电厂供热改造节能分析

合集下载

火力发电厂降耗节能措施

火力发电厂降耗节能措施

火力发电厂降耗节能措施一、设备概述良村热电、发电机组厂用电率约7.59%、7.89%,与同业对标,与国内先进火电机组有一定差距。

本文结合具体情况从节能改造、优化运行方式等方面深挖节能潜力进行探讨,最大限度降低厂用电率.以适应时代对火电厂发展的需求。

石家庄良村热电是河北南网重要的电源、热源支撑点,锅炉为东方锅炉生产的型号为DG1110/17.4-II12型亚临界一次中间再热自然循环燃煤汽包炉,单机配三台双进双出钢球磨煤机,两台引风机、送风机、一次风机,风机均采用动叶可调轴流式风机。

汽轮机为东方汽轮机生产的亚临界、一次中间再热、三缸双排汽、单轴、两级可调整供热抽汽、凝汽式机组。

配有两台50%BMCR容量的汽泵,一台35%BMCR容量的电泵,两台凝结水泵(一台变频调节)、两台循环泵。

发电机为东方电气制造的QFSN-330-2-20型氢冷发电机,经容量为370MVA的主变接入220kV升压站,发电机出口经高厂变接带厂用电,厂用电分为6KV和400V两个电压等级。

机组大容量辅机和低压厂用变接入6KV系统,低压供电方式采用PC/MCC方式,两台机组设一台高压启动备用变压器。

二、降低厂用电率的具体措施厂用电率的决定因素有多个,辅机电动机的耗电量对厂用电率起着决定性的作用,同时合理调整、运行方式优化、节能改造同样影响着厂用电率。

通过几年的运行,暴露出部分设备在运行时的节能潜力很大,良村热电通过对设备的节能改造取得了明显的效果,厂用电率得到了有效控制。

1.磨煤机高铬钢球改造由于机组为河北南网骨干电厂,经常性参与机组调峰,在晚22:00-次日6:00时间段经常处在机组低负荷状态,有时机组负荷仅略高于最低稳燃负荷,此时即使采用双磨运行,磨煤电耗仍较高依旧居高不下,造成大量能源浪费。

通过考察采用铬锰钨抗磨铸铁球(高铬钢球)替代现使用的中铬钢球,并优化磨球级配方案,首先对1B磨进行更换钢球改造试验,技改后根据运行数据统计分析,在磨煤机出力不变、煤粉细度不变的情况下,1B磨煤单耗能明显下降,电流从之前的140A左右降至115A,电机功率从1200kW/h左右降低至1000kW/h,计算每天节电约4800kWh,按每千瓦0.3元,年单磨运行7000小时计算,年节约费用约42万元以上,节电效果明显。

电厂供热节能改造方案探讨

电厂供热节能改造方案探讨

电厂供热节能改造方案探讨【摘要】近些年为了尽可能降低供热成本并提升电厂生产的综合经济效益,针对电厂的各类系统进行节能改造成为了目前的重要发展方向。

电厂供热节能改造属于保障电厂综合运行效率的关键,同时也是降低燃料依赖性的有效方式,可以借助节约能源、资源的方式达到保障产能的同时降低能耗,这就需要科学的改造方案实现对供热系统的优化调整与改进。

对此,为了进一步提高电厂供热节能改造方案的合理性,本文简要分析电厂供热节能改造方案,希望能够为相关工作者提供帮助。

【关键词】电厂;供热节能;改造方案0.引言伴随着能源危机时代的到来,整个社会对于能源需求量不断提高,其中电能资源的需求量相对较高。

对于电厂而言,应当进一步强化能源节约并集中供热改造思路,借助电厂供热节能改造方案实现对能源资源的有效控制,针对性提升能源的使用率。

电厂供热节能改造方案属于目前电厂能源控制的有效方式,同时也是提高企业综合经济收益、社会效益的有效途径。

对此,探讨电厂供热节能改造方案具备显著实践性价值。

1.供热系统现状目前来看,我国电厂的供热系统的现状与特征主要在于两个方面,一方面在于缺乏节能意识。

一直以来发电产业属于国家经济的支柱性产业,伴随着社会主义现代化建设得到了许多的成果,导致电力行业快速发展[1]。

但是目前来看供热系统的运行现状仍然存在不注重节能的现象,其主要表现在节能技术相对落后以及供热系统管理人员缺乏节能意识,在能源管理方面仍然采用传统管理模式,缺乏创新意识导致资源的浪费[2]。

另一方面技术现状存在应用能力较差的表现。

因为我国发展水平的影响,我国部分重要技术仍然需要通过发达国家引出,特别是在能源方面的应用,对于部分现代化技术的应用程度比较低,导致供热行业的资源配置存在侧重于占用性特征,导致环境污染、资源浪费以及气候环境变化等问题比较严峻,从而影响人们的生存与发展。

伴随着近些年我国环境保护意识的不断增强以及硬性文件提出的环境保护要求,针对电力生产企业做好节能改造显得非常重要,此时便需要引入新技术并实现资源的合理利用。

330MW亚临界空冷供热机组降低厂用电率的节能技术分析

330MW亚临界空冷供热机组降低厂用电率的节能技术分析

330 MW亚临界空冷供热机组降低厂用电率的节能技术分析摘要:针对330 MW空冷供热燃煤火力发电站,分析节能技术改造、设备检修、运行调整、入炉煤质优化和机组负荷对厂用电率的影响规律,提出设备改造和运行优化措施,以降低综合厂用电率,实现节能降耗,增加发电经济效益。

结果表明影响厂用电率的因素包括重要耗电辅机的运行方式,以汽代电改造,采用变频、高频电源、热泵、引增合一等节能技术改造,系统参数的运行优化调整,空预器堵塞、高加泄漏、阀门内漏等设备缺陷治理,启停机时间和检修周期。

降低厂用电率的设备改造措施包括对一次风机、引风机及热网循环泵等辅机进行变频调速的节能改造,热泵改造,除尘高频电源改造,引增合一改造,凝泵变频自动调节改造。

降低厂用电率的设备缺陷治理措施包括在平时检修各专业开展严密排查,利用检修时机处理空预器堵塞问题,处理给水泵再循环调门漏量大的缺陷,及时处理高加泄漏。

降低厂用电率的运行优化措施包括标准化运行分析和运行方式调整,小指标竞赛,电动给水泵运行方式优化调整,磨煤机入口一次风量和加载压力运行优化,脱硫浆液循环泵运行优化,除尘二次电压优化,环境温度及机组负荷较高时及时投入空冷岛喷雾,检修用电优化管理,入炉煤质优化,尽量增加机组负荷及避免负荷损失。

关键词:空冷供热机组;综合厂用电率;辅机耗电率;变频调速改造;热泵改造;除尘高频电源改造引言:对于燃煤火力发电站,厂用电率是衡量发电机组运行经济性的主要指标[1-3]。

