第十章电解与极化作用要点
电解与极化作用小结
(A)都溶解
(B)Fe(s)不溶,Cd(s)溶解
(C)都不溶解
(D)Fe(s)溶解,Cd(s)不溶
答 (B) 设构成电池 Cd(s)|Cd2+||Fe2+|Fe(s)
则 电池反应为 Cd(s) + |Fe2+ = Cd2+ + Fe(s)
E
=
EO
−
RT 2F
ln
a(Cd 2+ ) a( Fe2+ )
解:
(1)
ϕ Cd 2+/ Cd
+
RT
F
ln
a Cd
2+
= −0.403 +
RT ln 0.01 = −0.4621V 2F
ϕ Cu 2+ / Cu
=ϕO Cu 2+ / Cu
+ RT F
ln
a Cu
2+
= 0.337 +
RT ln 0.02 = 0.2868 V 2F
仍不会有 H2(g)析出,问溶液的 pH 值应控制在多少为好? 已知 H2(g)在 Zn(s)上的超电势为 0.72V,并设此值与溶液浓度无关。 (设 γ±=1)已知: ϕ O (Zn2+/Zn)=-0.7628V .
解: φ(Zn2+/Zn)= ϕ O (Zn2+/Zn) -RT/2F×ln 1/a(Zn2+) = -0.8811 V
例题 12 298K, pO 下,以 Pt 为阴极,电解含 FeCl2(0.01mol·kg-1)和 CuCl2(0.02mol·kg
-1)的水溶液。若电解过程中不断搅拌,并设超电势可略去不计,已知ϕ O (Fe2+/ Fe)
第十章电解与极化作用
第十章 电解与极化作用【复习题】【1】什么叫分解电压?它在数值上与理论分解电压(即原电池的可逆电动势)有何不同?实际操作时用的分解电压要克服哪几种阻力?【答】 分解电压就是能使某电解质溶液连续不断地发生发生明显电解时所必须的最小外加电压。
实际上,分解电压要大于原电池的可逆电动势E 可逆。
E (实际分解)=E (理论分解)+η(阳)+η(阴)+IR 。
所以在实际操作时不仅要克服理论分解电压,还要克服极化和电阻引起的电势降等阻力,其中主要是由于电极的极化作用所致。
【2】产生极化作用的原因主要有哪几种?原电池和电解池的极化现象有何不同? 【答】极化作用的类型有很多,主要有浓差极化和化学极化等。
对于原电池,随着电流密度的增大,由于极化作用,负极的电极电势比可逆电势越来越大,正极的电极电势比可逆电势越来越小,两条曲线有相互靠近的趋势,原电池的电动势逐渐减小。
对于电解池,随着电流密度的增大,由于极化作用,阴极的电极电势比可逆电势越来越负,阳极的电极电势比可逆电势越来越正,两条曲线有相互远离的趋势,电解池的外加电压逐渐增大。
【3】什么叫超电势?它是怎么产生的?如何降低超电势的数值?【答】 在有电流通过电极时,电极电势偏离于平衡值的现象称为电极的极化,为了明确地表示出电极极化的状况,常把某一电流密度下的电势ψ不可逆与ψ平之间的差值称为超电势,它的产生有浓差极化、化学极化和电阻极化(电解过程中在电极表面上生成一层氧化物的薄膜或其他物质)。
在外加电压不太大的情况下,将溶液剧烈搅动可以将低浓差极化,设法降低溶液内阻可以将低电阻极化,还可以加入去极化剂可以将低化学极化。
【4】析出电势与电极的平衡电势有何不同?由于超电势的存在,使电解池阴、阳极的析出电势如何变化?使原电池正、负极的电极电势如何变化?超电势的存在有何不利和有利之处?【答】由于超电势的存在,在实际电解时要使正离子在阴极析出,外加于阴极的电势要比平衡电势更负一些;要使负离子在阳极析出,外加于阳极的电势必须比可逆电极的电势更正一些,即:ϕϕηϕϕη=+=-阳阳,析出阳,可逆阴阴,析出阴,可逆对于电解池,由于超电势的存在,阴极的析出电势会更负,阳极的析出电势会更正,外加电压要更大,所消耗的能量就越多。
2010 第十章电解与极化作用
A
电位计
辅助电极
待测电极
甘汞电极
j
j
η阳
η阴
阳,可逆
阴,可逆
(b)阴极极化曲线
(a)阳极极化曲线
阳 = 阳,不可逆 - 阳,可逆
阴 = 阴,可逆 - 阴,不可逆
阳,析出 = 阳,可逆 +阳
阴,析出 = 阴,可逆 - 阴
电极电势
பைடு நூலகம்E分解 = 阳,析出 - 阴,析出 = E可逆+ 阳+ 阴
电解质 HCl HNO3 H2SO4 NaOH CdSO4 NiCl2 浓度 c / mol · -3 dm 1 1 0.5 1 0.5 0.5 电解产物 H2 + Cl2 H2 + O2 H2 + O2 H2 + O2 Cd + O2 Ni + Cl2 E分解 /V 1.31 1.69 1.67 1.69 2.03 1.85 E理论/ V 1.37 1.23 1.23 1.23 1.26 1.64
a b ln( j /[ j ])
单位电流密度 时的超电势 电流密度
j 很小时:
j
10.3 电解时电极上的竞争反应
阴极上的反应
阳极上的反应
金属离子的分离
分解电压 E分解 = 阳,析出 - 阴,析出 = E可逆+ 阳+ 阴 E理论分解= E可逆
一、阴极上的反应
物理化学—第十章
电极电势
电极电势
第十章 电解与极化作用
10.1 分解电压
10.2 极化作用 10.3 电解时电极上的竞争反应
10.1 分解电压
HCl
分解电压 使某电解质溶液能连续不断发生电解时所必
207-223 第十章电解与极化作用
为了不使 H2 析出,问溶液的 pH 值应控制在多少为好?
