
则
1 4 1 + 4α 0 2 + α 0 1 − 2 = 1 − 2α = 1 0 2
,
其
逆
矩
阵
为
1 2 32 ∇ 2 f ( X 0 ) ∇f ( X 0 ) 因此可得: X 1 = X0 − = − 2 0
−1
0 64 0 = 1 100 0 50
T
f ( X 1 ) = 5 ,从而经过一次迭代即求得极小点 X ∗ = [ 0 0] , f ( X ∗ ) = 5 20 4.下表是用黄金分割法求目标函数 f (α ) 的极小值的计算过程,请完成 = α+
T
优解相同。图 4-1b 表示出最优点 x * 为新目标函数等值线族的中心。
图 4-1 a)目标函数等值线和约束函数关系 b)新目标函数等值线
0.2] , f ( x* ) = 0.8 。
T
由图 4-1a 可知,约束最优点 x * 为目标函数等值线与等式约束பைடு நூலகம்数(直线)的切点。 用间接解法求解时,可取 µ 2 =0.8,转换后的新目标函数为
机械优化设计试题及答案
计算题1.试用牛顿法求()221285f X x x =+的最优解,设()[]01010TX =。
初始点为()[]01010TX =,则初始点处的函数值和梯度分别为()()0120121700164200410140f X x x f X x x =+⎡⎤⎡⎤∇==⎢⎥⎢⎥+⎣⎦⎣⎦,沿梯度方向进行一维搜索,有()010000010200102001014010140X X f X αααα-⎡⎤⎡⎤⎡⎤=-∇=-=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦0α为一维搜索最佳步长,应满足极值必要条件()()[]()()()(){}()αϕααααααααm i n 14010514010200104200108min min 200020001=-⨯+-⨯-⨯+-⨯=∇-=X f X f X f()001060000596000ϕαα'=-=, 从而算出一维搜索最佳步长 0596000.05622641060000α==则第一次迭代设计点位置和函数值01010200 1.245283010140 2.1283019X αα--⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦ ()124.4528302f X =,从而完成第一次迭代。
按上面的过程依次进行下去,便可求得最优解。
2、试用黄金分割法求函数()20f ααα=+的极小点和极小值,设搜索区间[][],0.2,1a b =(迭代一次即可)解:显然此时,搜索区间[][],0.2,1a b =,首先插入两点12αα和,由式 ()1()10.61810.20.5056b b a αλ=--=--= ()2()0.20.6181.20.6944a b a αλ=+-=+⨯-=计算相应插入点的函数值()()4962.29,0626.4021==ααf f 。
因为()()12f f αα>。
所以消去区间[]1,a α,得到新的搜索区间[]1,b α, 即[][][]1,,0.5056,1b a b α==。
机械优化设计课后习题答案
2-8 解:
试判断函数 f (X) 2x12 x22 2x1x2 x1 1 的凸性。
f ( X ) f ( X ) 4 x1 2 x2 1 , 2 x2 2 x1 x1 x2
2 f (X ) 2 f (X ) 2 f (X ) 2 f (X ) 5, 2, 2, 2 2 x1x2 x2 x1 x12 x2 5 2 海赛矩阵H ( X ) 2 2
6
a 各阶主子式: a11 2 0,11 a 21
a12 a 22
2 1 0 1 2
H(X)是正定的, 所以, f (X) 为凸函数。
2-10 现已获得优化问题
min s.t.
