九年级数学圆的有关性质

合集下载

九年级圆知识点总结 百度

九年级圆知识点总结 百度

九年级圆知识点总结百度九年级圆知识点总结圆是几何学中最基础、最重要的几何图形之一。

它不仅在数学中扮演着重要的角色,而且在我们的日常生活中也有广泛的应用。

在九年级数学学习中,我们需要掌握关于圆的基本概念、性质、公式等知识点。

本文将对九年级圆的知识进行总结,以帮助大家更好地理解和应用。

一、圆的基本概念与性质1. 圆的定义:圆是由平面上到一个固定点距离相等的所有点组成的图形。

2. 圆的要素:圆心和半径。

圆心是固定点,用O表示;半径是从圆心到圆上任意一点的距离,用r表示。

3. 圆的直径:通过圆心的两个点,称之为圆的直径。

直径是半径的两倍,用d表示。

4. 圆的弦:在圆上任取两点,并将这两点连线,所得的线段称之为圆的弦。

5. 圆的切线:在圆上取一点,通过该点作一条直线,与圆只有这个点相交,这个直线称之为圆的切线。

6. 圆的弧:在圆上任取两点,并连接圆心与这两点,得到的扇形所对应的圆弧,称之为圆的弧。

7. 圆的内切与外切:当两个圆的内部或外部的某一点刚好触碰到两个圆时,这个点称之为内切或外切。

内切的两个圆与直线的切点数量相等;外切的两个圆与直线的切点数量也相等。

8. 圆的面积:圆的面积公式为A=πr²,其中π近似取值为3.14。

二、圆的常见公式1. 弧长:圆的弧长即为圆上一段弧的长度。

弧长公式为L=2πr,其中L表示弧长,r表示半径。

2. 扇形面积:圆的扇形是由圆心、圆上两点和夹在这两点的圆弧组成的图形。

扇形面积公式为A=½r²θ,其中A为扇形面积,r为半径,θ为圆心角的度数。

3. 弦长:弦是连接圆上两点的线段。

弦长公式为L=2r sin(θ/2),其中L表示弦长,r表示半径,θ为圆心角的度数。

4. 弓形面积:圆的弓形是由圆上一段弧和连接该弧两端点的直线段组成的图形。

弓形面积公式为A=½(r²θ-填字部分),其中填字部分为由弧所割出的三角形的面积。

三、圆的应用圆在我们的日常生活中有广泛的应用。

人教版九年级数学复习:第二十四章 圆的知识点总结及典型例题

人教版九年级数学复习:第二十四章 圆的知识点总结及典型例题

圆的知识点总结(一)圆的有关性质[知识归纳]1. 圆的有关概念:圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高;圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。

2. 圆的对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性。

3. 圆的确定不在同一条直线上的三点确定一个圆。

4. 垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧;推论1(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧。

推论2 圆的两条平行弦所夹的弧相等。

5. 圆心角、弧、弦、弦心距之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。

推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或两条弧所对的弦相等;④两条弦的弦心距相等。

圆心角的度数等于它所对的弧的度数。

6. 圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;推论1 同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等;推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径;推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

九年级数学圆知识点总结

九年级数学圆知识点总结

九年级数学圆知识点总结在九年级数学学习的过程中,我们接触到了许多关于圆的知识。

圆是几何学中的重要概念之一,它有着特殊的性质和应用价值。

接下来,本文将对九年级数学中的圆知识点进行总结。

一、圆的定义与性质1. 圆的定义:圆是由平面上所有到一个给定点距离相等的点组成的图形。

这个给定点称为圆心,到圆心的距离称为半径。

2. 相关性质:- 圆的直径是圆上任意两点之间的最长距离,直径的长度是半径长度的两倍。

- 圆的半径相等,且平行于任意切线。

- 圆的弦是连接圆上任意两点的线段,直径是最长的弦。

- 相等弧所对的圆心角相等,且圆心角大于它所对的弧上任意角。

二、圆的周长与面积1. 周长:- 弧长:圆的周长也被称为圆的周长,用C表示。

弧长是圆上一段弧的长度,计算公式为:C = 2πr,其中r是圆的半径。

- 弧度制:弧度制是角度的一种衡量方式,常用的单位是弧度(radian)。

一个完整的圆周对应的弧度数为2π。

2. 面积:- 圆的面积:用A表示,计算公式为:A = πr^2,其中r是圆的半径。

三、圆的位置关系1. 内切与外切:- 内切:当一个圆的圆心与另一个圆的圆心重合,并且两个圆唯一的内外切点是同一个时,我们称这两个圆为内切圆。

- 外切:当一个圆的圆心与另一个圆的圆心之间的距离等于两个圆的半径之和,并且两个圆唯一的内外切点是同一个时,我们称这两个圆为外切圆。

2. 切线与割线:- 切线:从圆外一点引出的与圆相切的直线称为切线,切线与半径垂直。

- 割线:与圆相交于两点的直线称为割线。

四、圆的常见定理和应用1. 切线定理:如果一条直线与一个圆相切,那么它与半径的垂直角都是直角。

2. 弧长与圆心角关系:弧长等于半径与对应圆心角的乘积。

3. 弧度制与角度制的转换关系:一周的弧度数为360°。

4. 圆心角、弦与弧的关系:圆心角的度数是对应的弧度数的两倍。

5. 弦切角定理:一个弦与切线所夹的角等于被切割的弧所对的圆心角。

九年级数学圆的基本性质

九年级数学圆的基本性质

一、基础知识(一)圆的有关概念:圆:在同一平面内,到定点的距离等于定长的点的集合。

其中,定点为圆心,定长为半径。

弦:连接圆上任意两点的线段。

经过圆心的弦是直径。

弧:圆上任意两点间的部分叫弧。

圆上任一条直径的两个端点把圆分成的两条弧,每一条弧都叫做半圆。

大于半圆的弧角做优弧,小于半圆的弧叫劣弧。

(二)圆的性质:1.同圆或等圆中:半径、直径都相等。

2.圆有无数条弦,其中最长的弦为直径。

3.圆是轴对称图形,对称轴为直径所在的直线,有无数条。

圆是中心对称图形,并且无论绕圆心旋转多少度,都可以和原图形重合。

二、重难点分析本课教学重点:弦和弧的概念、弧的表示方法和点与圆的位置关系.本课教学难点:点和圆的位置关系及判定。

通过日常生活在生产中的实例引导学生对学习圆的兴趣。

三、典例精析:例1:(2014•长春二模)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连结AD、OD、OC.若∠AOC=70°,且AD∥OC,则∠AOD的度数为()A.70°B.60°C.50°D.40°∴∠DAO=∠AOC=70°例2.如图,以AB为直径的半圆O上有两点D、E,ED与BA的延长线交于点C,且有DC=OE,若∠C=20°,则∠EOB的度数是。