解:若 E(Zn2+|Zn)>E(H+|H2),则 Zn(S)析出而 H2 不能析出.
即: -0.763V+ 0.5916V lg10−5 >-0.05916V pH-0.75V 2
pH>2.72.
例 3 25°时,用 Zn 电极作为阴极,电解 a±=1 的 ZnSO4 水溶液。
( ) 阳极
H2O ⎯⎯→ 2H+
aH+
+
1 2
O2
(g
)
+
2e−
E阳,析出
=
E O2 H2O H+
+
RT 2F
ln
a2 H+
+O2
= 1.23
V+ RT 2F
ln (0.01)2
+ 0.5
V = 1.612
V
( ) E分解 = E阳,析出 − E阴,析出 = 1.612 + 0.17 V=1.782 V
(1)已知,水溶液为中性,则 Zn2+在 Zn 的平衡电极电势 Ee(Zn2+|Zn)及 H2 在 Zn 电 极上析出的平衡电极电势 Ee(H+|H2)各位多少?
(2)又知在某一电流密度下,H2 在 Zn 极上的超电势为 0.7 V,则 H2 在 Zn 上实际析出 的电势 EH2=?
(3) 若 Zn 在 Zn 电极上的超电势可忽略不计,则上述电解过程中在 Zn 极上优先析出的 是什么?
E 分解=E 可逆+△E 不可逆+IR 2.产生极化作用的原因主要有哪几种?原电池和电解池的极化现象有何不同? 答:产生极化作用的主要原因是电化学极化和浓差极化。电解时,电流密度愈大,超电 势愈大。外加电压也要增大,所消耗能量越多。原电池放电时,有电流在电极上通过,随着 电流密度增大。由于极化作用,正极比可逆电视愈来愈小,负极比可逆电势愈来愈大,原电 池的电动势逐渐减小,它所能作的电功逐渐减小。 3.什么叫超电势?它是怎样产生的?如何降低超电势的数值? 答:把某一电流密度下的电势 φ 与 不可逆 φ 可逆之间的差值称为超电势,超电势产生的原因 有,电化学极化和浓差极化,及电解过程中,在电极表面形成一层氧化膜或其他物质,从而 对电流的通过产生阻力(电阻超电势),在外加电压不大的情况下,把溶液剧烈搅动可以降 低浓差极化,但由于电极表面扩散层的存在,不可能把浓差极化完全除去。除此之外,还可 以加入去极化剂和减小体系的阴值 R 来减低超电势的值。 4.析出电势与电极的平衡电势有何不同?由于超电势的存在,使电解池阴、阳极的析出
第十章 电解与极化作用
电解与极化作用一、简答题1.什么叫极化作用?什么叫超电势?极化作用主要有几种?阴、阳极上由于超电势的存在其不可逆电极电势的变化有何规律?2.在电解过程中,阴、阳离子分别在阴、阳极析出的先后次序有何规律?3.电化腐蚀主要有哪些类型?在盛水的铁锅中,为什么在水周围比在水下的部分先生锈?4.以Pt 为电极电解Na 2SO 4水溶液,在两级的溶液中各加数滴石蕊试液,在电解的过程中两极区溶液的颜色有何变化?5.当电流通过下列电解池时,判断有哪些物质生成或消失,并写出反应式。
(1)碳为阳极,铁为阴极,溶液为氯化钠;(2)银为阳极,镀有氯化银的银为阴极,溶液为氯化钠;(3)两铂电极之间盛以硫酸钾溶液。
6.电解ZnCl 2水溶液,两极均用铂电极,电解反应如何?若均改用锌电极,结果又如何?两者的分解电压有何差异?二、计算题1.用金作阳极,镍作阴极,电解 1.0 mol·dm -3H 2SO 4溶液,求:分解电压为多少伏?(O 2在Ni 上的超电势η(H 2)=0.4V ,O 2在金上的超电势η(O 2)=0.53V ,在298K 时φø [O 2/H 2O ,H +]=1.229V)。