f ( X) 4 x1 x2 2 12 g1 ( X) x12 x2 2 25 0 g 2 ( X) x12 x2 2 10 x1 10 x2 34 0 g3 ( X) ( x1 3) 2 ( x2 1) 2 0 g 4 ( X) x1 0 g5 ( X) x2 0
求:
2、 3、 4 时的四条等值线,并在图上 (1) 以一定的比例尺画出当目标函数依次为 f ( X) 1、
画出可行区的范围。 (2) 找出图上的无约束最优解 X1 和对应的函数值 f ( X1 ) , 约束最优解 X 2 和 f ( X2 ) ; (3) 若加入一个等式约束条件:
h(X) x1 x2 0
x2
x3 ]T [d
D2
n]T 使弹簧重量
最轻, 同时满足下列限制条件: 弹簧圈数 n 3 , 簧丝直径 d 0.5 , 弹簧中径 10 D2 50 。 试建立该优化问题的数学模型。 注:弹簧的应力与变形计算公式如下 3 8Fn D2 8FD2 D2 1 ks , k 1 , c ( 旋绕比), s d3 2c d Gd 4 解: (1)确定设计变量;
机械优化设计课后习题答案word版本
第一章习题答案1-1 某厂每日(8h 制)产量不低于1800件。
计划聘请两种不同的检验员,一级检验员的标准为:速度为25件/h,正确率为98%,计时工资为4元/ h;二级检验员标准为:速度为15件/h,正确率为95%,计时工资 3 元/h。
检验员每错检一件,工厂损失2元。
现有可供聘请检验人数为:一级8人和二级10人。
为使总检验费用最省,该厂应聘请一级、二级检验员各多少人?解:(1 )确定设计变量;X-j 一级检验员根据该优化问题给定的条件与要求,取设计变量为X = 1;x2二级检验员(2)建立数学模型的目标函数;取检验费用为目标函数,即:f(X) = 8*4* X1+ 8*3* X2 + 2 ( 8*25*0.02 X1 +8*15*0.05 X2 )=40x1+ 36x2(3)本问题的最优化设计数学模型:3 •min f (X) = 40X1+ 36X2 X€ Rs.t. g1(X) =1800-8*25 X1+8*15X2W 0g2( X) = x1 -8 < 0g3(X) = x2-10 w 0g4( X) = - X1 w 0 g5( X) = - x2w 01-2已知一拉伸弹簧受拉力F,剪切弹性模量G,材料重度r,许用剪切应力[],许用最大变形量[]。
欲选择一组设计变量X [X1 X2 X3]T [d D2 n]T使弹簧重量最轻,同时满足下列限制条件:弹簧圈数n 3, 簧丝直径d 0.5,弹簧中径10 D2 50。
试建立该优化问题的数学模型。
注:弹簧的应力与变形计算公式如下k s 8FD32 , k s 1 1, c D2 (旋绕比),s d3 s 2c d解:(1)确定设计变量;x-i d 根据该优化问题给定的条件与要求,取设计变量为X= x2D2;X3 n(2)建立数学模型的目标函数;取弹簧重量为目标函数,即:22f(X) = rx1 x2x343 本问题的最优化设计数学模型:8F n D;Gd423 •min f (X) = rx 1 x 2x 3 X € R4s.t.g i (X) =0.5- x i w 0 g 2( X) =10- x 2 w 0 g 3( X) = X 2-50 w 0 g 4( X) =3- X 3 w 0 g 5(X) =(1 丄)辱 w 02x 2 x 1w 0g 6(X)=38FX 2 x 3Gx 141-3某厂生产一个容积为 一优化问题的数学模型。
机械优化设计试题及标准答案
计算题1.试用牛顿法求()221285f X x x =+的最优解,设()[]01010TX =。
初始点为()[]01010TX =,则初始点处的函数值和梯度分别为()()0120121700164200410140f X x x f X x x =+⎡⎤⎡⎤∇==⎢⎥⎢⎥+⎣⎦⎣⎦,沿梯度方向进行一维搜索,有()010000010200102001014010140X X f X αααα-⎡⎤⎡⎤⎡⎤=-∇=-=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦0α为一维搜索最佳步长,应满足极值必要条件()()[]()()()(){}()αϕααααααααmin 14010514010200104200108min min 200020001=-⨯+-⨯-⨯+-⨯=∇-=X f X f X f()001060000596000ϕαα'=-=, 从而算出一维搜索最佳步长 0596000.05622641060000α==则第一次迭代设计点位置和函数值01010200 1.245283010140 2.1283019X αα--⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦ ()124.4528302f X =,从而完成第一次迭代。
按上面的过程依次进行下去,便可求得最优解。