四、感悟中考1、(2013•温州)在△ABC 中,∠C 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作BAC ,如图所示.若AB =4,AC =2,S 1-S 2=4π,则S 3-S 4的值是( )A.429π B.423π C.411π D.45π2、如图,已知同心圆O ,大圆的半径AO 、BO 分别交小圆于C 、D ,试判断四边形ABDC 的形状.并说明理由.∠A五、专项训练。

(一)基础练习1、已知:如图,在⊙O中,AB为弦,C、D两点在AB上,且AC=BD.求证:△OAC≌△OBD.2、如图,AB、CD为⊙O中两条直径,点E、F在直径CD上,且CE=DF.求证:AF=BE.【点评】本题考查圆的基本性质、全等三角形判定。

九年级数学上册圆的知识点总结

九年级数学上册圆的知识点总结

九年级数学上册圆的知识点总结一、圆的概念1.圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆(或圆可以看做是所有到定点O的距离等于定长r的点的集合)。

2.圆心O、半径r、直径d:使圆上任意一点与定点O的距离等于r的动点O叫做圆心,连接圆心与圆上任意一点的线段叫做半径,圆心O与定点A之间的距离叫做直径。

二、圆的性质1.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等,所对的弦的弦心距相等。

2.在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

4.圆内接四边形的对角互补。

三、垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

四、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

五、点和圆的三种位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:1.d>r 点P在⊙O外;2.d=r 点P在⊙O上;3.d<r 点P在⊙O内。

六、直线和圆的三种位置关系设⊙O的半径为r,圆心O到直线l的距离为d,则有:1.d>r 直线l与⊙O相离;2.d=r 直线l与⊙O相切;3.d<r 直线l与⊙O相交。