厂用电率不仅直接反映发电厂设备状况、人员素质、管理水平,还决定发电厂的经济效益[2-5]。

降低厂用电率,不仅能降低煤耗,还能减少二氧化碳的排放量[3-7]。

因此,有必要认真研究和分析影响燃煤火力发电厂综合厂用电率的因素,针对问题,积极采取有针对性的措施,优化机组检修质量、节能技改和运行方式,降低综合厂用电率。

本研究针对330 MW空冷供热燃煤火力发电站,分析节能技术改造、设备检修、运行调整、入炉煤质优化和机组负荷对厂用电率的影响规律,提出设备改造和运行优化措施,以降低综合厂用电率,实现节能降耗,增加发电经济效益。

300MW机组供热优化及灵活性改造分析

300MW机组供热优化及灵活性改造分析

300MW机组供热优化及灵活性改造分析摘要:现阶段,全球经济变暖问题的出现使各个国家加大了环保问题的重视程度,纷纷落实了相应的政策来减少社会生产活动对环境造成的不良影响,提倡开展绿色生产,我国提出的节能减排政策对于各项生产活动提出了十分严格的要求。

企业要想与该项发展要求相一致,就必须做好原有生产结构的改进工作。

其中,发电厂供热机组运行期间,消耗的能源非常多,根本不符合节能减排政策。

而应用大型供热机组换小型机组能够减少能源过度消耗,可是时间运行方面还有着诸多的不足之处存在,不利于提升基础的整体质量。

文章中全面论述了机组供热优化和灵活性改造对策。

关键词:300MW机组供热优化,灵活性改造分析在发电厂运行过程中,主要是以小型电热机组的形式开展热能供应操作,虽然单个机组运行过程中消耗的能源非常小,可是多个机组相加到一起造成的能源消耗量是非常大的。

运行期间产生的烟气直接影响了周围环境状况,完全不符合我国节能减排政策。

针对于以上存在的各项问题,有的发电厂使用小型电热机组替换为大型电热机组的方式,确保热能得到有效供应。

可是在具体应用中了解到大型电热机组和小型机组的运行方式有着诸多的不同之处存在,以往单一的维护管理方式也难以确保机组处于良好运行的状态,运行期间存在着各种各样的问题,不利于整体性能和效果的发挥。

1、对于存在问题的分析在发电机生产工作开展过程中,对于供电需求量非常大,供电范围有了明显程度的拓展和延伸,这从一定程度上说明了电热机组的运行负荷受到了影响。

因为有关操作人员技能较低,无法有效管理电热机组,导致电热机组在供热过程中有着各种各样的问题,供热能力下降,电厂效率得不到提升。

针对于电热机组运行期间存在的各项问题,表现在多方面,比如热网循环水回水压力下降,电热机组运行期间因为原滑压曲线的作用影响了机组运行质量,系统设计不规范,热网系统的运行质量降低,必须再次优化以后才可以体现出基础的整体性能。

2、对于造成问题的分析2.1热网循环水回压力不明原因的分析在机组运行期间普遍存在着热网循环水回压力下降现象,压力下降幅度不一致,热网循环水泵性能受到的影响,直接威胁到了循环水的热能供应现象。

热电厂节能降耗的实际运用浅析

热电厂节能降耗的实际运用浅析

热电厂节能降耗的实际运用浅析热电厂是利用化石燃料或可再生能源进行发电,并利用余热进行供热的综合能源利用系统。

随着能源环保和节能减排的要求越来越高,热电厂在节能降耗方面也面临着新的挑战。

本文将从实际运用的角度对热电厂节能降耗进行浅析。

一、优化发电系统热电厂的发电系统主要包括锅炉、汽轮机和发电机。

优化发电系统是热电厂节能降耗的关键之一。

首先是锅炉燃烧系统的优化。

通过采用先进的燃烧控制技术和烟气余热利用技术,可以提高锅炉的燃烧效率,减少燃料消耗,降低烟气排放。

其次是汽轮机的优化运行。

通过优化汽轮机的运行参数,提高汽轮机的热力效率,降低燃料消耗。

采用先进的调峰技术和电站优化控制系统,可以实现发电系统的优化运行,降低电站的运行成本。

二、余热利用系统热电厂在发电的过程中会产生大量的余热,如果能够充分利用这些余热,就可以实现节能减排的目的。

在余热利用方面,可以采用余热锅炉、余热发电机和余热循环系统等技术手段。

余热锅炉可以利用锅炉排烟中的余热进行再次燃烧,产生蒸汽或热水,用于供热或再次发电。

余热发电机则可以利用汽轮机排汽中的余热进行发电。

余热循环系统则可以将余热输送至供热网,用于供暖或工业生产。

热电厂是一个复杂的综合能源系统,系统集成优化可以实现各个子系统之间的协调运行,提高整体能效。

在系统集成优化方面,可以采用先进的控制技术和智能化管理系统。

通过对能源流程和数据流程的分析,可以实现对系统运行的精细化管理和优化调节。

采用先进的能源管理系统和网络化监控系统,可以实现对能源消耗的实时监测和远程调控,进一步提高能源利用效率。

四、设备更新改造随着科技的不断进步,热电厂的设备也在不断更新换代。

设备更新改造是提高热电厂能效的重要手段之一。

在设备更新改造方面,可以采用先进的锅炉、汽轮机、发电机和余热利用设备等。

通过更新改造,可以提高设备的性能和效率,降低设备的能耗和维护成本。

还可以采用新型的燃料和燃烧技术,进一步降低能耗和排放。

热电厂供热系统节能措施

热电厂供热系统节能措施

1引言铁煤集团热电厂的供热系统,为典型热电联产集中供热系统。

装配2台抽汽供热机组和1台背压供热机组,4台130t/h锅炉。

调兵山城区二级网分为市政供暖系统、盛林供暖系统(南线、北线),其中盛林供暖系统北线在2015年采暖期由煤矸石发电厂供热,到2019年采暖期,调兵山城区已经形成铁煤热电厂、煤矸石发电厂联合供热的格局。