2、试用黄金分割法求函数()20f ααα=+的极小点和极小值,设搜索区间[][],0.2,1a b =(迭代一次即可)解:显然此时,搜索区间[][],0.2,1a b =,首先插入两点12αα和,由式 ()1()10.61810.20.5056b b a αλ=--=--= ()2()0.20.61810.20.6944a b a αλ=+-=+⨯-=计算相应插入点的函数值()()4962.29,0626.4021==ααf f 。
因为()()12f f αα>。
所以消去区间[]1,a α,得到新的搜索区间[]1,b α, 即[][][]1,,0.5056,1b a b α==。
《机械优化设计》试卷和答案
《机械优化设计》复习题及答案一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为[-47;-50] 。
2、机械优化设计采用数学规划法,其核心一是建立搜索方向 二是计算最佳步长因子 。
3、当优化问题是__凸规划______的情况下,任何局部最优解就是全域最优解。
4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。
5、包含n 个设计变量的优化问题,称为 n 维优化问题。
6、函数 C X B HX X T T ++21的梯度为 HX+B 。
7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在_共轭_____关系。
8、 设计变量 、 约束条件 、 目标函数 是优化设计问题数学模型的基本要素。
9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是 梯度为零 ,充分条件是 海塞矩阵正定 。
10、 库恩-塔克 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36,2.36] 。
12、优化设计问题的数学模型的基本要素有设计变量 、约束条件 目标函数 、13、牛顿法的搜索方向d k = ,其计算量 大 ,且要求初始点在极小点 逼近 位置。
14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T ++21的形式 。
15、存在矩阵H ,向量 d 1,向量 d 2,当满足 (d1)TGd2=0 ,向量 d 1和向量 d 2是关于H 共轭。
《机械优化设计》试卷及答案
《机械优化设计》复习题及答案一、填空题1、用最速下降法求f(X)=100(x2- x12) 2+(1- x1) 2的最优解时,设X(0)=[-0.5,0.5]T,第一步迭代的搜索方向为[-47;-50]。
2、机械优化设计采用数学规划法,其核心一是建立搜索方向二是计算最佳步长因子。
3、当优化问题是__凸规划______的情况下,任何局部最优解就是全域最优解。
4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成高-低-高趋势。
5、包含n个设计变量的优化问题,称为n维优化问题。
6、函数的梯度为HX+B。
7、设G为n×n对称正定矩阵,若n维空间中有两个非零向量d0,d1,满足(d0)T Gd1=0,则d0、d1之间存在_共轭_____关系。
8、设计变量、约束条件、目标函数是优化设计问题数学模型的基本要素。
9、对于无约束二元函数,若在点处取得极小值,其必要条件是梯度为零,充分条件是海塞矩阵正定。
10、库恩-塔克条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数的极小点,初始搜索区间,经第一次区间消去后得到的新区间为[-2.36,2.36]。
12、优化设计问题的数学模型的基本要素有设计变量、约束条件目标函数、13、牛顿法的搜索方向d k=,其计算量大,且要求初始点在极小点逼近位置。
14、将函数f(X)=x12+x22-x1x2-10x1-4x2+60表示成的形式。
15、存在矩阵H,向量d1,向量d2,当满足(d1)TGd2=0,向量d1和向量d2是关于H共轭。
16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r 数列,具有由小到大趋于无穷特点。
17、采用数学规划法求解多元函数极值点时,根据迭代公式需要进行一维搜索,即求。
二、选择题1、下面方法需要求海赛矩阵。
A、最速下降法B、共轭梯度法C、牛顿型法D、DFP法2、对于约束问题根据目标函数等值线和约束曲线,判断为,为。
机械优化设计试题及答案
机械优化设计试题及答案一、单项选择题(每题2分,共20分)1. 在机械优化设计中,目标函数通常代表的是()。
A. 设计变量B. 约束条件C. 优化目标D. 优化方法答案:C2. 以下哪一项不是机械优化设计的约束条件?()A. 几何约束B. 材料约束C. 经济约束D. 工艺约束答案:A3. 机械优化设计中,常用的优化算法有()。
