高考数学第一轮复习教案-基本不等式
高考数学一轮专项复习讲义-基本不等式(北师大版)
§1.4基本不等式课标要求1.了解基本不等式的推导过程.2.会用基本不等式解决简单的最值问题.知识梳理1.基本不等式:a +b2≥ab (1)基本不等式成立的条件:a ≥0,b ≥0.(2)等号成立的条件:当且仅当a =b 时,等号成立.(3)其中a +b2称为a ,b 的算术平均值,ab 称为a ,b 的几何平均值.2.利用基本不等式求最值(1)若x +y =s (s 为定值),则当且仅当x =y 时,xy 取得最大值s 24;(2)若xy =p (p 为定值),则当且仅当x =y 时,x +y 取得最小值2p .注意:利用不等式求最值应满足三个条件“一正、二定、三相等”.常用结论几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ).(2)b a +ab ≥2(a ,b 同号).(3)ab (a ,b ∈R ).(4)a 2+b 22≥(a ,b ∈R ).以上不等式等号成立的条件均为a =b .自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)不等式ab 与ab ≤a +b2等号成立的条件是相同的.(×)(2)y =x +1x的最小值是2.(×)(3)若x >0,y >0且x +y =xy ,则xy 的最小值为4.(√)(4)函数y =sin x +4sin x,x 4.(×)2.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于()A .1+2B .1+3C .3D .4答案C解析当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)·1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时,取等号,即当f (x )取得最小值时x =3,即a =3.3.已知0<x <1,则x (1-x )的最大值为()A.14B.18C.116D .1答案A解析因为0<x <1,所以1-x >0,所以x (1-x )=14,当且仅当x =1-x ,即x =12时,等号成立,故x (1-x )的最大值为14.4.(2023·重庆模拟)已知x >0,y >0,x +y =1,则1x +1y 的最小值为________.答案4解析由x +y =1得1x +1y =x +y )=2+y x +xy≥2+2y x ·xy=4,当且仅当x =y =12时,等号成立,即1x +1y的最小值为4.题型一基本不等式的理解及常见变形例1(1)若0<a <b ,则下列不等式一定成立的是()A .b >a +b2>a >abB .b >ab >a +b2>aC .b >a +b 2>ab >aD .b >a >a +b2>ab答案C解析∵0<a <b ,∴2b >a +b ,∴b >a +b 2>ab .∵b >a >0,∴ab >a 2,∴ab >a .故b >a +b 2>ab >a .(2)《几何原本》中的几何代数法研究代数问题,这种方法是后西方数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称为无字证明.现有图形如图所示,C 为线段AB 上的点,且AC =a ,BC =b ,O 为AB 的中点,以AB 为直径作半圆,过点C 作AB 的垂线交半圆于点D ,连接OD ,AD ,BD ,过点C 作OD 的垂线,垂足为点E ,则该图形可以完成的无字证明为()A.a +b2≤ab (a >0,b >0)B .a 2+b 2≥2ab (a >0,b >0)C.ab ≥21a +1b(a >0,b >0)D.a 2+b 22≥a +b 2(a >0,b >0)答案C解析根据图形,利用射影定理得CD 2=DE ·OD ,又OD =12AB =12(a +b ),CD 2=AC ·CB =ab ,所以DE =CD 2OD=ab a +b 2,由于OD ≥CD ,所以a +b2≥ab (a >0,b >0).由于CD ≥DE ,所以ab ≥2aba +b =21a +1b (a >0,b >0).思维升华基本不等式的常见变形(1)ab ≤a 2+b 22.(2)21a +1b ≤ab ≤a +b 2≤a 2+b 22(a >0,b >0).跟踪训练1(1)已知p :a >b >0,q :a 2+b 22>,则p 是q 成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A解析∵a >b >0,则a 2+b 2>2ab ,∴2(a 2+b 2)>a 2+b 2+2ab ,∴2(a 2+b 2)>(a +b )2,∴a 2+b 22>,∴由p 可推出q ;当a <0,b <0时,q 也成立,如a =-1,b =-3时,a 2+b 22==4,∴由q 推不出p ,∴p 是q 成立的充分不必要条件.(2)(多选)已知a ,b ∈R ,则下列不等式成立的是()A.a +b 2≥abB.a +b 2≤a 2+b 22C.2ab a +b ≤a +b 2D .ab ≤a 2+b 22答案BD解析A 选项,由选项可知a 与b 同号,当a >0且b >0时,由基本不等式可知a +b2≥ab 恒成立,当a <0且b <0时,a +b2<0,ab >0,该不等式不成立,故A 选项错误;B 选项,当a +b >0时,a +b2>0,则=a 2+b 2+2ab -2a 2-2b 24=-(a -b )24≤0恒成立,即a +b2≤a 2+b 22恒成立,当a +b ≤0时,原不等式恒成立,故B 选项正确;C 选项,当a +b >0时,2ab -(a +b )22=-(a -b )22≤0,即2ab ≤(a +b )22,2ab a +b ≤a +b2恒成立,当a +b <0时,2ab -(a +b )22=-(a -b )22≤0,即2ab ≤(a +b )22,2ab a +b ≥a +b2,故C 选项错误;D 选项,由重要不等式可知,a ,b ∈R ,ab ≤a 2+b 22恒成立,故D 选项正确.题型二利用基本不等式求最值命题点1直接法例2(1)(多选)下列代数式中最小值为2的是()A .x -1x B .2x +2-xC .x 2+1x 2D.x 2+2+1x 2+2答案BC解析选项A 中,当x <0时,函数y =x -1x单调递增,无最小值,不符合题意;选项B 中,2x +2-x ≥22x ·2-x =2,当且仅当x =0时,等号成立,满足题意;选项C 中,x 2+1x 2≥2x 2·1x 2=2,当且仅当x =±1时,等号成立,满足题意;选项D 中,x 2+2+1x 2+2≥2x 2+2·1x 2+2=2,当且仅当x 2+2=1x 2+2时,等号成立,但此方程无实数解,不符合题意.(2)已知x ,y 为正实数,且满足4x +3y =12,则xy 的最大值为________.答案3解析由已知,得12=4x +3y ≥24x ·3y ,即12≥24x ·3y ,解得xy ≤3(当且仅当4x =3y 时取等号).命题点2配凑法例3(1)(2023·许昌模拟)已知a ,b 为正数,4a 2+b 2=7,则a 1+b 2的最大值为()A.7B.3C .22D .2答案D解析因为4a 2+b 2=7,则a 1+b 2=12×2a ×1+b 2=124a 2(1+b 2)≤12×4a 2+1+b 22=2,当且仅当4a 2=1+b 2,即a =1,b =3时,等号成立.(2)已知x >1,则x 2+3x -1的最小值为()A .6B .8C .10D .12答案A解析因为x >1,所以x -1>0,x 2+3x -1=(x -1)2+2(x -1)+4x -1=x -1+2+4x -1≥2+2(x -1)·4x -1=6,当且仅当x -1=4x -1,即x =3时,等号成立.与基本不等式模型结构相似的对勾函数模型如图,对于函数f (x )=x +kx,k >0,x ∈[a ,b ],[a ,b ]⊆(0,+∞).(1)当k ∈[a ,b ]时,f (x )=x +kx ≥2k ,f (x )min =f (k )=k +k k =2k ;(2)当k <a 时,f (x )=x +k x 在区间[a ,b ]上单调递增,f (x )min =f (a )=a +ka ;(3)当k >b 时,f (x )=x +k x 在区间[a ,b ]上单调递减,f (x )min =f (b )=b +kb.因此,只有当k ∈[a ,b ]时,才能使用基本不等式求最值,而当k ∉[a ,b ]时只能利用对勾函数的单调性求最值.典例函数f (x )=x 2+3x 2+2的最小值是______.答案32解析由f (x )=x 2+3x 2+2=x 2+2+3x 2+2-2,令x 2+2=t (t ≥2),则有f (t )=t +3t-2,由对勾函数的性质知,f (t )在[2,+∞)上单调递增,所以当t =2时,f (t )min =32,即当x =0时,f (x )min =32.命题点3代换法例4(1)已知正数a ,b 满足8b +4a =1,则8a +b 的最小值为()A .54B .56C .72D .81答案C解析8a +b =(8a +b =64a b +4ba+40≥264a b ·4ba+40=72,当且仅当64a b =4ba,即a =6,b =24时取等号.延伸探究已知正数a ,b 满足8a +4b =ab ,则8a +b 的最小值为________.答案72解析∵8a +4b =ab ,a >0,b >0,∴8b +4a=1,∴8a +b =(8a +b =64a b +4ba+40≥264a b ·4ba+40=72,当且仅当64a b =4ba,即a =6,b =24时取等号.(2)已知正数a ,b 满足a +2b =3恒成立,则1a +1+2b 的最小值为()A.32B.94C .2D .3答案B解析由a +2b =3得(a +1)+2b =4,于是1a +1+2b =·(a +1)+2b 4=141+4+2(a +1)b +2ba +1≥145+22(a +1)b ×2ba +1=94,当且仅当2(a +1)b=2b a +1,且a >0,b >0,即a =13,b =43时,等号成立.所以1a +1+2b的最小值为94.命题点4消元法例5已知正数a ,b 满足a 2-2ab +4=0,则b -a4的最小值为()A .1 B.2C .2D .22答案B解析∵a >0,b >0,a 2-2ab +4=0,则b =a 2+2a ,∴b -a 4=a 2+2a -a 4=a 4+2a ≥2a 4·2a=2,当且仅当a 4=2a ,即a =22时,等号成立,此时b =322.命题点5构造不等式法例6若a >0,b >0,且ab =a +b +3,则ab 的最小值为()A .9B .6C .3D .12答案A解析因为a >0,b >0,所以a +b ≥2ab ,当且仅当a =b 时,等号成立.又ab =a +b +3,所以ab =a +b +3≥2ab +3,整理可得ab -2ab -3≥0,解得ab ≥3或ab ≤-1(舍去).所以ab ≥3,所以ab ≥9.所以当a =b =3时,ab 的最小值为9.思维升华(1)前提:“一正”“二定”“三相等”.(2)要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(3)条件最值的求解通常有三种方法:一是配凑法;二是将条件灵活变形,利用常数“1”代换的方法;三是消元法.跟踪训练2(1)(多选)下列四个函数中,最小值为2的是()A .y =sin x xB .y =2-x -4x (x <0)C .y =x 2+6x 2+5D .y =4x +4-x答案AD解析对于A ,因为0<x ≤π2,所以0<sin x ≤1,则y =sin x +1sin x ≥2,当且仅当sin x =1sin x,即sin x =1时取等号,符合题意;对于B ,因为x <0,所以-x >0,-x =4,当且仅当-x =-4x ,即x =-2时等号成立,所以y =2-x -4x ≥2+4=6,即y =2-x -4x (x <0)的最小值为6,不符合题意;对于C ,y =x 2+6x 2+5=x 2+5+1x 2+5,设t =x 2+5,则t ≥5,则y ≥5+15=655,其最小值不是2,不符合题意;对于D ,y =4x +4-x =4x +14x≥24x ·14x =2,当且仅当x =0时取等号,故y =4x +4-x 的最小值为2,符合题意.