从供热现状分析,节热、节电还是有很大潜力的,对现有供热系统进行节能技术改造,优化运行方式,以提高热电厂的运行经济性,降低运行成本,实现节能降耗。

2热网首站供热系统热网首站外网采用三环制换热,第一环为汽机来的蒸汽;第二环为热网首站到外网各热力站的二级网水路;第三环为热力站到用户的三级网。

来自汽机的蒸汽对首站换热器二级网水加热,将二级网水加热成高温水,蒸汽凝结成凝结水经过卧式换热器再次对二级网水加热后回收。

二级网经过加热的高温水通过外网循环泵加压送到外网各热力站。

二级网水在各热力站对三级网水加热后封闭回到热网首站。

被加热的三级网水通过分站循环泵加压后输送到用户,给用户供暖。

厂区内设一座热网首站,两台冷凝抽汽机组对应两套汽水换热系统,一台背压机组对应一套汽水换热系统。

热网首站热力系统分为抽汽热源系统、二级网载热质管网系统、蒸汽凝结水回收系统、热力网补水系统、循环水水质净化系统等。

(1)抽汽热源系统。

汽轮机组经过做功后的低品质抽汽或背压蒸汽,通过管道进入首站换热器,完成热能的传递加热过程。

(2)蒸汽凝结水回收系统。

首站换热器换热后的凝结水,如果参数满足送回热电厂直接使用的要求,可以直接进入凝结水泵加压送回除氧器。

(3)二级网载热质管网系统。

二级网回水回到热网首站,首先经过除污器进行过滤后,进入二级网循环水泵升压,然后进入首站换热器再次加热,再送回二级网供水管道。

(4)热力网补水系统。

供热系统为保证管网运行压力稳定,通过补水泵进行补水,一般采用电动机变频调节补水流量,保证供热系统无论处于工作或静止状态都能够维持热力网压力在给定值。

热力公司集中供热系统节能方式分析与应用

热力公司集中供热系统节能方式分析与应用

热力公司集中供热系统节能方式分析与应用摘要:随着社会的不断发展,当下人们在生活和工作中对于周围的环境标准要求也越来越高,由此引发的节能意识也是随着得到长足的体现和发展,在当下的热力公司集中供热系统中,如何高效供热并实现节能则是热力公司为社会提供热力资源的一项重点工作任务。

为更好的维持热力公司运营,有必要对供热系统中各个系统环节给与细致分析,在管理方面给与重视,从而能够很好的提高各个环节中的热力资源利用效率,所以提高热力公司供热系统中的热力管理,开展集中供热系统中的节能降耗措施,将有利于当下热力公司和社会的稳定发展。

关键词:集中供热;节能减排;热力资源;热力公司1 前言对于热电集中供热系统汇总,主要是借助背压式或者抽凝式供热机来进行热力资源的传输,通过上述装置可以将内部含有的热力资源传输给热网。

对于分布其中的输热管道,可以将其分为管沟式和直埋式、架空式[1]。

在上述装置中,对于能量消耗的方式主要是通过热泄漏和热损失两种方式。

对于管网系统中,其末端的用热设备大部分都是分布在室内,由此产生的能量损失则是由管网布设情况以及外部环境温度,以及房屋的保温结构等造成的。

2 供热系统分析2.1 负荷预测系统。

对于供热系统中的负荷预测系统,主要包含有气候模型系统。

该系统主要依据就是气象预报及历史经验数据,同时通过分析计算,能够借此得到具有最优功能系统的网源负荷分析模型[2]。

在该系统中,主要基础数据则是室外温度、供热面积、室内热负荷需求和历史数据等,通过上述数据实现对系统所需热量的准确预测和供给。

2.2 全网平衡控制系统。

在该系统中,开展全网控制,其理念则是通过热力站二级网供回水,从而实现对平均温度的控制,并以此作为调控目标。

在上述基础下,通过自动调整不同站点的一网分布式变频,则可以实现将热源生产的热量给与平衡分配,使得所有的换热站得到满足需求的热量,从而让全部用户能够得到足够的热量,实现按需分配热量的目的[3]。

火力发电厂的热力系统节能措施优化

火力发电厂的热力系统节能措施优化

火力发电厂的热力系统节能措施优化摘要:电力的供应对于煤炭开采有着非常重要的作用。

火力电厂企业作为一种高能耗的企业运行模式,在火力发电厂热动系统运行中,虽然能耗较高,但是节能的潜在空间相对较大,因此,为了实现降低能耗的目的,应该将系统的节能运用作为核心,通过节能降耗技术的使用,提升火力发电厂的竞争力,满足当前火力发电厂热动系统的运行需求。

关键词:火力发电厂;热力系统;节能优化;能源利用率1我国火力发电厂能源消耗现状分析目前我国火力发电厂平均供电煤耗、输电线损率和装机耗水率等指标分别比世界先进水平高出30g、2%和40%。

因此,从我国目前火电厂的运行现状来看,主要能耗指标与世界先进水平差距较大,能源严重浪费,而且造成较大的经济损失。

此外,火电机组的结构设置不合理,中低压参数机组数据比例较大,发电设备技术比较落后。

2015年全国6MW的火电机组约为5000台,总容量为2.8亿kW,平均机组的容量可以达到55MW。

其中300MW以上的机组容量占42%,高效率的机组仅占火电总装机总量的2%。

同期同等级容量的国产机组供电煤耗与进口机组也存在较大差别,在生产管理机制与运行水平一致的情况下,供电煤耗量差主要是由于我国发电设备制造技术落后和技术不完善所导致的。

因此,不断提高国产发电设备的制造技术水平是实现企业节能环保的重要途径。

2火力发电厂热动系统节能优化措施2.1明确热动系统节能运行方式首先,优化调度模式。

火力发电厂热动系统节能技术使用中,通过调度模式的优化,可以针对发电调度的规则,实现节能、环保以及经济性的调度目的,为电力系统的优化调整提供支持,具体的调度优化模式如图1所示。

通过这种节能调度方法的构建,可以在真正意义上实现热动系统节能的目的。

其次,在热动系统节能技术使用中,需要结合进行机组真空系统运行状况,进行汽轮凝结器的使用,通过机组运行状态的分析,合理实现电厂热动力系统的调度调整,由于火力发电厂中热动力系统的技术改造是十分重要的,其改革成本相对较低,通过对热动系统排烟量以及排污水量的综合处理,可以达到蒸汽余热的处理目的,满足火电厂热电系统运行的节能使用需求。

燃煤电厂集控运行中的节能降耗措施分析

燃煤电厂集控运行中的节能降耗措施分析

2024 05/燃煤电厂集控运行中的节能降耗措施分析陈 柯 李 煜(淮沪煤电有限公司田集发电厂)摘 要:在全球能源结构中,尽管可再生能源竞争激烈,燃煤电厂仍然是当前能源供应的主要机构。