A. 梯度法B. 遗传算法C. 牛顿法D. 所有选项答案:D4. 在进行机械优化设计时,下列哪个因素不是设计者需要考虑的?()A. 材料成本B. 制造工艺C. 产品重量D. 产品颜色答案:D5. 机械优化设计中,目标函数的最小化问题通常指的是()。
A. 成本最小化B. 重量最小化C. 体积最小化D. 所有选项答案:D6. 以下哪个不是机械优化设计中常用的优化目标?()A. 最小化成本B. 最大化寿命C. 最小化尺寸D. 最大化速度答案:D7. 在机械优化设计中,下列哪一项不是常用的设计变量?()A. 尺寸B. 形状C. 材料D. 颜色答案:D8. 机械优化设计中,以下哪一项不是常用的优化方法?()A. 线性规划B. 非线性规划C. 动态规划D. 静态规划答案:D9. 在机械优化设计中,以下哪一项不是常用的优化算法?()A. 模拟退火B. 遗传算法C. 粒子群优化D. 牛顿迭代法答案:D10. 机械优化设计中,以下哪一项不是常用的约束条件?()A. 强度约束B. 刚度约束C. 稳定性约束D. 颜色约束答案:D二、多项选择题(每题3分,共15分)1. 机械优化设计中,常用的设计变量包括()。
A. 尺寸B. 形状C. 材料D. 颜色答案:ABC2. 机械优化设计中,常用的优化目标包括()。
A. 成本最小化B. 重量最小化C. 寿命最大化D. 速度最大化答案:ABC3. 机械优化设计中,常用的约束条件包括()。
A. 几何约束B. 材料约束C. 经济约束D. 工艺约束答案:ABCD4. 机械优化设计中,常用的优化方法包括()。
机械优化设计复习题答案
机械优化设计复习题答案一、选择题1. 在机械优化设计中,目标函数是()。
A. 需要优化的参数B. 需要优化的性能指标C. 需要优化的约束条件D. 需要优化的变量答案:B2. 机械优化设计中,约束条件的作用是()。
A. 确定设计变量的范围B. 确定目标函数的值C. 确定优化算法的选择D. 确定优化过程的复杂性答案:A3. 以下哪个不是机械优化设计中常用的优化算法()。
A. 遗传算法B. 模拟退火算法C. 牛顿迭代法D. 线性规划法答案:C二、填空题1. 在机械优化设计中,目标函数的最小化或最大化通常需要通过______来实现。
答案:优化算法2. 机械优化设计中的约束条件可以分为等式约束和______。
答案:不等式约束3. 机械优化设计中,设计变量的选择需要考虑______和______。
答案:物理意义;计算可行性三、简答题1. 简述机械优化设计中目标函数的作用。
答案:目标函数在机械优化设计中的作用是定义设计的目标性能指标,它是需要被优化的量,通常表现为最小化或最大化某个性能指标,以满足设计要求。
2. 描述机械优化设计中约束条件的分类及其意义。
答案:机械优化设计中的约束条件可以分为等式约束和不等式约束。
等式约束通常表示设计变量之间必须满足的精确关系,而不等式约束则表示设计变量必须满足的条件范围。
这些约束条件的意义在于确保设计方案在物理和工程上是可行的,并且满足所有的设计要求和限制。
3. 举例说明机械优化设计中设计变量的选择原则。
答案:在机械优化设计中,设计变量的选择原则包括但不限于以下几点:首先,设计变量应具有明确的物理意义,能够直接影响目标函数和约束条件;其次,设计变量的选择应考虑计算的可行性,确保在优化过程中可以有效地进行计算和迭代;最后,设计变量的数量和范围应适中,以避免过度复杂化优化问题,同时保证优化结果的实用性和经济性。
机械优化设计试题及答案
机械优化设计试题及答案一、选择题1. 机械优化设计中的“优化”指的是:A. 最小化成本B. 最大化效益B. 达到设计目标D. 以上都是答案:D2. 以下哪项不是机械优化设计的基本步骤?A. 确定设计变量B. 确定目标函数C. 确定约束条件D. 进行材料选择答案:D3. 在机械优化设计中,目标函数通常是用来衡量:A. 设计的可行性B. 设计的安全性C. 设计的经济性D. 设计的最优性答案:D二、填空题4. 机械优化设计通常采用的数学方法包括_______、_______和_______。
答案:线性规划;非线性规划;动态规划5. 机械优化设计中,约束条件可以是等式约束也可以是_______。
答案:不等式约束三、简答题6. 简述机械优化设计中目标函数的作用。
答案:目标函数在机械优化设计中的作用是量化设计目标,为设计提供评价标准,指导设计过程朝着最优解方向进行。
7. 描述机械优化设计中设计变量、目标函数和约束条件之间的关系。
答案:设计变量是优化设计中可以调整的参数;目标函数是设计过程中需要优化或最小化/最大化的量;约束条件是设计过程中必须满足的限制,它们共同定义了优化问题的边界和可行性。
四、计算题8. 假设有一个机械部件的重量W与其尺寸L和宽度H的关系为W = 2LH,成本C与重量W和材料单价P的关系为C = 10W + P。
若L和H 的取值范围均为[1,5],材料单价P为常数,求在满足强度要求的前提下,如何确定L和H的值以最小化成本C。