(2)(多选)已知正实数a ,b 满足ab +a +b =8,下列说法正确的是()A .ab 的最大值为2B .a +b 的最小值为4C .a +2b 的最小值为62-3D.1a (b +1)+1b的最小值为12答案BCD解析对于A ,因为ab +a +b =8≥ab +2ab ,即(ab )2+2ab -8≤0,解得-4≤ab ≤2,又因为a >0,b >0,所以0<ab ≤2,则ab ≤4,当且仅当a =b =2时取等号,故A 错误;对于B ,ab +a +b =8≤(a +b )24+(a +b ),即(a +b )2+4(a +b )-32≥0,解得a +b ≤-8(舍)或a +b ≥4,当且仅当a =b =2时取等号,故B 正确;对于C ,由题意可得b (a +1)=8-a ,所以b =8-aa +1>0,解得0<a <8,所以a +2b =a +2×8-a a +1=a +18a +1-2=a +1+18a +1-3≥2(a +1)·18a +1-3=62-3,当且仅当a +1=18a +1,即a =32-1时取等号,故C 正确;对于D,1a(b+1)+1b=181a(b+1)+1b[a(b+1)+b]=182+ba(b+1)+a(b+1)b≥18×(2+2)=12,当且仅当ba(b+1)=a(b+1)b,即b=4,a=45时取等号,故D正确.课时精练一、单项选择题1.已知m>0,n>0,mn=81,则m+n的最小值是() A.9B.18C.93D.27答案B解析因为m>0,n>0,由基本不等式m+n≥2mn得,m+n≥18,当且仅当m=n=9时,等号成立,所以m+n的最小值是18.2.已知a>0,b>0,且1a+1b=1,则4a+9b的最小值是() A.23B.26C.22D.25答案D解析由题意得a>0,b>0,1a+1b=1,故4a+9ba+9b)=9ba+4ab+13≥29ba·4ab+13=25,当且仅当9ba=4ab,即a=52,b=53时取等号,故4a+9b的最小值是25.3.若正数x,y满足x+3y=5xy,则3x+4y的最小值是() A.2B.3C.4D.5答案D解析对原条件式转化得3x+1y=5,则3x+4yx+4y)+4+12yx++5,当且仅当12yx=3xy且x+3y=5xy,即x =1,y =12时取等号.故3x +4y 的最小值为5.4.“∀x ∈(1,4],不等式x 2-mx +m >0恒成立”的充分不必要条件是()A .m >4B .m <163C .m <4D .m <2答案D解析已知∀x ∈(1,4],由不等式x 2-mx +m >0恒成立,得x 2x -1>m 恒成立,因为x 2x -1=(x -1)2+2(x -1)+1x -1=x -1+1x -1+2≥2(x -1)·1x -1+2=4,当且仅当x -1=1x -1,即x =2时取等号,所以m <4,所以m <2是m <4的充分不必要条件.5.若x >0,y >0,x +3y =1,则xy3x +y的最大值为()A.19B.112C.116D.120答案C解析因为x >0,y >0,x +3y =1,则3x +y xy=3y +1xx +3y )=3x y +3yx +10≥23x y ·3yx+10=16,当且仅当3x y =3yx ,即x =y =14时,等号成立,所以0<xy 3x +y ≤116,即xy 3x +y的最大值为116.6.已知x >y >0且4x +3y =1,则12x -y +2x +2y的最小值为()A .10B .9C .8D .7答案B解析由x >y >0得2x -y >0,x +2y >0,令a =2x -y ,b =x +2y ,则a +2b =4x +3y ,由4x +3y =1得a +2b =1,故12x -y +2x +2y=a +2b )=5+2b a +2ab ≥5+22b a ·2ab=9,当且仅当2b a =2ab,且a +2b =1,即a =b =13时取等号,也即2x -y =13,x +2y =13,即x =15,y =115时,等号成立,故12x -y +2x +2y的最小值为9.二、多项选择题7.已知x ,y 是正数,且x +y =2,则()A .x (x +2y )的最大值为4B .log 2x +log 2y 的最大值为0C .2x +2y 的最小值为4D.1x +2y 的最小值为32+2答案BCD解析由x ,y 是正数,且x +y =2,可得0<x <2,0<y <2,x (x +2y )=(x +y -y )(x +y +y )=(x +y )2-y 2=4-y 2,由0<y 2<4可得0<4-y 2<4,所以x (x +2y )无最大值,故A 错误;由x +y =2≥2xy ,得0<xy ≤1,当且仅当x =y =1时,等号成立,所以log 2x +log 2y =log 2xy ≤log 21=0,故B 正确;由基本不等式可得2x +2y ≥22x ·2y =22x +y =4,当且仅当x =y =1时取等号,故C 正确;1x +2y =x +y )+y x ++=32+2,当且仅当x =22-2,y =4-22时取等号,故D 正确.8.(2022·新高考全国Ⅱ)若x ,y 满足x 2+y 2-xy =1,则()A .x +y ≤1B .x +y ≥-2C .x 2+y 2≤2D .x 2+y 2≥1答案BC解析因为ab ≤a 2+b 22(a ,b ∈R ),由x 2+y 2-xy =1可变形为(x +y )2-1=3xy ≤,解得-2≤x +y ≤2,当且仅当x =y =-1时,x +y =-2,当且仅当x =y =1时,x +y =2,所以A 错误,B 正确;由x 2+y 2-xy =1可变形为(x 2+y 2)-1=xy ≤x 2+y 22,解得x 2+y 2≤2,当且仅当x =y =±1时取等号,所以C 正确;因为x 2+y 2-xy =1可变形为+34y 2=1,设x -y 2=cos θ,32y =sin θ,所以x =cos θ+33sin θ,y =233sin θ,因此x 2+y 2=cos 2θ+53sin 2θ+233sin θcos θ=1+33sin 2θ-13cos 2θ+13=43+23sin θ∈23,2,所以D 错误.三、填空题9.若x <2,则x +9x -2的最大值为________.答案-4解析x +9x -2=x -2+9x -2+2,由于x <2,所以2-x >0,故2-x +92-x ≥6,当且仅当2-x =92-x,即x =-1时,等号成立,所以x -2+9x -2=--x -6,故x +9x -2=x -2+9x -2+2≤-4,所以x +9x -2的最大值为-4.10.函数f (x )=3x -32x 2-x +1在(1,+∞)上的最大值为________.答案37解析因为f (x )=3x -32x 2-x +1x ∈(1,+∞),令x -1=t ,则t >0,则f (t )=3t 2(t +1)2-(t +1)+1=3t2t 2+3t +2=32t +3+2t ≤322t ·2t+3=37,当且仅当2t =2t ,t =1,即x =2时,等号成立.故f (x )在(1,+∞)上的最大值为37.11.已知a >1,b >2,a +b =5,则1a -1+4b -2的最小值为________.答案92解析因为a >1,b >2,所以a -1>0,b -2>0,又a +b =5,所以(a -1)+(b -2)=2,即12[(a -1)+(b -2)]=1,所以1a -1+4b -2=12[(a -1)+(b -2)]·=121+b -2a -1+4(a -1)b -2+4≥125+2b -2a -1·4(a -1)b -2=12×(5+4)=92,当且仅当b-2a-1=4(a-1)b-2,即a=53,b=103时取等号,所以1a-1+4b-2的最小值为92.12.已知正数a,b满足(a+5b)(2a+b)=36,则a+2b的最小值为________.答案4解析因为a>0,b>0,所以36=(a+5b)(2a+b)≤(a+5b)+(2a+b)22=94(a+2b)2,所以a+2b≥4+5b=2a+b,a+5b)(2a+b)=36,即a=83,b=23时,等号成立,所以a+2b的最小值为4.四、解答题13.已知x>0,y>0,x+2y+xy=30,求:(1)xy的最大值;(2)2x+y的最小值.解(1)因为x>0,y>0,根据基本不等式,30=x+2y+xy≥22xy+xy(当且仅当x=2y=6时取等号),令xy=t(t>0),则t2+22t-30≤0,解得-52≤t≤32,又t>0,所以0<t≤32,即0<xy≤32,所以0<xy≤18,故xy的最大值为18.(2)由x+2y+xy=30可知,y=30-x2+x >0,0<x<30,2x+y=2x+30-x2+x=2(x+2)+322+x-5≥22(x+2)·322+x-5=11,当且仅当2(x+2)=322+x,即x=2时取等号,所以2x+y的最小值为11.14.中欧班列是推进“一带一路”沿线国家道路联通、贸易畅通的重要举措,作为中欧铁路在东北地区的始发站,沈阳某火车站正在不断建设,目前车站准备在某仓库外,利用其一侧原有墙体,建造一面高为3米,底面积为12平方米,且背面靠墙的长方体形状的保管员室,由于保管员室的后背靠墙,无需建造费用,因此甲工程队给出的报价如下:屋子前面新建墙体的报价为每平方米400元,左右两面新建墙体的报价为每平方米150元,屋顶和地面以及其他报价共计7200元,设屋子的左右两面墙的长度均为x米(2≤x≤6).(1)当左右两面墙的长度为多少米时,甲工程队的报价最低?(2)现有乙工程队也参与此保管员室建造竞标,其给出的整体报价为900a (1+x )x 元(a >5),若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,求实数a 的取值范围.解(1)设甲工程队的总报价为y 元,依题意,左右两面墙的长度均为x 米(2≤x ≤6),则屋子前面新建墙体长为12x米,则y =×2x +4007200=7200≥900×2x ·16x+7200=14400,当且仅当x =16x,即x =4时,等号成立,故当左右两面墙的长度为4米时,甲工程队的报价最低为14400元.(2)由题意可知,7200>900a (1+x )x对任意的x ∈[2,6]恒成立,即(x +4)2x >a (1+x )x ,所以(x +4)2x +1>a ,即a <(x +4)2x +1min ,(x +4)2x +1=x +1+9x +1+6≥2(x +1)·9x +1+6=12,当且仅当x +1=9x +1,即x =2时,等号成立,则(x +4)2x +1的最小值为12,即0<a <12,又a >5,所以a 的取值范围是(5,12).15.已知x ,y 为正实数,则y x +16x2x +y 的最小值为()A .4B .5C .6D .8答案C解析由题得y x +16x 2x +y =y x +162+yx,设yx=t (t >0),则f (t )=t +162+t =t +2+162+t-2≥2(t +2)·162+t-2=8-2=6,当且仅当t +2=162+t,即t =2,即y =2x 时取等号.所以y x +16x 2x +y的最小值为6.16.设a >b >0,则a 2+1ab +1a (a -b )的最小值是________.答案4解析∵a >b >0,∴a -b >0,∴a (a -b )>0,a 2+1ab +1a (a -b )=a 2+ab -ab +1ab +1a (a -b )=a 2-ab +1a (a -b )+ab +1ab =a (a -b )+1a (a -b )+ab +1ab ≥2+2=4,(a -b )=1a (a -b ),=1ab,即a =2,b =22时,等号成立.∴a 2+1ab +1a (a -b )的最小值是4.。
高考数学一轮复习第一章第五讲基本不等式及其应用课件
(a2+b2) 2
图 1-5-2
解析:∵△ACD∽△CBD,∴CADD=CBDD, 即 CD= AD·BD= ab. ∵OC=A2B=AD+2 BD=a+2 b, ∴ ab≤a+2 b.故选 B.
答案:B
考点二 利用基本不等式求最值 考向 1 通过配凑法求最值
[例 2]设 0<x<23,则函数 y=4x(3-2x)的最大值为________.
2-x x·2-x x+2=2,
当且仅当2-x x=2-x x,即 x=1 时取等号,所以 y 的最小值为
2.故选 B.
答案:B
2.(考向 2)(2023 年罗湖区校级期中)已知 x>0,y>0,且 2x+ y=xy,则 x+2y 的最小值为( )
A.8
B.8 2
C.9
D.9 2
解析:x>0,y>0,且 2x+y=xy,可得:1x+2y=1,则 x+2y
错误. (3)连续使用基本不等式求最值,要求每次等号成立的条件一
致. (4)若 a≥b>0,则 a≥ a2+2 b2≥a+2 b≥ ab≥a2+abb≥b.