七、正多边形和圆各边相等,各内角都相等的多边形叫做正多边形。

在平面内,各边相等,各内角也都相等的多边形叫做正多边形。

正多边形的外接圆的半径叫做半径;正多边形的中心叫做中心;正多边形的内切圆的半径叫做内心;正多边形的一组邻边的垂直平分线的交点叫做中心。

正n边形的中心角公式:360°/n;正n边形一条边的长度公式:2rsin(180°/n)。

九年级下册圆的知识点总结

九年级下册圆的知识点总结

九年级下册圆的知识点总结九年级下册的数学学习内容涉及到圆的相关知识,本文将对圆的性质、计算公式以及与其他几何图形之间的关系进行总结。

一、圆的性质1. 定义:圆是由平面上与一个固定点的距离恒定的所有点组成的集合。

2. 圆心与半径:圆心是距离所有边界点相等的点,半径是由圆心指向边界上的任意一点的线段,圆心与半径共同决定了一个圆。

3. 直径与周长:直径是通过圆心的两个边界点的线段,它的长度是半径的两倍。

周长是围绕圆边界的长度,可以用2πr表示,其中r为圆的半径。

4. 弧与弦:弧是圆上两个点之间的一段曲线,弦是圆上两个点之间的一条直线段,弦的两个端点也在圆上。

二、圆的计算公式1. 圆的面积公式:圆的面积可以通过πr²计算,其中π为一个不变的常数,约等于3.14,r是圆的半径。

2. 弧长公式:弧长可以根据圆心角的大小和圆的半径计算,如果圆心角θ(单位为弧度)对应的圆弧长度为L,那么L = rθ。

3. 弦长公式:给定圆心角θ和圆的半径r,弦长可以通过2rsin(θ/2)计算得到。

三、圆与其他几何图形的关系1. 圆与直线:圆与直线可以有多种位置关系,可能相离、相切或相交。

当一条直线与圆相交时,相交的点可能有两个、一个或没有。

2. 圆与三角形:圆可以与三角形有共同的一条边,这种情况下,圆称为三角形的内切圆;也可以与三角形相切于三条边,这种情况下,圆称为三角形的外切圆。

3. 圆与正多边形:正多边形是指所有边和角相等的多边形,能够内切于一个圆。

正多边形的外接圆则是能够将正多边形的所有顶点都包含在内部的一个圆。

总结:九年级下册的圆的知识点主要包括圆的性质、计算公式和与其他几何图形之间的关系。

圆的性质包括圆心和半径、直径和周长、弧和弦;计算公式包括圆的面积公式、弧长公式和弦长公式;圆与其他几何图形的关系包括圆与直线、三角形和正多边形之间的关系。

通过对这些知识点的学习和理解,可以更好地掌握圆的相关概念和运用技巧,为解决与圆相关的问题提供帮助。

九年级圆知识点总结

九年级圆知识点总结

九年级圆知识点总结圆是几何学中最基本的图形之一,由于其特殊的性质和重要的应用,是中学数学中一个重点和难点的内容。

以下是针对九年级学习的圆知识点总结,包括圆的定义、性质、常见的定理和应用。

一、圆的定义及基本概念1. 圆的定义:圆是平面上与一个固定点距离恒定的点的集合。

2. 圆的要素:圆心、半径、弦、弧、切线等。

二、圆的性质1. 圆的周长公式:C=2πr,其中C是圆的周长,r是圆的半径。

2. 圆的面积公式:S=πr²,其中S是圆的面积,r是圆的半径。

3. 内接圆和外接圆:内接圆是一个圆,恰好与一个多边形的所有顶点相切;外接圆是一个圆,恰好与一个多边形的所有边相切。

4. 相交圆的性质:两个相交圆的交点到两个圆心的距离相等。

两个相交圆的交点确定的两条弦相互垂直的充要条件是两个弦的弧度相等。

三、常见的圆的定理1. 切线定理:切线与半径垂直。

2. 弦切角定理:弦切角等于弦对应的弧的一半。

3. 弦弧角定理:弦弧角等于弦对应的弧的一半。

4. 弦角定理:弦角等于其对应的弧缺角的一半。

5. 弧长定理:弧长等于圆心角的弧度数除以2π乘以圆的周长。

四、圆的应用1. 圆的引理:如欲使直线在给定的点上下夹定一个给定的角,只需作两条通过该点的圆,并使直线分别与两圆相切即可。

2. 圆的内切与外切:两个圆相切,其中一个圆在另一个圆内部,称为内切;两个圆相切,其中一个圆在另一个圆外部,称为外切。

3. 勾股定理的圆证法:利用圆的性质,可以简化勾股定理的证明过程。

4. 圆柱、圆锥和圆球的体积计算:圆柱的体积公式为V=πr²h,其中V是体积,r是底面半径,h是高;圆锥的体积公式为V=1/3πr²h,其中V是体积,r是底面半径,h是高;圆球的体积公式为V=4/3πr³,其中V是体积,r是半径。

以上只是关于九年级圆的知识点的简要总结,实际上圆还有许多其他的性质、定理和应用,需要通过练习和实际问题的解决来进一步加深理解和掌握。

初中九年级圆的知识点详解

初中九年级圆的知识点详解

初中九年级圆的知识点详解在初中九年级数学课程中,圆是一个重要的几何概念。

我们将在本文中详细解释圆的知识点,包括定义、性质和常见的相关公式。

一、圆的定义圆是一个平面上所有到圆心距离都相等的点的集合。

这个距离被称为半径,用字母r表示。

圆的圆心和半径是确定一个圆的基本要素。

二、圆的性质1. 圆的直径和半径关系:圆的直径是通过圆心,并且两个端点在圆上的线段,它的长度是半径的两倍,即直径d=2r。

2. 圆的周长和面积:圆的周长是指圆上一周的长度,用字母C表示,它可以通过公式C=2πr来计算,其中π≈3.14是一个无理数,代表圆周率。

圆的面积是指圆内部的区域,用字母A表示,它可以通过公式A=πr²来计算。

3. 圆的切线和法线:圆上的切线是与圆切于一点的直线,切线与半径的夹角为90度。

圆上的法线是与圆相交于一点,并且与切线垂直的直线。

4. 圆的弧度制和度制:在解决一些圆相关问题时,我们通常使用弧度制来度量角度。

弧度制的角度是通过圆的弧长和半径之间的比值来定义的。

一个完整的圆的弧长等于2πr,所以一个完整圆的角度为360°。

三、常见的圆相关公式1. 圆的周长公式:C = 2πr2. 圆的面积公式:A = πr²3. 圆的弧长公式:L = 2πr(θ/360°),其中θ是所对应的圆心角的角度。

4. 扇形面积公式:S = 0.5r²(θ/360°),其中θ是所对应的圆心角的角度。

五、相关解题方法1. 已知圆的半径求周长和面积:根据上述公式直接计算即可。

2. 已知圆的周长求半径和面积:由C=2πr可得r=C/(2π),再带入A=πr²即可计算面积。

3. 已知圆的面积求半径和周长:由A=πr²可得r=√(A/π),再带入C=2πr即可计算周长。

4. 已知圆心角和半径求弧长和扇形面积:根据相应的公式计算即可。

六、例题解析1. 已知一个圆的半径为5cm,求其周长和面积。

九年级数学上册专题第14讲圆的有关性质重点、考点知识总结及练习

九年级数学上册专题第14讲圆的有关性质重点、考点知识总结及练习

第14讲圆的有关性质⎧⎪⎪⎨⎪⎪⎩垂径定理弧、弦、圆心角的关系圆的有关性质圆周角定理及推论圆内接四边形的性质 知识点1垂径定理①弦和直径:(1)弦:连接圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做直径。

直径等于半径的两倍。

②弧:(1) 弧:圆上任意两点间的部分叫做圆弧,简称弧,用符号⌒表示,以A,B 为端点的的弧记作AB ⌒,读作弧AB.(2)半圆、优弧、劣弧:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

大于半圆的弧叫做优弧,优弧大于180º用三个字母表示,如 ACB .小于半圆的弧叫做劣弧,如AB 。

(3)等弧:在同圆或者等圆中能够相互重合的弧是等弧,度数或者长度相等的弧不一定是等弧。

③弦心距:(1)圆心到弦的距离叫做弦心距。

(2)圆心角、弧、弦、弦心距之间的相等关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的圆心角也相等,所对弦的弦心距也相等。

四者有一个相等,则其他三个都相等。

圆心到弦的垂线段的长度称为这条弦的弦心距。

④圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,直径所在的直线是它的对称轴。

⑤垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(此弦不能是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.⑥同心圆与等圆(1)同心圆:圆心相同,半径不相等的两个圆叫做同心圆。