答案:首先,根据题目给出的关系式,我们可以将成本C表示为C = 10 * 2LH + P = 20LH + P。
由于P为常数,我们只需考虑如何最小化20LH。
由于L和H的取值范围相同,我们可以令L = H,此时C = 20L^2。
在[1,5]的范围内,当L = 1时,C达到最小值,即C_min = 20。
五、论述题9. 论述机械优化设计在现代机械工程中的重要性及其应用前景。
《机械优化设计》习题与答案
《机械优化设计》习题与答案机械优化设计习题及参考答案1-1.简述优化设计问题数学模型的表达形式。
答:优化问题的数学模型是实际优化设计问题的数学抽象。
在明确设计变量、约束条件、⽬标函数之后,优化设计问题就可以表⽰成⼀般数学形式。
求设计变量向量[]12Tn x x x x =L 使 ()min f x →且满⾜约束条件()0(1,2,)k h x k l ==L ()0(1,2,)j g x j m ≤=L2-1.何谓函数的梯度?梯度对优化设计有何意义?答:⼆元函数f(x 1,x 2)在x 0点处的⽅向导数的表达式可以改写成下⾯的形式:??=??+??=??2cos 1cos 212cos 21cos 1θθθθxo x f x f xo x f xo x f xo d fρ令xo Tx f x f x f x fx f ??=????=?21]21[)0(,则称它为函数f (x 1,x 2)在x 0点处的梯度。
(1)梯度⽅向是函数值变化最快⽅向,梯度模是函数变化率的最⼤值。
(2)梯度与切线⽅向d 垂直,从⽽推得梯度⽅向为等值⾯的法线⽅向。
梯度)0(x f ?⽅向为函数变化率最⼤⽅向,也就是最速上升⽅向。
负梯度-)0(x f ?⽅向为函数变化率最⼩⽅向,即最速下降⽅向。
2-2.求⼆元函数f (x 1,x 2)=2x 12+x 22-2x 1+x 2在T x ]0,0[0=处函数变化率最⼤的⽅向和数值。
解:由于函数变化率最⼤的⽅向就是梯度的⽅向,这⾥⽤单位向量p表⽰,函数变化率最⼤和数值时梯度的模)0(x f ?。
求f (x1,x2)在x0点处的梯度⽅向和数值,计算如下:()-=??+-==?120122214210x x x x f x f x f 2221)0(??+ =x f x f x f =5-=??????-=??=5152512)0()0(x f x f p ?2-3.试求⽬标函数()2221212143,x x x x x x f +-=在点X 0=[1,0]T 处的最速下降⽅向,并求沿着该⽅向移动⼀个单位长度后新点的⽬标函数值。
机械优化设计试题及答案
机械优化设计试题及答案试题一:1. 请简述机械优化设计的定义及重要性。
答案:机械优化设计是通过数学模型和计算机仿真技术,以最优化的方式对机械结构进行设计和改进的过程。
机械优化设计的重要性在于能够提高机械产品的性能和效率,降低成本和能源消耗,并且缩短产品开发周期。
2. 请阐述机械优化设计的基本步骤及流程。
答案:机械优化设计的基本步骤包括:问题定义、数学建模、解的搜索、结果评价和优化、最优解验证等。
具体流程如下:(1) 问题定义:明确机械优化设计的目标和约束条件,例如提高某项指标、降低成本等。
(2) 数学建模:通过将机械系统抽象为数学模型,建立与优化目标和约束条件相关的函数关系。
(3) 解的搜索:采用合适的搜索算法,寻找函数的最优解或近似最优解。
(4) 结果评价和优化:对搜索得到的解进行评价和分析,进一步进行调整和改进,以得到更好的解。
(5) 最优解验证:通过实验或仿真验证最优解的可行性和有效性。
试题二:1. 请简述梯度下降法在机械优化设计中的应用原理。
答案:梯度下降法是一种常用的优化算法,其原理是通过求解函数的梯度向量,并采取沿着梯度方向逐步迭代优化的方法。
在机械优化设计中,可以将需要优化的机械结构的性能指标作为目标函数,通过梯度下降法不断调整结构参数,以寻找最优解。
2. 请列举至少三种机械优化设计的常用方法。
答案:常见的机械优化设计方法包括:遗传算法、粒子群优化算法、模拟退火算法等。
其中:(1) 遗传算法通过模拟生物进化过程,通过选择、交叉和变异等操作,逐渐优化机械结构,以达到最优解。
(2) 粒子群优化算法模拟鸟群或鱼群的行为,通过不断迭代更新粒子的位置和速度,最终找到最优解。
(3) 模拟退火算法基于金属退火的原理,随机选择新解,并通过一定的准则接受或拒绝新解,以便在解空间中发现更优解。
试题三:1. 请解释有限元分析在机械优化设计中的作用。
答案:有限元分析是一种基于数值计算的方法,通过将复杂的结构划分成有限个单元,建立结构的有限元模型,并对其进行离散化求解,用于分析机械结构的应力、振动、热传导等特性。
机械优化设计考题参考答案