考点一 基本不等式的证明 [ 例 1](1)(2023 年广西一模) 《几何原本》中的“几何代数 法”(以几何方法研究代数问题)是西方数学家处理问题的重要依 据,通过这一原理,很多代数的公理或定理都能够通过图形实现
【变式训练】
如图1-5-2所示,线段AB为半圆的直径,O为
圆心,点 C 为半圆弧上不与 A ,B 重合的点. 作 CD⊥AB于点D,设 AD=a,BD=b,则下列不等
式中可以直接表示 CD≤OC 的是( )
A.a2+abb≤ ab
B. ab≤a+2 b
C.a+2 b≤
高三数学一轮复习 基本不等式教学案 文
芯衣州星海市涌泉学校响水中学2021届高三数学文科一轮复习教学案第14课时:根本不等式【课题】根本不等式及其应用【课时】第14课时【复习目的】1. 利用根本不等式进展证明2. 利用根本不等式求最值3. 利用根本不等式解决一些简单的实际问题【知识点回忆】1. 根本不等式2. 根本条件3. 几个常用的重要不等式【根底知识】1.),,0(,+∞∈b a 假设,1=ab 那么b a +的最小值是_______,假设1=+b a ,那么ab 的最大值是_____.2.假设1>x ,那么11-+x x 的最小值是 3.设+∈R y x ,,且2log log 33=+y x ,那么yx 11+的最小值是____________. 4.函数)100()10(<<-=x x x y 的最大值为.5.全集),0(+∞=U ,集合0),,(],2,(>>=+=b a a ab N b a b M 其中, 那么=N C M U _______________.6.假设正数b a ,满足3++=b a ab ,那么ab 的取值范围是.7.a,b,c 是正实数,且abc+a+c=b,设222223111p a b c =-++++,那么p 的最大值为________. 8.假设对满足条件)0,0(3>>=++y x xy y x 的任意y x ,,01)()(2≥++-+y x a y x 恒成立,那么实数a 的取值范围是_____.【例题分析】例1.〔1〕当23<x 时,求函数328-+=x x y 的最大值 〔2〕当210<<x 时,求函数)21(21x x y -=的最大值 变式:求函数)0(sin 22sin π<<+=x xx y 的最小值 例2.y x ,为正实数,且12=+y x ,求y x 12+的最小值 变式:函数log (3)1(0,1)a y x a a =+->≠的图像恒过定点A ,假设点A 在直线10mx ny ++=上,其中0mn >.求12m n+的最小值. 例 3.如图给定两个长度为1的平面向量OA 和OB ,它们的夹角为︒120,点C 在以O 为圆心的圆弧AB 上变动,假设OB y OA x +=OC ,其中R y x ∈,,求y x +的最大值.变式:如图,DE 把边长为a 2的正三角形ABC 分成面积相等的两部份,D 在AB 上(1)设AD=x ;,),(y x y DE a x 表示试用=≥(2)求DE 的最小值.例4.建造一条防洪堤,其断面为等腰梯形,腰与底边成角为 60(如图),考虑到防洪堤稳固性及石块用料等因素,设计其断面面积为36平方米,为了使堤的上面与两侧面的水泥用料最,那么断面的外周长(梯形的上底线段BC 与两腰长的和)要最小.(1)求外周长的最小值,并求外周长最小时防洪堤高h 为多少米(2)如防洪堤的高限制在]32,3[的范围内,外周长最小为多少米变式:如图,某农业研究所要在一个矩形试验田ABCD 内种植三种农作物,三种农作物分别种植在并排排列的三个形状一样、大小相等的矩形中.试验田四周和三个种植区域之间设有1米宽的非种植区.种植区的占地面积为800平方米.(1)设试验田ABCD 的面积为S ,x AB =,求函数)(x f S =的解析式;(2)求试验田ABCD 占地面积的最小值.【稳固迁移】 1.)0,0(232>>=+y x yx 那么xy 的最小值是 2.设22,2,,21,1,0b a ab b b a b a +=+<<则中最大的数是_________. 3.假设b a ba b a 22,3,,+=+则且为实数的最小值是____________. 4.设y x y x xy yx +=+->则且,1)(,0,的取值范围是___________________. 5.圆014222=+-++y x y x 关于直线022=+-by ax 对称,那么ab 的取值范围是________6.假设对任意的a x x x x ≤++>13,02恒成立,那么a 的取值范围是____________________. 7.两个正数,4,=+y x y x 且假设不等式m y x ≥+41恒成立,那么实数m 的取值范围是__________. 8.0,,>c b a ,求证:c b a cab b ac a bc ++≥++. 9.二次函数2()2()f x ax x c x R =++∈的值域为[0,+∞),那么11a c c a +++的最小值为_____. 10.设正实数,,x y z 满足21x y z ++=,那么19()x y x y y z++++的最小值为________________. 变式A :1、假设0,0a b >>,且11121a b b =+++,那么2a b +的最小值为____. 2、假设对满足条件)0,0(3>>=++y x xy y x 的任意y x ,,01)()(2≥++-+y x a y x 恒成立,那么实数a 的取值范围是_____.3、将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记S=梯形的面积梯形的周长)2(,那么S 的最小值是______________4、函数()|lg |f x x =,0a b >>,()()f a f b =,那么22a b a b+-的最小值等于_________. 5、在平面直角坐标系xOy 中,设定点),(a a A ,P 是函数xy 1=(0>x )图象上一动点,假设点A P ,之间的最短间隔为22,那么满足条件的实数a 的所有值为_______.6、过定点P (1,2)的直线在x y 轴与轴正半轴上的截距分别为a b 、,那么422a b +的最小值为_______.7、设,x y 是正实数,且1x y +=,那么2221x y x y +++的最小值是____. 1、、【答案】37(,]6-∞3、【答案】34、【答案】5、【答案】综上所述,1-=a 或者者106、【答案】327、【答案】14解:设2x s +=,1y t +=,那么4s t +=, 所以2221x y x y +++=22(2)(1)41(4)(2)s t s t s t s t--+=-++-+ 4141()()6()2s t s t s t=+++-=+-. 因为41141149()()(5)444t s s t s t s t s t +=++=++≥ 所以221214x y x y +≥++. 变式B :1、假设不等式23+>ax x 的解集是〔4,m 〕,那么a=,m=. 2、假设不等式x2+ax +1≥0对于一切x∈成立,那么a 的取值范围是3、假设存在实数[]4,2∈x ,使2250x x m -+-<成立,那么m 的取值范围为4、设,x y 满足约束条件⎪⎩⎪⎨⎧≤+≥+≤-+010032y y x y x ,假设目的函数by ax z -=〔0,0>>b a 〕的最大值为12,那么直线02=-+y x 与圆2)()(22=-+-b y a x 的公一一共点个数为5以下命题中正确的选项是〔〕A .1y x x=+的最小值是2 B.y =的最小值是2C .423(0)y x x x=-->的最大值是243- D .423(0)y x x x =-->的最小值是243- 1、【答案】2、【答案】a≥-3、【答案】()+∞,54、【答案】15、【答案】C回忆小结 变式C :1、〔Ⅰ〕不等式221(1)x m x ->-对满足22m -≤≤的所有m 都成立,求x 的取值范围.〔Ⅱ〕是否存在m 使得不等式221(1)x m x->-对满足22x -≤≤的所有实数x 的取值都成立 2、假设关于x 的方程04)73(32=+-+x t tx的两实根βα,满足210<<<<βα,务实数t 的取值范围。
高考数学一轮复习讲义(新高考版) 第2章 第3讲 基本不等式
第3讲 基本不等式一、知识梳理 1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b ,ab a ,b 的几何平均数.[点拨] 应用基本不等式求最值要注意:“一正、二定、三相等”.忽略某个条件,就会出错.2.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24.(简记:和定积最大)[点拨] 在利用不等式求最值时,一定要尽量避免多次使用基本不等式.若必须多次使用,则一定要保证它们等号成立的条件一致.常用结论几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (3)a 2+b 22≥⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号. 二、教材衍化1.设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81D .82解析:选C .xy ≤⎝⎛⎭⎫x +y 22=⎝⎛⎭⎫1822=81,当且仅当x =y =9时等号成立,故选C . 2.若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________.解析:设矩形的长为x m ,宽为y m ,则x +y =10,所以S =xy ≤⎝⎛⎭⎫x +y 22=25,当且仅当x =y =5时取等号.答案:25 m 2一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)函数y =x +1x 的最小值是2.( )(2)ab ≤⎝⎛⎭⎫a +b 22成立的条件是ab >0.( )(3)“x >0且y >0”是“x y +yx ≥2”的充要条件.( )(4)若a >0,则a 3+1a 2的最小值是2a .( )答案:(1)× (2)× (3)× (4)× 二、易错纠偏常见误区| (1)忽视不等式成立的条件a >0且b >0; (2)忽视定值存在; (3)忽视等号成立的条件. 1.若x <0,则x +1x ( )A .有最小值,且最小值为2B .有最大值,且最大值为2C .有最小值,且最小值为-2D .有最大值,且最大值为-2解析:选D .因为x <0,所以-x >0,-x +1-x ≥21=2,当且仅当x =-1时,等号成立,所以x +1x≤-2.2.若x >1,则x +4x -1的最小值为________.解析:x +4x -1=x -1+4x -1+1≥4+1=5. 当且仅当x -1=4x -1,即x =3时等号成立.答案:53.设0<x <1,则函数y =2x (1-x )的最大值为________. 解析:y =2x (1-x )≤2⎝⎛⎭⎫x +1-x 22=12.当且仅当x =1-x ,即x =12时,等号成立.答案:12考点一 利用基本不等式求最值(基础型) 复习指导| 探索并了解基本不等式的证明过程,会用基本不等式解决简单的最大(小)值问题.核心素养:逻辑推理 角度一 通过配凑法求最值(1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________. (2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.【解析】 (1)x (4-3x )=13·(3x )(4-3x )≤13·⎣⎡⎦⎤3x +(4-3x )22=43, 当且仅当3x =4-3x , 即x =23时,取等号.(2)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-(5-4x +15-4x)+3≤-2(5-4x )15-4x+3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1. 【答案】 (1)23(2)1通过拼凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标; (3)拆项、添项应注意检验利用基本不等式的前提.角度二 通过常数代换法求最值已知a >0,b >0,a +b =1,则⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b 的最小值为________. 【解析】 ⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =⎝⎛⎭⎫1+a +b a ⎝⎛⎭⎫1+a +b b =⎝⎛⎭⎫2+b a · ⎝⎛⎭⎫2+a b =5+2⎝⎛⎭⎫b a +a b ≥5+4=9.当且仅当a =b =12时,取等号.【答案】 9【迁移探究1】 (变问法)若本例中的条件不变,则1a +1b 的最小值为________.解析:因为a >0,b >0,a +b =1,所以1a +1b =a +b a +a +b b =2+b a +a b ≥2+2b a ·a b =4,即1a +1b的最小值为4,当且仅当a =b =12时等号成立. 答案:4【迁移探究2】 (变条件)若本例条件变为:已知a >0,b >0,4a +b =4,则⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b 的最小值为________.解析:由4a +b =4得a +b4=1,⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b=⎝ ⎛⎭⎪⎫1+a +b 4a ⎝ ⎛⎭⎪⎫1+a +b 4b =⎝⎛⎭⎫2+b 4a ⎝⎛⎭⎫54+a b =52+2a b +5b 16a +14≥114+258=114+102.