本文聚焦于提升燃煤电厂的运行效率和减少环境污染,强调了在推动低碳经济背景下这一目标的紧迫性。

研究首先分析了燃煤电厂的能耗现状,指出平均能源转换效率较低和关键耗能环节。

并深入探讨了提高锅炉效率、优化汽轮机设计、废热回收等技术改进措施,以及操作优化和能源管理策略,旨在减少能耗和提高能效。

研究还评估了这些措施的综合效益,包括节能效果和对经济及环境的正面影响,如成本降低和温室气体排放减少。

文章最后展望了燃煤电厂面临的未来挑战和发展机遇,强调持续技术创新和智能化管理对实现可持续能源目标的重要性。

关键词:燃煤电厂;节能降耗;能源效率;环境保护;技术改进;操作优化0 引言燃煤电厂作为全球能源结构的关键组成部分,至今在许多国家的能源供应中占据主导地位。

尽管可再生能源的发展迅猛,但鉴于煤炭广泛的可用性和经济性,燃煤电厂依然是全球能源供应的重要支柱。

然而,燃煤电厂的运行效率和环境影响始终是全球关注的焦点,因为它们直接关系到能源安全、经济发展和环境保护。

在全球范围内,为促进低碳经济的发展,燃煤电厂面临着提高运行效率和降低环境影响的重要任务[1]。

当前,大多数燃煤电站的热效率相对较低,平均效率大约仅为35%,这意味着超过三分之二的能源在发电过程中未被有效利用。

这不仅导致能源浪费,也加剧了环境污染问题。

事实上,燃煤电厂是全球二氧化碳和其他温室气体的主要排放源之一,对全球气候变化问题贡献显著。

因此,在当前全球气候变化和环境保护的背景下,提高能源利用效率和减少污染排放已成为燃煤电厂和能源行业面临的重要挑战。

探讨和实施有效的节能降耗措施,不仅对于提升电厂运行效率至关重要,也对于减轻环境压力、实现可持续发展目标具有深远意义。

本文旨在分析当前燃煤电厂在能效和环境方面面临的主要问题,并探讨一系列可能的技术改进和操作优化措施。

热电厂循环水余热利用和节能减排效益分析

热电厂循环水余热利用和节能减排效益分析

热电厂循环水余热利用和节能减排效益分析摘要:目前,我国的经济在快速发展,社会在不断进步,冷端损失是电厂热力系统的最大损失,在冬季额定供热工况下,汽轮机排汽损失可占燃料总发热量的30%以上。

余热回收利用是提高电厂能源利用率及节能环保的重要措施和手段。

公司应用电厂循环水余热利用技术,在冬季供暖季节,将汽机凝汽器大部分冷却水经由吸收式热泵吸收转换为供暖供热,大部分循环冷却水不再经过冷却塔冷却散热,通过回收其循环水的余热向公司供热,从而使电厂对外供热能力提高,采用闭式循环运行冷却,可避免原运行系统的蒸发和飘逸等水量损失。

循环水的余热利用不仅降低了能源消耗,而且还增加了效益,减少了CO2、SO2和NOX的排放。

关键词:余热;热泵;节能减排;效益引言传统的热电厂进行供热的时候,能源选用上通常是煤、石油、天然气这样的能源,供热效率较低,且会产生一些对人类有害的气体。

而如果使用循环冷却水余热回收技术,就能够改变这一点,通过该技术的使用使得整个供热过程变得清洁环保,且节约了大量的能源,供热的规模也大大增强了。

由此可见,将循环冷却水余热回收技术加以利用是非常重要的。

然而目前在该技术的应用上还存在着一些问题,因此文章中对该技术的具体探讨是非常有价值的。

1概述热电联供可实现一次能源的梯级利用和具有较高的整体能效,尽管如此,在热电生产过程中仍存在大量低品位余热未被有效利用的情况,尤其是锅炉的烟气余热和凝汽器循环冷却水(本文简称循环水)余热没有得到充分利用。

电厂燃煤锅炉的省煤器、空气预热器仅能回收烟气中部分显热,烟气中的大量潜热未被有效利用。

同时,循环水余热一般直接通过冷却塔(集中设置在空冷岛)散失在环境中,未得到有效利用。

近年来,采用汽轮机低真空运行技术提高凝汽器循环水的出水温度直接用于供热的方式在热电厂得到了部分应用,但该类技术的供热效果受到机组运行参数的制约,而且凝汽器内真空度的改变会对机组本身造成安全隐患。

本文对热电厂烟气余热回收在烟气脱白工艺中的应用和循环水余热回收的研究进展和技术手段进行综述。

火力发电厂热力系统节能措施分析

火力发电厂热力系统节能措施分析

火力发电厂热力系统节能措施分析摘要:随着我国经济的快速发展,人们对用电量的需求也在不断增加。

为最大限度地满足社会用电的需要,火力发电厂在不断地扩大建设规模,同时也存在着能耗高,效益不好的现状,对火力发电生产的经济性有不利影响,在热力系统设计和运行管理中仍有着优化改善空间。

本文分析和讨论了火力发电系统的节能技术,提出降低能耗的优化策略分析。

关键词:火力发电厂;热力系统;节能优化在保证供电可靠性的前提下,火力发电厂在整个生产过程中必须做到能源节约和环境保护。

煤炭是一种天然的非再生资源。

随着耗量的不断增长,煤炭资源愈发紧缺,同时大量的能源消耗也会对环境产生影响。

因此,在火力发电厂的生产过程中节约能源,降低煤炭消耗,提高其经济效益。

1.火电厂热力系统应用节能技术的必要性1.1实现电厂经济稳定发展热力系统的节能技术在火力发电厂的应用,极大的促进了电厂的节能工作开展;热力系统上的节能方案使发电厂能够对整个热力系统进行最优的调节,从而降低系统在运行中的各类损耗。

通过对主机辅机的优化升级,提升了运行效率,降低能消耗,从而大大减少了运行的费用。

同时在保证提高经济性的前提下,降低了污染,也能切合绿色发展的市场策略。

1.2热力系统的节能优化应用前景广阔火力发电厂的投产建设周期往往较短,在初始设计过程中,少有设计单位对电站的整体节能降耗工作进行深入的研究与创新,致使其在设计上存在着可以优化改善的地方。

生产环节中,因需要满足电网调度进行调峰调频运行,导致主机设备的再更苛刻的工况下运行,效率降低。

同时系统设备维修管理情况往往也会造成了电力系统的能耗上升。

因此,在以上各个环节中,深入发掘热力系统中的节能潜力,可以使发电厂的整体运行得到优化和改善,从而降低能耗,是值得应用推广的。

1.3实现降低火电厂能耗的最终目标利用各种不同的节能优化手段,可以实现火力发电厂整体的节能降耗。

可以在初始设计过程,通过对新机组的设计进行优化,对辅助设备的选型进行更合理化的匹配,从而达到减少热力系统损耗和能源消耗的目的。

热电厂节能减排方案大汇总

热电厂节能减排方案大汇总

热电厂节能减排方案大汇总节能减排是关系经济社会可持续发展的重大战略问题,是中央确定的我国经济社会发展的重大战略任务,电力工业是节能减排的重点领域.。

其中大型火电企业是清洁能源的制造者,又是耗能大户,在节能与环保领域中具有重要的社会责任。

本文从电厂的规划、生产和管理环节提出了节能减排的各种方法,对于我国火力发电企业的节能减排具有一定的理论指导意义和现实应用价值。

电厂节能减排的有效措施如下:1. 调整电源结构,加快清洁能源和可再生能源的开发步伐受一次能源结构特点的影响,火电装机容量比重偏大,水电、核电、可再生能源发电比重偏小,特别是核电发展缓慢。

因此加大水电、核电、可再生能源和新能源的比重,优先发展水电、风电等清洁能源和可再生能源项目显得尤为重要。

2.关停小容量机组, 推广大容量机组根据蒸汽动力循环的基本原理及热力学第一定律和第二定律的分析,发展高参数、大容量的火电机组是我国电厂节能的一项重要措施。

单台发电机组容量越大,单位煤耗越小。

如超超临界机组比高压纯凝汽式机组供电标煤耗少1 /4~1 /3,假设有两亿千瓦这样的替代机组,一年可以节约标煤十亿多吨,同时三废的排放也大大减少。

因此,关停小容量机组,推广大容量机组对减少能耗、提高能源利用率具有重大意义。

3.推广热电联产热电联产节能减排效果明显,发展热电联产集中供热具有节约能源、改善环境、提高供热质量、增加电力供应等综合效益,是改善大气环境质量的有效手段之一,是提高人民生活质量的公益性基础设施。