机械优化设计考题2参考答案一.选择题1.C 2.D 3.B 4.C 5.A二.填空题1.[]b x 2 ,ε<-a b ? 2.必要3.混合 4.n+1 5.()[]()k k k k x f x f x ∇∇--12α 三.简答题1.[]()()q k h p j x g t s f f Rx x F V k j T n ,,2,10,,2,10)(.,min )(min 21⋅⋅⋅==⋅⋅⋅=≤⋅⋅⋅=∈- 2. ()T n x f x f x f x f ⎥⎦⎤⎢⎣⎡∂∂⋅⋅⋅∂∂∂∂=∇213.根据共轭方向的性质:从任意初始点出发顺次沿n 个G 的共轭方向进行一维搜索,最多经过n 次迭代就可找到二次函数的极小点,具有二次收敛性。
4.选点原则是插入点应按0.618分割区间。
因为这样选点可以保持两次迭代区间的相同比例分布,具有相同的缩短率。
四.计算题1. [解] 1)计算初始复合形顶点的目标函数值,并判断各顶点是否为可行点:[][][]935120101-=⇒==⇒=-=⇒=030302023314f x f x f x经判断,各顶点均为可行点,其中,为最坏点。
为最好点,0203x x 2)计算去掉最坏点 02x 后的复合形的中心点:⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡==∑≠=3325.2211321003312i i i c x L x3)计算反射点1R x (取反射系数3.1=α)20.693.30.551422.51.322.5)(1102001-=⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=-+=R R c c R f x x x x x 值为可行点,其目标函数经判断α 4)去掉最坏点1R0301x x x x 和,,由02构成新的复合形,在新的复合形中 为最坏点为最好点,011R x x ,进行新的一轮迭代。
5)计算新的复合形中,去掉最坏点后的中心点得:⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡= 3.151.7753.30.5533211c x 6)计算新一轮迭代的反射点得:,完成第二次迭代。
《机械优化设计》试卷规范标准答案
《机械优化设计》复习题一、填空1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为[-47;-50] 。
2、机械优化设计采用数学规划法,其核心一是建立搜索方向 二是计算最佳步长因子 。
3、当优化问题是__凸规划______的情况下,任何局部最优解就是全域最优解。
4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。
5、包含n 个设计变量的优化问题,称为 n 维优化问题。
6、函数C X B HX X T T++21的梯度为 HX+B 。
7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在_共轭_____关系。
8、 设计变量 、 约束条件 、 目标函数 是优化设计问题数学模型的基本要素。
9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是 梯度为零 ,充分条件是 海塞矩阵正定 。
10、 库恩-塔克 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36,2.36] 。
12、优化设计问题的数学模型的基本要素有设计变量 、约束条件 目标函数 、 13、牛顿法的搜索方向d k = ,其计算量 大 ,且要求初始点在极小点 逼近 位置。
14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 。
15、存在矩阵H ,向量 d 1,向量 d 2,当满足 (d1)TGd2=0 ,向量 d 1和向量 d 2是关于H 共轭。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械优化设计习题及参考答案1-1.简述优化设计问题数学模型的表达形式。
答:优化问题的数学模型是实际优化设计问题的数学抽象。
在明确设计变量、约束条件、目标函数之后,优化设计问题就可以表示成一般数学形式。
求设计变量向量[]12Tn x x x x =L 使 ()min f x → 且满足约束条件()0(1,2,)k h x k l ==L ()0(1,2,)j g x j m ≤=L2-1.何谓函数的梯度?梯度对优化设计有何意义?答:二元函数f(x 1,x 2)在x 0点处的方向导数的表达式可以改写成下面的形式:⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂+∂∂=∂∂2cos 1cos 212cos 21cos 1θθθθxo x f x f xo x f xo x f xo d fρ令xo Tx f x f x f x fx f ⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂∂∂=∇21]21[)0(, 则称它为函数f (x 1,x 2)在x 0点处的梯度。