如图一,半径为r1与半径为r2的⊙O叫做同心圆。

(图一)(2)等圆:圆心不同,半径相等的两个圆叫做等圆。

九年级数学知识点总结圆

九年级数学知识点总结圆

九年级数学知识点总结圆数学中的圆是我们学习的重要几何形状之一,也是九年级数学中的一个重要知识点。

学习圆的相关知识,不仅可以提高我们的几何直观能力,还有助于我们解决实际问题。

接下来,我们就一起来总结九年级数学中关于圆的知识点。

一、圆的概念及性质圆是平面上所有到一个固定点距离相等的点的集合。

在圆上,我们常见的有圆心、半径、直径、弦、弧等概念。

1. 圆心:圆心是圆上离任何一点距离相等的点,通常用字母O 表示。

2. 半径:从圆心到圆上任一点的线段称为半径,通常用字母r 表示。

3. 直径:通过圆心的任意两点构成的线段称为直径,通常用字母d表示,直径等于半径的两倍。

4. 弦:在圆上任意选取的两点之间的线段称为弦。

5. 弧:在圆上两个点之间的曲线部分称为弧。

圆的性质有很多,比如圆心角是指圆上两条半径之间的夹角,它的度数等于它所对应的弧所对的圆心角的一半。

此外,对于一个圆,任意一条直径将圆分为两个相等的半圆,而一个圆只有一个圆心和一个半径。

圆的任意两条弦的长度相等,且直径是一个弦的最长长度。

二、圆的计算在九年级数学中,我们还需要学习如何计算与圆相关的一些特性,包括圆的周长和面积的计算。

1. 周长:圆的周长也被称为圆周长,通常用公式2πr表示,其中π是一个约等于3.14的常数,r是圆的半径。

2. 面积:圆的面积可以用公式πr²来计算,其中π是一个约等于3.14的常数,r是圆的半径。

三、圆的相交关系及定理在几何学中,圆与直线或其他圆的相交关系是我们需要掌握的重要知识。

1. 圆与直线的相交:若直线和圆有两个交点,则该直线被称为圆的切线,若直线与圆相交于两个不同的交点,则直线被称为圆的弦。

2. 圆与圆的相交:两个圆可以有三种相交关系,即相离、相切和相交。

当两个圆内部没有公共点时为相离,当两个圆的外切线只有一个公共点时为相切,当两个圆内外各有一个公共点时为相交。

在圆的相交关系中,我们还有一些重要的相关定理,比如切线定理和割线定理等,它们有助于我们计算圆内外的线段长度。

九年级圆的知识点总结

九年级圆的知识点总结

九年级圆的知识点总结九年级数学课程中,圆是一个重要的几何图形。

本文将对九年级圆的相关知识点进行总结,包括圆的定义、圆的性质、圆的元素和圆的应用。

一、圆的定义圆是由平面上离一个定点距离相等的所有点组成的集合。

这个定点叫做圆心,距离叫做半径。

二、圆的性质1. 圆的半径相等的两个圆是相等的。

2. 圆的直径是任意两点在圆上的端点所确定的线段,等于圆的半径的两倍。

3. 圆上任意一点与圆心的距离等于半径的长度。

4. 圆上的任意一条弧,它所对应的圆心角的度数等于弧上的弧度数。

三、圆的元素1. 直径:通过圆心的两个端点构成的线段,是圆的最长的一条线段。

2. 弧:圆上的一部分,可以由两个端点和连接两个端点的弧线构成。

3. 弦:圆上的一条线段,连接圆上的任意两个点,不能通过圆心。

4. 切线:与圆相切于圆的一条线,切点为切线与圆相交的唯一一点。

四、圆的应用1. 圆的面积和周长:圆的面积公式为A=πr²,周长公式为C=2πr。

2. 弧长和扇形面积:弧长公式为L=θr,其中θ为弧度;扇形面积公式为S=θr²/2。

3. 圆与其他几何图形的关系:圆与直线的交点、圆与弦的位置关系等。

在实际应用中,圆经常出现在测量和建模等领域。

比如在测量中,我们常用圆盘测量直径或周长。

在建模中,圆可以用来模拟轮胎、乒乓球等实物的形状。

九年级圆的知识点总结到此结束。

通过对圆的定义、性质、元素和应用的学习,可以帮助我们更好地理解和应用圆的概念。

掌握这些基础知识,有助于我们在解决相关问题时能够准确、高效地运用圆的相关概念和公式。

九年级数学圆的知识点总结大全

九年级数学圆的知识点总结大全

一、圆的定义和性质1.圆的定义:平面上到定点的距离等于定长的点的集合。

2.圆的要素:圆心、半径、圆周。

3.圆的性质:(1)半径相等的两个圆是同心圆;(2)同圆中,圆心角等于圆周角的1/2;(3)同弧上的两条弦所对的圆心角相等;(4)圆心角相等的弧相等;(5)相等弧所对的弦相等;(6)正多边形的内角和是定值,因此内接于一个圆的正多边形的各个内角相等;(7)直径是弦中最长的。

二、弧与圆周角1.弧的定义:圆上两点间的弧是以这两点为端点的两条互不相交的圆弧中,长的那一段。

2.弧的性质:(1)圆周角所对的弧是唯一确定的;(2)全周角所对的弧是定长的。

3.圆周角的定义:以圆心为端点的两条互不相交的射线所夹的角。

4.圆周角的度量:可以用角的度数来衡量。

三、切线与弦1.切线的定义:切线是与圆只有一个公共点的直线。

2.切线与半径的关系:切线与半径的关系是切线⊥半径。

3.弦的定义:两点之间的线段叫做弦。

4.弦的性质:(1)圆内的弦比它们所对的圆心角小,而且与一个圆心角的两个弧所对的弧一样;(2)相等的弦所对的圆心角相等。

四、相交弦定理1.弦上的点:如果一个点在弦上,则这个点到两个端点的距离相等。

2.相交弦定理:如果两个弦相交于圆内的一个点,则这两个弦上的两个点一定分别在另一个弦上的两侧。

五、余弦定理1.面积的性质:圆内、圆外的面积相等,夹在一个圆内的圆周弧的面积也相等。

2.余弦定理:在一个圆上,任意两条弧所对的圆心角的余弦值相等。

六、正多边形的面积公式1.正六边形的面积:正六边形的面积=3×(边长)²×√3÷22.正八边形的面积:正八边形的面积=2×(边长)²×√23.正十二边形的面积:正十二边形的面积=3×(边长)²×√34. 正十六边形的面积:正十六边形的面积=4×(边长)²×tan(22.5°)。

九年级常考的圆知识点总结

九年级常考的圆知识点总结

九年级常考的圆知识点总结圆是我们九年级数学中的一个重要知识点,也是经常出现在考试中的内容。

本文将对九年级常考的圆知识点进行总结和归纳,希望能够帮助同学们更好地理解和掌握这些知识。

一、圆的定义和性质圆是平面内所有与一个确定点距离相等的点构成的集合。

其中,确定的点称为圆心,相等的距离称为半径。

圆的性质有很多,包括以下几个重要的方面:1. 圆上任意两点与圆心的距离相等;2. 圆的直径是圆上任意两点的最大距离;3. 圆的半径垂直于切线;4. 圆的切线与半径的交角是直角;5. 圆的内接四边形的两对对边和相等。