[答案:V (分解)=φ(阳)-φ(阴)=1.899 V ]2.用Pt 电极电解CuCl 2溶液,通过的电流为20A ,经过20min 后,问:(1).在阴极上能析出多少质量的Cu ?(2).在阳极上能析出多少体积的298K ,100kPa 下的Cl 2(g)?[答案:(1)m=0.2009kg ;(2).V(Cl 2)=0.0031m 3]3.298K 时电解含两种金属离子的盐溶液)1,01.0(12=⋅=±-γkg mol b FeCl 和)1,02.0(12=⋅=±-γkg mol b CuCl 。
若电解过程中不断搅拌溶液,超电势忽略不计。
试问:①何种金属首先析出?②当第二种金属析出时,第一种金属离子在溶液中的浓度为多少?[答案:① Cu 先析出;②2910214.42-⨯=+Cu a ]4. 在411CuSO kg mol -⋅及42102.0SO H kg mol -⋅的混合液中,使铜镀到Pt 电极上。
第十章电解与极化作用本章要求:1.了解分解电压的意义,要使电解池
第十章 电解与极化作用本章要求:1.了解分解电压的意义,要使电解池不断工作必须克服哪几种阻力?2.了解什么是极化现象,什么是超电势?极化作业有哪几种?如何降低极化作用?3.了解电解的一般过程及应用,特别是有关电解分离提纯方面的应用。
4.了解金属腐蚀的类型以防止金属腐蚀的常用方法。
电解池:使电能转变成化学能的装置当一个电池与外接电源反向对接时,只要外加电压大于该电池的电动势E ,电池中的反应逆向发生,原电池就要变成电解池,要使电解池继续正常工作,外加电压要比电池电动势E 大很多,这些额外的电能一部分用来克服电阻,一部分用来克服电极的极化作用极化作用:当电流通过电极时,电极电势偏离其平衡的现象,且该过程是步可逆过程。
§10.1 分解电压在电池上外加一个直流电源,并逐渐增加电压,使电池中的物质在电极上发生化学反应,称为电解。
如电解HCl 水溶液阴极: ).(()p g aH e H H 222→+-++阳极:).(p g Cl e Cl 222→--- 总反应: )()()(p P aq Cl H HCl 222+−−→−电解 分解装置P118图10.1,并绘制电流─电压曲线。
由P118图10. 电流─电压曲线可看出:① 当开始加外电压时,还没有)()(g g Cl H 22和生成,P=0 电路中几乎没有电流通过。
② 当稍增大外电压,电极表面有少量)()(g g Cl H 22和产生,其压力虽小,却构成了一个原电池,产生了与外加电压方向相反的反电动b E 由于压力很小,低于大气压力,产生气体不能离开电极自由逸出,而是扩散到溶液中消失,此时此时就需要通入极微小的电流使电极产物得到补充,相当于图1─2段。
③ 继续增大外电压,电极时上)()(g g Cl H 22和继续产生,当22cL H P P 和等于外界大气压力时,电极上开始有气泡逸出,此时反电动势b E 达到了最大值MAX b E 而不在继续增加,若此时继续增大外电压,则电流急曾,如图曲线2─3段直线部分。
10章 电解与极化作用
二、电极极化的原因 有电流通过电极时, 电极上会发生一系列过程(离子 的扩散、电极反应…), 每一步或多或少存在阻力, 要克服这些阻力需要一定的推动力, 反映在电极上表 现为电极电势的偏离. 根据极化产生的不同原因,通常把极化大致分为两类 :浓差极化和电化学极化。 (1)浓差极化 当有限电流通过电极时,由于 离子扩散的迟缓性导致电极表面与本体溶液离子浓
2H (aq) 2e H2 (g) i /A 1 阳极 2OH (aq) H 2 O(l) O 2 (g) 2e 2 对抗电解过程的具有反电动势的原电池: 阴极
(Pt) H2(g)|H2SO4(0.5mol· dm-3)|O2(g)(Pt)
1 O 2 E0 E /V 3
在缄性溶液中:
H2O Me e Me H OH
(b) H3O+和已被吸附电极表面的H原子反应生 成H2; 也为电化学脱附.