4.提高燃煤质量,实现节能减排煤粉锅炉被广泛地应用于火力发电厂中。

一般来讲,燃料的成本占发电成本75%左右,占上网电价成本30%左右。

煤质对火电厂的经济性影响很大,如果煤质很差,会限制电厂出力,使电厂煤耗和厂用电率上升,且锅炉本体及其辅助设备损耗加大;如果燃煤质好价优,则锅炉燃烧稳定、效率高,机组带得起负荷,不仅能够减少燃料的消耗量,更有利于节约发电成本,因此入厂和入炉燃料的控制是发电厂节能工作的源头。

火力发电厂整体热效率的提升与节能降耗的分析

火力发电厂整体热效率的提升与节能降耗的分析

火力发电厂整体热效率的提升与节能降耗的分析1. 引言1.1 火力发电厂能源消耗现状当今社会,火力发电厂在能源消耗方面一直扮演着重要的角色。

随着国民经济的快速发展和电力需求的不断增长,火力发电厂的能源消耗问题日益突出。

据统计数据显示,火力发电厂耗能比例在发电行业中占据较大比重,每年的燃煤消耗量达到几十亿吨,而且随着火力发电厂机组的老化和设备的不断更新换代,能源消耗问题也愈发凸显出来。

目前,我国火力发电厂的能源消耗现状主要表现在以下几个方面:一是燃料利用率低下,传统的燃煤发电方式存在能源转换效率低、废气排放过高等问题,导致能源的浪费和环境污染;二是设备老化严重,很多火力发电厂的设备运行效率低下,能源消耗大,运行成本高;三是热损失严重,火力发电厂在能量转换过程中存在大量的热损失,造成了能源的浪费。

提升火力发电厂整体热效率,降低能源消耗,成为当前亟需解决的问题。

只有通过节能降耗的有效途径,才能实现火力发电行业的可持续发展和环境保护的双赢局面。

1.2 提升整体热效率的必要性提升整体热效率是火力发电厂提高能源利用效率、减少能源消耗、降低环境污染的重要措施。

随着能源资源的日益紧缺和环境污染问题的日益突出,火力发电厂必须不断提高整体热效率,以实现可持续发展。

提升整体热效率能够有效降低火力发电厂的能源消耗。

火力发电厂在发电过程中需要大量的燃料来产生热能,而且只有部分热能能够被转化为电能,其余的热能都被浪费掉了。

通过提升整体热效率,可以有效减少这种能源浪费,提高能源利用率,降低能源消耗。

提升整体热效率还能够减少环境污染。

火力发电厂在燃烧燃料时会产生大量的废气和废烟尘,这些废气和废烟尘会对环境造成严重污染。

提升整体热效率可以减少燃料的使用量,从而减少废气和废烟尘的排放,降低对环境的影响。

2. 正文2.1 火力发电厂整体热效率影响因素分析火力发电厂整体热效率是指单位燃料的能源利用效率,影响着发电厂的能耗水平和经济效益。

利用发电厂蒸汽梯级利用的热电联产节能改造热经济性分析

利用发电厂蒸汽梯级利用的热电联产节能改造热经济性分析

利用发电厂蒸汽梯级利用的热电联产节能改造热经济性分析发电厂蒸汽梯级利用的热电联产是一种常见的节能形式,通过利用发电过程中产生的废热,将其转化为热能和电能,实现能源的有效利用。

热电联产技术已经在工业生产和城市供热领域得到了广泛应用,可以有效地提高能源利用率,降低能源消耗,减少环境污染。

本文将对利用发电厂蒸汽梯级利用的热电联产进行节能改造的热经济性进行分析,探讨其在现实生产中的应用前景和优势。

1. 蒸汽梯级利用的热电联产技术原理热电联产是指在发电过程中,利用发电厂的废热,通过发电机、汽轮机、余热锅炉等设备,将废热转化为热能和电能。

具体来说,蒸汽梯级利用是指在蒸汽动力系统中,充分利用蒸汽的压力差,通过不同级别的蒸汽轮机和发电机组,实现发电和热能的联产。

蒸汽梯级利用的关键在于充分利用蒸汽的能量,提高能源利用效率。

2. 节能改造热经济性分析热电联产技术能够有效地提高能源利用效率,降低能源消耗,具有显著的节能效果。

通过利用废热发电,可以减少发电过程中的燃料消耗,降低二氧化碳等温室气体的排放,对环境保护具有重要意义。

热电联产技术可以实现热电双供,提高能源利用率。

通过设备的改造和优化设计,可以降低系统的能耗,提高系统的热经济性。

在能源紧缺的情况下,热电联产技术可以有效地提高能源的有效利用率,降低能源消耗,为国家能源保障和可持续发展提供重要支持。

3. 应用前景和优势利用发电厂蒸汽梯级利用的热电联产具有广阔的应用前景和优势。

热电联产技术适用范围广泛,可以应用于各种类型的发电厂和工业生产企业,特别是化工、冶金、纺织等高能耗行业。

热电联产技术可以根据企业的实际生产需求进行定制设计,满足不同规模和热电需求的企业,具有很强的灵活性和适应性。

热电联产技术具有显著的经济效益,通过节能减排和废热利用,可以大大降低企业的能源成本,提高企业的竞争力。

火力发电厂节能评价标准+节能技术措施

火力发电厂节能评价标准+节能技术措施

火力发电厂节能评价标准节能技术措施一、引言火力发电厂作为我国能源供应的重要环节,其节能评价标准和节能技术措施对于提高能源利用效率、降低环境污染、促进可持续发展具有重要意义。