二、圆的基本要素和计算1. 弧度制和度度量制弧度制是一种角度的计量单位,它是以圆的半径长的弧所对的圆心角来定义的。

与之相对的是度度量制,在度度量制中,一个圆被划分成360个度。

在解决圆的相关问题时,我们需要根据具体情况选择使用弧度制还是度度量制。

2. 圆的弧长和扇形面积当我们需要计算圆上两点之间的弧长时,可以使用下列公式进行计算:L = rθ,其中L表示弧长,r表示圆的半径,θ表示弧所对的圆心角的度数或弧度数。

而当我们需要计算一个扇形的面积时,可以使用下列公式:S = 0.5r²θ,其中S表示扇形的面积,r表示圆的半径,θ表示扇形所对的圆心角的度数或弧度数。

三、圆的位置关系和相交性质1. 相离和相切当两个圆没有任何交点时,我们称它们为相离的;当两个圆只有一个公共切点时,我们称它们为相切的。

2. 相交和内切当两个圆有两个交点时,我们称它们为相交的;当一个圆完全包含在另一个圆内部,并且两个圆的圆心重合时,我们称它们为内切的。

四、圆的切线和切点1. 切线的性质圆的切线与半径的交角是直角,这是一个重要的性质。

同时,切线与半径的长度相等。

2. 切点的坐标计算当我们知道切线的方程和圆的方程时,可以通过联立两个方程来求解切点的坐标。

五、圆的证明问题圆的证明问题是考察同学们对圆性质的理解和运用能力的重要环节。

九年级数学圆的知识点总结大全

九年级数学圆的知识点总结大全

一、圆的基本概念和性质1.圆的定义:平面上的点到圆心的距离等于半径的点的集合。

2.圆的要素:圆心、半径、圆周。

3.圆的性质:a.对于圆上任意一点P和圆心O,OP是半径;b.圆上任意两点P和Q的半径相等;c.圆上两个不同的弧所对的圆心角相等;d.圆心角的度数等于它所对的弧的度数;e.圆的内切四边形的对角线互相垂直;f.圆的内切四边形的对边互相平行且相等;g.圆内接正方形的边长等于半径的2倍。

4.圆心角与弧的关系:a.弧所对的圆心角是其两倍;b.圆心角相等的弧相等;c.同弧度数的圆心角相等;d.弧需要圆的整个周长的弧数表示。

二、圆的运算1.圆周长:圆周长是圆周上的弧长,可以通过半径和直径推导得到。

2.圆的面积:圆的面积是圆心角度和圆的半径之间的数学关系,可以通过面积公式πr²计算得到。

三、圆的位置关系1.圆的判定:a.两个圆相交,如果两个圆的圆心距离小于半径之和但大于半径之差;b.两个圆相切,如果两个圆的圆心距离等于半径之和或半径之差;c.两个圆外离,如果两个圆的圆心距离大于半径之和;d.两个圆内含,如果一个圆完全位于另一个圆内部。

2.相切圆的性质:a.相切圆的切点在半径的连线上;b.相切圆的切线相互垂直;c.相切圆的切线公共切点的连线通过两个圆的圆心。

四、圆与线的位置关系1.弦的性质:a.弦和圆心连线垂直,那么弦是直径;b.弦的中点位于圆心。

2.弧与弦:a.弧上的两个弦相等,则它们所对的圆心角相等;b.两个等圆弧所对的圆心角相等;c.弦所夹的圆弧是圆心角的一半。

3.弦的长度:等于两个切线段的和。

4.直线和圆的位置关系:a.直线与圆相交于两点;b.直线与圆相切于一点;c.直线与圆不相交。

五、切线和切线长1.切线的定义:从圆外的一点引一条直线,直线与圆相交于该点,这条直线叫做切线。

2.切线的性质:a.切线与半径垂直;b.切线与切线垂直;c.相切圆的切线相互垂直。

3.切线长的计算:可以通过勾股定理得到切线长的计算公式。

初三数学圆的有关性质知识精讲

初三数学圆的有关性质知识精讲

初三数学圆的有关性质知识精讲圆的有关性质1. 圆的有关概念圆、圆心、半径、弦、直径、弧、半圆、优弧、劣弧、弦心距、等弧、等圆、同心圆、弓形、弓形的高。

说明:(1)直径是弦,但弦不一定是直径,直径是圆中最长的弦。

(2)半圆是弧,但弧不一定是半圆。

(3)等弧只能是同圆或等圆中的弧,离开“同圆或等圆”这一条件不存在等弧。

(4)等弧的长度必定相等,但长度相等的弧未必是等弧。

2. 点和圆的位置关系说明:点和圆的位置关系与点到圆心的距离和半径大小的数量关系是对应的,即知量位置关系就可以确定数量关系;知道数量关系也可以确定位置关系。

3. 和圆有关的角圆心角、圆外角说明:这两种与圆有关的角,可以通过对比,从(1)角的顶点的位置;(2)角的两边与圆的位置关系,两个方面去把握它们。

补充:如果角的顶点在圆内,则称这样的角为圆内角,圆心角是特殊的圆内角;如果角的顶点在圆外,且角的两边都与同一个圆相交,则称这样的角为圆外角。

4. 圆的有关性质(1)圆的确定<1>圆心确定圆的位置半径确定圆的大小。

<2>不在同一直线上的三个点确定一个圆。

(2)圆的对称性<1>圆是轴对称图形,任何一条经过圆心的直线都是它的对称轴。

<2>圆是中心对称图形,圆心是它的对称中心。

说明:一个圆的对称轴有无数条,对称中心只有一个,一个圆绕圆心旋转任意角度,都能够和原图形重合,即圆还具有旋转不变性。

(3)垂径定理如果一条直线具有(1)经过圆心(2)垂直于弦(3)平分弦(4)平分弦所对的劣弧(5)平分弦所对的优弧,这五个性质的任何两个性质,那么这条直线就具有其余三个性质,即:垂径定理:(1)(2)⇒(3)(4)(5)推论1:(1)(3)⇒(2)(4)(5)(2)(3)⇒(1)(4)(5)(1)(4)(或(5))⇒(2)(3)(5)(或(4))(1)(3)⇒(2)(4)(5)是“平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧”其中的弦必须是非直径的弦,假若弦是直径,那么这两条直径不一定互相垂直。