H3O Me - H e Me H2 H2O
④ 吸附在电极上的H原子化合为H2
Me H Me H 2Me H2
⑤ H2从电极上扩散到溶液内或形成气泡逸出.
2
2
2
0.894V
2
可见,由于氢超电势的存在,H2析出困难的多; 即使在 pH = 4 的溶液, H2析出也在Cd之后,此时:
H ,析 0.2366 H 0.7166 V
2 2
可见, 由于氢超电势存在, 使得活动次序在H 之 前的活泼金属能优先析出; 甚至Na+在汞阴极上也会 生成钠汞齐, 不会放出H2.
例2 电解 CdSO4(a± = 1) 水溶液, 氢在金属Cd 析出超电势为0.48V. 解: 在阴极上析出反应:
(整理)第10章电解与极化作用
第十章电解与极化作用一、本章主要内容§10.1 分解电压§10.2 极化作用§10.3 电解时电极上的反应§10.4 金属的电化学腐蚀与防腐§10.5 化学电源二、本章重点与难点1、分解电压的概念。
2、极化作用。
3、电解时电极上的反应。
4、金属的电化学腐蚀与防腐。
5、化学电源。
三、教学目的1、掌握电化动力学的一般原理;2、掌握电化学的基本理论和技能,为后续专业课的学习奠定坚实的理论基础。
四、教学要求1、了解分解电压的意义。
2、了解产生极化的原因,了解氢超电势在电解中的作用。
3、能计算一些简单的电解分离问题。
4、了解金属腐蚀的原因和各种防腐的方法。
5、了解化学电源的类型及应用。
五、授课时数8学时用Nernst 方程式处理电化学体系时,都有一个前提,即该体系需处于热力学平衡态。
所以用Nernst方程研究的问题具有很大的局限性。
一切实际的电化学过程都是不可逆过程。
对不可逆电极过程进行的研究,无论是在理论上或实际应用中,都有非常重要的意义。
因为要使电化学反应以一定的速度进行,无论是原电池的放电或是电解过程,在体系中总是有显著的电流通过。
因此,这些过程总是在远离平衡的状态下进行的。
研究不可逆电极反应及其规律对电化学工业有着十分重要的意义。
因为它直接涉及工艺流程、能量消耗、原料消耗等因素。
本章我们将讨论电解过程中在电极上进行的不可逆反应,从中得出不可逆电极过程的一些规律,将它们应用于电镀、电化学腐蚀、化学电源等方面。
§10.1 分解电压一、理论分解电压使某电解质溶液能连续不断发生电解反应时所必须外加的最小电压称为理论分解电压。
理论分解电压在数值上等于该电解池作为可逆电池时的可逆电动势:E (理论分解电压)=E (可逆)二、分解电压的测定若外加一电压在一个电池上,逐渐增加电压,使电池中的化学反应发生逆转,这就是电解。
当直流电通过电解质溶液时,正离子向阴极迁移,负离子向阳极迁移,并分别在电极上起还原和氧化反应,从而获得还原产物和氧化产物。
10章_电解与极化作用
(1)电解池中两电极的极化曲线 随着电流密度的增大,两电极上的超电势也增大 阳极析出电势变大 阴极析出电势变小 由于极化使外加的电压增加,额外消耗了电能。
最小电压,称为分解电压。
我们把外加电压等于分解电压时两极的电极电势 分别称为它们的析出电势。
若外加电压大于分解电压,则电流 I = ( V – Emax) /R ,R 指电解池电阻。
以下,我们由表列实验结果,来分析分解电压与原电池的 电动势(即理论分解电压,由能斯特方程算得值)的关系。
表:10.1 几种电解质溶液的分解电压(室温,铂电极)
4.氢超电势
电解质溶液通常用水作溶剂,在电解过程中,H+ 在阴极会与金属离子竞争还原。
利用氢在电极上的超电势,可以使比氢活泼的金 属先在阴极析出,这在电镀工业上是很重要的。
例如,只有控制溶液的pH,利用氢气的析出有超 电势,才使得镀Zn,Sn,Ni,Cr等工艺成为现实。
氢在几种电极上的超电势
从氢气在几种电极上的超电势,在石墨和汞等材 料上,超电势很大,而在金属Pt,特别是镀了铂黑 的铂电极上,超电势很小,所以标准氢电极中的铂电 极要镀上铂黑。
电解质 浓度 c / mol ·dm-3 电解产物
E分解 /V
E理论/ V
HCl
1
HNO3
1
H2SO4
0.5
NaOH
1
CdSO4
0.5
NiCl2
0.5
H2 + Cl2
1.31
1.37
H2 + O2