本篇文档将主要围绕火力发电厂的节能评价标准和节能技术措施进行探讨。

二、火力发电厂节能评价标准1.提高燃料效率2.燃料是火力发电厂的主要能源,提高燃料的燃烧效率是节能的重要手段。

评价标准包括燃料低位热值、燃烧效率、排放物浓度等指标。

3.优化燃烧过程4.优化燃烧过程可以降低燃烧损失,提高锅炉效率。

评价标准包括炉膛温度分布、氧量控制、燃烧器性能等指标。

5.回收利用余热6.回收利用余热可以提高热能利用效率,减少能源浪费。

评价标准包括余热回收率、热能品位提升等指标。

7.改进制粉系统效率8.制粉系统是火力发电厂的重要环节,提高制粉系统效率可以降低煤耗。

评价标准包括制粉电耗、磨煤机出力等指标。

9.空预器节能改造10.空预器是锅炉的重要部件,通过改造空预器可以提高热效率,降低能耗。

评价标准包括空预器漏风率、换热效率等指标。

11.汽轮机通流部分改造12.汽轮机通流部分改造可以提高汽轮机的效率,降低汽耗。

评价标准包括汽轮机通流部分改造后的热耗率、效率等指标。

13.降低厂用电率14.降低厂用电率可以提高火力发电厂的能源利用效率。

评价标准包括厂用电率、用电单耗等指标。

15.供热改造与利用16.通过供热改造与利用,可以实现能源的多元化利用,提高能源利用效率。

评价标准包括供热量、热能利用率等指标。

17.采用变频器技术18.采用变频器技术可以优化电机运行,降低能耗。

评价标准包括变频器节能效果、电机效率等指标。

19.建立能源管理系统20.建立能源管理系统可以实现对能源使用的全面监控和管理,提高能源利用效率。

评价标准包括能源管理系统的覆盖范围、数据采集精度等指标。

三、火力发电厂节能技术措施1.提高燃料效率措施:选用优质燃料,加强燃料的存储和运输管理,采用高效燃烧器等。

电厂余热采暖方案

电厂余热采暖方案

电厂余热采暖方案背景介绍电厂是一种高耗能的建筑,也是一种大型热源。

在发电过程中,有很多的余热会被释放,这些余热如果不能够得到有效利用,将会造成能源的巨大浪费。

因此,如何利用电厂的余热,变废为宝,成为了新时代的一项重要任务。

其中,利用电厂余热进行集中采暖是一种非常可行的方式,能够为社会提供绿色、环保、节能、高效的供热方案。

电厂余热采暖方案优势1、掌握先进技术:电厂余热采暖抓住了一个有益的机会,将电能转化为热能。

2、节省能源:电厂的余热输出将变得非常高效,节省大量的电能资源,减少了环境和情况潜在的影响。

3、可拓展性:电厂供暖系统的优点是可扩充和可增强的,因为它是由高度机械化的设备所支撑。

4、环境友好性:利用电厂余热采暖,不会造成环境污染和二氧化碳的排放,更符合节能环保的理念。

方案实施及效果在电厂建设时,需要提前规划热力资源回收部分,对于燃气发电厂,回收余热与改造技术等做出科学的分析,以迎合发展的需求。

电厂的余热采暖方案实施的效果主要包括以下几个方面:1、节省能源:采用电厂的余热作为供暖源,不需要再单独购买燃气、燃煤等传统能源,极大地节省了能源开支。

2、降低能源费用:电厂的余热采暖不需要再购买燃气、燃煤等传统的能源,降低了能源成本,同时对环境造成的损坏也越来越少。

3、提高供暖效率:利用电厂的余热作为供暖源,能够极大地提高供暖效率,保证供暖及时、稳定。

方案未来发展未来,电厂余热采暖方案将不断发展,应用的范围也将越来越广泛。

近年来,随着环保意识的不断加强,人们对于有效利用资源的需求越来越高,因此,电厂余热供暖在未来的发展中将会更加地高效,科学,环保。

同时,电厂余热采暖也将拓展到更多的应用领域和建筑物,为社会提供更多的优质供暖服务。

总结电厂余热采暖方案利用电厂的余热作为供暖源,无疑是一项非常环保、节能、高效的方案。

它能够为社会提供可持续的、优质的供暖服务,将成为未来发展的一种重要方向。

因此,在电厂的建设中,应该提前规划热力回收部分,推广电厂余热采暖方案,让环保与节能成为我们行走到未来的必经之路。

供热管网节能改造及输热能效分析

供热管网节能改造及输热能效分析

供热管网节能改造及输热能效分析供热管网是城市热力系统中的关键设施,它直接影响着城市居民的生活质量和环境保护。

随着城市化进程的加快和能源消耗的增加,供热管网在输热能效上存在着许多问题,如能耗高、能源利用率低、损耗严重等,这不仅增加了热力供应的成本,也对环境产生不良影响。

对供热管网进行节能改造并对其输热能效进行分析,成为当前城市供热系统优化的重要课题。

一、供热管网的能效问题1. 供热管网的能耗高供热管网输送热力需要耗费大量的能源,在传统供热系统中,包括燃煤、燃气、热水等多种方式,这些能源的利用率并不高,存在着能源浪费的问题。

供热管网系统中存在着能量损失的情况,如热损失、泄漏等,导致系统的能效低下。

2. 能源利用率低供热管网输送热力过程中,热能的利用率并不高,存在着大量的能量浪费。

特别是在长距离输送和冷热负荷变化大的情况下,能源利用率更低,造成了对能源的浪费。

3. 环境影响严重传统的供热管网系统存在着污染环境的问题,如燃煤热电厂的废气排放、热水泄漏等,都对环境造成了不良影响,加剧了大气污染和水资源污染等问题。

二、供热管网节能改造为了解决供热管网存在的能效问题,需要对其进行节能改造,主要包括以下几个方面:1. 采用高效的供热技术在供热管网系统中,采用高效的供热技术可以有效提高系统的能效。

如采用热泵供热技术、余热利用技术等,能够有效提高供热系统的能源利用率,减少能耗。

2. 优化供热管网设计通过优化供热管网的设计方案,可以减少系统的热损失和泄漏,提高系统的能效。

如采用保温材料、改进管道布局等方式,降低系统的热损失和能源消耗。

4. 加强监测与管理加强对供热管网系统的监测和管理,及时发现能耗高、能效低下的问题,并采取相应的措施进行调整和优化,从而提高系统的能效。

对供热管网的输热能效进行分析,可以帮助我们更好地了解系统的能耗情况,找出能效低下的原因,并制定相应的改进方案,以提高系统的能效。

主要包括以下几个方面:1. 能耗分析对供热管网系统的能耗情况进行分析,包括供热能源的消耗情况、系统的热损失情况、设备的能耗情况等,找出能耗高的原因,为降低能耗提供依据。

关于热电厂热力系统节能减排及优化的探讨

关于热电厂热力系统节能减排及优化的探讨

关于热电厂热力系统节能减排及优化的探讨【摘要】:热电厂的运营与群众生活息息相关,新时期热电厂不断加强改革创新力度,在全面提升服务质量的同时,高度重视节能减排工作开展。

本文从热电厂热力系统节能减排入手,讨论热电厂热力系统节能减排优化方向,并分析如何提升热电厂电力系统节能减排质量,希望对相关研究带来帮助。

【关键词】:热电厂;热力系统;节能减排;优化前言为了满足社会用电需求,热电厂不断扩大生产规模、提升运营水平,与此同时在燃烧煤碳的过程中也存在着一定环境污染问题。

在大力倡导可持续发展理念的今天,热电厂需要积极开展节能减排工作,以下对相关内容进行分析。

一、热电厂热力系统节能减排在热电厂中,热力系统由诸多设备设施组成,通过汽水管道并按照指定顺序设置锅炉、汽轮机、水泵等设备,并相互连接。

热力系统涵盖给水回热、中间再热、废热利用等子系统,并且热力系统和子系统相互联系,最终满足社会供电需求。

在热电厂系统运行过程中会耗费大量资源和能源,因此需要结合热电厂实际情况,加强对先进技术的利用,优化和改造热电厂热力系统,对产业结构优化调整。

新时期,热电厂的热力系统通过优化改造达到了节能降耗的目标,与此同时通过实时监控热力系统可以调整管理方案,在降低能耗的同时带来更大经济效益,实现自身可持续发展[1]。