当且仅当42a =5b 时取等号. 答案:114+102常数代换法求最值的步骤(1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式; (4)利用基本不等式求解最值. 角度三 通过消元法求最值若正数x ,y 满足x 2+6xy -1=0,则x +2y 的最小值是( )A .223B .23C .33D .233【解析】 因为正数x ,y 满足x 2+6xy -1=0,所以y =1-x26x .由⎩⎨⎧x >0y >0即⎩⎨⎧x >01-x 26x>0解得0<x <1.所以x +2y =x +1-x 23x =2x 3+13x ≥22x 3·13x =223,当且仅当2x 3=13x ,即x =22,y =212时取等号.故x +2y 的最小值为223.【答案】 A通过消元法求最值的方法消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.但应注意保留元的范围.1.(2020·辽宁大连第一次(3月)双基测试)已知正实数a ,b 满足a +b =(ab )32,则ab 的最小值为( )A .1B . 2C .2D .4解析:选C .(ab )32=a +b ≥2ab =2(ab )12,所以ab ≥2,当且仅当a =b =2时取等号,故ab 的最小值为2,故选C .2.已知x ,y 为正实数,则4x x +3y +3y x 的最小值为( )A .53B .103C .32D .3解析:选D .由题意得x >0,y >0,4x x +3y +3y x =4xx +3y +x +3y x -1≥24x x +3y ·x +3yx-1=4-1=3(当且仅当x =3y 时等号成立).3.已知x >0,y >0,且x +16y =xy ,则x +y 的最小值为________. 解析:已知x >0,y >0,且x +16y =xy .即16x +1y =1,则x +y =(x +y )·⎝⎛⎭⎫16x +1y =16+1+16y x +x y≥17+2 16y x ·xy=25,当且仅当x =4y =20时等号成立,所以x +y 的最小值为25. 答案:25考点二 利用基本不等式解决实际问题(应用型) 复习指导| 利用基本不等式解决实际问题,关键是把实际问题抽象出数学模型,列出函数关系,然后利用基本不等式求最值.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使单位不亏损?【解】 (1)由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80 000x -200≥212x ·80 000x-200=200, 当且仅当12x =80 000x ,即x =400时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.(2)不获利.设该单位每月获利为S 元,则S =100x -y =100x -⎝⎛⎭⎫12x 2-200x +80 000=-12x 2+300x -80 000=-12(x -300)2-35 000,因为x ∈[400,600],所以S ∈[-80 000,-40 000].故该单位每月不获利,需要国家每月至少补贴40 000元才能不亏损.应用基本不等式解决实际问题的基本步骤(1)理解题意,设出变量,建立相应的函数关系式,把实际问题抽象为函数的最值问题; (2)在定义域内,利用基本不等式求出函数的最值; (3)还原为实际问题,写出答案.某游泳馆拟建一座平面图形为矩形且面积为200平方米的泳池,池的深度为1米,池的四周墙壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁厚忽略不计),则泳池的长设计为多少米时,可使总造价最低.解:设泳池的长为x 米,则宽为200x 米,总造价f (x )=400×⎝⎛⎭⎫2x +2×200x +100×200x+60×200=800×⎝⎛⎭⎫x +225x +12 000≥1 600x ·225x +12 000=36 000(元),当且仅当x =225x(x >0),即x =15时等号成立.即泳池的长设计为15米时,可使总造价最低.[基础题组练]1.(2020·安徽省六校联考)若正实数x ,y 满足x +y =2,则1xy 的最小值为( )A .1B .2C .3D .4解析:选A .因为正实数x ,y 满足x +y =2, 所以xy ≤(x +y )24=224=1,所以1xy ≥1.2.若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞)D .(-∞,-2] 解析:选D .因为1=2x +2y ≥22x ·2y =22x +y ,(当且仅当2x =2y =12,即x =y =-1时等号成立)所以2x +y ≤12,所以2x +y ≤14,得x +y ≤-2.3.若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A . 2B .2C .2 2D .4解析:选C .因为1a +2b =ab ,所以a >0,b >0,由ab =1a +2b≥21a ×2b=22ab, 所以ab ≥22(当且仅当b =2a 时取等号), 所以ab 的最小值为2 2.4.(多选)若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a +b ≥2ab B .1a +1b >1abC .b a +ab≥2D .a 2+b 2≥2ab解析:选CD .因为ab >0,所以b a >0,a b >0,所以b a +ab≥2b a ·ab=2,当且仅当a =b 时取等号.所以选项C 正确,又a ,b ∈R ,所以(a -b )2≥0,即a 2+b 2≥2ab 一定成立.5.已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y 的最小值是( )A .2B .2 2C .4D .2 3解析:选C .因为lg 2x +lg 8y =lg 2,所以lg(2x ·8y )=lg 2,所以2x +3y=2,所以x +3y =1.因为x >0,y >0,所以1x +13y =(x +3y )·⎝⎛⎭⎫1x +13y =2+3y x +x 3y ≥2+23y x ·x3y=4,当且仅当x =3y =12时取等号,所以1x +13y的最小值为4.故选C .6.设P (x ,y )是函数y =2x(x >0)图象上的点,则x +y 的最小值为________.解析:因为x >0,所以y >0,且xy =2.由基本不等式得x +y ≥2xy =22,当且仅当x =y 时等号成立.所以x +y 的最小值为2 2.答案:2 27.函数y =x 2x +1(x >-1)的最小值为________.解析:因为y =x 2-1+1x +1=x -1+1x +1=x +1+1x +1-2(x >-1),所以y ≥21-2=0,当且仅当x =0时,等号成立. 答案:08.(2020·湖南岳阳期末改编)若a >0,b >0,且a +2b -4=0,则ab 的最大值为________,1a +2b的最小值为________. 解析:因为a >0,b >0,且a +2b -4=0,所以a +2b =4,所以ab =12a ·2b ≤12×⎝⎛⎭⎫a +2b 22=2,当且仅当a =2b ,即a =2,b =1时等号成立,所以ab 的最大值为2,因为1a +2b =⎝⎛⎭⎫1a +2b ·a +2b4=14(5+2b a +2a b )≥14⎝⎛⎭⎫5+2·2b a ·2a b =94,当且仅当a =b 时等号成立,所以1a +2b 的最小值为94. 答案:2 949.(1)当x <32时,求函数y =x +82x -3的最大值;(2)设0<x <2,求函数y =x (4-2x )的最大值. 解:(1)y =12(2x -3)+82x -3+32=-⎝ ⎛⎭⎪⎫3-2x 2+83-2x +32.当x <32时,有3-2x >0,所以3-2x 2+83-2x ≥23-2x 2·83-2x=4, 当且仅当3-2x 2=83-2x ,即x =-12时取等号.于是y ≤-4+32=-52,故函数的最大值为-52.(2)因为0<x <2,所以2-x >0,所以y =x (4-2x )=2·x (2-x )≤2·x +2-x2=2,当且仅当x =2-x ,即x =1时取等号,所以当x =1时,函数y =x (4-2x )的最大值为 2. 10.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值. 解:(1)由2x +8y -xy =0, 得8x +2y =1, 又x >0,y >0, 则1=8x +2y ≥28x ·2y =8xy. 得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y =1,则x +y =⎝⎛⎭⎫8x +2y ·(x +y ) =10+2x y +8yx≥10+22x y ·8yx=18. 当且仅当x =12,y =6时等号成立,所以x +y 的最小值为18.[综合题组练]1.设a >0,若关于x 的不等式x +ax -1≥5在(1,+∞)上恒成立,则a 的最小值为( ) A .16 B .9 C .4D .2解析:选C .在(1,+∞)上,x +a x -1=(x -1)+a x -1+1≥2 (x -1)×a(x -1)+1=2a +1(当且仅当x =1+a 时取等号).由题意知2a +1≥5,所以a ≥4. 2.(2020·福建龙岩一模)已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( ) A .3 B .5 C .7D .9解析:选C .因为x >0,y >0.且1x +1+1y =12,所以x +1+y =2⎝⎛⎭⎫1x +1+1y (x +1+y )=2(1+1+y x +1+x +1y )≥2(2+2y x +1·x +1y )=8,当且仅当yx +1=x +1y ,即x =3,y =4时取等号,所以x +y ≥7,故x +y 的最小值为7,故选C .3.已知正实数x ,y 满足x +y =1,①则x 2+y 2的最小值为________;②若1x +4y ≥a 恒成立,则实数a 的取值范围是________.解析:因为x +y =1,所以xy ≤⎝⎛⎭⎫x +y 22=14,所以x 2+y 2=(x +y )2-2xy ≥1-14×2=12,所以x 2+y 2的最小值为12.若a ≤1x +4y 恒成立,则a 小于等于⎝⎛⎭⎫1x +4y 的最小值,因为1x +4y =⎝⎛⎭⎫1x +4y (x +y )=5+y x +4x y ≥5+2y x ×4x y =9,所以1x +4y的最小值为9,所以a ≤9,故实数a 的取值范围是(-∞,9]. 答案:12(-∞,9]4.(2020·洛阳市统考)已知x >0,y >0,且1x +2y =1,则xy +x +y 的最小值为________.解析:因为1x +2y =1,所以2x +y =xy ,所以xy +x +y =3x +2y ,因为3x +2y =(3x +2y )·(1x +2y )=7+6x y +2yx,且x >0,y >0,所以3x +2y ≥7+43,所以xy +x +y 的最小值为7+4 3. 答案:7+4 3教案、讲义、课件、试卷、PPT 模板、实用文案,请关注【春暖文案】,进店下载。
高考一轮复习教案一(4)不等式的基本性质(教师)
模块:一、集合、命题、不等式 课题: 4、不等式的基本性质与基本不等式教学目标: 掌握不等式的基本性质及常用的不等式性质,如自反性、传递性、可加性、可乘性等,并能证明这些基本性质;掌握两个基本不等式,并能用于解决一些简单问题.重难点: 不等式的可加性、可乘性;基本不等式的应用及其证明.一、 知识要点1、 比较两数大小的基本方法(1)作差法 0a b a b ->⇔>;0a b a b -<⇔<;0a b a b -=⇔=(2)作商法 若0,0a b >>,则1a a b b >⇔>;1a a b b <⇔<;1a a b b=⇔= 2、 不等式的基本性质性质1:a b b a >⇔<(对称性)性质2:若,a b b c >>,则a c >(传递性)性质3:若a b >,则a c b c +>+性质4:若,0a b c >>,则ac bc >;若,0a b c ><,则ac bc <结论1:若,a b c d >>,则a c b d +>+结论2:若0a b >>,则n n a b >()*n N ∈结论3:若0a b >>)*,1n N n >∈>3、 基本不等式(均值不等式)对任意,a b R ∈,222a b ab +≥,当且仅当a =b 时取等号均值不等式:若a 、b 为正数,则2a b +≥a b =时取等号 变式:222()22a b a b ab ++≥≥二、 例题精讲例1、有三个条件:(1)22ac bc >;(2)c a >cb ;(3)22a b >,其中能成为a b >的充分条件的个数有几个,是哪几个?答案:1个,(1)例2、已知三个不等式:①0ab ②bc ad ③a c >bd ,以其中两个作为条件,余下一个作为结论,则可以组成多少个正确的命题?并写出这些命题. 答案:可以组成下列3个命题.命题一:若0ab ,a c >b d , 则bc ad 命题二:若0ab ,bc ad 则a c >b d ,命题三:若a c >b d ,bc ad 则0ab例3、实数a 、b 满足条件ab <0,那么( )A. ab b a + B. a b b a - C. a bb a - D. a b b a - 答案:C例4、某收购站分两个等级收购棉花,一级棉花a 元/kg ,二级棉花b 元/kg ()b a <,现有一级棉花x kg ,二级棉花y kg ()x y >,若以两种价格平均数收购,对棉农公平吗?