第十章电解与极化作用
第十章电解与极化作用教学目的与要求:使学生了解和掌握在非可逆的条件下的一些电化学的基本概念, 电解池的电流和电势之间的关系, 电极电势和电池的电动势, 非可逆条件下的电极反应,电极电位和电池的电动势,以及金属的电化学腐蚀与金属的腐蚀的防护等内容。
在理论上,当一个电池和一个电源反向对接时,只要外加电压比对电池的可逆电动势大一个无穷小,原电池就变成电解池。
但在实际的电解工作中,外加的电压要比电池的可逆电动势大得多,这一方面是由于电极的极化,另一方面是由于电解池的内阻对电压的消耗。
研究不可逆的电极过程对电化学工业具有重要的应用意义,本章讨论电解在工业中的应用以及金属的腐蚀与防护,以及化学电源等。
重点与难点:电解池的电流和电势之间的关系, 电极电势和电池的电动势, 非可逆条件下的电极反应,以及金属的电化学腐蚀与金属的腐蚀的防护。
§10.1分解电压以电极电解溶液的装置(如右图所示)来说明,在电解时的电极反应是阴极:阳极:在电解时外加电压E和电流之间的关系(右图所示),电解时需要明确的几个问题:1.在电解时,在阳极上会产生氯气,在阴极会产生氢气,电解池实际上构成了一个电池。
2.当外加电压很小时,通过的电流很小。
在阴阳两极不会产生和气泡,产生的和以扩散的形式进入溶液。
3.当外加电压增大到一定数值的时候,产生的和的压力和大气压力相等,此时和会在电极上产生气泡,并且不断逸出,通过的电流也相应增大。
4.继续增大电压,电流也相应增大。
5.在曲线上的直线部分外推到时的电压值称为该电解质溶液的分解电压分解,这个数值具有实际的应用价值,但不具有理论的意义,和对应的电池的可逆电动势也无什么严格的联系。
但对电解过程来说,分解可以看作欲使某一溶液顺利电解所需要的施加的电压。
§10. 2极化作用当电解池通过一定的电流时,所加的外加电压要大于由电解池构成的电池的可逆电动势,这是由于:1.在电解池中内阻的存在引起的电压降,2.不可逆的情况下,电池的电动势偏离该电池的可逆电动势()。
浙江大学物理化学(甲)第十章(电解与极化作用)
平
0.814 0.799 0.015 V
10
注意: 式中氧电极的标准电极电势为碱性条件 qOH-,O2=0.401V 实际分解电压:E分解=(OH-,O2-Ag+Ag)不可逆 由于浓差极化,使得: 阴极:不可逆> 阳极:不可逆 > 浓差极化使得实际分解电压: E分解=(阳-阴)不可逆 > E理论分解=(阳-阴)平衡 由于浓差极化主要是由离子在溶液中的扩散速率缓慢 引起的,所以可以通过搅拌或升高电解温度,可以降低浓差 极化。
Ag+
AgNO3( m )
8
阴极反应: Ag+ + e Ag (s) 由于Ag+的扩散速率小于Ag+在阴极上的沉积速度,使得在 阴极附近(10-3~10-2cm)Ag+的浓度 me 小于本体溶液的浓 度m。 当 I = 0时,电极的可逆电势为:
θ 可逆 Ag
Ag
RT 1 ln F m(Ag )
14
G
电 极 2 电 极 1
电位计
甘汞电极 电解质溶液
① 由电极1、电极2和可变电阻、电源,组成一个电解池。
② 由电极1与甘汞电极组成一个电池。 实验: ① 通过调节可变电阻,逐渐改变加到电解池上的电压, 通过电流计测出流经电解池的电流密度J。 ② 由电位计测出在电流密度为J时,电池的电动势E
15
2
通过本章电极极化的讨论,结合前一章可逆电池的平衡 性质,才能比较全面地分析、解决电化学的问题。
本章主要介绍三方面的内容: (1)电极的极化作用
(2)金属腐蚀与防腐和电化学的应用 (3)化学电源 §10.1 分解电压 1. 分解电压测定 在电解一给定的电解液时,对电解池至少需要施加多 少大的电压才能使电解顺利进行分解电压。 以铂电极电解0.1mol· -3的NaOH水溶液为例,说明 dm 分解电压的测定。
10章_电解与极化作用.ppt
2020/4/15
8
§10.1 分解电压
所产生的
H2(g)和Cl2(g)与 电 溶液中相应离子 流
及电极构成了原 I
3
电池,产生E反。
外加电压必须克 服E反。继续增加
2 1
电压,I 有少许
E分解 电压E
增加,如图中1-2 测定分解电压时的电流-电压曲线