九年级圆的常考知识点总结

九年级圆的常考知识点总结

九年级圆的常考知识点总结圆是我们日常生活中经常遇到的几何对象之一,也是数学中非常重要的一个概念。

在九年级的几何学习中,圆的相关知识点常常被考察。

下面,我将总结一些九年级圆的常考知识点,帮助大家更好地理解和掌握。

一、圆的定义与性质圆是平面上到一定距离的点的集合,这个固定距离称作圆的半径。

根据圆的定义,我们可以得出一些重要的性质:1. 圆心和半径:圆心是到圆上任意一点的距离相等的点,半径则是圆心到圆上任意一点的距离。

根据这一性质,我们可以得到等半径的圆是同心圆,同心圆的圆心是重合的。

2. 直径与半径:直径是通过圆心的一条线段,且两个端点都在圆上。

直径与半径之间有一个简单的关系:直径的长度等于半径的两倍。

3. 弧与弦:圆上两点之间的线段称为弦,而弧则是圆上两点之间的弧段。

一个弧对应一个弦,一个弦对应一个弧。

需要注意的是,对于同一条弧来说,不同的弦对应不同的拱长。

二、圆的角度与弧度1. 圆周角:以圆心为顶点的角称为圆周角,其对应的圆周称为全角。

在圆周角中,如果其度数为360度,则与之对应的全角是整个圆周。

2. 弧度制:弧度是一个用于衡量角度的单位,弧度制也是描述角度的重要方法之一。

一圆周等于2π弧度,即360度约等于6.28弧度。

弧度与度数之间的换算关系是π弧度=180度。

三、圆的内切与外接1. 内切与外切圆:如果一个圆与一个三角形的三条边都相切,那么这个圆就是这个三角形的内切圆。

类似地,如果一个圆与一个三角形的三条边的延长线都相切,那么这个圆就是这个三角形的外接圆。

2. 欧拉公式:对于任何一个三角形,其外心、内心和重心三点共线,且它们的连线互相垂直并且交于一点,这一点称为费马点。

欧拉公式指出,三角形的外心、内心和重心这三个点的连线长度之间有一定的关系。

四、圆的面积与周长1. 面积:圆的面积公式是S=πr²,其中S表示圆的面积,r表示圆的半径。

圆的面积是它的半径的平方乘以π。

需要注意的是,圆的面积没有单位,因为π是一个常数。

九年级圆数学知识点总结

九年级圆数学知识点总结

九年级圆数学知识点总结在九年级的数学学习中,圆是一个重要的几何形状。

本文将总结九年级学生需要了解的关于圆的数学知识点,包括圆的定义、圆的性质、圆的周长和面积计算公式等。

一、圆的定义圆是平面上所有到圆心距离相等的点的集合。

圆由圆心和半径两个要素唯一确定。

二、圆的性质1. 圆心角性质:圆心角的度数等于所对弧的度数。

2. 弧长角性质:圆心角和所对弧的弧长成正比,即圆心角是所对弧的弧长的一半。

3. 正切线性质:切线与半径的垂直关系。

4. 直径性质:直径是过圆心的两个端点,也是圆的两个切线的临界情况。

5. 弦性质:弦是圆上任意两点的连线,圆心角大于所对弦的弦长所对应的圆心角。

三、圆的周长和面积计算公式1. 圆的周长计算公式:周长等于直径乘以π(π取近似值3.14),或者等于半径乘以2π。

2. 圆的面积计算公式:面积等于半径的平方乘以π。

四、圆的相关概念和定理1. 弧:弧是圆上的一段弧段,可以用圆心角的度数或弧长来表示。

2. 弧度制和角度制:弧度制是以圆的半径长度为单位,角度制是以度数为单位。

3. 弧长公式:弧长等于圆心角的弧度数乘以半径。

4. 扇形:扇形是由圆心角和所对弧组成的图形。

5. 圆锥曲线:圆是一种特殊的椭圆,椭圆的两个焦点重合形成圆。

6. 圆和直线的位置关系:直线可能与圆相切、相交或不相交。

五、九年级圆的应用1. 圆的测量:了解如何使用直径、弧长和半径求圆的周长和面积。

2. 圆的运动学应用:了解圆的运动学应用,如圆周运动和圆周速度的计算等。

3. 圆的工程应用:了解圆在工程领域中的应用,如轮胎的制造和车辆的转弯半径计算等。

六、小结在九年级数学学习中,圆是一个重要的几何形状。

通过掌握圆的定义、性质、周长和面积计算公式,以及相关概念和定理,学生可以更好地理解圆的特点和应用。

掌握圆的知识,有助于解决和应用各类与圆相关的数学问题,同时也为进一步学习高级几何打下坚实的基础。

九年级下册数学圆知识点

九年级下册数学圆知识点

九年级下册数学圆知识点数学中的圆是一种常见的几何图形,它在九年级下册的课程中占有重要的地位。

本文将详细介绍九年级下册数学中的圆知识点,包括圆的定义、圆的性质以及与圆相关的计算方法。

一、圆的定义在数学中,圆指的是平面上距离一个给定点(圆心)固定距离的所有点的集合。

圆通常用一个大写字母表示,圆心用字母O表示,半径用小写字母r表示。

圆的表示方法有两种,一种是以圆心和半径表示,如O(r);另一种是以圆心和直径表示,如O(d)。

二、圆的性质1. 圆的半径相等性:圆上任意两点到圆心的距离相等。

2. 圆周角的性质:圆周角是指以圆心为顶点的角,圆周角的度数是弧度的两倍,即圆周角的度数为360°。

3. 弧的性质:圆上的弧是指圆上的两点间的线段。

弧的长度可以通过弧度来计算,公式为:弧长 = 弧度 ×半径。

三、与圆相关的计算方法1. 圆的面积计算:圆的面积可以通过半径来计算,公式为:面积= π × (半径)^2。

其中,π是一个与圆相关的常数,近似值为3.14或22/7。

2. 圆的周长计算:圆的周长也可以通过半径来计算,公式为:周长= 2π × 半径。