(1)梯度方向是函数值变化最快方向,梯度模是函数变化率的最大值。
(2)梯度与切线方向d 垂直,从而推得梯度方向为等值面的法线方向。
梯度)0(x f ∇方向为函数变化率最大方向,也就是最速上升方向。
负梯度-)0(x f ∇方向为函数变化率最小方向,即最速下降方向。
2-2.求二元函数f (x 1,x 2)=2x 12+x 22-2x 1+x 2在T x ]0,0[0=处函数变化率最大的方向和数值。
解:由于函数变化率最大的方向就是梯度的方向,这里用单位向量p 表示,函数变化率最大和数值时梯度的模)0(x f ∇。
求f (x1,x2)在x0点处的梯度方向和数值,计算如下:()⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∂∂∂∂=∇120122214210x x x x fx f x f 2221)0(⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=∇x f x f x f =5⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=∇∇=5152512)0()0(x f x f p ϖ2-3.试求目标函数()2221212143,x x x x x x f +-=在点X 0=[1,0]T 处的最速下降方向,并求沿着该方向移动一个单位长度后新点的目标函数值。
解:求目标函数的偏导数21221124,46x x x f x x x f +-=∂∂-=∂∂ 则函数在X 0=[1,0]T 处的最速下降方向是⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂∂∂-=-∇=====462446)(012121012102121x x x xx x x x x f x f X f P 这个方向上的单位向量是:13]2,3[4)6(]4,6[T22T -=+--==P P e 新点是⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=+=132133101e X X 新点的目标函数值1321394)(1-=X f2-4.何谓凸集、凸函数、凸规划?(要求配图)答:一个点集(或区域),如果连接其中任意两点x1、x2的线段都全部包含在该集合内,就称该点集为凸集,否则为非凸集。
函数f(x )为凸集定义域内的函数,若对任何的01α≤≤及凸集域内的任意两点x1、x2,存在如下不等式:称f (x )是定义在图集上的一个凸函数。
对于约束优化问题若()j=j f x g x 、() 1,2,...,m 都是凸函数,则称此问题为凸规划。
3-1.简述一维搜索区间消去法原理。
(要配图)答:搜索区间(a ,b )确定之后,采用区间逐步缩短搜索区间,从而找到极小点的数值近似解。
假设搜索区间(a ,b )内任取两点a1,b1 ,a 1《b 1,并计算函数值f (a 1),f (b 1)。
将有下列三种可能情形; 1)f (a 1)《f (b 1)由于函数为单谷,所以极小点必在区间(a ,b 1)内 2)f (a 1)》f (b 1),同理,极小点应在区间(a 1,b )内 3)f (a 1)=f (b 1),这是极小点应在(a 1,b 1)内3-2.简述黄金分割法搜索过程及程序框图。
1()b b a αλ=-- 2()a b a αλ=+-其中,λ为待定常数。
3-3.对函数ααα2)(2+=f ,当给定搜索区间55≤≤-α时,写出用黄金()()()121211f x x f x x αααα+-≤+-⎡⎤⎣⎦分割法求极小点*α的前三次搜索过程。
(要列表)3-4.使用二次插值法求f(x)=sin(x)在区间[2,6]的极小点,写出计算步骤和迭代公式,给定初始点x 1=2,x 2=4,x 3=6, ε=10-4。
迭代次数K= 4 ,极小点为 ,最小值为 -113131x x y y c --=,12122x x y y c --=,32123x x cc c --= )(213131c c x x x p -+=收敛的条件:ε<-22y y y p4-1.简述无约束优化方法中梯度法、共轭梯度法、鲍威尔法的主要区别。
答:梯度法是以负梯度方向作为搜索方向,使函数值下降最快,相邻两个迭代点上的函数相互垂直即是相邻两个搜索方向相互垂直。
这就是说在梯度法中,迭代点向函数极小点靠近的过程,走的是曲折的路线。
这一次的搜索方向与前一次的搜索过程互相垂直,形成“之”字形的锯齿现象。
从直观上可以看到,在远离极小点的位置,每次迭代可使函数值有较多的下降。
可是在接近极小点的位置,由于锯齿现象使每次迭代行进的距离缩短,因而收敛速度减慢。
这种情况似乎与“最速下降”的名称矛盾,其实不然,这是因为梯度是函数的局部性质。