其理由可用不等式表示为 .答案:()()12ax by a b x y +>++例5、若12a b -<<<,则3a b -的取值范围是 .答案:(5,4)-例6、已知实数,a b 判断下列不等式中哪些一定是正确的?(1)ab b a ≥+2; (2)ab b a 222-≥+; (3)ab b a ≥+22; (4)2≥+b a a b (5)21≥+a a ; (6) 2≥+ab b a (7)222)(2b a b a +≥+)( 答案:(2)(3)(6)(7)例7、(1)若a R b ∈,,且221a b +=,则a b +的最大值是 ,最小值是(2)设0,0,x y >>且21x y +=,则11x y +的最小值为 (3)若01,x <<则491y x x=+-的最小值为(4)若+∈R x ,则x x 212+有最 值,且值为 (5)若13,3a a a >+-有最 值,是 ,此时a = (6)若1x <,则2231x x x -+-有最 大 值,值为答案:(1;(2)3+(3)25(4)小;1(5)小;5;4(6)大;-例8、(1)若a ,b R +∈,且2222a b +=,则的最大值是 (2)设1a >,1b >,且()1ab a b -+=,那么( )A 、a b +有最小值)12(2+B 、a b +有最大值2)12(+C 、ab 有最大值12+D 、ab 有最小值)12(2+答案:(1(2)A例9、一批救灾物资随26辆汽车从某市以/v km h 的速度直达灾区,已知两地公路长400km ,为了安全起见,两车的间距不得小于220v km ⎛⎫ ⎪⎝⎭,求这批物资全部运到灾区至少要多少小时?(不计车身长度)答案:10小时三、 课堂练习1、,x y R ∈,且112,144x y -<-<,则x y 的取值范围是 . 答案:7,35⎛⎫ ⎪⎝⎭2、若()2f x ax c =-,且()()411,125f f -≤≤--≤≤,则()3f 的取值范围是 .答案:[]1,20-3、若22221,1,a b c d a b c d R +=+=∈、、、,则abcd 的最大值是 . 答案:144、函数()()log 310,1a y x a a =+->≠的图像恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则12m n +的最小值为 . 答案:85、设x R ∈,[]x 表示不大于x 的最大整数,如[]3π=,[]1.22-=-,102⎡⎤=⎢⎥⎣⎦,则使213x ⎡⎤-=⎣⎦成立的x 的取值范围是 .答案:()22,5⎤⎡-⎦⎣四、课后作业一、填空题1、已知,22ππαπβπ<<<<,则αβ-的取值范围是 ,2βα-的取值范围是 .答案:3,,,0222πππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭2、已知三个不等式:①0ab >;②c d a b-<-;③bc ad >,以其中两个作条件,余下一个作结论,则可以组成 个正确命题.答案:33、已知,x y R +∈,2312x y +=,则lg lg x y +的最大值为 .答案:lg 64、已知0a b >>,2c a b=+且1ab =,若log ,log ,log c c c l a m d n ab ===,则将l m n 、、按从小到大的顺序用不等号连接可得 .答案:l n m <<5、已知222sin sin sin 1αβγ++=(,,αβγ均为锐角),那么cos cos cos αβγ的最大值等于 .6、三个同学对问题“关于x 的不等式232255x x x ax ++-≥在[]1,12上恒成立,求实数a 的取值范围”提出各自的解题思路.甲说:“只需不等式左边的最小值不小于右边的最大值”;乙说:“把不等式变形为左边含变量x ,右边仅含常数,求函数的最值”;丙说:“把不等式两边看成关于x 的函数,作出函数图像”.参考上述解题思路,你认为他们所讨论的问题的正确结论,即a 的取值范围是 . 答案:10a ≤二、选择题7、已知不等式()19a x y x y ⎛⎫++≥⎪⎝⎭对任意正实数,x y 恒成立,则正实数a 的最小值为( ) A 、2B 、4C 、6D 、8答案:B 8、若正数,a b 满足3ab a b =++,则a b +的取值范围是( )A 、[)9,+∞B 、[)6,+∞C 、(]0,9D 、()0,6 答案:B9、已知,a b 为非零实数,且a b <,则下列命题成立的是( )A 、22a b <B 、22a b ab <C 、2211ab a b <D 、b a a b< 答案:C三、解答题 10、当1x >-时,求2311x x y x -+=+的最小值;答案:511、(1)设集合()(){}()11,|0,,|M a b ab a b N a b a b ⎧⎫=->=<⎨⎬⎩⎭,试讨论M 与N 的关系;(2)求实数a 的取值范围,使不等式()lg lg xy a ≤对一切满足1,1x y >>的实数恒成立.答案:(1)M N ⊆;(2)a ≥12、某商场预计全年分批购入每台价值为2000元的电视机共3600台,每批都购入x 台(x 是正整数),且每批均需付运费400元.储存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比.若每批购入400台,则全年需用去运费和保管费用43600元.现在全年只有24000元资金可以用于支付这笔费用,请问能否恰当安排每批进货的数量,使资金够用?写出你的结论,并说明理由.答案:安排每批进货为120台电视机,则资金够用.。
基本不等式课件-2025届高三数学一轮复习
+
b
=
+ b ≥2
2
+ b 的最小值为2
2
2.
2 2
2 ,当且仅当
.
1
=
,
2
��
2
=,
即a
(3)[2024上海市松江二中高三上学期阶段测]设正实数 x , y , z 满足4 x 2-3 xy + y 2-
z =0,则
的最大值为
1 .
[解析] 因为4 x 2-3 xy + y 2- z =0,所以 z =4 x 2-3 xy + y 2,所以
FO ⊥ AB ,连接 DA , DO , DB , FC ,作 CE ⊥ DO ,垂足为 E . 由图可知,☉ O 的
半径等于
+
+
=
=
.
2
2
2
(1)因为 DC 是Rt△ ADB 斜边上的高,所以由射影定理得 DC 2 = AC ·CB = ab
⇒ DC = .由 DO ≥ DC 得
+2≥2
−1
−1
−1
1
当 x -1=
,即 x =2时,等号成立.故选C.
−1
2
>0,则 x -1>0,所以 x
−1
( − 1) ·
1
+2=4,当且仅
−1
(2)[江苏高考]已知5 x 2 y 2+ y 4=1( x , y ∈R),则 x 2+ y 2的最小值是
[解析] 解法一
2
1
5 2
−2
−2
=6,当且仅当
4
·
−2
( − 2) +2
4
4
高三数学 第一轮复习 04:基本不等式
高中数学第一轮复习04基本不等式·知识梳理·模块01:平均值不等式一、平均值不等式有关概念1、通常我们称a b+2为正数a b 、a b 、的几何平均值。
2、定理:两个正数的算术平均数大于等于它们的几何平均值,即对于任意的正数b a 、,有2a b+≥,且等号当且仅当a b =时成立.3、定理:对于任意的实数b a 、,有2()2a b ab +≥,且等号当且仅当b a =时成立。
即对任意的实数b a 、,有222a b ab +≥,且等号当且仅当b a =时成立。
[注意事项]:222a b ab +≥和2a b+≥两者的异同:(1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数;(2)取等号的条件在形式上是相同的,都是“当且仅当a b =时取等号”;(3)222a b ab +≥可以变形为:222a b ab +≤;2a b +≥可以变形为:2(2a b ab +≤。
4、平均值不等式的几何证明法:如图,AB 是圆的直径,点C 是AB 上的一点,AC a =,BC b =,过点C 作DC AB ⊥交圆于点D ,连接AD 、BD .易证~Rt ACD Rt DCB ∆∆,那么2CD CA CB =⋅,即CD =.这个圆的半径为2b a +,它大于或等于CD ,即ab ba ≥+2,其中当且仅当点C 与圆心重合,即a b =时,等号成立.[知识拓展]1、当0a b <≤时,2112a ba b a b+≤≤≤+(调和平均值≤几何平均值≤算术平均值≤平方平均值)2、123,,,,n a a a a 是n 个正数,则12na a a n+++ 称为这n个正数的算术平均数,称为这n 个正数的几何平均数,它们的关系是:12n a a a n+++≥ ,当且仅当12n a a a ===时等号成立.二、利用基本不等式求最值问题(1)“积定和最小”:a b +≥⇔如果积ab 是定值P ,那么当a b =时,和a b +有最小值;(2)“和定积最大”:2(2a b ab +≤⇔如果和a b +是定值S ,那么当a b =时,积ab 有最大值214S .[注意事项]:基本不等式求最值需注意的问题:(1)各数(或式)均为正;(2)和或积为定值;(3)等号能否成立,即“一正、二定、三相等”这三个条件缺一不可。
基本不等式课件——2025届高三数学一轮复习
核心考点
课时分层作业
[跟进训练]
1.(1)(多选)(2024·河北沧州模拟)下列函数中,函数的最小值为4的是(
A.y=x(4-x)
1
C.y= +
B.y=
1
(0<x<1)
1−
)
2 +9
2 +5
D.y= +
4
(2)(2024·重庆巴蜀中学模拟)已知x>0,y>0,且xy+x-2y=4,则2x+y的最小
是(
)
2 +2
B.ab≤
2
2 + 2
+ 2
C.
≥
2
2
A.
+ ≥2
BC
[当 <0时,A不成立;当ab<0时,D不成立.]
D.
2
≤
+
4.(人教A版必修第一册P46例3(2)改编)一段长为30 m的篱笆围成一个一边靠墙的矩
形菜园,墙长18
15
15
m,当这个矩形的长为________m,宽为________m时,菜园面积
由x+y=xy得,(x-1)(y-1)=1,
2
1
2
1
于是得
+
=1+ +2+ =3+
−1
−1
−1
−1
−1
=3+2
1
2
2,当且仅当 = ,
−1 −1
2
2
即x=1+ ,y=1+ 2时取“=”,
2
+
的最小值为3+2
−1
−1
2025年高考数学一轮复习第4节 基本不等式
2
考点聚焦突破
KAODIANJUJIAOTUPO
索引
考点一 利用基本不等式求最值
角度 1 配凑法
例 1 (1)已知 0<x< 22,则 x
2 1-2x2的最大值为____4____.
解析 ∵0<x< 22,∴1-2x2>0,
x
1-2x2=
2 2·
2x2
1-2x2≤
22·2x2+21-2x2=
索引
感悟提升
1.利用配凑法求最值,主要是配凑成“和为常数”或“积为常数”的形式. 2.常数代换法,主要解决形如“已知 x+y=t(t 为常数),求ax+by的最值”的问题,
索引
角度 2 常数代换法 例 2 (1)(2023·邵阳联考)若 a>0,b>0,a+b=9,则3a6+ba的最小值为____8____.
解析 由 a>0,b>0,a+b=9, 得3a6+ab=4(a+ a b)+ab=4+4ab+ba≥4+2
4ab·ab=8(当且仅当4ab=ba,即 a=6,
b=3 时等号成立), 故3a6+ab的最小值为 8.
用,则一定要保证它们等号成立的条件一致.
索引
诊断自测
1.思考辨析(在括号内打“√”或“×”)
(1)不等式 ab≤a+2 b2与a+2 b≥ ab成立的条件是相同的.( × ) (2)函数 y=x+1x的最小值是 2.( × ) (3)函数 y=sin x+sin4 x,x∈0,π2的最小值是 4.( × ) (4)“x>0 且 y>0”是“xy+xy≥2”的充要条件.( × )
索引
4. 若 把 总 长 为 20 m 的 篱 笆 围 成 一 个 矩 形 场 地 , 则 矩 形 场 地 的 最 大 面 积 是 ___2_5____m2. 解析 设矩形的一边为x m,面积为y m2, 则另一边为12×(20-2x)=(10-x)(m),其中 0<x<10, 所以 y=x(10-x)≤x+(120-x)2=25, 当且仅当x=10-x,即x=5时,等号成立, 所以ymax=25,即矩形场地的最大面积是25 m2.
2023版高考数学一轮总复习第一章集合与常用逻辑用语不等式1.5基本不等式课件
(4)a1+2 b1≤ ab≤a+2 b≤
a2+2 b2(a>0,b>0).
即有:正数 a,b 的调和平均数≤几何平均数≤算术平均数≤平方平均数.
5. 三元均值不等式
(1)a+3b+c≥ 3 abc. (2)a3+b33+c3≥abc. 以上两个不等式中 a,b,c∈R,当且仅当 a=b=c 时等号成立. 6. 二维形式柯西不等式:若 a,b,c,d 都是实数,则(a2+b2)(c2+d2)≥(ac +bd)2,当且仅当 ad=bc 时,等号成立.
考点一 利用基本不等式求最值
命题角度 1 直接求最值 已知 a>0,b>0,且 4a+b=1,则 ab 的最大值为__________.
解法一:因为 a>0,b>0,4a+b=1,所以 1=4a+b≥2 4ab=4 ab,当且仅当 4a=b=12,即 a=18,b=12时,等号成立. 所以 ab≤14,ab≤116,则 ab 的最大值 为116.
2 P(简记为:积定和最小). (2)设 x,y 为正数,若和 x+y 等于定值 S,那么当 x=y 时,积 xy 有最大值14S2(简
记为:和定积最大).
【常用结论】
4. 常用推论
(1)(a+b)2≤2(a2+b2).
(2)a2+b2+c2≥ab+bc+ac.
(3)|2ab|≤a2+b2⇔-(a2+b2)≤2ab≤a2+b2.