四、圆的相关定理1. 切线定理:如果一条直线与一个圆相切,那么该线与半径的垂直线之间的夹角等于两条半径间的夹角。

2. 弦切定理:如果一条直线同时与一条弦和一个切线相切,那么切线与弦所在的圆周角相等。

3. 弧长定理:如果两个角所对的弧相等,则这两个角相等;反之,如果两个角相等,则这两个角所对的弧相等。

五、习题示例1. 已知圆的半径为4cm,求圆的周长和面积。

解:根据公式,周长= 2π × 半径= 2π × 4 = 8π cm,面积= π × (半径)^2 = π × 4^2 = 16π cm^2。

2. 已知圆的周长为12π c m,求圆的半径和面积。

解:根据公式,周长= 2π × 半径,可得半径 = 周长/ (2π) = (12π) / (2π) = 6 cm。

初中数学九年级上圆的知识点

初中数学九年级上圆的知识点

初中数学九年级上圆的知识点圆是初中数学九年级上的一个重要知识点,下面将从圆的定义、圆的性质、圆的相关定理以及圆的应用等方面进行论述。

一、圆的定义圆是平面上的重要几何图形之一,是由与一个定点距离相等的所有点构成的集合。

这个定点称为圆心,距离称为半径,用字母r表示。

圆通常用圆的轮廓线表示,在数学表达中用字母O表示。

二、圆的性质1. 圆的任意两点到圆心的距离相等。

这意味着圆上的每一个点到圆心的距离都相等,即圆的半径。

2. 圆的直径是圆上任意两点之间的最长距离。

直径的长度是半径的两倍。

3. 圆的弦是圆上任意两点之间的线段。

弦不一定通过圆心,可以在圆内或圆外。

4. 圆上的切线垂直于半径。

切线是与圆相切的线,与圆的切点处的半径垂直。

三、圆的相关定理1. 弧与角的关系圆上的弧对应的圆心角是两个端点在圆心所对应的角,它们的度数相等。

2. 弧长与圆周角的关系圆的弧长是圆心角所对应的弧所在圆的一部分的长度,弧长等于这个圆心角所对应的圆周角度数的比值。

3. 弦长与弦心角的关系弦上的弦长是弦心角所对应的弦所在圆的一部分的长度,弦长等于这个弦心角所对应的圆周角度数的比值的2倍。

4. 割线定理割线是两个切点之间的线段,割线上的两个切线段长度乘积等于这条割线与这两个切点之间的弦段长度乘积。

四、圆的应用1. 圆的测量圆的周长等于圆周上的任意一段弧长,即C=πd或C=2πr,其中d为直径,r为半径。

圆的面积等于圆内所包围的面积,即S=πr²。

2. 圆的位置关系两个圆之间的位置关系可以分为外切、内切、相交、相离四种情况,通过判断两个圆心的距离与两个圆的半径之间的关系可以确定两个圆的位置关系。

3. 圆的轴对称与旋转对称圆具有轴对称性和旋转对称性,利用这个特性可以解决一些与圆相关的问题。

综上所述,圆是初中数学九年级上的重要知识点,通过对圆的定义、性质、相关定理和应用进行论述,可以帮助同学们更好地理解和掌握圆的知识,提高数学学科的学习成绩。

九年级数学圆的知识点总结

九年级数学圆的知识点总结

圆是一种特殊的几何图形,是平面上所有到一些点的距离相等的点的集合。

在九年级数学中,我们学习了许多与圆相关的知识点,包括圆的性质、圆的方程、圆的切线和弦、圆与直线的位置关系等。

下面是对这些知识点的详细总结。

一、圆的性质1.圆的定义:平面上到一个固定点的距离相等的点的集合叫做圆。

2.圆的元素:圆心、半径、直径、弦、弧等。

3.圆的表示方法:圆心为O,半径为r的圆可以表示为O(r),或者简写为O。

二、圆的方程1.标准方程:以圆心为原点O(0,0),半径为r的圆的方程为x²+y²=r²。

2.一般方程:以圆心为(h,k),半径为r的圆的方程为(x-h)²+(y-k)²=r²。

三、圆的切线和弦1.切线:与圆只有一个交点的直线叫做圆的切线。

切线垂直于半径。

2.弦:连接圆上两个不相邻点的线段叫做圆的弦。

圆心到弦的中点的线段垂直于弦。

四、圆与直线的位置关系1.直线与圆的位置关系有三种情况:a.直线与圆相交于两点:直线穿过圆的内部,与圆有两个交点。

b.直线与圆相切:直线与圆只有一个交点,且切点在圆上。

c.直线与圆相离:直线没有与圆的交点。

五、圆的相关定理1.切线定理:切线与半径的垂直定理。

切线与半径的垂线相互垂直。

2.弦切角定理:圆弦上的两个角对相同弧的度数相等。

3.弧上的角等于圆心角的一半:弧上的角等于它所对的圆心角的一半。

4.切线垂直半径定理:过圆的切点作切线,与过切点的半径垂直。

六、圆的计算1.弧长公式:弧长L=2πr(θ/360°),其中r为半径,θ为圆心角度数。

2.弧度制与角度制转换:1°=π/180,1弧度=180/π。

以上是九年级数学中圆的主要知识点的总结,通过对这些知识点的学习和理解,能够更好地理解和解决与圆相关的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第30课圆的有关性质
〖知识点〗圆、圆的对称性、点和圆的位置关系、不在同一直线上的三点确定一个圆、三角形的外接圆、垂径定理逆定理、圆心角、弧、弦、弦心距之间的关系、圆周角定理、圆内接四边形的性质
〖大纲要求〗
1.正确理解和应用圆的点集定义,掌握点和圆的位置关系;
2.熟练地掌握确定一个圆的条件,即圆心、半径;直径;不在同一直线上三点。