二、热电厂热力系统节能减排优化方向(一)系统运行诊断在可持续发展理念下,热电厂高度重视节能减排工作开展,通过技术措施和管理措施促进内部升级改造,有效提升了热力系统的运行效率,降低了能源消耗。

通过对汽轮机发电机组的热力系统进行优化,提升系统主机的热效率,最大程度降低系统设备运行能耗,所以需要基于热力系统理论全面诊断和分析系统运行情况,找出造成热力系统能耗高的原因,并加以改造。

(二)系统能耗检测基于热力系统理论基础,利用信息技术分析热力系统运行参数,监测热力系统运行消耗,进而确定能耗分布情况,以此达到节能降耗目标。

在实际操作中,要求技术人员根据能耗分布情况以及能耗增大的原因,合理调整方案,这一过程中需要利用先进技术,比如通过微电子技术和热力系统的有机结合实时掌握能耗数据,提升管理效果。

热电厂循环水热泵供热技术方案与节能性分析

热电厂循环水热泵供热技术方案与节能性分析

热电厂循环水热泵供热技术方案与节能性分析热电厂作为一种大型热能供应设施,对于提高城市供暖和生活热水的质量和效率有着重要作用。

但是,传统的热电厂往往会存在能源浪费、污染排放等问题,因此,如何从能源角度出发,提高热电厂的供热效率,成为了关注的热点。

在这一背景下,循环水热泵供热技术应运而生。

循环水热泵供热技术是通过将热电厂循环水中的低品质热能转化为高品质热能,提高能源利用率的一种技术。

具体实现过程是将热电厂循环水通过热泵技术提高温度,再将高温水送入城市供热管网,为用户提供暖气和生活热水。

与传统的锅炉供热相比,循环水热泵供热技术具有以下优点:1.能源利用效率更高:循环水热泵供热技术可以将热电厂循环水中的低品质热能转化为高品质热能,提高能源利用效率,同时减少能源浪费。

2.环保性更好:由于循环水热泵供热采用清洁能源供热的方式,不会产生任何排放物,对环境的影响更小。

3.运行成本更低:由于循环水热泵供热技术的高能效和低维护成本,其运行成本比锅炉供热更低。

以上点均说明,循环水热泵供热技术是一种高效、环保、低成本的供热技术选择。

下面,笔者将以循环水热泵供热技术在热电厂中的应用为例,进行技术方案与节能性分析。

技术方案:循环水热泵供热技术应用于热电厂供热中的具体方案如下:1.应用场景:热电厂中的循环水热泵供热主要应用于夏季的供冷和冬季的供暖,其供热范围主要为城市居民区、商业区、公共建筑等。

2.供热参数:循环水热泵供热技术所能提供的供热参数为:夏季制冷温度22℃~27℃,冬季供暖温度30℃~60℃。

3.制冷供暖方式:循环水热泵供热采用分户机组的方式实现热量供应,每个户型均采用一套小型循环水热泵机组,配有热交换器,并与市政管网连接。

4.设备选型:循环水热泵供热主要的设备有循环水系统、热泵系统、热交换器、控制系统等。

在实际应用中,设备的选型应根据当地气候条件、用户需求、设备质量、价格等方面的综合考虑。

节能性分析:循环水热泵供热技术在热电厂中的应用,可以显著提高系统的能源利用率,从而带来显著的节能效果。

电厂锅炉的节能技术分析

电厂锅炉的节能技术分析

电厂锅炉的节能技术分析电厂锅炉是电力生产中不可或缺的设备,其节能与否直接关系到电厂的运行成本和资源利用效率。

为了提高电厂锅炉的节能性能,目前已经出现了许多技术手段和方案。

本文将对电厂锅炉的节能技术进行分析,探讨其在提高锅炉效率和节约能源方面的作用。

一、提高锅炉燃烧效率的技术1. 燃烧控制技术燃烧控制技术是提高锅炉燃烧效率的重要手段之一。

通过优化燃烧控制系统,可以实现燃烧过程的精准控制,使燃料燃烧更充分,热效率更高。

采用先进的燃烧控制系统,可以实现燃料的自动供给和燃烧过程的动态调整,提高燃烧效率。

2. 燃料改进技术燃料改进技术是通过改变燃料的物理性质或化学成分,来提高燃料的燃烧性能和热效率。

通过燃烧预处理技术,可以改变燃料的颗粒大小和燃烧特性,使其更适合于锅炉燃烧,提高燃烧效率。

二、降低锅炉热损失的技术1. 锅炉热效率优化技术通过优化锅炉的结构设计和工艺参数,可以降低锅炉的热损失,提高锅炉的热效率。

采用高效的换热器和节能的循环水系统,可以有效降低锅炉的热损失,提高热效率。

2. 锅炉烟气余热利用技术锅炉烟气余热利用技术是通过收集和利用锅炉烟气中的余热,来提高锅炉的热效率。

采用余热回收装置,可以将锅炉烟气中的余热转化为热能,用于加热水或发电,实现能源的再利用,降低能源消耗。

3. 锅炉节能控制技术通过实施锅炉节能控制技术,可以对锅炉的运行过程进行监测和调整,以降低能耗和热损失。

采用智能节能控制系统,可以实时监测锅炉的运行状态,根据实际情况调整供热参数和控制策略,提高锅炉的能效。

三、提高锅炉运行可靠性的技术1. 锅炉运行状态监测技术通过实施锅炉运行状态监测技术,可以实时监测锅炉的运行状态,及时发现运行异常和故障,保障锅炉的安全运行和稳定性。

采用智能监测系统,可以对锅炉的压力、温度、流量等参数进行监测和分析,实现对锅炉运行状态的全面掌控。

2. 锅炉设备维护技术通过实施锅炉设备维护技术,可以对锅炉的设备进行定期检修和维护,保障锅炉的正常运行和长期可靠性。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电厂供热改造节能分析
发表时间:2016-07-25T14:28:31.383Z 来源:《电力设备》2016年第10期作者:蔡宗霖
[导读] 大型电站热电联产化是未来大型火电站发展的一种趋势。

(京能山西漳山发电有限责任公司山西长治 046021)
摘要:大型电站热电联产化是未来大型火电站发展的一种趋势。

本文分别从漳山发电供热改造建设必要性和可靠性、建设技术方案、节能与环境评估、经济与社会影响等诸方面对漳山2×300MW+1×600MW供热改造进行方案研究及效果分析,最终可实现,全年回收乏汽余热供热量151.9×104 GJ,年节约5.65×104吨标煤,即相当于减少SO2排放量2970吨,减少CO2排放量25.1×104吨,减少NOx排放量
1407.8吨,减少烟尘排放量235.6吨,减排灰渣6.5×104吨。