所以a+1 1+2b=16[2(a+1)+b]a+1 1+2b =162+a+b 1+4(ab+1)+2 ≥162 a+b 1·4(ab+1)+4=16×(4+4)=43,
当且仅当a+b 1=4(a+b 1),即 a=12,b=3 时取等号, 所以a+1 1+2b的最小值是43. 故选 B.
2025版高考数学一轮总复习1-4基本不等式
3.基本不等式求最值
2
(1)设,为正数,若积等于定值,那么当 = 时,和 + 有最小值_____
(简记为:积定和最小).
(2)设,为正数,若和 + 等于定值,那么当 =
(简记为:和定积最大).
1 2
时,积有最大值_____
4
常用结论
1.常用推论
(1) +
≥ 2 + 2 2,
命题角度3 换元法求最值
例3 【多选题】(2022年新课标Ⅱ卷)若,满足 2 + 2 − = 1,则(
A. + ≤ 1
B. + ≥ −2
√
C. 2 + 2 ≤ 2
√
D. 2 + 2 ≥ 1
)
解:由 2 + 2 − = 1,得 +
2
+
等式,其中,____叫做正数,的算术平均数,_____叫做正数,的几何平均数.基
2
不小于
本不等式表明:两个正数的算术平均数________它们的几何平均数.
2.几个重要不等式
重要不等式
2
2
−2
2 +2
2
使用前提
等号成立条件
> 0
_______
= −
________
−
≤ −2
− ⋅
当 = −1时等号成立,故B正确.
对于D,显然存在 = 4,使得 +
1
5
2
= < 2 2,故D错误.故选B.
1
−
= −2,当且仅
2.(2020年上海卷)下列不等式恒成立的是 (
2025版高考数学一轮复习第6章不等式推理与证明第2节基本不等式教学案文含解析北师大版
其次节 基本不等式[考纲传真] 1.了解基本不等式的证明过程.2.会用基本不等式解决简洁的最大(小)值问题.1.基本不等式a +b2≥ab(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R); (2)b a +a b≥2(a ,b 同号且不为零);(3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R);(4)⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22(a ,b ∈R). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题 已知x >0,y >0,则(1)假如xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)假如x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大).[常用结论] 重要不等式链 若a ≥b >0,则a ≥a 2+b 22≥a +b2≥ab ≥2aba +b≥b . [基础自测]1.(思索辨析)推断下列结论的正误.(正确的打“√”,错误的打“×”) (1)函数y =x +1x的最小值是2.( )(2)函数f (x )=cos x +4cos x ,x ∈⎝⎛⎭⎪⎫0,π2的最小值等于4.( ) (3)x >0,y >0是x y +y x ≥2的充要条件. ( ) (4)若a >0,则a 3+1a2的最小值为2a .( )[答案] (1)× (2)× (3)× (4)×2.(教材改编)设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .82C [xy ≤⎝⎛⎭⎪⎫x +y 22=81,当且仅当x =y =9时,等号成立.故选C .]3.若a ,b ∈R,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C .1a +1b>2abD .b a +ab≥2D [∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误;对于B ,C ,当a <0,b <0时,明显错误. 对于D ,∵ab >0,∴b a +a b ≥2b a ·ab=2.] 4.若x >1,则x +4x -1的最小值为________. 5 [x +4x -1=(x -1)+4x -1+1≥2x -1×4x -1+1=5,当且仅当x -1=4x -1,即x =3时等号成立.] 5.若实数x ,y 满意xy =1,则x 2+2y 2的最小值为________. 2 2 [由xy =1得x 2+2y 2≥22x 2y 2=2 2. 当且仅当x 2=2y 2时等号成立.]利用基本不等式求最值【例1】 (1)(2024·天津高考)已知a ,b ∈R,且a -3b +6=0,则2a+18b 的最小值为________.(2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.(1)14 (2)1 [(1)由题知a -3b =-6,因为2a >0,8b >0,所以2a+18b ≥2×2a×18b =2×2a -3b=14,当且仅当2a=18b ,即a =-3b ,a =-3,b =1时取等号. (2)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3≤-25-4x ·15-4x+3=-2+3=1.当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1.]►考法2 常数代换法求最值【例2】 已知a >0,b >0,a +b =1,则1a +1b的最小值为________.4 [因为a +b =1,所以1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=2+⎝ ⎛⎭⎪⎫b a +a b ≥2+2b a ·ab=2+2=4. 当且仅当a =b 时,等号成立.][拓展探究] (1)若本例条件不变,求⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b 的最小值;(2)若将本例条件改为a +2b =3,如何求解1a +1b的最小值.[解] (1)⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b=⎝ ⎛⎭⎪⎫1+a +b a ⎝ ⎛⎭⎪⎫1+a +b b =⎝⎛⎭⎪⎫2+b a ·⎝⎛⎭⎪⎫2+a b=5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+4=9.当且仅当a =b =12时,等号成立.(2)因为a +2b =3,所以13a +23b =1.所以1a +1b =⎝ ⎛⎭⎪⎫1a +1b ⎝ ⎛⎭⎪⎫13a +23b =13+23+a 3b +2b3a ≥1+2a 3b ·2b 3a =1+223. 当且仅当a =2b 时,等号成立.[规律方法] 利用基本不等式求最值的三种思路利用基本不等式解决条件最值的关键是构造和为定值或积为定值,主要有三种思路: (1)利用基本不等式干脆求解.(2)对条件运用基本不等式,建立所求目标函数的不等式求解.常用的方法有:拆项法、变系数法、凑因子法、换元法、整体代换法等.(3)条件变形,进行“1”的代换求目标函数最值.(1)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( ) A .1+ 2 B .1+ 3 C .3D .4(2)(2024·平顶山模拟)若对于随意的x >0,不等式xx 2+3x +1≤a 恒成立,则实数a 的取值范围为( )A .a ≥15B .a >15C .a <15D .a ≤15(3)已知正实数x ,y 满意2x +y =2,则2x +1y的最小值为________.(1)C (2)A (3)92 [(1)当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2x -2×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,即a =3,选C .(2)由x >0,得x x 2+3x +1=1x +1x+3≤12x ·1x+3=15,当且仅当x =1时,等号成立.则a ≥15,故选A .(3)∵正实数x ,y 满意2x +y =2, 则2x +1y =12(2x +y )⎝ ⎛⎭⎪⎫2x +1y =12⎝⎛⎭⎪⎫5+2y x +2x y ≥12⎝ ⎛⎭⎪⎫5+2×2y x·2x y=92,当且仅当x =y =23时取等号. ∴2x +1y 的最小值为92.]基本不等式的实际应用【例3】 某厂家拟定在2024年实行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x 万件与年促销费用m (m ≥0)万元满意x =3-km +1(k 为常数).假如不搞促销活动,那么该产品的年销量只能是1万件.已知2024年生产该产品的固定投入为8万元,每生产1万件该产品须要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2024年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2024年的促销费用投入多少万元时,厂家利润最大? [解] (1)由题意知,当m =0时,x =1(万件), 所以1=3-k ⇒k =2,所以x =3-2m +1, 每件产品的销售价格为1.5×8+16xx(元),所以2024年的利润y =1.5x ×8+16x x-8-16x -m=-⎣⎢⎡⎦⎥⎤16m +1+m +1+29(m ≥0).(2)因为m ≥0,16m +1+(m +1)≥216=8, 所以y ≤-8+29=21,当且仅当16m +1=m +1⇒m =3(万元)时,y max =21(万元). 故该厂家2024年的促销费用投入3万元时,厂家的利润最大为21万元. [规律方法] 利用基本不等式解决实际问题的3个留意点 (1)设变量时一般要把求最大值或最小值的变量定义为函数.(2)依据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. (3)在求函数的最值时,肯定要在定义域(使实际问题有意义的自变量的取值范围)内求解.经市场调查,某旅游城市在过去的一个月内(以30天计),第t 天(1≤t ≤30,t ∈N *)的旅游人数f (t )(万人)近似地满意f (t )=4+1t,而人均消费g (t )(元)近似地满意g (t )=120-|t -20|.(1)求该城市的旅游日收益W (t )(万元)与时间t (1≤t ≤30,t ∈N *)的函数关系式; (2)求该城市旅游日收益的最小值.[解] (1)W (t )=f (t )g (t )=⎝⎛⎭⎪⎫4+1t (120-|t -20|)=⎩⎪⎨⎪⎧401+4t +100t,1≤t ≤20,559+140t-4t ,20<t ≤30.(2)当t ∈[1,20]时,401+4t +100t≥401+24t ·100t=441(t =5时取最小值).当t ∈(20,30]时,因为W (t )=559+140t-4t 递减,所以t =30时,W (t )有最小值W (30)=44323,所以t ∈[1,30]时,W (t )的最小值为441万元.。
高三数学一轮复习 《基本不等式》教案 大纲
〔2〕设),0(,∝+∈y x ,且1)(=+-y x xy ,那么〔〕A.)12(2+≥+y xB.12+≤xyC.2)12(+≤+y xD.)12(2+≥xy规律总结:练习:1.y x ,为正实数,且,12=+y x 求yx 11+的最小值.2.〔20217〕x>0,y>0,x+2y+2xy=8,那么x+2y 的最小值是.A.3B.4C.29D.1122.根本不等式的实际应用【例3】如图动物园要围成一样的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.〔1〕现有可围36 m 长钢筋网材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?〔2〕假设使每间虎笼面积为24 m2,那么每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长度最小?达标练习1.函数()43f x x x=++在(],2-∞-上. A.无最大值,有最小值7B.无最大值,有最小值-1 C.有最大值7,有最小值-1D.有最大值-1,无最小值-1 2.〔202111〕设0a >b >,那么()211a ab a a b ++-的最小值是. 〔A 〕1〔B 〕2〔C 〕3〔D 〕43.(2021)设0,>b a ,假设3是ba 33与的等比中项,那么ba 11+的最小值为. 4.假设a 、b 、c 为正实数,且a(a+b+c)+bc=4-23,那么2a+b+c 的最小值为.5.函数1(01)xy a a a -=>≠,的图象恒过定点A ,假设点A 在直线10(0)mx ny mn +-=>上,那么11m n+的最小值为. 6.设正数y x ,满足1222=+y x ,那么21y x +的最大值为.课堂小结 〔1〕 〔2〕 作业 1、正数a,b,x,y 满足a+b=10,ybx a +=1,x+y 的最小值为18,求a,b 的值. 2、〔2021〕围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙〔利用旧墙需维修〕,其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m 的进出口,如下列图,旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元)。
高考数学复习知识点讲解教案第4讲 基本不等式
− 2 = 3 ≤
2
3 + 2
,
4
2
≤ 8,即 + ≤ 2 2,故C正确;对于D,由 > 0, > 0, + − = 2,
(当且仅当 =
2
时,等号成立),得
≤ 4,故D错误.故选BC.
+
2
− 2 = ≤
2
2
+
2
,
探究点二 变形用基本不等式求最值
微点1 配凑法
4
(简记:和定积最大)
常用结论
1.若 > 0, > 0,则1
2
1
+
≤ ≤
2.当 > 0时,函数 = +
数 = +
+
2
≤
2 +2
,当且仅当
2
= 时,等号成立.
> 0 在 = 处取得最小值2 ;当 < 0时,函
> 0 在 = − 处取得最大值−2 .
=
2
2
⋅ 2 2 1 − 2 2 ,再利用基本不等式求解.
> 0,
2
2
⋅
2
2
1−
2
2
1
时等号成立,故
2
1−
≤
2
2
⋅
2
2
2 +1−2
2
=
2
2
2 的最大值为 .