从局部上看,在一点附近函数的下降是最快的,但从整体上看则走了许多弯路,因此函数的下降并不算快。
共轭梯度法是共轭方向法中的一种,因为在该方法中每一个共轭的量都是依赖于迭代点处的负梯度而构造出来的,所以称作共轭梯度法。
该方法的第一个搜索方向取作负梯度方向,这就是最速下降法。
其余各步的搜索方向是将负梯度偏转一个角度,也就是对负梯度进行修正。
所以共轭梯度法实质上是对最速下降法进行的一种改进,故它又被称作旋转梯度法。
鲍威尔法是直接利用函数值来构造共轭方向的一种共轭方向法,这种方法是在研究其有正定矩阵G 的二次函数1()2TT f x x Gx b x c =++的极小化问题时形成的。
其基本思想是在不用导数的前提下,在迭代中逐次构造G 的共轭方向。
在该算法中,每一轮迭代都用连结始点和终点所产生出的搜索方向去替换原向量组中的第一个向量,而不管它的“好坏”,这是产生向量组线性相关的原因所在。
因此在改进的算法中首先判断原向量组是否需要替换。
如果需要替换,还要进一步判断原向量组中哪个向量最坏,然后再用新产生的向量替换这个最坏的向量,以保证逐次生成共轭方向。
4-2.如何确定无约束优化问题最速下降法的搜索方向?答:优化设计是追求目标函数值最小,因此搜所方向d 取该点的负梯度方向-)(x f ∇。
使函数值在该点附近的范围下降最快。
按此规律不断走步,形成以下迭代的算法)(1kx f kk x k x∇-=+α(k=0,1,2,…)由于最速下降法是以负梯度方向作为搜索方向,所以最速下降法有称为梯度法为了使目标函数值沿搜索方向-)(kx f ∇能获得最大的下降值,其步长因子ka 应取一维搜索的最佳步长。
即有)(min )(min)(1αϕ=⎥⎦⎤⎢⎣⎡∇-=⎥⎦⎤⎢⎣⎡∇-=⎪⎪⎭⎫⎝⎛+k x f a kx f k x f k a kx f k x f 根据一元函数极值的必要条件和多元复合函数求导公式得;0)()1(=∇⎥⎦⎤⎢⎣⎡+∇k x f T k x f 或写成01=⎪⎪⎭⎫ ⎝⎛+kd T k d由此可知,在最速下降法中,相邻两个迭代点上的函数梯度相互垂直。
而搜索方向就是负梯度方向,因此相邻的两个搜索方向相互垂直。
这就是说在最速下降法中,迭代点向函数极小点靠近的过程。
4-3. 给定初始值x 0=[-7,11]T ,使用牛顿法求函数2212121)2()2(),(x x x x x f -+-=的极小值点和极小值。
解: 梯度函数、海赛矩阵分别为⎥⎦⎤⎢⎣⎡---+-=∇)2(4)2(2)2(2),(2121121x x x x x x x f (2分) []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=∇⎥⎦⎤⎢⎣⎡--=∇-41414121,8444),(12212f x x f (4分) 假设初始值x 0=[-7,11]T则,11676)(0⎥⎦⎤⎢⎣⎡-=∇x f (1分) []⎥⎦⎤⎢⎣⎡=∇⋅∇-=-12)(01201x x x f f (2分)则,00)(1⎥⎦⎤⎢⎣⎡=∇x f (1分)x 1满足极值的必要条件,海赛矩阵是正定的,所以是极小点1)(,11*1*-=⎥⎦⎤⎢⎣⎡==x x x f 。
(2分)4-4.以二元函数),(21x x f 为例说明单形替换法的基本原理。
答:如图所示在平面上取不在同一直线上的三个点x1,x2,x3,以它们为顶点组成一单纯形。
计算各顶点函数值,设f (x1)>f (x2)>f (x3),这说明x3点最好,x1点最差。
为了寻找极小点,一般来说。
应向最差点的反对称方向进行搜索,即通过x1并穿过x2x3的中点x4的方向上进行搜索。
在此方向上取点x5使 x5=x4+α(x4-x1)x5称作x1点相对于x4点的反射点,计算反射点的函数值f (X5),可能出现以下几种情形;1)f (x5)<f (x3)即反射点比最好点好要好,说明搜索方向正确,可以往前迈一步, 也就是扩张。
2)f (x3)<f (x5)<f (x2)即反射点比最好点差,比次差点好,说明反射可行,一反射点代替最差点构成新单纯形3)f (x2)<f (x5)<f(x1),即反射点比次差点差,比最差点好,说明x5走的太远,应缩回一些,即收缩。
4) f(x5)>f(x1),反射点比最差点还差,说明收缩应该多一些。
将新点收缩在x1x4之间 5) f(x)>f(x1),说明x1x4方向上所有点都比最差点还要差,不能沿此方向进行搜索。
5-1.简述约束优化方法的分类。
(简述约束优化问题的直接解法、间接解法的原理、特点及主要方法。
)答: 直接解法通常适用于仅含不等式约束的问题,它的基本思路是在m 个不等式约束条件所确定的可行域内选择一个初始点0x ,然后决定可行搜索方向d ,且以适当的步长α沿d 方向进行搜索,得到一个使目标函数值下降的可行的新点1x ,即完成一个迭代。
再以新点为起点,重复上述搜索过程,满足收敛条件后,迭代终止。
所谓可行搜索方向是指,当设计点沿该方向作微量移动时,目标函数值将下降,且不会越出可行域。