关键词:漳山电厂;供热改造;节能减排;热电联产
1、引言:
漳山电厂位于山西省长治市郊区,目前总装机容量为1800MW直接空冷机组。

一期2×300MW直接空冷、脱硫、燃煤发电机组和二期2×600MW直接空冷、脱硫、脱硝、燃煤发电机组。

是山西电网省调装机容量最大的发电企业之一。

本次供热改造将一期#1、#2以及二期#3直接空冷机组改造为供热抽汽机组,主要为长治市供热。

工程施工后,可以缓解长治市供热需求,替代落后燃煤供热设备,对节约资源、降低能耗、改善环境具有良好的经济效益和社会效益。

2、供热介绍
按现有热源点,尚不能满足长治市的供热需要,依据长治市政府意见,山西漳山发电有限责任公司的2×300MW+1×600MW空冷供热机组作为新的热源点,供热范围为长治市主城区,近期供热1000万平米,远期供热面积可达1400万平米。

2.1热力站规模
根据地理位置和自然道路划分的供热分区,其供热面积和供热负荷各不相同,依据各分区的供热位置、供热面积,合理规划热力站的数量和规模。

单座热力站规模控制在2~15MW之间,供热面积为3~25万㎡,单座热力站占地面积,单台机组为120~160㎡,两台机组为200~260㎡。

2.2供热能力
漳山电厂2×300MW+1×600MW机组2015年供热改造后,供热面积可达1400×104m2,即供热负荷770MW。

(1)供热负荷
a、近期采暖建筑设计热负荷为:
Qn=qf×F×10-3(kw)=1000×104m2×55W/m2=550(MW)
b、远期采暖建筑设计热负荷为:
Qn=qf×F×10-3(kw)=1400×104m2×55W/m2=770(MW)
(2)全年供热量
a、近期电厂全年供热量计算如下:
Qna=0.0864×550000×(18+2.3)/(18+11)× 137=454.0×104(GJ/a)
b、远期电厂全年供热量计算如下:
Qna=0.0864×770000×(18+2.3)/(18+11)× 137=635.6×104(GJ/a)
3.方案选择
通过对目前主流利用余热供热的技术分析,并根据漳山电厂现有机组、场地、改造条件、投资和余热供热的经济性出发,推荐两种方案:方案一是抬高#2机组的发电背压,利用汽轮机低真空排汽直接加热热网循环水供热;方案二是在#1、#2两台机组分别设置吸收式热泵,利用蒸汽驱动回收汽轮机排汽一并加热热网水供热。

方案一:
方案一是采用低真空(不改造汽轮机前提下,抬高单台机组背压运行)回收乏汽的热电联产集中供热技术,回收#2机组直接空冷抽汽凝气式汽轮机的凝汽余热,提高热电厂供热能力以及能源利用效率。

远期供热负荷770MW,电厂抽汽供热能力642MW;成功#2机组回收汽轮机乏汽128MW,实现年回收乏汽余热供热量151.9×104GJ/a。

管网循环水量为:770×1000/4.186/60× 3.6=11036.8t/h
可回收余热量为:11036.8×4.186×(70- 60)/3600=128.3MW
本项目运行期间最低热负荷为345MW,即乏汽余热为基础热负荷,则年回收的余热量为:128×24×137×3.6/10000=151.9万GJ/a。

在整个采暖季的运行中,乏汽余热供热带最基本负荷,漳山电厂供热系统总供热量约为635.6×104GJ/a,其中,电厂年回收乏汽余热供热151.9×104GJ,占23.9%。

方案二:
方案二采用吸收式热泵回收乏汽的热电联产集中供热技术。

回收漳山电厂2台300MW直接空冷抽汽凝气式汽轮机的凝汽余热,同样可以提高热电厂供热能力以及能源利用效率。

供热负荷770MW工况下,吸收式热泵出口温度为90℃,则吸收式热泵供热负荷为:770×(90-60)/(120-60)=385MW
吸收式热泵按COP=1.7计算,则除了热泵驱动蒸汽外,回收的乏汽量为:
385×(1.7-1)/1.7=158.6MW
则年回收余热量为158.6×24×137× 3.6/10000=187.7万GJ/a。

综合方案一和方案二余热利用数据,方案二回收余热量大于方案一,但采用吸收式热泵系统比低真空方案复杂,投资也相对较多,占地面积大,考虑改造余热利用项目,厂区条件限制,采用方案一更适合,即低真空回收乏汽的热电联产集中供热技术。

4. 节能减排效果
以电厂近期供热面积1000万m2计。

1)余热回收节能
漳山电厂2×300MW机组通过本供热改造,成功回收2号机组汽轮机乏汽226t/h,回收乏汽功率158.6MW,实现乏汽供热量151.9×104GJ/a。

每年可节约标煤为:
151.9×104GJ/a×34.12kg/GJ =5.2×104t。

2)采用集中锅炉供热耗标煤量
集中锅炉效率按80%计算,供热煤耗按41.1kg/GJ,年耗标煤量为:
123.8×104GJ×(41.1-37.45) kg/GJ=0.45×104t/a。

3)总节能效果
总计节约标煤为:
5.2×104t+0.45×104t/a =5.65×104t/a。

4)节水、节电
(1)节电计算
1000×(16.15-6.32)=9830万(kwh/年)
本项目达产后近期每年可节约电量9830万(kwh/年)
(2)节水计算
1000×(589-218.5) ×10-3=370.5万(吨/年)
本项目达产后近期每年可节水370.5万(吨/年)
本项目综合能源消费量标煤当量值8991.66吨/年,等价值9453.82吨/年。

“十二五”期间山西省能源消费增量额度约为11351.88万吨标准煤,对山西省能源消费增量影响很小。

本项目单位工业增加值能耗为0.67tce/万元,项目增加值能耗影响山西省GDP能耗的比例n= 0.002%,对山西省和集中市单位GDP能耗影响很小。

5)减排效果
按每节约1t标准煤的燃烧,便可排放灰渣:660kg、烟尘:2.38kg、SO2∶30kg、NOX∶14.22kg、CO2∶2540kg,统计结果为可减少灰渣:6.5万吨/年、烟尘:235.6吨/年、SO2∶2970吨/年、NOX∶1407.8吨/年、CO2∶25.1万吨/年。

本项目实施后,可大幅提高电厂供热能力,同时可以收到显著的环保效益。

5.总结
漳山发电2×300MW+1×600MW机组供热改造工程建成投产后,机组按年利用5500小时计,年发电量30.65×108kwh,年供电量为28.2×108kwh,近期年供热量454×104GJ/a,远期年供热量635.6×104GJ/a。

供热改造一方面提高了能源利用率,符合国家的节能减排政策,另一方面,给长治市供热,可替代现有的多台小锅炉,不但对改善当地大气环境有好处,也减少了运煤、运灰渣车辆,提升文明水平,提高了居民的生活质量。

该项目建成发电后,经济效益指标理想,符合国家规定,具有较强的财务盈利能力,促进当地经济发展,该项目的经济效益显著。

相关文档
最新文档