一个圆的圆心只确定圆的位置,而半径也只能确定圆的大小,两个条件确定一条直线,三个条件确定一个圆,过三角形的三个顶点的圆存在并且唯一;
3.熟练地掌握和灵活应用圆的有关性质:同(等)圆中半径相等、直径相等直径是半径的2倍;直径是最大的弦;圆是轴对称图形,经过圆心的任一条直线都是对称轴;圆是中心对称图形,圆心是对称中心;圆具有旋转不变性;垂径定理及其推论;圆心角、圆周角、弧、弦、弦心距之间的关系;
4.掌握和圆有关的角:圆心角、圆周角的定义及其度量;圆心角等于同(等)弧上的圆周角的2倍;同(等)弧上的圆周角相等;直径(半圆)上的圆周角是直角;90°的圆周角所对的弦是直径;
5.掌握圆内接四边形的性质定理:它沟通了圆内外图形的关系,并能应用它解决有关问题;
6.注意:(1)垂径定理及其推论是指:一条弦①在“过圆心”②“垂直于另一条弦”
③“平分这另一条弦”④“平分这另一条弦所对的劣弧”⑤“平分这另一条弦所对的优弧”的五个条件中任意具有两个条件,则必具有另外三个结论(当①③为条件时要对另一条弦增加它不是直径的限制),条理性的记忆,不但简化了对它实际代表的10条定理的记忆且便于解题时的灵活应用,垂径定理提供了证明线段相等、角相等、垂直关系等的重要依据;(2)有弦可作弦心距组成垂径定理图形;见到直径要想到它所对的圆周角是直角,想垂径定理;想到过它的端点若有切线,则与它垂直,反之,若有垂线则是切线,想到它被圆心所平分;(3)见到四个点在圆上想到有4组相等的同弧所对的圆周角,要想到应用圆内接四边形的性质。

〖考查重点与常见题型〗
1.判断基本概念、基本定理等的正误,在中考题中常以选择题、填空题的形式考查学生对基本概念和基本定理的正确理解,如:下列语句中,正确的有()
(A)相等的圆心角所对的弧相等 (B)平分弦的直径垂直于弦
(C)长度相等的两条弧是等弧 (D)弦过圆心的每一条直线都是圆的对称轴
2.论证线段相等、三角形相似、角相等、弧相等及线段的倍分等。

此种结论的证明重点考查了全等三角形和相似三角形判定,垂径定理及其推论、圆周角、圆心角的性质及切线的性质,弦切角等有关圆的基础知识,常以解答题形式出现。

考点训练:
1.在⊿ABC中,∠C=90°,AB=3cm,BC=2cm,以点A为圆心,以2.5cm为半径作圆,则点C 和⊙A的位置关系是()
(A)C在⊙A 上 (B)C在⊙A 外 (C)C在⊙A 内 (D)C在⊙A 位置不能确定。

2.一个点到圆的最大距离为11cm,最小距离为5cm,则圆的半径为( )
(A)16cm或6cm, (B)3cm或8cm (C)3cm (D)8cm
3.如图,弦AC,BD相交于E,且AB,BC,CD的弧长相等,
∠AED=30°,则∠AED的度数是()
(A)150° (B) 105° (C) 120°(D) 140°
4.在⊿ABC中,∠C=90°,O是BC上的一点,以OB为半径作
⊙O交于AB于D,交BC于E,∠A=30°BD=6,则⊙O的直径是( )
(A)12 (B) 9 (C) 6 (D)3
5.AB是⊙O直径,AB=4,F是OB中点,弦CD⊥AB于F,则CD=_________
6.⊿ABC内接于⊙O,OD⊥BC,∠BOD=36°,则∠A=____
7.圆内接⊿ABC中,AB=AC,圆心到BC的距离为3cm,圆的半径为7cm,则腰长AB=___8.四边形ABCD内接于圆,AB,BC,CD,DA的弧长之比为5:8:3:2则∠ABC=_____9.如图,⊙O中两条不平行弦AB和CD的中点M,N.且AB=CD,求证:∠AMN=∠CNM
10.如图,四边形ABCD内接于⊙O,∠ADC=90°,B是弧AC的中点,AD=20,CD=15,求BD 的长。

解题指导。

1.如图,⊙O1的圆心在⊙O的圆周上,⊙O和⊙O1交于A,B,AC切⊙O1于A,连结CB,BD是⊙O的直径,∠D=40°求:∠A O1B、∠ACB和∠CAD的度数。

2.如图,AB是⊙O直径,ED⊥AB于D,交⊙O于G,EA交⊙O于C,CB交ED于F,求证:DG2=DE•DF
3.如图,⊙O是⊿ABC外接圆,AD⊥BC于D,交⊙O于N,AE平分∠BAC交⊙O于E,求证:AE平分∠OAD
4.已知,如图O为圆心,∠AOB=120°,弓形高ND=2cm,矩形EFGH的两顶点E,F在弦AB 上,H,G在弦AB上,且EF=4HE,求HE的长。

独立训练:
1.三角形的外心一定在该三角形上的三角形是()
(A)锐角三角形(B)钝角三角形(C)直角三角形(D)等腰三角形
2.边长为2的等边三角形的外接圆的半径是()
(A)3
3
(B) 3 (C)2 3 (D)
2 3
3
3,圆内接四边形ABCD中,四个角的度数比可顺次为()
(A)4:3:2:1 (B)4:3:1:2 (C)4:2:3:1(D)4:1: 3:2
4.AB 是⊙O 的弦,∠AOB =80°则弦AB 所对的圆周角是( )
(A)40° (B) 140°或40° (C) 20° (D )20°或160°
5.AB 是⊙O 的弦,C 为⊙O 上的一点,弧AC ,CB 的长比是1:2,弦BC =12cm,则⊙O 半径为______cm
6.⊙O 直径为8,弦AB =4 2 ,则∠AOB =_____。

7.圆的半径为2cm ,圆内一条弦长为2 3 cm ,则弦的中点与弦所对弧的中点间的距离为______,这条的弦心距为_______
8.已知⊙O 中,半径OD ⊥直径AB ,F 是OD 中点,弦BC 过F 点,
若⊙O 半径为R 则弦BC 长_____
9.如图,⊿ABC 内接于⊙O ,且BC 是⊙O 的直径,AD ⊥BC 于D ,F 是弧BC 中点,且AF 交BC 于E ,AB =6,AC =8,求CD ,DE ,及EF 的长。

10.如图,弦EF ⊥直径MN 于H ,弦MC 延长线交EF 的反向延长线于A ,求证:MA •MC =MB •MD
C B
N。

相关文档
最新文档