段。
2020/4/15
9
§10.1 分解电压
阳极
Pt
G
阴极
度I 和电压E,画出I-E曲 线。
分解电压的测定
2020/4/15
7
§10.1 分解电压
外加电压很
小时,几乎无电
流通过,阴、阳
电 流
极上无H2 (g) 和 I
Cl2(g)放出。
3
随着E的增大,
电极表面产生少
2
量H2(g)和Cl2(g), 但压力低于大气
1
E分解 电压E
压,无法逸出。 测定分解电压时的电流-电压曲线
处化学反应的速度较快,电极附近某离子浓 度由于电极反应而发生变化,本体溶液中离 子扩散的速度相对较慢又赶不上弥补这个变 化,就导致电极附近溶液的浓度与远离电极 的本体溶液间有差别,这种浓度差别引起的 电极电势的改变称为浓差极化。
2020/4/15
16
§10.2 极化作用
电
电
极
极
表
表
面
面
溶
液
本
体
负极
构成反电池 PtǀH2(pϴ)ǀHBr(m)ǀBr2(pϴ)ǀPt 理论上,电解时:
理论分解电压E理 = 反电池电动势ER
2020/4/15
6
§10.1 分解电压
10-物化-下-第十章-电解与极化作用
根据Tafel 公式,η~lnj 为直线,j (<1) →0,η→―∞, 与事实不符。当j→0,η→0,φ不可逆→ φ可逆。 即电流密度很小时,氢超电势不符合Tafel 公式,而遵守 η=ωj 即η与j成正比。 电解时H 在阴极放电机理: 电解时 +在阴极放电机理:(p.125) 对氢超电势研究较多的原因: 对氢超电势研究较多的原因: (p.126)
a
M
,2
a a
M
Z+
,1 ,2
= 10
7
M
Z+
若以溶液中的残余量小于 10-7mol/l 作为判断是否分离彻底 的标准,只须计算出当溶液中某种金属离子的浓度从1~10-7 mol/l 变化时电极电势的差值,即可将浓度差值转化到电势的 差值来进行判断。 当 浓度为c1时,φ1=φө+(0.059/z)lgc1 ; 当 浓度为c2时,φ2=φө+(0.059/z)lgc2 ; 若 c1=10-7mol/l ,c2=1mol/l , ∆φ=φ2-φ1=(0.059/z)lg(c2/c1)= (0.059×7)/z 则:当 z=1 时, ∆φ=0.41 伏 当 = = 当 z=2 时, ∆φ=0.21 伏 = = 当 z=3 时, ∆φ=0.14 伏 = = 利用上述原理,也可使两种离子同时在阴极上析出而形成 合金,即调整两种离子的浓度,使其具有相等的析出电势。
练习题: 练习题 1. 298K和pө下,用Zn电极电解含Zn2+的水溶液。若要使 Zn2+的浓度降到10-7mol/kg时才允许H2(g)析出,问应如何控制 溶液的pH值?设H2 (g)在Zn (s)上的超电势为0.7V并假定此值与 溶液浓度无关;已知:φө(Zn2+/Zn)=-0.763V,假定各离子活 度系数均为1。 解: Zn2+的浓度为10-7mol/kg时 φ(Zn2+/Zn)=φө(Zn2+/Zn) +(RT/2F)lna(Zn2+) =-0.736+(RT/2F)ln10-7=-0.97V φ(Zn2+/Zn) =φ(H+/H2)析 =φ(H+/H2)平=φө (H+/H2)+(RT/2F)lna(H+ )2-η -0.97 =-0.05916pH-0.7 pH = 4.56
物理化学第十章 电解与极化作用
3、析出电势 :
ϕ阳,不可逆 = ϕ阳,析出 = ϕ阳,可逆 + η阳 ϕ阴,不可逆 = ϕ阴,析出 = ϕ阴,可逆 − η阴
三、极化曲线-超电势的测定 1、测定超电势的装置
2、电解池中两电极的极化曲线
j(电流密度)
阴极曲线
阳极曲线
E可逆+ΔE不可逆
E可逆
η阴
η阳
电
−ϕ
+ϕ
电解池中两电极的极化曲线
正极: 负极:
LiCoO 2 , LiNiO 2 , LiMn 2 O 2
石墨,焦炭
2
正极反应: L i C o O
+
充 + Z Z Z X L i C o O + x L i + YZ Z Z 1 -x 2 放 −
充 ZZZ X Li C 负极反应: C+xLi + xe YZZ Z x 放
总反应:
Ag + (a ) Ag ( s ) Ag + (a ) + e − → Ag ( s ) RT 没有电流通过时 : ϕ Ag + / Ag (可逆) = ϕ + + ln a Ag + Ag / Ag F RT θ 有电流通过时:ϕ Ag + / Ag (不可逆) =ϕ + + ln a’ + Ag / Ag Ag F 扩散速度小于电极反应速度,a’ + < a Ag +
3、原电池中两电极的极化曲线
η阳
j(电流密度)
E可逆 -ΔE不可
η阴
负 极 曲 线 E可逆
正 3;ϕ
电解池中两电极的极化曲
4、氢超电势
第十章电解与极化作用_311_new
第十章 电解与极化作用
标准氢电极 || 待定电极
若待定电极发生还原反应,则电极电势为正; 若待定电极发生氧化反应,则电极电势为负。
上述规定的电极电势是将待定电极作为还 原电极而确定出来的,故称为还原电极电势。
注意:电极的电极电势不是绝对电势,而是相 对于标准氢电极的电极电势规定为零的相对电 极电势。
Zn(s)|Zn2 (aZn2 )||Cu2 (aCu2 )|Cu(s)
()
Zn(s)
Zn
2
(a Zn
2
)
2e
() Cu2 (aCu2 ) 2e Cu(s)
净反应: Zn(s) Cu2 (aCu2 ) = Cu(s) Zn2 (aZn2 )
计算方法2(由电池Nernst方程计算):
E =
E
E RT ln aB
绝对值。 解决问题的办法:国际上统一(人为)规定:标准
氢电极的电极电势j 为零。(1958年IUPAC规定)
2
第十章 电解与极化作用
1. 标准氢电极
将镀有一层疏松铂黑的铂片插
入 a(H+) = 1 的酸溶液中。
在298.15K时不断通入 p(H2) =100kPa的纯氢气流,铂黑很
易吸附氢气达到饱和,同时对
6
标准氢电极第|十| 待章定电电极解与极化作用 j 增大
K | K(s)
Ca 2 | Ca(s)
Al3 | Al(s) Zn2 | Zn(s) Pb2 | Pb(s)
jOx | Red < 0
(非自发电池)
j Pt| H2 (p ) | H+ (aH+ =1)|| H2 (p ) | Pt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化学电源
金属的电化学腐蚀与防腐
电解时电极上的反应 极化作用
分解电压
本章主要内容及重难点
内容: ①分解电压 ②极化作用 ③电解时电极上的反应 ④金属的电化学腐蚀与防腐 ⑤化学电源
重点:浓差极化、电化学极化、超电势、竞争反应、析
出电位。
难点:Tafel公式、电化学的应用。
10.1 分解电压
E(分 解 )E(可 逆 )E(不 可 逆 )IR
E(不 可 逆 )(阳 )(阴 )
显然分解电压的数值会随着通入电流强度的增加而增加。
10.2 极化作用
极化(polarization) 当电极上无电流通过时,电极处于平衡状态,
这时的电极电势分别称为阳极平衡电势 (阳,平) 和阴 极平衡电势(阴,平) 。
在有电流通过时,随着电极上电流密度的增加, 电极实际分解电势值对平衡值的偏离也愈来愈大,这 种对平衡电势的偏离称为电极的极化。
极化的类型
根据极化产生的不同原因,通常把极化大致分为 两类:浓差极化和电化学极化。
(1)浓差极化 在电解过程中,电极附近某离 子浓度由于电极反应而发生变化,本体溶液中离子扩 散的速度又赶不上弥补这个变化,就导致电极附近溶 液的浓度与本体溶液间有一个浓度梯度,这种浓度差 别引起的电极电势的改变称为浓差极化。
(阳) (阳,不可逆)(阳,平) (阳,不可逆)(阳,平)(阳)
极化曲线(polarization curve)
超电势或电极电势与电流密度之间的关系曲线称 为极化曲线,极化曲线的形状和变化规律反映了电化 学过程的动力学特征。
(1)电解池中两电极的极化曲线 随着电流密度的增大,两
电极上的超电势也增大,阳极 析出电势变大,阴极析出电势 变小,使外加的电压增加,额 外消耗了电能。
极化曲线(polarization curve)
极化曲线(polarization curve)
(2)原电池中两电极的极化曲线 原电池中,负极是阳极,