4
2
,
4
[总结反思]
基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,利用
2025届高考数学一轮复习教案:一元二次函数、方程、不等式-二次函数与一元二次方程、不等式
第三节二次函数与一元二次方程、不等式课程标准1.会从实际情境中抽象出一元二次不等式.2.结合二次函数图象,会判断一元二次方程的根的个数,以及解一元二次不等式.3.了解简单的分式、绝对值不等式的解法.考情分析考点考法:本节是高考的必考内容之一,常与函数、导数、解析几何等内容相结合命题,重点考查不等式的求解等问题.核心素养:数学运算、逻辑推理、直观想象【必备知识·逐点夯实】【知识梳理·归纳】1.一元二次不等式只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式,一元二次不等式的一般形式是ax 2+bx +c >0或ax 2+bx +c <0(a ,b ,c 均为常数,a ≠0).2.二次函数的零点一般地,对于二次函数y =ax 2+bx +c ,我们把使ax 2+bx +c =0的实数x叫做二次函数的零点.【微点拨】二次函数的零点为对应方程的根,是一个实数,不是点的坐标.3.三个二次的对应关系(其中a >0)判别式Δ=b 2-4ac Δ>0Δ=0Δ<0二次函数y =ax 2+bx +c 的图象方程ax 2+bx +c =0的根有两个不相等的实数根x 1,x 2(x 1<x 2)有两个相等的实数根x 1=x 2=-b2a没有实数根ax 2+bx +c >0的解集{x |x <x 1,或x >x 2}|2⎧⎫≠-⎨⎬⎩⎭b x x a __R __ax 2+bx +c <0的解集{x |x 1<x <x 2}⌀⌀【微点拨】1.解一元二次不等式一定要结合二次函数开口方向和不等号的方向下结论.2.若关于x 的一元二次不等式ax 2+bx +c <0(a >0)的解集为(m ,n ),则x =m 与x =n 为一元二次方程ax 2+bx +c =0(a >0)的两个根.4.简单的绝对值不等式|x |>a (a >0)的解集为(-∞,-a )∪(a ,+∞),|x |<a (a >0)的解集为(-a ,a ).【基础小题·自测】类型辨析改编易错题号12,341.(多维辨析)(多选题)下列结论正确的是()A .若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2B .若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0C .不等式x 2≤a 的解集为[-,]D .若方程ax 2+bx +c =0(a <0)没有实数根,则不等式ax 2+bx +c >0(a <0)的解集为R 【解析】选AB .C .对于不等式x 2≤a ,当a >0时,其解集为[-,];当a =0时,其解集为{0},当a <0时,其解集为∅.D.若方程ax2+bx+c=0(a<0)没有实数根,则不等式ax2+bx+c>0(a<0)的解集为∅.2.(必修第一册P52例3变条件)不等式-x2-5x+6≥0的解集为()A.{x|-6≤x≤1}B.{x|2≤x≤3}C.{x|x≥3或x≤2}D.{x|x≥1或x≤-6}【解析】选A.不等式-x2-5x+6≥0可化为x2+5x-6≤0,即(x+6)(x-1)≤0,解得-6≤x≤1,所以不等式的解集为{x|-6≤x≤1}.3.(必修第一册P55习题2.3T3变条件)已知集合A=U2−2−3≤0,B== 2−4,则A∩B=()A.2,3B.2,3C.2,3D.2,3【解析】选C.因为x2-2x-3≤0,所以+1−3≤0,即-1≤x≤3,所以A=U−1≤≤3,B=U≥2,所以A∩B=2,3.4.(忽略a=0的情形致误)不等式ax2-ax+a+1>0对∀x∈R恒成立,则实数a的取值范围为()A.0,+∞B.0,+∞C.−∞,−0,+∞D.−∞,−+∞)【解析】选B.①当a=0时,1>0成立,②当a≠0时,只需>0=2−4+1<0,解得a>0,综上可得a≥0,即实数a的取值范围为0,+∞.【巧记结论·速算】1.已知关于x的一元二次不等式ax2+bx+c>0的解集为R,则一定满足>0<0;2.已知关于x的一元二次不等式ax2+bx+c>0的解集为⌀,则一定满足<0≤0;3.已知关于x的一元二次不等式ax2+bx+c<0的解集为R,则一定满足<0<0;4.已知关于x的一元二次不等式ax2+bx+c<0的解集为⌀,则一定满足>0≤0.【即时练】1.“-3<m<1”是“不等式−1x2+−1x-1<0对任意的x∈R恒成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选A.当m=1时,−1x2+−1x-1<0对任意的x∈R恒成立,当m≠1时,则<1<0,解得-3<m<1,故m的取值范围为{m|-3<m≤1}.故“-3<m<1”是“-3<m≤1”的充分不必要条件.2.若关于x的不等式mx2-mx-1≥0的解集是⌀,则m的取值范围是()A.[-4,0]B.(-4,0]C.[0,4)D.(-4,0)【解析】选B.当m=0时,mx2-mx-1≥0即-1≥0,解集是⌀,当m≠0时,不等式mx2-mx-1≥0的解集是⌀,需满足<0=−2+4<0,解得-4<m<0,所以m的取值范围是(-4,0].【核心考点·分类突破】考点一一元二次不等式的解法【考情提示】一元二次不等式是高考的热点问题,它常与集合的交集、并集、补集相结合出现在选择题中.含参数的一元二次不等式常与导数、圆锥曲线相交汇出现在解答题中,重点考查分类讨论思想和推理论证能力.角度1不含参数的一元二次不等式[例1]解下列不等式:(1)2x2+5x-3<0;(2)-3x2+6x≤2;(3)9x2-6x+1>0;(4)x2<6x-10.【解析】(1)因为Δ=49>0,所以方程2x2+5x-3=0有两个不相等的实数根,解得x1=-3,x2=12,画出函数y=2x2+5x-3的图象,如图①所示.由图可得原不等式的解集为{x−3< <12}.(2)原不等式等价于3x2-6x+2≥0.因为Δ=12>0,所以方程3x2-6x+2=0有两个不相等的实数根,解得x1=3−33,x2=3+33,画出函数y=3x2-6x+2的图象,如图②所示,由图可得原不等式的解集为{x≤3−33或≥3+33}.(3)因为Δ=0,所以方程9x2-6x+1=0有两个相等的实数根,解得x1=x2=13.画出函数y=9x2-6x+1的图象如图③所示.由图可得原不等式的解集为{x≠13}.(4)原不等式可化为x2-6x+10<0,因为Δ=-4<0,所以方程x2-6x+10=0无实数根,画出函数y=x2-6x+10的图象如图④所示,由图象可得原不等式的解集为∅.【解题技法】解一元二次不等式的一般方法和步骤(1)化:把不等式变形为二次项系数大于零的标准形式.(2)判:计算对应方程的判别式,根据判别式判断方程有没有实根(无实根时,不等式的解集为R或∅).(3)求:求出对应的一元二次方程的根.(4)写:利用“大于取两边,小于取中间”写出不等式的解集.角度2含参数的一元二次不等式[例2]解关于x的不等式.(1)x2+ax+1<0(a∈R);(2)ax2-(a+1)x+1<0.【解析】(1)Δ=a2-4.①当Δ=a2-4≤0,即-2≤a≤2时,原不等式无解.②当Δ=a2-4>0,即a>2或a<-2时,方程x2+ax+1=0的两根分别为x1x2则原不等式的解集为<<综上所述,当-2≤a≤2时,原不等式无解;当a>2或a<-2时,原不等式的解集为<<(2)若a=0,原不等式等价于-x+1<0,解得x>1.若a<0,原不等式等价于−x-1)>0,解得x<1或x>1.若a>0,原不等式等价于−x-1)<0.①当a=1时,1=1,−x-1)<0无解;②当a>1时,1<1,解−x-1)<0,得1<x<1;③当0<a<1时,1>1,解−x-1)<0,得1<x<1.综上所述,当a<0时,解集为{x|x<1或x>1};当a=0时,解集为{x|x>1};当0<a<1时,解集为{x|1<x<1};当a=1时,解集为⌀;当a>1时,解集为{x|1<x<1}.【解题技法】解含参数的一元二次不等式时分类讨论的方法(1)当二次项系数中含有参数时,应讨论二次项系数是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应的一元二次方程的根的个数不确定时,讨论判别式Δ与0的关系.(3)确定无根时可直接写出解集;确定方程有两个不相等的实根时,要讨论两根的大小关系,从而确定解集形式.【对点训练】1.(2024·莆田模拟)不等式1−−3<0的解集是()A.−1,3B.−3,1C.{x<1或x>3}D.{x<-3或x>1}【解析】选C.由1−−3<0,可得(x-1)(x-3)>0,所以x<1或x>3,所以不等式的解集为{x<1或x>3}.2.不等式−2r5K2>0的解集为________.【解析】不等式−2r5K2>0等价于−2+5−2>0,即2−5−2<0,解得2<x<52,所以不等式−2r5K2>0的解集为2<<答案:2<<3.(2024·玉林模拟)已知关于x的不等式ax2-b≥2x-ax s∈R.(1)若不等式的解集为−2≤≤−1,求a,b的值;(2)若a<0,b=2,解不等式.【解析】(1)原不等式可化为ax2+−2x-b≥0,由题知,-2,-1是方程ax 2+−2x -b =0的两根,由根与系数的关系得<0−K2=−3−=2,解得=−1=2.(2)当a <0时,原不等式化为−+1≤0,当2>-1,即a <-2时,解原不等式可得-1≤x ≤2;当2=-1,即a =-2时,原不等式即为+12≤0,解得x =-1;当2<-1,即-2<a <0时,解得2≤x ≤-1,综上所述,当-2<a <0时,不等式的解集为≤≤−1;当a =-2时,不等式的解集为−1;当a <-2时,不等式的解集为−1≤≤考点二三个二次的关系[例3](1)(2024·通辽模拟)已知不等式ax 2+bx -1>0的解集为−12<<−则不等式x 2-bx -a ≥0的解集为()A .{x |x ≤-3或x ≥-2}B .{x |-3≤x ≤-2}C .{x |2≤x ≤3}D .{x |x ≤2或x ≥3}【解析】选A .因为不等式ax 2+bx -1>0的解集为−12<<−所以ax 2+bx -1=0的两根分别为-12,-13,即−12+−=−−12×−=−1,解得a =-6,b =-5.所以不等式x 2-bx -a ≥0可化为x 2+5x +6≥0,其解集为{x |x ≤-3或x ≥-2}.(2)(多选题)(2024·安庆模拟)已知不等式ax 2+bx +c >0的解集为−12<<2,则下列结论正确的是()A.b>0B.c>0C.a+b+c>0D.a-b+c>0【解析】选ABC.由题意可知,方程ax2+bx+c=0的解为x1=-12,x2=2,且a<0,则-=x1+x2=32,=x1x2=-1,解得b=-32a,c=-a,令f=ax2+bx+c=ax2-32ax-a<0,对于A,b=-32a>0,故A正确;对于B,c=-a>0,故B正确;对于C,a+b+c=f1=a-32a-a=-32a>0,故C正确;对于D,a-b+c=f−1=a+32a-a=32a<0,故D错误.【解题技法】一元二次不等式与方程的关系的解题策略1.一元二次方程的根就是相应一元二次函数的零点,也是相应一元二次不等式解集的端点值.2.给出一元二次不等式的解集,相当于知道了相应二次函数图象的开口方向及与x轴的交点,可以利用代入根或利用根与系数的关系求解.【对点训练】(多选题)已知不等式ax2+bx+c>0的解集为<<,其中n>m>0,则以下结论正确的有()A.a<0B.b>0C.cx2+bx+a>0的解集为<<D.cx2+bx+a>0的解集为<1或>【解析】选ABC.因为不等式ax2+bx+c>0的解集为<<,所以a<0,故A 正确;因为n>m>0,令f=ax2+bx+c,所以-2>0,即b>0,故B正确;由上所述,易知f0<0,c<0,由题意可得m,n为一元二次方程ax2+bx+c=0的两根,则m+n=-,mn=,则1·1=,1+1=r B=-,即1,1为方程cx2+bx+a=0的解,则不等式cx2+bx+a>0的解集为<<故C正确,D错误.考点三一元二次不等式恒(能)成立问题角度1在R上的恒成立问题[例4](2024·重庆模拟)当a∈(t1,t2)时,不等式2−B−21−r2<3对任意实数x恒成立,则t1+t2的值为()A.-7B.6C.7D.8【解析】选B.由于1-x+x2=(−12)2+34>0,则不等式2−B−21−r2<3等价于4x2+(a-3)x+1>0,依题意,不等式4x2+(a-3)x+1>0对任意实数x恒成立,则Δ=(a-3)2-16<0,解得-1<a<7,于是t1=-1,t2=7,所以t1+t2=6.【解题技法】ax2+bx+c>0(<0)在R上恒成立的条件1.ax2+bx+c>0的解集为R,则一定满足(1)a =b =0,c >0或(2)>0<0;2.ax 2+bx +c <0的解集为R ,则一定满足(1)a =b =0,c <0或(2)<0<0.角度2在给定区间上的恒成立问题[例5]金榜原创·易错对对碰(1)(一题多法)若对于x ∈[1,3],mx 2-mx +m -6<0(m ≠0)恒成立,则m 的取值范围是________.【解析】由已知得,m (x -12)2+34m -6<0(m ≠0)在x ∈[1,3]上恒成立.方法一:令g (x )=m (x -12)2+34m -6(m ≠0),x ∈[1,3].当m >0时,g (x )在[1,3]上单调递增,所以g (x )max =g (3)=7m -6<0,所以m <67,则0<m <67.当m <0时,g (x )在[1,3]上单调递减,所以g (x )max =g (1)=m -6<0,所以m <6,所以m <0.综上所述,m 的取值范围是{m 0<<67或<0}.方法二:因为x 2-x +1=(x -12)2+34>0,又因为m (x 2-x +1)-6<0,所以m <62−r1.因为函数y =62−r1=6(K 12)2+34在[1,3]上的最小值为67,所以只需m <67即可.因为m ≠0,所以m 的取值范围是{m 0<<67或<0}.答案:{m 0<<67或<0}(2)若mx 2-mx -1<0对于m ∈[1,2]恒成立,则实数x 的取值范围为________.【解析】设g (m )=mx 2-mx -1=(x 2-x )m -1,其图象是直线,当m ∈[1,2]时,图象为一条线段,则o1)<0,o2)<0,即2−−1<0,22−2−1<0,解得1−32<x <1+32,故实数x 的取值范围为(1−32,1+32).答案:(1−32,1+32)【解题技法】在给定区间上的恒成立问题的求解方法(1)若f(x)>0在集合A中恒成立,即集合A是不等式f(x)>0的解集的子集,可以先求解集,再由子集的含义求解参数的值(或范围).(2)转化为函数值域问题,即已知函数f(x)的值域为[m,n],则f(x)≥a恒成立⇒f(x)min≥a,即m≥a;f(x)≤a恒成立⇒f(x)max≤a,即n≤a.(3)对于以下两种题型,可以利用二次函数在端点m,n处的取值特点确定不等式求范围.①ax2+bx+c<0(a>0)对x∈[m,n]恒成立;②ax2+bx+c>0(a<0)对x∈[m,n]恒成立.提醒:一般地,知道谁的范围,就选谁当主元;求谁的范围,谁就是参数.如本例(1)中建立关于x的函数,m为参数,本例(2)中建立关于m的函数,x为参数.角度3不等式能成立或有解问题[例6](一题多法)若关于x的不等式x2-ax+7>0在2,7上有实数解,则a的取值范围是()A.−∞,8B.−∞,8C.−∞,27D.【解析】选A.方法一:(分离参数法)不等式x2-ax+7>0在2,7上有实数解,等价于不等式a<x+7在2,7上有实数解,因为函数f(x)=x+7在(2,7)上单调递减,在(7,7)上单调递增,又由f(2)=2+72=112,f7=7+77=8,所以f max<f7=8,所以a<8,即实数a的取值范围是−∞,8.方法二:(最值转化法)原不等式在(2,7)上有解,它的否定是不等式x2-ax+7>0在(2,7)上无解,则4−2+7≤049−7+7≤0,解得a≥8,因此不等式x2-ax+7>0在(2,7)上有解时a<8.【解题技法】一元二次不等式在给定区间上的有解问题解题策略(1)分离参数法:把不等式化为a>f(x)或a<f(x)的形式,只需a>f(x)min或a<f(x)max.(2)最值转化法;若f(x)>0在集合A中有解,则函数y=f(x)在集合A中的最大值大于0;若f(x)<0在集合A中有解,则函数y=f(x)在集合A中的最小值小于0.(3)数形结合法:根据图象列出约束条件求解.(4)最后一定要注意检验区间的开闭.【对点训练】1.(2024·大同模拟)已知命题p:∃x∈R,使得ax2+2x+1<0成立为真命题,则实数a的取值范围是()A.−∞,0B.−∞,1C.0,1D.0,1【解析】选B.命题p为真命题等价于不等式ax2+2x+1<0有解.当a=0时,不等式变形为2x+1<0,则x<-12,符合题意;当a>0时,Δ=4-4a>0,解得0<a<1;当a<0时,总存在x∈R,使得ax2+2x+1<0;综上可得实数a的取值范围为−∞,1.2.若不等式x2+a(x-1)+1≥0对一切x∈(1,2]都成立,则a的最小值为()A.0B.-22C.-22-2D.-5【解析】选D.记f(x)=x2+a(x-1)+1=x2+ax+1-a,要使不等式x2+a−1+1≥0对一切x∈(1,2]都成立,则−2≤1o1)=2≥0或1<−2<2o−2)=−24−+1≥0或−2≥2o2)=+5≥0,解得a≥-2或-4<a<-2或-5≤a≤-4,综上,a≥-5.3.已知对任意m∈1,3,mx2-mx-1<-m+5恒成立,则实数x的取值范围是()B.,+∞C.【解析】选D.对任意m∈1,3,不等式mx2-mx-1<-m+5恒成立,即对任意m∈1,3,m2−+1<6恒成立,所以对任意m∈1,3,x2-x+1<6恒成立,所以对任意m∈1,3,x2-x6=2恒成立,所以x2-x+1<2,解得1−52<x<1+5,故实数x【加练备选】已知f=x2+2−x+3a+b,若存在常数a,使f(x)≥0恒成立,则b的取值范围是________.【解析】使f(x)≥0恒成立,则Δ=(2-a)2-4×1×(3a+b)≤0,化简整理得4b≥a2-16a+4=(a-8)2-60,由于存在常数a,使f(x)≥0恒成立,可知4b≥(2−16+4)min,因此4b≥-60,解得b≥-15.答案:[-15,+∞)。
新高考2023版高考数学一轮总复习第1章第6讲基本不等式课件
立.
(3)ab-16=a+2b≥2 2ab,令 ab=t,
则 t2-2
2t-16≥0⇒t≥2
2+ 2
72=4
2,
故 ab≥32,即 ab 最小值为 32.(当且仅当 a=8,b=4 时取等号)故选
B.
考点二
利用基本不等式求参数的范围——师生共研
例4 (2021·黑龙江哈尔滨三中期中)已知x>0,y>0,x+2y+2xy =8,则x+2y的最小值是4 ____.
6.(2020·江苏,12,5分)已知5x2y2+y4=1(x,y∈R),则x2+y2的最 4
小值是___5__. [解析] 由 5x2y2+y4=1 知 y≠0,∴x2=1- 5y2y4,∴x2+y2=1- 5y2y4+y2
=1+5y42y4=51y2+45y2≥2 245=45,当且仅当51y2=45y2,即 y2=12t;0,y>0,x+3y+xy=9,则x+3y的最小值为__6__.
[解析] 解法一:(换元消元法) 由已知得 9-(x+3y)=13·x·3y≤13·x+23y2, 当且仅当 x=3y,即 x=3,y=1 时取等号. 即(x+3y)2+12(x+3y)-108≥0, 令 x+3y=t,则 t>0 且 t2+12t-108≥0, 得 t≥6,即 x+3y 的最小值为 6.
[解析] (1)x(3-2x)=12·2x(3-2x)≤12·2x+23-2x2=98, 当且仅当 2x=3-2x,即 x=34时取等号. (2)∵x>54,∴4x-5>0, ∴f(x)=4x-2+4x-1 5=4x-5+4x-1 5+3≥2 1+3=5. 当且仅当 4x-5=4x-1 5,即 x=32时取等号.
(3)y=x+1x的最小值是 2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学一轮复习——10.4 基本不等式
一、 课标要求:
1.解基本不等式及成立条件.
2.能应用基本不等式判断大小求最值.
3.应用基本不等式解决实际问题和综合问题.
二、 重难点:
1. 重点:正确应用基本不等式进行判断和计算.
2. 难点:基本不等式的变形应用.
三、 教学方法:
以启发引导,探索发现为主导.讲解练习为主线.用一题多解,一题多变突出重点,突破难点.以综合应用提高分析解
决问题的能力,培养创新能力.
四、 教学过程:
(一)、学情评估,导入新课:
1.下列不等式中不一定成立的是( )
A . 222a b ab +≥ B.222()a b a b +≥- C.12a a +≥ D.2212a a
+≥ 2.0,0,2m n m n >>+=,则mn 的最大值为 。
3.0,0x y >>,且191x y
+=,则x y +最小值是 。
(二)、探求、归纳知识体系:
1. 基本不等式:① 222a b ab +≥(,a b R ∈x y =)
②a b +≥(0,0)a b >> ③2b a a b
+≥ (0)ab >
变形:①222()22a b a b ab ++≤≤ 2a b +≤≤(,)a b R ∈ 2.基本不等式与最值:若,x y R +∈
①和定积最大:若x y s +=,则2
4
s xy ≤ (当且仅当x y =时“=”成立)
②积定和最小:若xy p =,则x y +≥(当且仅当x y =时“=”成立)
注意一:要用此结论需满足三个条件:① ② ③
简称:一正二定三相等
注意二:条件不足时可通过拆分与配凑创设条件。
(三)基本不等式的应用:
例一:设0,0x y >>,且440x y +=,求lg lg x y +的最值
变式训练①.若221x y +=,求(1)(1)xy xy -+的最小值。
(变形应用)②.函数y =的最大值为 。
例二:①若0x >,求12()3f x x x =
+的最小值。
②若0x <,求12()3f x x x =
+的最大值。
归纳:1(0)y x x x
=+≠的值域是什么? 变式训练二:①求4()3lg lg f x x x =++
,(1)x >的最小值。
(变形应用)②求14245y x x =-+
-,5()4
x <的最小值。
(对比应用)③若12x ≤≤,则1x x
-
的最大值为 。
例三:(能力提高)若正数
,x y 满足21x y +=求11x y
+的最小值。
变式训练三.已知0,0x y >>,且191x y
+=,则x y +最小值为( ) A.12 B.16 C.6 D.24
例四.某商品进货价为每件50元。
据市场调查,当售价(每件x 元)在5080x <≤时,每天售出的件数
5
210(40)
p x =-,若想每天获利最多,价格应定为每件多少元?
例五.(反思)辨析正误,错的说出原因。
① 求22
5()2log log x x f x =++ (01x <<)的最值。
解:2()22log x f x ≥+=+ ② 求224()sin sin f x x x =+
的最小值。
解:2224()sin sin sin f x x x x x
=+≥4= 四:课堂小结:这一节课的收获是:
五:走向高考(达标检测)
1.(07海南)已知0,0.,,,x y x a b y >>成等差数列。
,,,x c d y 成等比数列。
则2
()a b cd
+的最小值是( ) A. 0 B. 1 C. 2 D. 4
2(05全国)21cos 28sin 0,()2sin 2x x x f x x π
++<<=最小值是( )
3(07上海)若,x y R +∈,且41x y +=,则xy 最大值为 。
4(07山东)点A(-2,-1)在直线10mx ny ++=上,其中0mn >,则12m n
+的最小值为 . 5.(06天津)某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用4x 万元.要
使一年的总运费与总存储费用之和最小则x 为多少吨?
六.(反思)基本不等式在高考中怎么考?你能力达到要求了吗?
七.课后作业:三维设计达标检测(再练一练!)。