正极是阴极。随着电流密度的 增加,阳极析出电势变大,阴 极析出电势变小。由于极化, 使原电池的作功能力下降。
但可以利用这种极化降 低金属的电化腐蚀速度。
分解电压的测定
当外电压增至2-3段, 氢气和氧气的压力等于大 气压力,呈气泡逸出,反 电动势达极大值 Eb,max。
再增加电压,使I 迅 速增加。将直线外延至I =0处,得E(分解)值,这 是使电解池不断工作所必 需外加的最小电压,称为 分解电压。
实际分解电压
要使电解池顺利地进行连续反应,除了克服作 为原电池时的可逆电动势外,还要克服由于极化在 阴、阳极上产生的超电势 (阴 ) 和 (阳 ) ,以及克服电 池电阻所产生的电位降 I R 。这三者的加和就称为实 际分解电压。
极化曲线(polarization curve)
氢超电势
电解质溶液通常用水作溶剂,在电解过程中,H + 在阴极会与金属离子竞争还原。
利用氢在电极上的超电势,可以使比氢活泼的金 属先在阴极析出,这在电镀工业上是很重要的。
例如,只有控制溶液的pH,利用氢气的析出有超 电势,才使得镀Zn,Sn,Ni,Cr等工艺成为现实。
在某一电流密度下,实际发生电解的电极电势(不可逆) 与平衡电极电势之间的差值称为超电势。
阳极上由于超电势使电极电势变大,阴极上由于超电 势使电极电势变小。
为了使超电势都是正值,把阴极超电势 (阴 ) 和阳极超 电势 (阳 ) 分别定义为:
(阴) (阴,平)(阴,不可逆) (阴,不可逆)(阴,平)(阴)
Tafel 公式(Tafel’s equation)
早在1905年,Tafel 发现,对于一些常见的电极反 应,超电势与电流密度之间在一定范围内存在如下的 定量关系:
ablnj
这就称为Tafel 公式。式中 j 是电流密度, a 是单位
氢气在几种电极上的超电势
氢析出机理
2H2eH2
反应物扩散→吸附→反应→脱附→产物扩散
①
②③ ④
⑤
①⑤ 液相传质 ③ 电化学反应 ④ ② 前置表面转
化 ⑤ ④ 随后表面转
①⑤ 浓差极化 ②③④ 电化学极化
氢析出机理
电化学步骤
酸性: HeH吸附 碱性: H 2Oe H 吸 附 O H
脱附步骤
① H吸 附H吸 附H2
度I 和电压E,画出I-E曲
线。
分解电压的测定
外加电压很小时,几乎 无电流通过,阴、阳极上无 H2气和氧气放出。
随着E的增大,电极表面 产生少量氢气和氧气,但压 力低于大气压,无法逸出。 所产生的氢气和氧气构成了 原电池,外加电压必须克服 这反电动势,继续增加电压, I 有少许增加,如图中1-2段。
理论分解电压 使某电解质溶液能连续不断发生 电解时所必须外加的最小电压,在数值上等于该电 解池作为可逆电池时的可逆电动势。
E (理 论 分 解 )E (可 逆 )
分解电压的测定
使用Pt电极电解H2O, 加入中性盐用来导电,实 验装置如图所示。
逐渐增加外加电压, 由安培计G和伏特计V分 别测定线路中的电流强
复合脱附
② H吸 附HeH2
电化学脱附
H 吸 附 H 2O e H 2O H
氢析出机理
电化学步骤(快)+复合脱附(慢)-----复合机理
电化学步骤(慢)+复合脱附(快) --迟缓放电理论
电化学步骤(慢)+电化学脱附(快)
电化学步骤(快)+电化学脱附(慢)--电化学脱附理论
机ቤተ መጻሕፍቲ ባይዱ:
H eH吸附
①
H吸 附HeH2 ②
氢气在几种电极上的超电势
金属在电极上析出时超电势很小,通常可忽略不 计。而气体,特别是氢气和氧气,超电势值较大。
氢气在几种电极上的超电势 如图所示。可见在石墨和汞等材 料上,超电势很大,而在金属Pt, 特别是镀了铂黑的铂电极上,超 电势很小,所以标准氢电极中的 铂电极要镀上铂黑。
影响超电势的因素很多,如电极材料、电极表面 状态、电流密度、温度、电解质的性质、浓度及溶液 中的杂质等。
用搅拌和升温的方法可以减少浓差极化,但也可 以利用滴汞电极上的浓差极化进行极谱分析。
极化的类型
(2)电化学极化 电极反应总是分若干步进行,若其中一步反应
速率较慢,需要较高的活化能,为了使电极反应顺 利进行所额外施加的电压称为电化学超电势(亦称 为活化超电势),这种极化现象称为电化学极化。
超电势(overpotential)